Properties

Label 338.3.f.h.89.1
Level $338$
Weight $3$
Character 338.89
Analytic conductor $9.210$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(19,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,0,6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 89.1
Root \(-4.71318 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.89
Dual form 338.3.f.h.19.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(-2.78960 - 4.83174i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(0.323893 + 0.323893i) q^{5} +(-7.62134 + 2.04213i) q^{6} +(-2.05755 - 7.67890i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-11.0638 + 19.1630i) q^{9} +(0.560999 - 0.323893i) q^{10} +(-5.40655 - 1.44868i) q^{11} +11.1584i q^{12} -11.2427 q^{14} +(0.661433 - 2.46850i) q^{15} +(2.00000 + 3.46410i) q^{16} +(1.74285 + 1.00623i) q^{17} +(22.1276 + 22.1276i) q^{18} +(-4.47512 + 1.19911i) q^{19} +(-0.237106 - 0.884892i) q^{20} +(-31.3626 + 31.3626i) q^{21} +(-3.95787 + 6.85523i) q^{22} +(15.0976 - 8.71663i) q^{23} +(15.2427 + 4.08426i) q^{24} -24.7902i q^{25} +73.2415 q^{27} +(-4.11511 + 15.3578i) q^{28} +(8.25026 + 14.2899i) q^{29} +(-3.12993 - 1.80707i) q^{30} +(-9.27353 - 9.27353i) q^{31} +(5.46410 - 1.46410i) q^{32} +(8.08249 + 30.1643i) q^{33} +(2.01247 - 2.01247i) q^{34} +(1.82071 - 3.15357i) q^{35} +(38.3261 - 22.1276i) q^{36} +(-34.0501 - 9.12370i) q^{37} +6.55204i q^{38} -1.29557 q^{40} +(-15.7076 + 58.6217i) q^{41} +(31.3626 + 54.3217i) q^{42} +(45.2101 + 26.1020i) q^{43} +(7.91574 + 7.91574i) q^{44} +(-9.79026 + 2.62329i) q^{45} +(-6.38102 - 23.8143i) q^{46} +(8.73527 - 8.73527i) q^{47} +(11.1584 - 19.3269i) q^{48} +(-12.2967 + 7.09948i) q^{49} +(-33.8640 - 9.07384i) q^{50} -11.2280i q^{51} -23.4425 q^{53} +(26.8082 - 100.050i) q^{54} +(-1.28193 - 2.22036i) q^{55} +(19.4729 + 11.2427i) q^{56} +(18.2776 + 18.2776i) q^{57} +(22.5401 - 6.03961i) q^{58} +(-9.13343 - 34.0864i) q^{59} +(-3.61413 + 3.61413i) q^{60} +(-13.9421 + 24.1483i) q^{61} +(-16.0622 + 9.27353i) q^{62} +(169.915 + 45.5287i) q^{63} -8.00000i q^{64} +44.1635 q^{66} +(8.85955 - 33.0643i) q^{67} +(-2.01247 - 3.48570i) q^{68} +(-84.2329 - 48.6319i) q^{69} +(-3.64143 - 3.64143i) q^{70} +(-73.8778 + 19.7955i) q^{71} +(-16.1985 - 60.4537i) q^{72} +(-18.9304 + 18.9304i) q^{73} +(-24.9264 + 43.1738i) q^{74} +(-119.780 + 69.1548i) q^{75} +(8.95025 + 2.39821i) q^{76} +44.4971i q^{77} -142.837 q^{79} +(-0.474212 + 1.76978i) q^{80} +(-104.741 - 181.416i) q^{81} +(74.3293 + 42.9141i) q^{82} +(-91.7157 - 91.7157i) q^{83} +(85.6843 - 22.9590i) q^{84} +(0.238584 + 0.890409i) q^{85} +(52.2041 - 52.2041i) q^{86} +(46.0299 - 79.7262i) q^{87} +(13.7105 - 7.91574i) q^{88} +(-150.802 - 40.4072i) q^{89} +14.3339i q^{90} -34.8665 q^{92} +(-18.9378 + 70.6767i) q^{93} +(-8.73527 - 15.1299i) q^{94} +(-1.83784 - 1.06108i) q^{95} +(-22.3168 - 22.3168i) q^{96} +(-108.767 + 29.1440i) q^{97} +(5.19718 + 19.3961i) q^{98} +(87.5780 - 87.5780i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 6 q^{5} - 6 q^{6} - 8 q^{7} - 16 q^{8} - 42 q^{9} + 18 q^{10} - 24 q^{11} + 20 q^{14} - 126 q^{15} + 16 q^{16} + 42 q^{17} + 84 q^{18} - 68 q^{19} - 12 q^{20} - 102 q^{21} - 42 q^{22} + 36 q^{23}+ \cdots + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) −2.78960 4.83174i −0.929868 1.61058i −0.783539 0.621343i \(-0.786587\pi\)
−0.146330 0.989236i \(-0.546746\pi\)
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 0.323893 + 0.323893i 0.0647786 + 0.0647786i 0.738754 0.673975i \(-0.235415\pi\)
−0.673975 + 0.738754i \(0.735415\pi\)
\(6\) −7.62134 + 2.04213i −1.27022 + 0.340355i
\(7\) −2.05755 7.67890i −0.293936 1.09699i −0.942058 0.335449i \(-0.891112\pi\)
0.648122 0.761536i \(-0.275555\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −11.0638 + 19.1630i −1.22931 + 2.12923i
\(10\) 0.560999 0.323893i 0.0560999 0.0323893i
\(11\) −5.40655 1.44868i −0.491504 0.131698i 0.00455003 0.999990i \(-0.498552\pi\)
−0.496054 + 0.868291i \(0.665218\pi\)
\(12\) 11.1584i 0.929868i
\(13\) 0 0
\(14\) −11.2427 −0.803049
\(15\) 0.661433 2.46850i 0.0440955 0.164567i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 1.74285 + 1.00623i 0.102520 + 0.0591902i 0.550384 0.834912i \(-0.314481\pi\)
−0.447863 + 0.894102i \(0.647815\pi\)
\(18\) 22.1276 + 22.1276i 1.22931 + 1.22931i
\(19\) −4.47512 + 1.19911i −0.235533 + 0.0631108i −0.374655 0.927164i \(-0.622239\pi\)
0.139122 + 0.990275i \(0.455572\pi\)
\(20\) −0.237106 0.884892i −0.0118553 0.0442446i
\(21\) −31.3626 + 31.3626i −1.49346 + 1.49346i
\(22\) −3.95787 + 6.85523i −0.179903 + 0.311601i
\(23\) 15.0976 8.71663i 0.656419 0.378984i −0.134492 0.990915i \(-0.542940\pi\)
0.790911 + 0.611931i \(0.209607\pi\)
\(24\) 15.2427 + 4.08426i 0.635112 + 0.170178i
\(25\) 24.7902i 0.991607i
\(26\) 0 0
\(27\) 73.2415 2.71265
\(28\) −4.11511 + 15.3578i −0.146968 + 0.548493i
\(29\) 8.25026 + 14.2899i 0.284492 + 0.492754i 0.972486 0.232962i \(-0.0748418\pi\)
−0.687994 + 0.725716i \(0.741508\pi\)
\(30\) −3.12993 1.80707i −0.104331 0.0602356i
\(31\) −9.27353 9.27353i −0.299146 0.299146i 0.541533 0.840679i \(-0.317844\pi\)
−0.840679 + 0.541533i \(0.817844\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) 8.08249 + 30.1643i 0.244924 + 0.914069i
\(34\) 2.01247 2.01247i 0.0591902 0.0591902i
\(35\) 1.82071 3.15357i 0.0520204 0.0901020i
\(36\) 38.3261 22.1276i 1.06461 0.614655i
\(37\) −34.0501 9.12370i −0.920273 0.246586i −0.232571 0.972579i \(-0.574714\pi\)
−0.687702 + 0.725993i \(0.741380\pi\)
\(38\) 6.55204i 0.172422i
\(39\) 0 0
\(40\) −1.29557 −0.0323893
\(41\) −15.7076 + 58.6217i −0.383113 + 1.42980i 0.458007 + 0.888949i \(0.348564\pi\)
−0.841120 + 0.540849i \(0.818103\pi\)
\(42\) 31.3626 + 54.3217i 0.746730 + 1.29337i
\(43\) 45.2101 + 26.1020i 1.05140 + 0.607024i 0.923040 0.384704i \(-0.125696\pi\)
0.128357 + 0.991728i \(0.459030\pi\)
\(44\) 7.91574 + 7.91574i 0.179903 + 0.179903i
\(45\) −9.79026 + 2.62329i −0.217561 + 0.0582954i
\(46\) −6.38102 23.8143i −0.138718 0.517702i
\(47\) 8.73527 8.73527i 0.185857 0.185857i −0.608045 0.793902i \(-0.708046\pi\)
0.793902 + 0.608045i \(0.208046\pi\)
\(48\) 11.1584 19.3269i 0.232467 0.402645i
\(49\) −12.2967 + 7.09948i −0.250952 + 0.144887i
\(50\) −33.8640 9.07384i −0.677280 0.181477i
\(51\) 11.2280i 0.220156i
\(52\) 0 0
\(53\) −23.4425 −0.442311 −0.221155 0.975239i \(-0.570983\pi\)
−0.221155 + 0.975239i \(0.570983\pi\)
\(54\) 26.8082 100.050i 0.496449 1.85277i
\(55\) −1.28193 2.22036i −0.0233077 0.0403702i
\(56\) 19.4729 + 11.2427i 0.347730 + 0.200762i
\(57\) 18.2776 + 18.2776i 0.320660 + 0.320660i
\(58\) 22.5401 6.03961i 0.388623 0.104131i
\(59\) −9.13343 34.0864i −0.154804 0.577736i −0.999122 0.0418940i \(-0.986661\pi\)
0.844318 0.535842i \(-0.180006\pi\)
\(60\) −3.61413 + 3.61413i −0.0602356 + 0.0602356i
\(61\) −13.9421 + 24.1483i −0.228558 + 0.395875i −0.957381 0.288828i \(-0.906734\pi\)
0.728823 + 0.684702i \(0.240068\pi\)
\(62\) −16.0622 + 9.27353i −0.259068 + 0.149573i
\(63\) 169.915 + 45.5287i 2.69707 + 0.722677i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 44.1635 0.669145
\(67\) 8.85955 33.0643i 0.132232 0.493497i −0.867762 0.496980i \(-0.834442\pi\)
0.999994 + 0.00348324i \(0.00110875\pi\)
\(68\) −2.01247 3.48570i −0.0295951 0.0512602i
\(69\) −84.2329 48.6319i −1.22077 0.704810i
\(70\) −3.64143 3.64143i −0.0520204 0.0520204i
\(71\) −73.8778 + 19.7955i −1.04053 + 0.278810i −0.738334 0.674435i \(-0.764387\pi\)
−0.302198 + 0.953245i \(0.597721\pi\)
\(72\) −16.1985 60.4537i −0.224979 0.839634i
\(73\) −18.9304 + 18.9304i −0.259320 + 0.259320i −0.824778 0.565457i \(-0.808700\pi\)
0.565457 + 0.824778i \(0.308700\pi\)
\(74\) −24.9264 + 43.1738i −0.336843 + 0.583430i
\(75\) −119.780 + 69.1548i −1.59706 + 0.922064i
\(76\) 8.95025 + 2.39821i 0.117766 + 0.0315554i
\(77\) 44.4971i 0.577884i
\(78\) 0 0
\(79\) −142.837 −1.80806 −0.904029 0.427471i \(-0.859404\pi\)
−0.904029 + 0.427471i \(0.859404\pi\)
\(80\) −0.474212 + 1.76978i −0.00592766 + 0.0221223i
\(81\) −104.741 181.416i −1.29310 2.23971i
\(82\) 74.3293 + 42.9141i 0.906455 + 0.523342i
\(83\) −91.7157 91.7157i −1.10501 1.10501i −0.993797 0.111212i \(-0.964527\pi\)
−0.111212 0.993797i \(-0.535473\pi\)
\(84\) 85.6843 22.9590i 1.02005 0.273322i
\(85\) 0.238584 + 0.890409i 0.00280687 + 0.0104754i
\(86\) 52.2041 52.2041i 0.607024 0.607024i
\(87\) 46.0299 79.7262i 0.529080 0.916393i
\(88\) 13.7105 7.91574i 0.155801 0.0899515i
\(89\) −150.802 40.4072i −1.69440 0.454014i −0.722883 0.690970i \(-0.757183\pi\)
−0.971520 + 0.236956i \(0.923850\pi\)
\(90\) 14.3339i 0.159266i
\(91\) 0 0
\(92\) −34.8665 −0.378984
\(93\) −18.9378 + 70.6767i −0.203632 + 0.759965i
\(94\) −8.73527 15.1299i −0.0929284 0.160957i
\(95\) −1.83784 1.06108i −0.0193457 0.0111693i
\(96\) −22.3168 22.3168i −0.232467 0.232467i
\(97\) −108.767 + 29.1440i −1.12131 + 0.300454i −0.771413 0.636335i \(-0.780450\pi\)
−0.349896 + 0.936789i \(0.613783\pi\)
\(98\) 5.19718 + 19.3961i 0.0530325 + 0.197920i
\(99\) 87.5780 87.5780i 0.884626 0.884626i
\(100\) −24.7902 + 42.9379i −0.247902 + 0.429379i
\(101\) 84.6101 48.8497i 0.837724 0.483660i −0.0187659 0.999824i \(-0.505974\pi\)
0.856490 + 0.516164i \(0.172640\pi\)
\(102\) −15.3377 4.10973i −0.150370 0.0402914i
\(103\) 108.442i 1.05284i 0.850226 + 0.526418i \(0.176465\pi\)
−0.850226 + 0.526418i \(0.823535\pi\)
\(104\) 0 0
\(105\) −20.3163 −0.193488
\(106\) −8.58054 + 32.0230i −0.0809485 + 0.302104i
\(107\) 37.6493 + 65.2105i 0.351863 + 0.609444i 0.986576 0.163304i \(-0.0522151\pi\)
−0.634713 + 0.772748i \(0.718882\pi\)
\(108\) −126.858 73.2415i −1.17461 0.678162i
\(109\) 5.83660 + 5.83660i 0.0535468 + 0.0535468i 0.733373 0.679826i \(-0.237945\pi\)
−0.679826 + 0.733373i \(0.737945\pi\)
\(110\) −3.50229 + 0.938435i −0.0318390 + 0.00853123i
\(111\) 50.9030 + 189.973i 0.458586 + 1.71147i
\(112\) 22.4854 22.4854i 0.200762 0.200762i
\(113\) 57.2435 99.1486i 0.506580 0.877422i −0.493391 0.869807i \(-0.664243\pi\)
0.999971 0.00761416i \(-0.00242369\pi\)
\(114\) 31.6577 18.2776i 0.277699 0.160330i
\(115\) 7.71328 + 2.06677i 0.0670720 + 0.0179719i
\(116\) 33.0010i 0.284492i
\(117\) 0 0
\(118\) −49.9060 −0.422932
\(119\) 4.14076 15.4535i 0.0347963 0.129862i
\(120\) 3.61413 + 6.25986i 0.0301178 + 0.0521655i
\(121\) −77.6570 44.8353i −0.641793 0.370540i
\(122\) 27.8841 + 27.8841i 0.228558 + 0.228558i
\(123\) 327.063 87.6362i 2.65905 0.712489i
\(124\) 6.78869 + 25.3357i 0.0547475 + 0.204321i
\(125\) 16.1267 16.1267i 0.129014 0.129014i
\(126\) 124.387 215.444i 0.987196 1.70987i
\(127\) −83.8081 + 48.3866i −0.659906 + 0.380997i −0.792241 0.610208i \(-0.791086\pi\)
0.132335 + 0.991205i \(0.457753\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) 291.258i 2.25781i
\(130\) 0 0
\(131\) 159.613 1.21842 0.609212 0.793008i \(-0.291486\pi\)
0.609212 + 0.793008i \(0.291486\pi\)
\(132\) 16.1650 60.3285i 0.122462 0.457034i
\(133\) 18.4156 + 31.8968i 0.138463 + 0.239825i
\(134\) −41.9239 24.2048i −0.312865 0.180632i
\(135\) 23.7224 + 23.7224i 0.175722 + 0.175722i
\(136\) −5.49816 + 1.47323i −0.0404277 + 0.0108326i
\(137\) 32.7498 + 122.224i 0.239050 + 0.892146i 0.976281 + 0.216506i \(0.0694660\pi\)
−0.737232 + 0.675640i \(0.763867\pi\)
\(138\) −97.2638 + 97.2638i −0.704810 + 0.704810i
\(139\) −30.2234 + 52.3485i −0.217435 + 0.376608i −0.954023 0.299733i \(-0.903102\pi\)
0.736588 + 0.676341i \(0.236436\pi\)
\(140\) −6.30714 + 3.64143i −0.0450510 + 0.0260102i
\(141\) −66.5745 17.8386i −0.472159 0.126515i
\(142\) 108.165i 0.761723i
\(143\) 0 0
\(144\) −88.5103 −0.614655
\(145\) −1.95619 + 7.30059i −0.0134910 + 0.0503489i
\(146\) 18.9304 + 32.7884i 0.129660 + 0.224578i
\(147\) 68.6056 + 39.6095i 0.466705 + 0.269452i
\(148\) 49.8528 + 49.8528i 0.336843 + 0.336843i
\(149\) 210.878 56.5047i 1.41529 0.379226i 0.531481 0.847070i \(-0.321636\pi\)
0.883811 + 0.467844i \(0.154969\pi\)
\(150\) 50.6248 + 188.934i 0.337499 + 1.25956i
\(151\) 73.7140 73.7140i 0.488172 0.488172i −0.419557 0.907729i \(-0.637815\pi\)
0.907729 + 0.419557i \(0.137815\pi\)
\(152\) 6.55204 11.3485i 0.0431055 0.0746609i
\(153\) −38.5650 + 22.2655i −0.252059 + 0.145526i
\(154\) 60.7841 + 16.2871i 0.394702 + 0.105760i
\(155\) 6.00726i 0.0387565i
\(156\) 0 0
\(157\) −127.109 −0.809611 −0.404805 0.914403i \(-0.632661\pi\)
−0.404805 + 0.914403i \(0.632661\pi\)
\(158\) −52.2818 + 195.118i −0.330898 + 1.23493i
\(159\) 65.3952 + 113.268i 0.411291 + 0.712376i
\(160\) 2.24400 + 1.29557i 0.0140250 + 0.00809733i
\(161\) −97.9983 97.9983i −0.608685 0.608685i
\(162\) −286.157 + 76.6755i −1.76640 + 0.473306i
\(163\) −43.7578 163.306i −0.268453 1.00188i −0.960103 0.279646i \(-0.909783\pi\)
0.691650 0.722232i \(-0.256884\pi\)
\(164\) 85.8281 85.8281i 0.523342 0.523342i
\(165\) −7.15213 + 12.3879i −0.0433463 + 0.0750779i
\(166\) −158.856 + 91.7157i −0.956965 + 0.552504i
\(167\) −161.051 43.1534i −0.964375 0.258403i −0.257924 0.966165i \(-0.583038\pi\)
−0.706451 + 0.707762i \(0.749705\pi\)
\(168\) 125.451i 0.746730i
\(169\) 0 0
\(170\) 1.30365 0.00766852
\(171\) 26.5333 99.0237i 0.155166 0.579086i
\(172\) −52.2041 90.4201i −0.303512 0.525698i
\(173\) 121.663 + 70.2419i 0.703252 + 0.406023i 0.808557 0.588417i \(-0.200249\pi\)
−0.105305 + 0.994440i \(0.533582\pi\)
\(174\) −92.0599 92.0599i −0.529080 0.529080i
\(175\) −190.361 + 51.0071i −1.08778 + 0.291469i
\(176\) −5.79472 21.6262i −0.0329245 0.122876i
\(177\) −139.218 + 139.218i −0.786543 + 0.786543i
\(178\) −110.395 + 191.209i −0.620195 + 1.07421i
\(179\) 273.667 158.002i 1.52886 0.882691i 0.529455 0.848338i \(-0.322396\pi\)
0.999410 0.0343526i \(-0.0109369\pi\)
\(180\) 19.5805 + 5.24659i 0.108781 + 0.0291477i
\(181\) 83.6580i 0.462199i 0.972930 + 0.231099i \(0.0742323\pi\)
−0.972930 + 0.231099i \(0.925768\pi\)
\(182\) 0 0
\(183\) 155.571 0.850116
\(184\) −12.7620 + 47.6285i −0.0693589 + 0.258851i
\(185\) −8.07349 13.9837i −0.0436405 0.0755876i
\(186\) 89.6145 + 51.7389i 0.481798 + 0.278166i
\(187\) −7.96508 7.96508i −0.0425940 0.0425940i
\(188\) −23.8652 + 6.39466i −0.126943 + 0.0340142i
\(189\) −150.698 562.414i −0.797346 2.97573i
\(190\) −2.12216 + 2.12216i −0.0111693 + 0.0111693i
\(191\) −34.5567 + 59.8539i −0.180925 + 0.313371i −0.942196 0.335063i \(-0.891242\pi\)
0.761271 + 0.648434i \(0.224576\pi\)
\(192\) −38.6539 + 22.3168i −0.201322 + 0.116234i
\(193\) 313.603 + 84.0297i 1.62489 + 0.435387i 0.952432 0.304752i \(-0.0985735\pi\)
0.672454 + 0.740139i \(0.265240\pi\)
\(194\) 159.246i 0.820855i
\(195\) 0 0
\(196\) 28.3979 0.144887
\(197\) 82.8586 309.232i 0.420602 1.56971i −0.352742 0.935721i \(-0.614751\pi\)
0.773344 0.633987i \(-0.218583\pi\)
\(198\) −87.5780 151.690i −0.442313 0.766109i
\(199\) −149.667 86.4100i −0.752093 0.434221i 0.0743564 0.997232i \(-0.476310\pi\)
−0.826450 + 0.563010i \(0.809643\pi\)
\(200\) 49.5804 + 49.5804i 0.247902 + 0.247902i
\(201\) −184.473 + 49.4293i −0.917775 + 0.245917i
\(202\) −35.7604 133.460i −0.177032 0.660692i
\(203\) 92.7551 92.7551i 0.456922 0.456922i
\(204\) −11.2280 + 19.4474i −0.0550391 + 0.0953305i
\(205\) −24.0748 + 13.8996i −0.117438 + 0.0678028i
\(206\) 148.135 + 39.6926i 0.719101 + 0.192682i
\(207\) 385.756i 1.86355i
\(208\) 0 0
\(209\) 25.9321 0.124077
\(210\) −7.43628 + 27.7526i −0.0354108 + 0.132155i
\(211\) −115.089 199.341i −0.545447 0.944743i −0.998579 0.0532988i \(-0.983026\pi\)
0.453131 0.891444i \(-0.350307\pi\)
\(212\) 40.6035 + 23.4425i 0.191526 + 0.110578i
\(213\) 301.736 + 301.736i 1.41660 + 1.41660i
\(214\) 102.860 27.5612i 0.480653 0.128791i
\(215\) 6.18896 + 23.0975i 0.0287858 + 0.107430i
\(216\) −146.483 + 146.483i −0.678162 + 0.678162i
\(217\) −52.1297 + 90.2912i −0.240229 + 0.416089i
\(218\) 10.1093 5.83660i 0.0463728 0.0267734i
\(219\) 144.275 + 38.6584i 0.658790 + 0.176522i
\(220\) 5.12770i 0.0233077i
\(221\) 0 0
\(222\) 278.139 1.25288
\(223\) 68.1143 254.206i 0.305445 1.13994i −0.627116 0.778926i \(-0.715765\pi\)
0.932561 0.361012i \(-0.117569\pi\)
\(224\) −22.4854 38.9458i −0.100381 0.173865i
\(225\) 475.055 + 274.273i 2.11136 + 1.21899i
\(226\) −114.487 114.487i −0.506580 0.506580i
\(227\) −115.102 + 30.8416i −0.507059 + 0.135866i −0.503274 0.864127i \(-0.667871\pi\)
−0.00378487 + 0.999993i \(0.501205\pi\)
\(228\) −13.3801 49.9353i −0.0586848 0.219015i
\(229\) −224.372 + 224.372i −0.979791 + 0.979791i −0.999800 0.0200093i \(-0.993630\pi\)
0.0200093 + 0.999800i \(0.493630\pi\)
\(230\) 5.64651 9.78005i 0.0245501 0.0425219i
\(231\) 214.998 124.129i 0.930727 0.537356i
\(232\) −45.0803 12.0792i −0.194311 0.0520656i
\(233\) 230.683i 0.990054i −0.868878 0.495027i \(-0.835158\pi\)
0.868878 0.495027i \(-0.164842\pi\)
\(234\) 0 0
\(235\) 5.65859 0.0240791
\(236\) −18.2669 + 68.1729i −0.0774020 + 0.288868i
\(237\) 398.458 + 690.149i 1.68126 + 2.91202i
\(238\) −19.5943 11.3128i −0.0823290 0.0475326i
\(239\) 184.518 + 184.518i 0.772041 + 0.772041i 0.978463 0.206422i \(-0.0661820\pi\)
−0.206422 + 0.978463i \(0.566182\pi\)
\(240\) 9.87400 2.64573i 0.0411417 0.0110239i
\(241\) −57.5730 214.865i −0.238892 0.891557i −0.976356 0.216170i \(-0.930643\pi\)
0.737464 0.675387i \(-0.236023\pi\)
\(242\) −89.6706 + 89.6706i −0.370540 + 0.370540i
\(243\) −254.784 + 441.298i −1.04849 + 1.81604i
\(244\) 48.2967 27.8841i 0.197937 0.114279i
\(245\) −6.28228 1.68333i −0.0256419 0.00687074i
\(246\) 478.853i 1.94656i
\(247\) 0 0
\(248\) 37.0941 0.149573
\(249\) −187.296 + 698.997i −0.752191 + 2.80722i
\(250\) −16.1267 27.9323i −0.0645068 0.111729i
\(251\) −218.211 125.984i −0.869366 0.501929i −0.00222866 0.999998i \(-0.500709\pi\)
−0.867138 + 0.498069i \(0.834043\pi\)
\(252\) −248.773 248.773i −0.987196 0.987196i
\(253\) −94.2537 + 25.2552i −0.372544 + 0.0998230i
\(254\) 35.4215 + 132.195i 0.139455 + 0.520452i
\(255\) 3.63666 3.63666i 0.0142614 0.0142614i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −251.399 + 145.145i −0.978204 + 0.564767i −0.901728 0.432305i \(-0.857700\pi\)
−0.0764769 + 0.997071i \(0.524367\pi\)
\(258\) −397.865 106.608i −1.54211 0.413208i
\(259\) 280.240i 1.08201i
\(260\) 0 0
\(261\) −365.117 −1.39891
\(262\) 58.4226 218.036i 0.222987 0.832199i
\(263\) 53.9337 + 93.4160i 0.205071 + 0.355194i 0.950155 0.311777i \(-0.100924\pi\)
−0.745084 + 0.666970i \(0.767591\pi\)
\(264\) −76.4935 44.1635i −0.289748 0.167286i
\(265\) −7.59285 7.59285i −0.0286523 0.0286523i
\(266\) 50.3124 13.4812i 0.189144 0.0506811i
\(267\) 225.440 + 841.355i 0.844346 + 3.15114i
\(268\) −48.4095 + 48.4095i −0.180632 + 0.180632i
\(269\) 217.712 377.087i 0.809337 1.40181i −0.103987 0.994579i \(-0.533160\pi\)
0.913324 0.407234i \(-0.133507\pi\)
\(270\) 41.0884 23.7224i 0.152179 0.0878608i
\(271\) −81.2480 21.7703i −0.299808 0.0803333i 0.105779 0.994390i \(-0.466266\pi\)
−0.405587 + 0.914056i \(0.632933\pi\)
\(272\) 8.04987i 0.0295951i
\(273\) 0 0
\(274\) 178.948 0.653096
\(275\) −35.9131 + 134.029i −0.130593 + 0.487379i
\(276\) 97.2638 + 168.466i 0.352405 + 0.610383i
\(277\) 31.8797 + 18.4057i 0.115089 + 0.0664467i 0.556439 0.830888i \(-0.312167\pi\)
−0.441350 + 0.897335i \(0.645500\pi\)
\(278\) 60.4469 + 60.4469i 0.217435 + 0.217435i
\(279\) 280.309 75.1086i 1.00469 0.269207i
\(280\) 2.66571 + 9.94856i 0.00952039 + 0.0355306i
\(281\) −30.1080 + 30.1080i −0.107146 + 0.107146i −0.758647 0.651501i \(-0.774139\pi\)
0.651501 + 0.758647i \(0.274139\pi\)
\(282\) −48.7359 + 84.4131i −0.172822 + 0.299337i
\(283\) 90.8978 52.4799i 0.321194 0.185441i −0.330731 0.943725i \(-0.607295\pi\)
0.651924 + 0.758284i \(0.273962\pi\)
\(284\) 147.756 + 39.5910i 0.520266 + 0.139405i
\(285\) 11.8400i 0.0415438i
\(286\) 0 0
\(287\) 482.469 1.68108
\(288\) −32.3970 + 120.907i −0.112490 + 0.419817i
\(289\) −142.475 246.774i −0.492993 0.853889i
\(290\) 9.25678 + 5.34441i 0.0319199 + 0.0184290i
\(291\) 444.233 + 444.233i 1.52657 + 1.52657i
\(292\) 51.7188 13.8580i 0.177119 0.0474589i
\(293\) −32.5289 121.399i −0.111020 0.414333i 0.887938 0.459963i \(-0.152137\pi\)
−0.998958 + 0.0456298i \(0.985471\pi\)
\(294\) 79.2190 79.2190i 0.269452 0.269452i
\(295\) 8.08211 13.9986i 0.0273970 0.0474529i
\(296\) 86.3476 49.8528i 0.291715 0.168422i
\(297\) −395.984 106.103i −1.33328 0.357251i
\(298\) 308.748i 1.03607i
\(299\) 0 0
\(300\) 276.619 0.922064
\(301\) 107.413 400.870i 0.356853 1.33179i
\(302\) −73.7140 127.676i −0.244086 0.422769i
\(303\) −472.058 272.543i −1.55795 0.899480i
\(304\) −13.1041 13.1041i −0.0431055 0.0431055i
\(305\) −12.3372 + 3.30575i −0.0404499 + 0.0108385i
\(306\) 16.2995 + 60.8305i 0.0532663 + 0.198793i
\(307\) −159.407 + 159.407i −0.519242 + 0.519242i −0.917342 0.398100i \(-0.869670\pi\)
0.398100 + 0.917342i \(0.369670\pi\)
\(308\) 44.4971 77.0712i 0.144471 0.250231i
\(309\) 523.964 302.511i 1.69568 0.978999i
\(310\) −8.20607 2.19881i −0.0264712 0.00709294i
\(311\) 461.756i 1.48475i −0.669986 0.742374i \(-0.733700\pi\)
0.669986 0.742374i \(-0.266300\pi\)
\(312\) 0 0
\(313\) 8.16759 0.0260945 0.0130473 0.999915i \(-0.495847\pi\)
0.0130473 + 0.999915i \(0.495847\pi\)
\(314\) −46.5251 + 173.634i −0.148169 + 0.552974i
\(315\) 40.2880 + 69.7808i 0.127898 + 0.221526i
\(316\) 247.400 + 142.837i 0.782912 + 0.452014i
\(317\) −91.6127 91.6127i −0.288999 0.288999i 0.547685 0.836684i \(-0.315509\pi\)
−0.836684 + 0.547685i \(0.815509\pi\)
\(318\) 178.663 47.8726i 0.561833 0.150543i
\(319\) −23.9040 89.2109i −0.0749341 0.279658i
\(320\) 2.59114 2.59114i 0.00809733 0.00809733i
\(321\) 210.053 363.823i 0.654372 1.13341i
\(322\) −169.738 + 97.9983i −0.527137 + 0.304343i
\(323\) −9.00604 2.41316i −0.0278825 0.00747109i
\(324\) 418.963i 1.29310i
\(325\) 0 0
\(326\) −239.097 −0.733426
\(327\) 11.9191 44.4827i 0.0364499 0.136033i
\(328\) −85.8281 148.659i −0.261671 0.453228i
\(329\) −85.0505 49.1039i −0.258512 0.149252i
\(330\) 14.3043 + 14.3043i 0.0433463 + 0.0433463i
\(331\) −144.443 + 38.7033i −0.436382 + 0.116928i −0.470321 0.882496i \(-0.655862\pi\)
0.0339382 + 0.999424i \(0.489195\pi\)
\(332\) 67.1406 + 250.572i 0.202231 + 0.754735i
\(333\) 551.561 551.561i 1.65634 1.65634i
\(334\) −117.897 + 204.204i −0.352986 + 0.611389i
\(335\) 13.5789 7.83975i 0.0405339 0.0234022i
\(336\) −171.369 45.9181i −0.510026 0.136661i
\(337\) 61.7332i 0.183185i 0.995797 + 0.0915923i \(0.0291956\pi\)
−0.995797 + 0.0915923i \(0.970804\pi\)
\(338\) 0 0
\(339\) −638.747 −1.88421
\(340\) 0.477169 1.78082i 0.00140344 0.00523770i
\(341\) 36.7034 + 63.5721i 0.107635 + 0.186429i
\(342\) −125.557 72.4904i −0.367126 0.211960i
\(343\) −195.629 195.629i −0.570346 0.570346i
\(344\) −142.624 + 38.2160i −0.414605 + 0.111093i
\(345\) −11.5309 43.0340i −0.0334230 0.124736i
\(346\) 140.484 140.484i 0.406023 0.406023i
\(347\) −110.431 + 191.272i −0.318245 + 0.551216i −0.980122 0.198396i \(-0.936427\pi\)
0.661877 + 0.749612i \(0.269760\pi\)
\(348\) −159.452 + 92.0599i −0.458196 + 0.264540i
\(349\) 281.109 + 75.3230i 0.805470 + 0.215825i 0.637984 0.770049i \(-0.279768\pi\)
0.167486 + 0.985874i \(0.446435\pi\)
\(350\) 278.708i 0.796309i
\(351\) 0 0
\(352\) −31.6629 −0.0899515
\(353\) −5.10208 + 19.0412i −0.0144535 + 0.0539412i −0.972776 0.231748i \(-0.925556\pi\)
0.958322 + 0.285689i \(0.0922223\pi\)
\(354\) 139.218 + 241.133i 0.393271 + 0.681166i
\(355\) −30.3401 17.5169i −0.0854652 0.0493433i
\(356\) 220.789 + 220.789i 0.620195 + 0.620195i
\(357\) −86.2185 + 23.1022i −0.241508 + 0.0647120i
\(358\) −115.665 431.668i −0.323087 1.20578i
\(359\) −275.618 + 275.618i −0.767738 + 0.767738i −0.977708 0.209970i \(-0.932663\pi\)
0.209970 + 0.977708i \(0.432663\pi\)
\(360\) 14.3339 24.8271i 0.0398165 0.0689642i
\(361\) −294.046 + 169.768i −0.814533 + 0.470271i
\(362\) 114.279 + 30.6210i 0.315688 + 0.0845883i
\(363\) 500.291i 1.37821i
\(364\) 0 0
\(365\) −12.2628 −0.0335968
\(366\) 56.9430 212.514i 0.155582 0.580640i
\(367\) −234.367 405.936i −0.638603 1.10609i −0.985739 0.168278i \(-0.946179\pi\)
0.347136 0.937815i \(-0.387154\pi\)
\(368\) 60.3906 + 34.8665i 0.164105 + 0.0947460i
\(369\) −949.584 949.584i −2.57340 2.57340i
\(370\) −22.0572 + 5.91021i −0.0596140 + 0.0159735i
\(371\) 48.2341 + 180.012i 0.130011 + 0.485208i
\(372\) 103.478 103.478i 0.278166 0.278166i
\(373\) −130.407 + 225.872i −0.349617 + 0.605555i −0.986181 0.165669i \(-0.947022\pi\)
0.636564 + 0.771224i \(0.280355\pi\)
\(374\) −13.7959 + 7.96508i −0.0368875 + 0.0212970i
\(375\) −122.907 32.9329i −0.327752 0.0878209i
\(376\) 34.9411i 0.0929284i
\(377\) 0 0
\(378\) −823.431 −2.17839
\(379\) −55.4370 + 206.894i −0.146272 + 0.545893i 0.853424 + 0.521218i \(0.174522\pi\)
−0.999696 + 0.0246758i \(0.992145\pi\)
\(380\) 2.12216 + 3.67569i 0.00558463 + 0.00967286i
\(381\) 467.583 + 269.959i 1.22725 + 0.708554i
\(382\) 69.1133 + 69.1133i 0.180925 + 0.180925i
\(383\) 662.570 177.535i 1.72995 0.463538i 0.749778 0.661690i \(-0.230160\pi\)
0.980171 + 0.198151i \(0.0634938\pi\)
\(384\) 16.3371 + 60.9707i 0.0425444 + 0.158778i
\(385\) −14.4123 + 14.4123i −0.0374345 + 0.0374345i
\(386\) 229.573 397.633i 0.594750 1.03014i
\(387\) −1000.39 + 577.575i −2.58498 + 1.49244i
\(388\) 217.534 + 58.2880i 0.560654 + 0.150227i
\(389\) 374.691i 0.963216i −0.876387 0.481608i \(-0.840053\pi\)
0.876387 0.481608i \(-0.159947\pi\)
\(390\) 0 0
\(391\) 35.0839 0.0897286
\(392\) 10.3944 38.7923i 0.0265162 0.0989599i
\(393\) −445.258 771.210i −1.13297 1.96237i
\(394\) −392.091 226.374i −0.995155 0.574553i
\(395\) −46.2638 46.2638i −0.117123 0.117123i
\(396\) −239.268 + 64.1116i −0.604211 + 0.161898i
\(397\) −168.880 630.268i −0.425390 1.58758i −0.763070 0.646316i \(-0.776309\pi\)
0.337680 0.941261i \(-0.390358\pi\)
\(398\) −172.820 + 172.820i −0.434221 + 0.434221i
\(399\) 102.745 177.959i 0.257505 0.446012i
\(400\) 85.8757 49.5804i 0.214689 0.123951i
\(401\) 417.539 + 111.879i 1.04125 + 0.279001i 0.738629 0.674112i \(-0.235473\pi\)
0.302616 + 0.953113i \(0.402140\pi\)
\(402\) 270.087i 0.671858i
\(403\) 0 0
\(404\) −195.399 −0.483660
\(405\) 24.8347 92.6843i 0.0613202 0.228850i
\(406\) −92.7551 160.656i −0.228461 0.395706i
\(407\) 170.876 + 98.6554i 0.419843 + 0.242397i
\(408\) 22.4560 + 22.4560i 0.0550391 + 0.0550391i
\(409\) −269.624 + 72.2456i −0.659228 + 0.176640i −0.572897 0.819627i \(-0.694181\pi\)
−0.0863302 + 0.996267i \(0.527514\pi\)
\(410\) 10.1752 + 37.9743i 0.0248175 + 0.0926203i
\(411\) 499.195 499.195i 1.21459 1.21459i
\(412\) 108.442 187.827i 0.263209 0.455892i
\(413\) −242.954 + 140.269i −0.588265 + 0.339635i
\(414\) 526.952 + 141.196i 1.27283 + 0.341054i
\(415\) 59.4122i 0.143162i
\(416\) 0 0
\(417\) 337.246 0.808743
\(418\) 9.49181 35.4239i 0.0227077 0.0847462i
\(419\) −93.7951 162.458i −0.223855 0.387728i 0.732121 0.681175i \(-0.238531\pi\)
−0.955975 + 0.293447i \(0.905197\pi\)
\(420\) 35.1888 + 20.3163i 0.0837829 + 0.0483721i
\(421\) 410.480 + 410.480i 0.975013 + 0.975013i 0.999695 0.0246826i \(-0.00785752\pi\)
−0.0246826 + 0.999695i \(0.507858\pi\)
\(422\) −314.430 + 84.2513i −0.745095 + 0.199648i
\(423\) 70.7492 + 264.040i 0.167256 + 0.624207i
\(424\) 46.8849 46.8849i 0.110578 0.110578i
\(425\) 24.9447 43.2055i 0.0586935 0.101660i
\(426\) 522.623 301.736i 1.22681 0.708302i
\(427\) 214.119 + 57.3731i 0.501450 + 0.134363i
\(428\) 150.597i 0.351863i
\(429\) 0 0
\(430\) 33.8171 0.0786444
\(431\) 138.478 516.808i 0.321295 1.19909i −0.596689 0.802473i \(-0.703517\pi\)
0.917984 0.396617i \(-0.129816\pi\)
\(432\) 146.483 + 253.716i 0.339081 + 0.587305i
\(433\) −140.192 80.9400i −0.323769 0.186928i 0.329302 0.944225i \(-0.393187\pi\)
−0.653071 + 0.757296i \(0.726520\pi\)
\(434\) 104.259 + 104.259i 0.240229 + 0.240229i
\(435\) 40.7315 10.9140i 0.0936357 0.0250896i
\(436\) −4.27268 15.9459i −0.00979974 0.0365731i
\(437\) −57.1117 + 57.1117i −0.130690 + 0.130690i
\(438\) 105.617 182.933i 0.241134 0.417656i
\(439\) 142.255 82.1308i 0.324043 0.187086i −0.329150 0.944277i \(-0.606762\pi\)
0.653193 + 0.757191i \(0.273429\pi\)
\(440\) 7.00457 + 1.87687i 0.0159195 + 0.00426561i
\(441\) 314.189i 0.712446i
\(442\) 0 0
\(443\) 309.912 0.699575 0.349788 0.936829i \(-0.386254\pi\)
0.349788 + 0.936829i \(0.386254\pi\)
\(444\) 101.806 379.945i 0.229293 0.855733i
\(445\) −35.7561 61.9313i −0.0803507 0.139172i
\(446\) −322.321 186.092i −0.722692 0.417246i
\(447\) −861.284 861.284i −1.92681 1.92681i
\(448\) −61.4312 + 16.4604i −0.137123 + 0.0367420i
\(449\) 35.2192 + 131.440i 0.0784392 + 0.292739i 0.993991 0.109461i \(-0.0349124\pi\)
−0.915552 + 0.402200i \(0.868246\pi\)
\(450\) 548.547 548.547i 1.21899 1.21899i
\(451\) 169.848 294.186i 0.376603 0.652296i
\(452\) −198.297 + 114.487i −0.438711 + 0.253290i
\(453\) −561.799 150.534i −1.24018 0.332304i
\(454\) 168.522i 0.371193i
\(455\) 0 0
\(456\) −73.1104 −0.160330
\(457\) −58.7751 + 219.352i −0.128611 + 0.479981i −0.999943 0.0107126i \(-0.996590\pi\)
0.871332 + 0.490694i \(0.163257\pi\)
\(458\) 224.372 + 388.624i 0.489895 + 0.848523i
\(459\) 127.649 + 73.6981i 0.278102 + 0.160562i
\(460\) −11.2930 11.2930i −0.0245501 0.0245501i
\(461\) 660.658 177.023i 1.43310 0.383998i 0.542987 0.839741i \(-0.317293\pi\)
0.890111 + 0.455743i \(0.150627\pi\)
\(462\) −90.8689 339.127i −0.196686 0.734042i
\(463\) 557.281 557.281i 1.20363 1.20363i 0.230575 0.973055i \(-0.425939\pi\)
0.973055 0.230575i \(-0.0740607\pi\)
\(464\) −33.0010 + 57.1595i −0.0711229 + 0.123189i
\(465\) −29.0255 + 16.7579i −0.0624205 + 0.0360385i
\(466\) −315.118 84.4357i −0.676219 0.181192i
\(467\) 91.0355i 0.194937i −0.995239 0.0974684i \(-0.968926\pi\)
0.995239 0.0974684i \(-0.0310745\pi\)
\(468\) 0 0
\(469\) −272.126 −0.580227
\(470\) 2.07119 7.72977i 0.00440678 0.0164463i
\(471\) 354.583 + 614.157i 0.752831 + 1.30394i
\(472\) 86.4397 + 49.9060i 0.183135 + 0.105733i
\(473\) −206.617 206.617i −0.436822 0.436822i
\(474\) 1088.61 291.691i 2.29664 0.615382i
\(475\) 29.7261 + 110.939i 0.0625812 + 0.233556i
\(476\) −22.6255 + 22.6255i −0.0475326 + 0.0475326i
\(477\) 259.362 449.229i 0.543737 0.941780i
\(478\) 319.594 184.518i 0.668607 0.386021i
\(479\) −713.865 191.280i −1.49032 0.399331i −0.580477 0.814276i \(-0.697134\pi\)
−0.909846 + 0.414945i \(0.863801\pi\)
\(480\) 14.4565i 0.0301178i
\(481\) 0 0
\(482\) −314.584 −0.652665
\(483\) −200.125 + 746.879i −0.414338 + 1.54633i
\(484\) 89.6706 + 155.314i 0.185270 + 0.320897i
\(485\) −44.6684 25.7893i −0.0920998 0.0531738i
\(486\) 509.567 + 509.567i 1.04849 + 1.04849i
\(487\) −580.273 + 155.484i −1.19153 + 0.319268i −0.799489 0.600681i \(-0.794896\pi\)
−0.392037 + 0.919949i \(0.628230\pi\)
\(488\) −20.4126 76.1808i −0.0418291 0.156108i
\(489\) −666.986 + 666.986i −1.36398 + 1.36398i
\(490\) −4.59895 + 7.96561i −0.00938560 + 0.0162563i
\(491\) 482.376 278.500i 0.982436 0.567210i 0.0794313 0.996840i \(-0.474690\pi\)
0.903005 + 0.429631i \(0.141356\pi\)
\(492\) −654.125 175.272i −1.32952 0.356245i
\(493\) 33.2068i 0.0673565i
\(494\) 0 0
\(495\) 56.7318 0.114610
\(496\) 13.5774 50.6715i 0.0273738 0.102160i
\(497\) 304.015 + 526.570i 0.611700 + 1.05950i
\(498\) 886.292 + 511.701i 1.77970 + 1.02751i
\(499\) 92.7376 + 92.7376i 0.185847 + 0.185847i 0.793898 0.608051i \(-0.208048\pi\)
−0.608051 + 0.793898i \(0.708048\pi\)
\(500\) −44.0590 + 11.8056i −0.0881179 + 0.0236111i
\(501\) 240.762 + 898.535i 0.480562 + 1.79348i
\(502\) −251.968 + 251.968i −0.501929 + 0.501929i
\(503\) 68.4278 118.520i 0.136039 0.235627i −0.789955 0.613165i \(-0.789896\pi\)
0.925994 + 0.377538i \(0.123229\pi\)
\(504\) −430.888 + 248.773i −0.854937 + 0.493598i
\(505\) 43.2267 + 11.5826i 0.0855974 + 0.0229358i
\(506\) 137.997i 0.272721i
\(507\) 0 0
\(508\) 193.547 0.380997
\(509\) −43.8773 + 163.752i −0.0862029 + 0.321713i −0.995539 0.0943482i \(-0.969923\pi\)
0.909336 + 0.416062i \(0.136590\pi\)
\(510\) −3.63666 6.29889i −0.00713072 0.0123508i
\(511\) 184.315 + 106.414i 0.360694 + 0.208247i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −327.765 + 87.8243i −0.638918 + 0.171197i
\(514\) 106.254 + 396.544i 0.206719 + 0.771486i
\(515\) −35.1237 + 35.1237i −0.0682013 + 0.0682013i
\(516\) −291.258 + 504.473i −0.564453 + 0.977661i
\(517\) −59.8823 + 34.5730i −0.115826 + 0.0668724i
\(518\) 382.815 + 102.575i 0.739024 + 0.198021i
\(519\) 783.789i 1.51019i
\(520\) 0 0
\(521\) 161.073 0.309161 0.154580 0.987980i \(-0.450597\pi\)
0.154580 + 0.987980i \(0.450597\pi\)
\(522\) −133.642 + 498.758i −0.256019 + 0.955476i
\(523\) −67.7062 117.271i −0.129457 0.224227i 0.794009 0.607906i \(-0.207990\pi\)
−0.923466 + 0.383679i \(0.874657\pi\)
\(524\) −276.459 159.613i −0.527593 0.304606i
\(525\) 777.486 + 777.486i 1.48093 + 1.48093i
\(526\) 147.350 39.4822i 0.280133 0.0750613i
\(527\) −6.83101 25.4937i −0.0129621 0.0483751i
\(528\) −88.3271 + 88.3271i −0.167286 + 0.167286i
\(529\) −112.541 + 194.926i −0.212742 + 0.368481i
\(530\) −13.1512 + 7.59285i −0.0248136 + 0.0143261i
\(531\) 754.250 + 202.101i 1.42043 + 0.380604i
\(532\) 73.6625i 0.138463i
\(533\) 0 0
\(534\) 1231.83 2.30680
\(535\) −8.92689 + 33.3156i −0.0166858 + 0.0622721i
\(536\) 48.4095 + 83.8477i 0.0903162 + 0.156432i
\(537\) −1526.84 881.524i −2.84329 1.64157i
\(538\) −435.423 435.423i −0.809337 0.809337i
\(539\) 76.7674 20.5698i 0.142426 0.0381628i
\(540\) −17.3660 64.8108i −0.0321593 0.120020i
\(541\) −127.802 + 127.802i −0.236233 + 0.236233i −0.815288 0.579055i \(-0.803422\pi\)
0.579055 + 0.815288i \(0.303422\pi\)
\(542\) −59.4776 + 103.018i −0.109737 + 0.190071i
\(543\) 404.213 233.373i 0.744408 0.429784i
\(544\) 10.9963 + 2.94646i 0.0202138 + 0.00541628i
\(545\) 3.78087i 0.00693737i
\(546\) 0 0
\(547\) −161.504 −0.295254 −0.147627 0.989043i \(-0.547163\pi\)
−0.147627 + 0.989043i \(0.547163\pi\)
\(548\) 65.4996 244.448i 0.119525 0.446073i
\(549\) −308.504 534.344i −0.561938 0.973305i
\(550\) 169.942 + 98.1163i 0.308986 + 0.178393i
\(551\) −54.0560 54.0560i −0.0981053 0.0981053i
\(552\) 265.730 71.2020i 0.481394 0.128989i
\(553\) 293.894 + 1096.83i 0.531454 + 1.98341i
\(554\) 36.8115 36.8115i 0.0664467 0.0664467i
\(555\) −45.0437 + 78.0180i −0.0811598 + 0.140573i
\(556\) 104.697 60.4469i 0.188304 0.108717i
\(557\) 574.784 + 154.013i 1.03193 + 0.276504i 0.734764 0.678323i \(-0.237293\pi\)
0.297163 + 0.954827i \(0.403959\pi\)
\(558\) 410.401i 0.735486i
\(559\) 0 0
\(560\) 14.5657 0.0260102
\(561\) −16.2658 + 60.7046i −0.0289942 + 0.108208i
\(562\) 30.1080 + 52.1486i 0.0535730 + 0.0927912i
\(563\) 538.929 + 311.151i 0.957244 + 0.552665i 0.895324 0.445416i \(-0.146944\pi\)
0.0619205 + 0.998081i \(0.480277\pi\)
\(564\) 97.4718 + 97.4718i 0.172822 + 0.172822i
\(565\) 50.6543 13.5728i 0.0896537 0.0240226i
\(566\) −38.4179 143.378i −0.0678762 0.253317i
\(567\) −1177.57 + 1177.57i −2.07684 + 2.07684i
\(568\) 108.165 187.347i 0.190431 0.329836i
\(569\) −675.493 + 389.996i −1.18716 + 0.685406i −0.957660 0.287903i \(-0.907042\pi\)
−0.229499 + 0.973309i \(0.573709\pi\)
\(570\) 16.1737 + 4.33373i 0.0283749 + 0.00760304i
\(571\) 556.142i 0.973980i 0.873408 + 0.486990i \(0.161905\pi\)
−0.873408 + 0.486990i \(0.838095\pi\)
\(572\) 0 0
\(573\) 385.598 0.672945
\(574\) 176.596 659.065i 0.307659 1.14820i
\(575\) −216.087 374.273i −0.375803 0.650910i
\(576\) 153.304 + 88.5103i 0.266153 + 0.153664i
\(577\) 401.975 + 401.975i 0.696663 + 0.696663i 0.963689 0.267026i \(-0.0860409\pi\)
−0.267026 + 0.963689i \(0.586041\pi\)
\(578\) −389.249 + 104.299i −0.673441 + 0.180448i
\(579\) −468.819 1749.66i −0.809705 3.02186i
\(580\) 10.6888 10.6888i 0.0184290 0.0184290i
\(581\) −515.565 + 892.985i −0.887376 + 1.53698i
\(582\) 769.434 444.233i 1.32205 0.763287i
\(583\) 126.743 + 33.9606i 0.217398 + 0.0582515i
\(584\) 75.7216i 0.129660i
\(585\) 0 0
\(586\) −177.741 −0.303313
\(587\) −173.571 + 647.776i −0.295692 + 1.10354i 0.644974 + 0.764204i \(0.276868\pi\)
−0.940666 + 0.339333i \(0.889799\pi\)
\(588\) −79.2190 137.211i −0.134726 0.233353i
\(589\) 52.6201 + 30.3802i 0.0893381 + 0.0515794i
\(590\) −16.1642 16.1642i −0.0273970 0.0273970i
\(591\) −1725.27 + 462.285i −2.91924 + 0.782209i
\(592\) −36.4948 136.200i −0.0616466 0.230068i
\(593\) −185.442 + 185.442i −0.312719 + 0.312719i −0.845962 0.533243i \(-0.820973\pi\)
0.533243 + 0.845962i \(0.320973\pi\)
\(594\) −289.880 + 502.087i −0.488014 + 0.845264i
\(595\) 6.34646 3.66413i 0.0106663 0.00615820i
\(596\) −421.757 113.009i −0.707646 0.189613i
\(597\) 964.199i 1.61507i
\(598\) 0 0
\(599\) −171.466 −0.286254 −0.143127 0.989704i \(-0.545716\pi\)
−0.143127 + 0.989704i \(0.545716\pi\)
\(600\) 101.250 377.869i 0.168749 0.629782i
\(601\) −53.8259 93.2293i −0.0895606 0.155124i 0.817765 0.575552i \(-0.195213\pi\)
−0.907325 + 0.420429i \(0.861880\pi\)
\(602\) −508.282 293.457i −0.844323 0.487470i
\(603\) 535.593 + 535.593i 0.888213 + 0.888213i
\(604\) −201.390 + 53.9624i −0.333428 + 0.0893417i
\(605\) −10.6307 39.6744i −0.0175714 0.0655775i
\(606\) −545.085 + 545.085i −0.899480 + 0.899480i
\(607\) −216.797 + 375.504i −0.357162 + 0.618623i −0.987486 0.157710i \(-0.949589\pi\)
0.630323 + 0.776333i \(0.282922\pi\)
\(608\) −22.6969 + 13.1041i −0.0373305 + 0.0215528i
\(609\) −706.918 189.418i −1.16078 0.311031i
\(610\) 18.0629i 0.0296114i
\(611\) 0 0
\(612\) 89.0621 0.145526
\(613\) −166.249 + 620.451i −0.271206 + 1.01216i 0.687135 + 0.726530i \(0.258868\pi\)
−0.958341 + 0.285626i \(0.907799\pi\)
\(614\) 159.407 + 276.102i 0.259621 + 0.449677i
\(615\) 134.318 + 77.5486i 0.218403 + 0.126095i
\(616\) −88.9941 88.9941i −0.144471 0.144471i
\(617\) 400.004 107.181i 0.648304 0.173713i 0.0803421 0.996767i \(-0.474399\pi\)
0.567962 + 0.823055i \(0.307732\pi\)
\(618\) −221.453 826.475i −0.358339 1.33734i
\(619\) 693.205 693.205i 1.11988 1.11988i 0.128120 0.991759i \(-0.459106\pi\)
0.991759 0.128120i \(-0.0408943\pi\)
\(620\) −6.00726 + 10.4049i −0.00968913 + 0.0167821i
\(621\) 1105.77 638.419i 1.78063 1.02805i
\(622\) −630.771 169.015i −1.01410 0.271728i
\(623\) 1241.13i 1.99219i
\(624\) 0 0
\(625\) −609.308 −0.974893
\(626\) 2.98955 11.1571i 0.00477563 0.0178229i
\(627\) −72.3403 125.297i −0.115375 0.199836i
\(628\) 220.159 + 127.109i 0.350572 + 0.202403i
\(629\) −50.1636 50.1636i −0.0797513 0.0797513i
\(630\) 110.069 29.4928i 0.174712 0.0468140i
\(631\) −136.067 507.808i −0.215637 0.804767i −0.985941 0.167091i \(-0.946563\pi\)
0.770305 0.637676i \(-0.220104\pi\)
\(632\) 285.673 285.673i 0.452014 0.452014i
\(633\) −642.108 + 1112.16i −1.01439 + 1.75697i
\(634\) −158.678 + 91.6127i −0.250281 + 0.144500i
\(635\) −42.8170 11.4728i −0.0674283 0.0180674i
\(636\) 261.581i 0.411291i
\(637\) 0 0
\(638\) −130.614 −0.204724
\(639\) 438.026 1634.74i 0.685487 2.55827i
\(640\) −2.59114 4.48799i −0.00404866 0.00701249i
\(641\) 936.399 + 540.630i 1.46084 + 0.843416i 0.999050 0.0435728i \(-0.0138741\pi\)
0.461790 + 0.886989i \(0.347207\pi\)
\(642\) −420.107 420.107i −0.654372 0.654372i
\(643\) 381.388 102.193i 0.593138 0.158931i 0.0502511 0.998737i \(-0.483998\pi\)
0.542887 + 0.839806i \(0.317331\pi\)
\(644\) 71.7397 + 267.736i 0.111397 + 0.415740i
\(645\) 94.3363 94.3363i 0.146258 0.146258i
\(646\) −6.59288 + 11.4192i −0.0102057 + 0.0176768i
\(647\) −275.454 + 159.033i −0.425740 + 0.245801i −0.697530 0.716555i \(-0.745718\pi\)
0.271790 + 0.962357i \(0.412384\pi\)
\(648\) 572.314 + 153.351i 0.883200 + 0.236653i
\(649\) 197.521i 0.304347i
\(650\) 0 0
\(651\) 581.685 0.893525
\(652\) −87.5156 + 326.613i −0.134226 + 0.500939i
\(653\) 201.115 + 348.341i 0.307986 + 0.533447i 0.977922 0.208972i \(-0.0670117\pi\)
−0.669936 + 0.742419i \(0.733678\pi\)
\(654\) −56.4018 32.5636i −0.0862413 0.0497914i
\(655\) 51.6977 + 51.6977i 0.0789278 + 0.0789278i
\(656\) −234.487 + 62.8305i −0.357449 + 0.0957783i
\(657\) −153.322 572.206i −0.233367 0.870937i
\(658\) −98.2079 + 98.2079i −0.149252 + 0.149252i
\(659\) −292.874 + 507.272i −0.444421 + 0.769760i −0.998012 0.0630290i \(-0.979924\pi\)
0.553591 + 0.832789i \(0.313257\pi\)
\(660\) 24.7757 14.3043i 0.0375390 0.0216731i
\(661\) −781.140 209.306i −1.18176 0.316650i −0.386133 0.922443i \(-0.626189\pi\)
−0.795623 + 0.605793i \(0.792856\pi\)
\(662\) 211.479i 0.319454i
\(663\) 0 0
\(664\) 366.863 0.552504
\(665\) −4.36646 + 16.2958i −0.00656610 + 0.0245050i
\(666\) −551.561 955.332i −0.828170 1.43443i
\(667\) 249.119 + 143.829i 0.373492 + 0.215636i
\(668\) 235.794 + 235.794i 0.352986 + 0.352986i
\(669\) −1418.27 + 380.024i −2.11998 + 0.568048i
\(670\) −5.73910 21.4186i −0.00856582 0.0319681i
\(671\) 110.362 110.362i 0.164473 0.164473i
\(672\) −125.451 + 217.287i −0.186682 + 0.323343i
\(673\) 373.474 215.625i 0.554939 0.320394i −0.196173 0.980569i \(-0.562851\pi\)
0.751112 + 0.660175i \(0.229518\pi\)
\(674\) 84.3291 + 22.5959i 0.125117 + 0.0335251i
\(675\) 1815.67i 2.68988i
\(676\) 0 0
\(677\) 6.72056 0.00992697 0.00496348 0.999988i \(-0.498420\pi\)
0.00496348 + 0.999988i \(0.498420\pi\)
\(678\) −233.798 + 872.544i −0.344834 + 1.28694i
\(679\) 447.588 + 775.244i 0.659186 + 1.14174i
\(680\) −2.25799 1.30365i −0.00332057 0.00191713i
\(681\) 470.109 + 470.109i 0.690321 + 0.690321i
\(682\) 100.276 26.8687i 0.147032 0.0393970i
\(683\) −31.7287 118.413i −0.0464549 0.173372i 0.938801 0.344461i \(-0.111938\pi\)
−0.985256 + 0.171089i \(0.945272\pi\)
\(684\) −144.981 + 144.981i −0.211960 + 0.211960i
\(685\) −28.9801 + 50.1949i −0.0423067 + 0.0732773i
\(686\) −338.839 + 195.629i −0.493934 + 0.285173i
\(687\) 1710.02 + 458.197i 2.48911 + 0.666954i
\(688\) 208.816i 0.303512i
\(689\) 0 0
\(690\) −63.0061 −0.0913133
\(691\) −24.3539 + 90.8900i −0.0352444 + 0.131534i −0.981307 0.192451i \(-0.938356\pi\)
0.946062 + 0.323985i \(0.105023\pi\)
\(692\) −140.484 243.325i −0.203011 0.351626i
\(693\) −852.699 492.306i −1.23045 0.710398i
\(694\) 220.862 + 220.862i 0.318245 + 0.318245i
\(695\) −26.7445 + 7.16616i −0.0384813 + 0.0103110i
\(696\) 67.3925 + 251.512i 0.0968283 + 0.361368i
\(697\) −86.3632 + 86.3632i −0.123907 + 0.123907i
\(698\) 205.786 356.432i 0.294823 0.510648i
\(699\) −1114.60 + 643.513i −1.59456 + 0.920620i
\(700\) 380.722 + 102.014i 0.543889 + 0.145735i
\(701\) 716.506i 1.02212i −0.859545 0.511060i \(-0.829253\pi\)
0.859545 0.511060i \(-0.170747\pi\)
\(702\) 0 0
\(703\) 163.319 0.232317
\(704\) −11.5894 + 43.2524i −0.0164623 + 0.0614380i
\(705\) −15.7852 27.3408i −0.0223904 0.0387813i
\(706\) 24.1433 + 13.9392i 0.0341973 + 0.0197438i
\(707\) −549.201 549.201i −0.776805 0.776805i
\(708\) 380.351 101.915i 0.537219 0.143947i
\(709\) 256.439 + 957.045i 0.361692 + 1.34985i 0.871851 + 0.489772i \(0.162920\pi\)
−0.510159 + 0.860080i \(0.670413\pi\)
\(710\) −35.0338 + 35.0338i −0.0493433 + 0.0493433i
\(711\) 1580.31 2737.18i 2.22266 3.84977i
\(712\) 382.418 220.789i 0.537104 0.310097i
\(713\) −220.842 59.1745i −0.309737 0.0829937i
\(714\) 126.233i 0.176796i
\(715\) 0 0
\(716\) −632.006 −0.882691
\(717\) 376.810 1406.27i 0.525537 1.96133i
\(718\) 275.618 + 477.384i 0.383869 + 0.664881i
\(719\) −150.591 86.9435i −0.209445 0.120923i 0.391609 0.920132i \(-0.371919\pi\)
−0.601053 + 0.799209i \(0.705252\pi\)
\(720\) −28.6679 28.6679i −0.0398165 0.0398165i
\(721\) 832.716 223.126i 1.15495 0.309467i
\(722\) 124.279 + 463.814i 0.172131 + 0.642402i
\(723\) −877.566 + 877.566i −1.21378 + 1.21378i
\(724\) 83.6580 144.900i 0.115550 0.200138i
\(725\) 354.249 204.526i 0.488619 0.282104i
\(726\) 683.410 + 183.119i 0.941336 + 0.252230i
\(727\) 729.011i 1.00277i −0.865225 0.501383i \(-0.832825\pi\)
0.865225 0.501383i \(-0.167175\pi\)
\(728\) 0 0
\(729\) 957.649 1.31365
\(730\) −4.48851 + 16.7514i −0.00614865 + 0.0229471i
\(731\) 52.5295 + 90.9838i 0.0718598 + 0.124465i
\(732\) −269.457 155.571i −0.368111 0.212529i
\(733\) −762.465 762.465i −1.04020 1.04020i −0.999157 0.0410404i \(-0.986933\pi\)
−0.0410404 0.999157i \(-0.513067\pi\)
\(734\) −640.304 + 171.569i −0.872348 + 0.233745i
\(735\) 9.39166 + 35.0501i 0.0127778 + 0.0476873i
\(736\) 69.7330 69.7330i 0.0947460 0.0947460i
\(737\) −95.7992 + 165.929i −0.129985 + 0.225141i
\(738\) −1644.73 + 949.584i −2.22863 + 1.28670i
\(739\) −592.703 158.814i −0.802033 0.214904i −0.165557 0.986200i \(-0.552942\pi\)
−0.636476 + 0.771296i \(0.719609\pi\)
\(740\) 32.2940i 0.0436405i
\(741\) 0 0
\(742\) 263.556 0.355197
\(743\) −43.1002 + 160.852i −0.0580084 + 0.216490i −0.988846 0.148944i \(-0.952413\pi\)
0.930837 + 0.365434i \(0.119079\pi\)
\(744\) −103.478 179.229i −0.139083 0.240899i
\(745\) 86.6036 + 50.0006i 0.116246 + 0.0671149i
\(746\) 260.814 + 260.814i 0.349617 + 0.349617i
\(747\) 2772.27 742.829i 3.71121 0.994416i
\(748\) 5.83084 + 21.7610i 0.00779525 + 0.0290923i
\(749\) 423.279 423.279i 0.565126 0.565126i
\(750\) −89.9742 + 155.840i −0.119966 + 0.207787i
\(751\) 116.272 67.1297i 0.154823 0.0893871i −0.420587 0.907252i \(-0.638176\pi\)
0.575410 + 0.817865i \(0.304842\pi\)
\(752\) 47.7304 + 12.7893i 0.0634713 + 0.0170071i
\(753\) 1405.78i 1.86691i
\(754\) 0 0
\(755\) 47.7509 0.0632462
\(756\) −301.397 + 1124.83i −0.398673 + 1.48787i
\(757\) 598.217 + 1036.14i 0.790247 + 1.36875i 0.925814 + 0.377980i \(0.123381\pi\)
−0.135567 + 0.990768i \(0.543285\pi\)
\(758\) 262.331 + 151.457i 0.346083 + 0.199811i
\(759\) 384.957 + 384.957i 0.507190 + 0.507190i
\(760\) 5.79785 1.55353i 0.00762875 0.00204412i
\(761\) 9.05420 + 33.7907i 0.0118978 + 0.0444031i 0.971620 0.236549i \(-0.0760164\pi\)
−0.959722 + 0.280952i \(0.909350\pi\)
\(762\) 539.918 539.918i 0.708554 0.708554i
\(763\) 32.8095 56.8277i 0.0430007 0.0744793i
\(764\) 119.708 69.1133i 0.156686 0.0904625i
\(765\) −19.7026 5.27929i −0.0257550 0.00690104i
\(766\) 970.071i 1.26641i
\(767\) 0 0
\(768\) 89.2673 0.116234
\(769\) −64.5729 + 240.989i −0.0839700 + 0.313380i −0.995117 0.0987009i \(-0.968531\pi\)
0.911147 + 0.412081i \(0.135198\pi\)
\(770\) 14.4123 + 24.9628i 0.0187173 + 0.0324192i
\(771\) 1402.61 + 809.794i 1.81920 + 1.05032i
\(772\) −459.147 459.147i −0.594750 0.594750i
\(773\) 533.020 142.822i 0.689547 0.184764i 0.103003 0.994681i \(-0.467155\pi\)
0.586544 + 0.809917i \(0.300488\pi\)
\(774\) 422.814 + 1577.96i 0.546272 + 2.03871i
\(775\) −229.892 + 229.892i −0.296635 + 0.296635i
\(776\) 159.246 275.822i 0.205214 0.355441i
\(777\) 1354.04 781.758i 1.74266 1.00612i
\(778\) −511.838 137.146i −0.657889 0.176281i
\(779\) 281.175i 0.360943i
\(780\) 0 0
\(781\) 428.101 0.548145
\(782\) 12.8416 47.9255i 0.0164215 0.0612858i
\(783\) 604.261 + 1046.61i 0.771726 + 1.33667i
\(784\) −49.1866 28.3979i −0.0627381 0.0362218i
\(785\) −41.1697 41.1697i −0.0524455 0.0524455i
\(786\) −1216.47 + 325.952i −1.54767 + 0.414697i
\(787\) −182.321 680.430i −0.231665 0.864587i −0.979624 0.200841i \(-0.935632\pi\)
0.747958 0.663746i \(-0.231034\pi\)
\(788\) −452.748 + 452.748i −0.574553 + 0.574553i
\(789\) 300.908 521.187i 0.381379 0.660567i
\(790\) −80.1312 + 46.2638i −0.101432 + 0.0585617i
\(791\) −879.134 235.563i −1.11142 0.297804i
\(792\) 350.312i 0.442313i
\(793\) 0 0
\(794\) −922.776 −1.16219
\(795\) −15.5056 + 57.8677i −0.0195039 + 0.0727896i
\(796\) 172.820 + 299.333i 0.217111 + 0.376047i
\(797\) −118.158 68.2188i −0.148254 0.0855945i 0.424038 0.905644i \(-0.360612\pi\)
−0.572292 + 0.820050i \(0.693946\pi\)
\(798\) −205.489 205.489i −0.257505 0.257505i
\(799\) 24.0140 6.43453i 0.0300550 0.00805322i
\(800\) −36.2954 135.456i −0.0453692 0.169320i
\(801\) 2442.77 2442.77i 3.04965 3.04965i
\(802\) 305.660 529.419i 0.381122 0.660123i
\(803\) 129.772 74.9240i 0.161609 0.0933051i
\(804\) 368.945 + 98.8586i 0.458887 + 0.122958i
\(805\) 63.4819i 0.0788596i
\(806\) 0 0
\(807\) −2429.32 −3.01031
\(808\) −71.5209 + 266.920i −0.0885160 + 0.330346i
\(809\) 50.0507 + 86.6904i 0.0618674 + 0.107157i 0.895300 0.445463i \(-0.146961\pi\)
−0.833433 + 0.552621i \(0.813628\pi\)
\(810\) −117.519 67.8496i −0.145085 0.0837649i
\(811\) −143.367 143.367i −0.176778 0.176778i 0.613172 0.789950i \(-0.289893\pi\)
−0.789950 + 0.613172i \(0.789893\pi\)
\(812\) −253.412 + 67.9014i −0.312083 + 0.0836224i
\(813\) 121.461 + 453.299i 0.149399 + 0.557564i
\(814\) 197.311 197.311i 0.242397 0.242397i
\(815\) 38.7209 67.0666i 0.0475103 0.0822903i
\(816\) 38.8949 22.4560i 0.0476653 0.0275196i
\(817\) −233.620 62.5982i −0.285948 0.0766196i
\(818\) 394.757i 0.482588i
\(819\) 0 0
\(820\) 55.5983 0.0678028
\(821\) −76.5922 + 285.846i −0.0932914 + 0.348168i −0.996755 0.0804969i \(-0.974349\pi\)
0.903463 + 0.428665i \(0.141016\pi\)
\(822\) −499.195 864.631i −0.607293 1.05186i
\(823\) −213.860 123.472i −0.259854 0.150027i 0.364414 0.931237i \(-0.381269\pi\)
−0.624268 + 0.781210i \(0.714603\pi\)
\(824\) −216.884 216.884i −0.263209 0.263209i
\(825\) 747.778 200.366i 0.906397 0.242868i
\(826\) 102.684 + 383.223i 0.124315 + 0.463950i
\(827\) 450.766 450.766i 0.545062 0.545062i −0.379947 0.925008i \(-0.624058\pi\)
0.925008 + 0.379947i \(0.124058\pi\)
\(828\) 385.756 668.149i 0.465889 0.806943i
\(829\) −782.813 + 451.957i −0.944286 + 0.545184i −0.891301 0.453411i \(-0.850207\pi\)
−0.0529848 + 0.998595i \(0.516873\pi\)
\(830\) −81.1585 21.7464i −0.0977814 0.0262004i
\(831\) 205.379i 0.247147i
\(832\) 0 0
\(833\) −28.5750 −0.0343037
\(834\) 123.441 460.686i 0.148010 0.552382i
\(835\) −38.1861 66.1403i −0.0457319 0.0792099i
\(836\) −44.9157 25.9321i −0.0537269 0.0310193i
\(837\) −679.207 679.207i −0.811478 0.811478i
\(838\) −256.253 + 68.6628i −0.305791 + 0.0819365i
\(839\) −249.753 932.092i −0.297680 1.11096i −0.939066 0.343737i \(-0.888307\pi\)
0.641386 0.767218i \(-0.278360\pi\)
\(840\) 40.6326 40.6326i 0.0483721 0.0483721i
\(841\) 284.366 492.537i 0.338129 0.585656i
\(842\) 710.973 410.480i 0.844386 0.487506i
\(843\) 229.464 + 61.4846i 0.272199 + 0.0729355i
\(844\) 460.358i 0.545447i
\(845\) 0 0
\(846\) 386.581 0.456951
\(847\) −184.502 + 688.571i −0.217830 + 0.812953i
\(848\) −46.8849 81.2071i −0.0552888 0.0957631i
\(849\) −507.138 292.796i −0.597335 0.344872i
\(850\) −49.8895 49.8895i −0.0586935 0.0586935i
\(851\) −593.604 + 159.056i −0.697537 + 0.186905i
\(852\) −220.886 824.359i −0.259256 0.967558i
\(853\) −103.615 + 103.615i −0.121471 + 0.121471i −0.765229 0.643758i \(-0.777374\pi\)
0.643758 + 0.765229i \(0.277374\pi\)
\(854\) 156.746 271.492i 0.183543 0.317907i
\(855\) 40.6670 23.4791i 0.0475638 0.0274610i
\(856\) −205.720 55.1224i −0.240327 0.0643953i
\(857\) 497.605i 0.580636i 0.956930 + 0.290318i \(0.0937612\pi\)
−0.956930 + 0.290318i \(0.906239\pi\)
\(858\) 0 0
\(859\) 763.167 0.888437 0.444218 0.895918i \(-0.353481\pi\)
0.444218 + 0.895918i \(0.353481\pi\)
\(860\) 12.3779 46.1950i 0.0143929 0.0537151i
\(861\) −1345.90 2331.16i −1.56318 2.70751i
\(862\) −655.286 378.330i −0.760193 0.438897i
\(863\) 299.561 + 299.561i 0.347115 + 0.347115i 0.859034 0.511919i \(-0.171065\pi\)
−0.511919 + 0.859034i \(0.671065\pi\)
\(864\) 400.199 107.233i 0.463193 0.124112i
\(865\) 16.6548 + 62.1566i 0.0192541 + 0.0718573i
\(866\) −161.880 + 161.880i −0.186928 + 0.186928i
\(867\) −794.898 + 1376.80i −0.916837 + 1.58801i
\(868\) 180.582 104.259i 0.208044 0.120114i
\(869\) 772.253 + 206.924i 0.888668 + 0.238118i
\(870\) 59.6351i 0.0685461i
\(871\) 0 0
\(872\) −23.3464 −0.0267734
\(873\) 644.886 2406.75i 0.738701 2.75687i
\(874\) 57.1117 + 98.9203i 0.0653452 + 0.113181i
\(875\) −157.017 90.6537i −0.179448 0.103604i
\(876\) −211.233 211.233i −0.241134 0.241134i
\(877\) 1212.64 324.925i 1.38271 0.370496i 0.510605 0.859816i \(-0.329422\pi\)
0.872104 + 0.489320i \(0.162755\pi\)
\(878\) −60.1239 224.385i −0.0684783 0.255564i
\(879\) −495.828 + 495.828i −0.564082 + 0.564082i
\(880\) 5.12770 8.88144i 0.00582694 0.0100926i
\(881\) −487.059 + 281.204i −0.552848 + 0.319187i −0.750270 0.661132i \(-0.770077\pi\)
0.197422 + 0.980319i \(0.436743\pi\)
\(882\) −429.190 115.001i −0.486610 0.130387i
\(883\) 325.309i 0.368413i −0.982888 0.184207i \(-0.941028\pi\)
0.982888 0.184207i \(-0.0589715\pi\)
\(884\) 0 0
\(885\) −90.1835 −0.101902
\(886\) 113.436 423.347i 0.128031 0.477819i
\(887\) −744.398 1289.33i −0.839231 1.45359i −0.890539 0.454907i \(-0.849672\pi\)
0.0513079 0.998683i \(-0.483661\pi\)
\(888\) −481.751 278.139i −0.542513 0.313220i
\(889\) 543.996 + 543.996i 0.611919 + 0.611919i
\(890\) −97.6874 + 26.1753i −0.109761 + 0.0294104i
\(891\) 303.472 + 1132.57i 0.340597 + 1.27112i
\(892\) −372.184 + 372.184i −0.417246 + 0.417246i
\(893\) −28.6169 + 49.5659i −0.0320458 + 0.0555050i
\(894\) −1491.79 + 861.284i −1.66867 + 0.963404i
\(895\) 139.814 + 37.4632i 0.156217 + 0.0418583i
\(896\) 89.9415i 0.100381i
\(897\) 0 0
\(898\) 192.441 0.214300
\(899\) 56.0085 209.026i 0.0623009 0.232510i
\(900\) −548.547 950.111i −0.609496 1.05568i
\(901\) −40.8567 23.5886i −0.0453459 0.0261805i
\(902\) −339.696 339.696i −0.376603 0.376603i
\(903\) −2236.54 + 599.278i −2.47678 + 0.663652i
\(904\) 83.8103 + 312.784i 0.0927105 + 0.346000i
\(905\) −27.0962 + 27.0962i −0.0299406 + 0.0299406i
\(906\) −411.266 + 712.333i −0.453936 + 0.786240i
\(907\) 227.634 131.425i 0.250975 0.144900i −0.369236 0.929336i \(-0.620381\pi\)
0.620210 + 0.784435i \(0.287047\pi\)
\(908\) 230.205 + 61.6832i 0.253530 + 0.0679330i
\(909\) 2161.85i 2.37827i
\(910\) 0 0
\(911\) −1043.25 −1.14517 −0.572584 0.819846i \(-0.694059\pi\)
−0.572584 + 0.819846i \(0.694059\pi\)
\(912\) −26.7603 + 99.8706i −0.0293424 + 0.109507i
\(913\) 362.999 + 628.732i 0.397589 + 0.688644i
\(914\) 278.127 + 160.576i 0.304296 + 0.175685i
\(915\) 50.3885 + 50.3885i 0.0550694 + 0.0550694i
\(916\) 612.996 164.252i 0.669209 0.179314i
\(917\) −328.413 1225.66i −0.358139 1.33659i
\(918\) 147.396 147.396i 0.160562 0.160562i
\(919\) 408.478 707.504i 0.444481 0.769863i −0.553535 0.832826i \(-0.686722\pi\)
0.998016 + 0.0629627i \(0.0200549\pi\)
\(920\) −19.5601 + 11.2930i −0.0212610 + 0.0122750i
\(921\) 1214.90 + 325.531i 1.31911 + 0.353454i
\(922\) 967.271i 1.04910i
\(923\) 0 0
\(924\) −496.517 −0.537356
\(925\) −226.178 + 844.108i −0.244517 + 0.912550i
\(926\) −557.281 965.238i −0.601815 1.04237i
\(927\) −2078.08 1199.78i −2.24173 1.29426i
\(928\) 66.0021 + 66.0021i 0.0711229 + 0.0711229i
\(929\) −1445.30 + 387.266i −1.55575 + 0.416863i −0.931317 0.364211i \(-0.881339\pi\)
−0.624438 + 0.781074i \(0.714672\pi\)
\(930\) 12.2676 + 45.7834i 0.0131910 + 0.0492295i
\(931\) 46.5161 46.5161i 0.0499635 0.0499635i
\(932\) −230.683 + 399.554i −0.247513 + 0.428706i
\(933\) −2231.09 + 1288.12i −2.39130 + 1.38062i
\(934\) −124.357 33.3213i −0.133144 0.0356759i
\(935\) 5.15967i 0.00551836i
\(936\) 0 0
\(937\) −1671.65 −1.78404 −0.892020 0.451996i \(-0.850712\pi\)
−0.892020 + 0.451996i \(0.850712\pi\)
\(938\) −99.6052 + 371.732i −0.106189 + 0.396302i
\(939\) −22.7843 39.4636i −0.0242645 0.0420273i
\(940\) −9.80096 5.65859i −0.0104266 0.00601977i
\(941\) 87.2271 + 87.2271i 0.0926962 + 0.0926962i 0.751934 0.659238i \(-0.229121\pi\)
−0.659238 + 0.751934i \(0.729121\pi\)
\(942\) 968.740 259.573i 1.02839 0.275555i
\(943\) 273.835 + 1021.97i 0.290387 + 1.08374i
\(944\) 99.8120 99.8120i 0.105733 0.105733i
\(945\) 133.352 230.972i 0.141113 0.244415i
\(946\) −357.871 + 206.617i −0.378299 + 0.218411i
\(947\) −1430.15 383.208i −1.51019 0.404654i −0.593692 0.804693i \(-0.702330\pi\)
−0.916498 + 0.400038i \(0.868997\pi\)
\(948\) 1593.83i 1.68126i
\(949\) 0 0
\(950\) 162.426 0.170975
\(951\) −187.085 + 698.212i −0.196725 + 0.734187i
\(952\) 22.6255 + 39.1886i 0.0237663 + 0.0411645i
\(953\) 736.584 + 425.267i 0.772911 + 0.446240i 0.833912 0.551897i \(-0.186096\pi\)
−0.0610010 + 0.998138i \(0.519429\pi\)
\(954\) −518.725 518.725i −0.543737 0.543737i
\(955\) −30.5789 + 8.19360i −0.0320198 + 0.00857968i
\(956\) −135.076 504.112i −0.141293 0.527314i
\(957\) −364.361 + 364.361i −0.380732 + 0.380732i
\(958\) −522.586 + 905.145i −0.545496 + 0.944827i
\(959\) 871.161 502.965i 0.908405 0.524468i
\(960\) −19.7480 5.29146i −0.0205708 0.00551194i
\(961\) 789.003i 0.821023i
\(962\) 0 0
\(963\) −1666.18 −1.73019
\(964\) −115.146 + 429.730i −0.119446 + 0.445778i
\(965\) 74.3572 + 128.790i 0.0770541 + 0.133462i
\(966\) 947.004 + 546.753i 0.980335 + 0.565997i
\(967\) 133.506 + 133.506i 0.138062 + 0.138062i 0.772760 0.634698i \(-0.218875\pi\)
−0.634698 + 0.772760i \(0.718875\pi\)
\(968\) 244.985 65.6434i 0.253083 0.0678134i
\(969\) 13.4635 + 50.2466i 0.0138943 + 0.0518541i
\(970\) −51.5786 + 51.5786i −0.0531738 + 0.0531738i
\(971\) −693.721 + 1201.56i −0.714439 + 1.23745i 0.248736 + 0.968571i \(0.419985\pi\)
−0.963175 + 0.268874i \(0.913349\pi\)
\(972\) 882.596 509.567i 0.908021 0.524246i
\(973\) 464.165 + 124.373i 0.477045 + 0.127824i
\(974\) 849.579i 0.872257i
\(975\) 0 0
\(976\) −111.536 −0.114279
\(977\) 362.725 1353.71i 0.371264 1.38558i −0.487464 0.873143i \(-0.662078\pi\)
0.858728 0.512432i \(-0.171255\pi\)
\(978\) 666.986 + 1155.25i 0.681990 + 1.18124i
\(979\) 756.780 + 436.927i 0.773014 + 0.446300i
\(980\) 9.19789 + 9.19789i 0.00938560 + 0.00938560i
\(981\) −176.422 + 47.2721i −0.179839 + 0.0481876i
\(982\) −203.876 760.876i −0.207613 0.774823i
\(983\) 457.371 457.371i 0.465280 0.465280i −0.435101 0.900382i \(-0.643287\pi\)
0.900382 + 0.435101i \(0.143287\pi\)
\(984\) −478.853 + 829.398i −0.486639 + 0.842884i
\(985\) 126.996 73.3209i 0.128930 0.0744375i
\(986\) 45.3613 + 12.1545i 0.0460054 + 0.0123271i
\(987\) 547.922i 0.555139i
\(988\) 0 0
\(989\) 910.087 0.920210
\(990\) 20.7653 77.4971i 0.0209750 0.0782799i
\(991\) 75.8147 + 131.315i 0.0765033 + 0.132508i 0.901739 0.432281i \(-0.142291\pi\)
−0.825236 + 0.564788i \(0.808958\pi\)
\(992\) −64.2489 37.0941i −0.0647670 0.0373933i
\(993\) 589.942 + 589.942i 0.594100 + 0.594100i
\(994\) 830.585 222.555i 0.835598 0.223898i
\(995\) −20.4884 76.4636i −0.0205913 0.0768478i
\(996\) 1023.40 1023.40i 1.02751 1.02751i
\(997\) 239.901 415.520i 0.240623 0.416771i −0.720269 0.693695i \(-0.755982\pi\)
0.960892 + 0.276924i \(0.0893150\pi\)
\(998\) 160.626 92.7376i 0.160948 0.0929234i
\(999\) −2493.88 668.233i −2.49638 0.668902i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.f.h.89.1 8
13.2 odd 12 338.3.d.g.239.4 8
13.3 even 3 338.3.d.g.99.4 8
13.4 even 6 338.3.f.i.319.1 8
13.5 odd 4 26.3.f.b.15.1 yes 8
13.6 odd 12 inner 338.3.f.h.19.1 8
13.7 odd 12 338.3.f.j.19.1 8
13.8 odd 4 338.3.f.i.249.1 8
13.9 even 3 26.3.f.b.7.1 8
13.10 even 6 338.3.d.f.99.4 8
13.11 odd 12 338.3.d.f.239.4 8
13.12 even 2 338.3.f.j.89.1 8
39.5 even 4 234.3.bb.f.145.2 8
39.35 odd 6 234.3.bb.f.163.2 8
52.31 even 4 208.3.bd.f.145.2 8
52.35 odd 6 208.3.bd.f.33.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.7.1 8 13.9 even 3
26.3.f.b.15.1 yes 8 13.5 odd 4
208.3.bd.f.33.2 8 52.35 odd 6
208.3.bd.f.145.2 8 52.31 even 4
234.3.bb.f.145.2 8 39.5 even 4
234.3.bb.f.163.2 8 39.35 odd 6
338.3.d.f.99.4 8 13.10 even 6
338.3.d.f.239.4 8 13.11 odd 12
338.3.d.g.99.4 8 13.3 even 3
338.3.d.g.239.4 8 13.2 odd 12
338.3.f.h.19.1 8 13.6 odd 12 inner
338.3.f.h.89.1 8 1.1 even 1 trivial
338.3.f.i.249.1 8 13.8 odd 4
338.3.f.i.319.1 8 13.4 even 6
338.3.f.j.19.1 8 13.7 odd 12
338.3.f.j.89.1 8 13.12 even 2