Properties

Label 180.9.c.a.91.4
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 15630052 x^{14} + 100431843210026 x^{12} + \cdots + 41\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{58}\cdot 3^{4}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.4
Root \(-1662.79i\) of defining polynomial
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.a.91.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.5676 + 11.0540i) q^{2} +(11.6196 - 255.736i) q^{4} -279.508 q^{5} -3325.58i q^{7} +(2692.49 + 3086.70i) q^{8} +(3233.25 - 3089.68i) q^{10} +6361.21i q^{11} -30777.4 q^{13} +(36760.8 + 38469.0i) q^{14} +(-65266.0 - 5943.09i) q^{16} -122375. q^{17} +7554.43i q^{19} +(-3247.77 + 71480.4i) q^{20} +(-70316.6 - 73584.1i) q^{22} -406311. i q^{23} +78125.0 q^{25} +(356021. - 340213. i) q^{26} +(-850471. - 38641.8i) q^{28} -828838. q^{29} +1.39549e6i q^{31} +(820666. - 652701. i) q^{32} +(1.41559e6 - 1.35273e6i) q^{34} +929527. i q^{35} -386059. q^{37} +(-83506.4 - 87386.8i) q^{38} +(-752574. - 862759. i) q^{40} +972335. q^{41} -4.61450e6i q^{43} +(1.62679e6 + 73914.5i) q^{44} +(4.49135e6 + 4.70005e6i) q^{46} +1.87219e6i q^{47} -5.29467e6 q^{49} +(-903720. + 863591. i) q^{50} +(-357620. + 7.87090e6i) q^{52} +8.01944e6 q^{53} -1.77801e6i q^{55} +(1.02651e7 - 8.95408e6i) q^{56} +(9.58768e6 - 9.16195e6i) q^{58} -6.18263e6i q^{59} +9.79320e6 q^{61} +(-1.54257e7 - 1.61425e7i) q^{62} +(-2.27822e6 + 1.66218e7i) q^{64} +8.60255e6 q^{65} +1.19411e6i q^{67} +(-1.42195e6 + 3.12958e7i) q^{68} +(-1.02750e7 - 1.07524e7i) q^{70} -3.62332e7i q^{71} +3.35548e7 q^{73} +(4.46578e6 - 4.26748e6i) q^{74} +(1.93194e6 + 87779.2i) q^{76} +2.11547e7 q^{77} -1.22874e6i q^{79} +(1.82424e7 + 1.66114e6i) q^{80} +(-1.12476e7 + 1.07482e7i) q^{82} +6.96923e7i q^{83} +3.42049e7 q^{85} +(5.10086e7 + 5.33788e7i) q^{86} +(-1.96352e7 + 1.71275e7i) q^{88} -5.58347e7 q^{89} +1.02353e8i q^{91} +(-1.03908e8 - 4.72116e6i) q^{92} +(-2.06951e7 - 2.16567e7i) q^{94} -2.11153e6i q^{95} -5.97582e7 q^{97} +(6.12467e7 - 5.85271e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 14184 q^{8} + 8750 q^{10} + 51392 q^{13} - 68472 q^{14} - 81424 q^{16} - 27552 q^{17} - 172500 q^{20} - 389120 q^{22} + 1250000 q^{25} - 1037124 q^{26} + 1288520 q^{28} - 2764896 q^{29}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −11.5676 + 11.0540i −0.722976 + 0.690873i
\(3\) 0 0
\(4\) 11.6196 255.736i 0.0453889 0.998969i
\(5\) −279.508 −0.447214
\(6\) 0 0
\(7\) 3325.58i 1.38508i −0.721379 0.692540i \(-0.756492\pi\)
0.721379 0.692540i \(-0.243508\pi\)
\(8\) 2692.49 + 3086.70i 0.657346 + 0.753589i
\(9\) 0 0
\(10\) 3233.25 3089.68i 0.323325 0.308968i
\(11\) 6361.21i 0.434479i 0.976118 + 0.217240i \(0.0697053\pi\)
−0.976118 + 0.217240i \(0.930295\pi\)
\(12\) 0 0
\(13\) −30777.4 −1.07760 −0.538801 0.842433i \(-0.681123\pi\)
−0.538801 + 0.842433i \(0.681123\pi\)
\(14\) 36760.8 + 38469.0i 0.956915 + 1.00138i
\(15\) 0 0
\(16\) −65266.0 5943.09i −0.995880 0.0906843i
\(17\) −122375. −1.46520 −0.732601 0.680658i \(-0.761694\pi\)
−0.732601 + 0.680658i \(0.761694\pi\)
\(18\) 0 0
\(19\) 7554.43i 0.0579679i 0.999580 + 0.0289839i \(0.00922717\pi\)
−0.999580 + 0.0289839i \(0.990773\pi\)
\(20\) −3247.77 + 71480.4i −0.0202985 + 0.446753i
\(21\) 0 0
\(22\) −70316.6 73584.1i −0.300170 0.314118i
\(23\) 406311.i 1.45194i −0.687729 0.725968i \(-0.741392\pi\)
0.687729 0.725968i \(-0.258608\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 356021. 340213.i 0.779081 0.744487i
\(27\) 0 0
\(28\) −850471. 38641.8i −1.38365 0.0628673i
\(29\) −828838. −1.17187 −0.585933 0.810360i \(-0.699272\pi\)
−0.585933 + 0.810360i \(0.699272\pi\)
\(30\) 0 0
\(31\) 1.39549e6i 1.51106i 0.655116 + 0.755528i \(0.272620\pi\)
−0.655116 + 0.755528i \(0.727380\pi\)
\(32\) 820666. 652701.i 0.782649 0.622464i
\(33\) 0 0
\(34\) 1.41559e6 1.35273e6i 1.05931 1.01227i
\(35\) 929527.i 0.619427i
\(36\) 0 0
\(37\) −386059. −0.205990 −0.102995 0.994682i \(-0.532843\pi\)
−0.102995 + 0.994682i \(0.532843\pi\)
\(38\) −83506.4 87386.8i −0.0400484 0.0419094i
\(39\) 0 0
\(40\) −752574. 862759.i −0.293974 0.337015i
\(41\) 972335. 0.344097 0.172048 0.985089i \(-0.444961\pi\)
0.172048 + 0.985089i \(0.444961\pi\)
\(42\) 0 0
\(43\) 4.61450e6i 1.34974i −0.737935 0.674871i \(-0.764199\pi\)
0.737935 0.674871i \(-0.235801\pi\)
\(44\) 1.62679e6 + 73914.5i 0.434032 + 0.0197205i
\(45\) 0 0
\(46\) 4.49135e6 + 4.70005e6i 1.00310 + 1.04971i
\(47\) 1.87219e6i 0.383670i 0.981427 + 0.191835i \(0.0614438\pi\)
−0.981427 + 0.191835i \(0.938556\pi\)
\(48\) 0 0
\(49\) −5.29467e6 −0.918447
\(50\) −903720. + 863591.i −0.144595 + 0.138175i
\(51\) 0 0
\(52\) −357620. + 7.87090e6i −0.0489112 + 1.07649i
\(53\) 8.01944e6 1.01634 0.508172 0.861256i \(-0.330322\pi\)
0.508172 + 0.861256i \(0.330322\pi\)
\(54\) 0 0
\(55\) 1.77801e6i 0.194305i
\(56\) 1.02651e7 8.95408e6i 1.04378 0.910477i
\(57\) 0 0
\(58\) 9.58768e6 9.16195e6i 0.847231 0.809610i
\(59\) 6.18263e6i 0.510229i −0.966911 0.255115i \(-0.917887\pi\)
0.966911 0.255115i \(-0.0821132\pi\)
\(60\) 0 0
\(61\) 9.79320e6 0.707303 0.353651 0.935377i \(-0.384940\pi\)
0.353651 + 0.935377i \(0.384940\pi\)
\(62\) −1.54257e7 1.61425e7i −1.04395 1.09246i
\(63\) 0 0
\(64\) −2.27822e6 + 1.66218e7i −0.135793 + 0.990737i
\(65\) 8.60255e6 0.481919
\(66\) 0 0
\(67\) 1.19411e6i 0.0592579i 0.999561 + 0.0296290i \(0.00943257\pi\)
−0.999561 + 0.0296290i \(0.990567\pi\)
\(68\) −1.42195e6 + 3.12958e7i −0.0665039 + 1.46369i
\(69\) 0 0
\(70\) −1.02750e7 1.07524e7i −0.427945 0.447831i
\(71\) 3.62332e7i 1.42585i −0.701242 0.712923i \(-0.747371\pi\)
0.701242 0.712923i \(-0.252629\pi\)
\(72\) 0 0
\(73\) 3.35548e7 1.18158 0.590790 0.806826i \(-0.298816\pi\)
0.590790 + 0.806826i \(0.298816\pi\)
\(74\) 4.46578e6 4.26748e6i 0.148926 0.142313i
\(75\) 0 0
\(76\) 1.93194e6 + 87779.2i 0.0579081 + 0.00263110i
\(77\) 2.11547e7 0.601789
\(78\) 0 0
\(79\) 1.22874e6i 0.0315466i −0.999876 0.0157733i \(-0.994979\pi\)
0.999876 0.0157733i \(-0.00502101\pi\)
\(80\) 1.82424e7 + 1.66114e6i 0.445371 + 0.0405552i
\(81\) 0 0
\(82\) −1.12476e7 + 1.07482e7i −0.248774 + 0.237727i
\(83\) 6.96923e7i 1.46849i 0.678882 + 0.734247i \(0.262465\pi\)
−0.678882 + 0.734247i \(0.737535\pi\)
\(84\) 0 0
\(85\) 3.42049e7 0.655258
\(86\) 5.10086e7 + 5.33788e7i 0.932501 + 0.975832i
\(87\) 0 0
\(88\) −1.96352e7 + 1.71275e7i −0.327419 + 0.285603i
\(89\) −5.58347e7 −0.889907 −0.444953 0.895554i \(-0.646780\pi\)
−0.444953 + 0.895554i \(0.646780\pi\)
\(90\) 0 0
\(91\) 1.02353e8i 1.49257i
\(92\) −1.03908e8 4.72116e6i −1.45044 0.0659018i
\(93\) 0 0
\(94\) −2.06951e7 2.16567e7i −0.265067 0.277384i
\(95\) 2.11153e6i 0.0259240i
\(96\) 0 0
\(97\) −5.97582e7 −0.675010 −0.337505 0.941324i \(-0.609583\pi\)
−0.337505 + 0.941324i \(0.609583\pi\)
\(98\) 6.12467e7 5.85271e7i 0.664016 0.634531i
\(99\) 0 0
\(100\) 907778. 1.99794e7i 0.00907778 0.199794i
\(101\) −9.62751e7 −0.925185 −0.462593 0.886571i \(-0.653081\pi\)
−0.462593 + 0.886571i \(0.653081\pi\)
\(102\) 0 0
\(103\) 1.96312e8i 1.74421i 0.489320 + 0.872104i \(0.337245\pi\)
−0.489320 + 0.872104i \(0.662755\pi\)
\(104\) −8.28678e7 9.50006e7i −0.708358 0.812070i
\(105\) 0 0
\(106\) −9.27658e7 + 8.86466e7i −0.734792 + 0.702164i
\(107\) 1.64435e8i 1.25447i 0.778832 + 0.627233i \(0.215813\pi\)
−0.778832 + 0.627233i \(0.784187\pi\)
\(108\) 0 0
\(109\) −1.81680e8 −1.28707 −0.643534 0.765417i \(-0.722533\pi\)
−0.643534 + 0.765417i \(0.722533\pi\)
\(110\) 1.96541e7 + 2.05674e7i 0.134240 + 0.140478i
\(111\) 0 0
\(112\) −1.97642e7 + 2.17047e8i −0.125605 + 1.37937i
\(113\) 1.30629e8 0.801172 0.400586 0.916259i \(-0.368807\pi\)
0.400586 + 0.916259i \(0.368807\pi\)
\(114\) 0 0
\(115\) 1.13567e8i 0.649325i
\(116\) −9.63074e6 + 2.11964e8i −0.0531897 + 1.17066i
\(117\) 0 0
\(118\) 6.83426e7 + 7.15183e7i 0.352504 + 0.368883i
\(119\) 4.06968e8i 2.02942i
\(120\) 0 0
\(121\) 1.73894e8 0.811228
\(122\) −1.13284e8 + 1.08254e8i −0.511363 + 0.488656i
\(123\) 0 0
\(124\) 3.56878e8 + 1.62150e7i 1.50950 + 0.0685852i
\(125\) −2.18366e7 −0.0894427
\(126\) 0 0
\(127\) 4.45982e8i 1.71436i −0.515015 0.857181i \(-0.672214\pi\)
0.515015 0.857181i \(-0.327786\pi\)
\(128\) −1.57383e8 2.17458e8i −0.586299 0.810095i
\(129\) 0 0
\(130\) −9.95110e7 + 9.50923e7i −0.348416 + 0.332945i
\(131\) 1.31555e8i 0.446707i 0.974738 + 0.223353i \(0.0717004\pi\)
−0.974738 + 0.223353i \(0.928300\pi\)
\(132\) 0 0
\(133\) 2.51228e7 0.0802902
\(134\) −1.31997e7 1.38130e7i −0.0409397 0.0428421i
\(135\) 0 0
\(136\) −3.29494e8 3.77735e8i −0.963145 1.10416i
\(137\) 3.26396e8 0.926536 0.463268 0.886218i \(-0.346677\pi\)
0.463268 + 0.886218i \(0.346677\pi\)
\(138\) 0 0
\(139\) 6.48927e8i 1.73835i 0.494506 + 0.869174i \(0.335349\pi\)
−0.494506 + 0.869174i \(0.664651\pi\)
\(140\) 2.37714e8 + 1.08007e7i 0.618788 + 0.0281151i
\(141\) 0 0
\(142\) 4.00520e8 + 4.19131e8i 0.985079 + 1.03085i
\(143\) 1.95782e8i 0.468196i
\(144\) 0 0
\(145\) 2.31667e8 0.524074
\(146\) −3.88149e8 + 3.70913e8i −0.854253 + 0.816321i
\(147\) 0 0
\(148\) −4.48584e6 + 9.87292e7i −0.00934968 + 0.205778i
\(149\) 7.30660e8 1.48242 0.741208 0.671276i \(-0.234253\pi\)
0.741208 + 0.671276i \(0.234253\pi\)
\(150\) 0 0
\(151\) 7.74114e8i 1.48901i 0.667618 + 0.744504i \(0.267314\pi\)
−0.667618 + 0.744504i \(0.732686\pi\)
\(152\) −2.33183e7 + 2.03402e7i −0.0436840 + 0.0381049i
\(153\) 0 0
\(154\) −2.44710e8 + 2.33843e8i −0.435079 + 0.415760i
\(155\) 3.90052e8i 0.675765i
\(156\) 0 0
\(157\) 3.17523e8 0.522609 0.261304 0.965256i \(-0.415847\pi\)
0.261304 + 0.965256i \(0.415847\pi\)
\(158\) 1.35825e7 + 1.42136e7i 0.0217947 + 0.0228075i
\(159\) 0 0
\(160\) −2.29383e8 + 1.82435e8i −0.350011 + 0.278374i
\(161\) −1.35122e9 −2.01105
\(162\) 0 0
\(163\) 2.02004e7i 0.0286161i 0.999898 + 0.0143081i \(0.00455455\pi\)
−0.999898 + 0.0143081i \(0.995445\pi\)
\(164\) 1.12981e7 2.48661e8i 0.0156182 0.343742i
\(165\) 0 0
\(166\) −7.70376e8 8.06174e8i −1.01454 1.06169i
\(167\) 5.65743e7i 0.0727366i −0.999338 0.0363683i \(-0.988421\pi\)
0.999338 0.0363683i \(-0.0115789\pi\)
\(168\) 0 0
\(169\) 1.31518e8 0.161228
\(170\) −3.95669e8 + 3.78100e8i −0.473736 + 0.452700i
\(171\) 0 0
\(172\) −1.18009e9 5.36185e7i −1.34835 0.0612634i
\(173\) 1.09785e9 1.22563 0.612813 0.790228i \(-0.290038\pi\)
0.612813 + 0.790228i \(0.290038\pi\)
\(174\) 0 0
\(175\) 2.59811e8i 0.277016i
\(176\) 3.78052e7 4.15171e8i 0.0394004 0.432689i
\(177\) 0 0
\(178\) 6.45875e8 6.17196e8i 0.643381 0.614813i
\(179\) 6.44793e8i 0.628070i 0.949411 + 0.314035i \(0.101681\pi\)
−0.949411 + 0.314035i \(0.898319\pi\)
\(180\) 0 0
\(181\) −6.79018e8 −0.632655 −0.316328 0.948650i \(-0.602450\pi\)
−0.316328 + 0.948650i \(0.602450\pi\)
\(182\) −1.13140e9 1.18398e9i −1.03117 1.07909i
\(183\) 0 0
\(184\) 1.25416e9 1.09399e9i 1.09416 0.954424i
\(185\) 1.07907e8 0.0921217
\(186\) 0 0
\(187\) 7.78454e8i 0.636600i
\(188\) 4.78786e8 + 2.17540e7i 0.383275 + 0.0174144i
\(189\) 0 0
\(190\) 2.33408e7 + 2.44253e7i 0.0179102 + 0.0187424i
\(191\) 1.53738e8i 0.115518i 0.998331 + 0.0577588i \(0.0183954\pi\)
−0.998331 + 0.0577588i \(0.981605\pi\)
\(192\) 0 0
\(193\) 9.67761e7 0.0697491 0.0348746 0.999392i \(-0.488897\pi\)
0.0348746 + 0.999392i \(0.488897\pi\)
\(194\) 6.91259e8 6.60565e8i 0.488016 0.466346i
\(195\) 0 0
\(196\) −6.15217e7 + 1.35404e9i −0.0416873 + 0.917501i
\(197\) 2.84766e9 1.89070 0.945352 0.326051i \(-0.105718\pi\)
0.945352 + 0.326051i \(0.105718\pi\)
\(198\) 0 0
\(199\) 8.71254e8i 0.555562i −0.960644 0.277781i \(-0.910401\pi\)
0.960644 0.277781i \(-0.0895990\pi\)
\(200\) 2.10351e8 + 2.41148e8i 0.131469 + 0.150718i
\(201\) 0 0
\(202\) 1.11367e9 1.06422e9i 0.668887 0.639185i
\(203\) 2.75637e9i 1.62313i
\(204\) 0 0
\(205\) −2.71776e8 −0.153885
\(206\) −2.17003e9 2.27087e9i −1.20503 1.26102i
\(207\) 0 0
\(208\) 2.00872e9 + 1.82913e8i 1.07316 + 0.0977216i
\(209\) −4.80553e7 −0.0251858
\(210\) 0 0
\(211\) 2.22378e9i 1.12192i 0.827843 + 0.560960i \(0.189568\pi\)
−0.827843 + 0.560960i \(0.810432\pi\)
\(212\) 9.31824e7 2.05086e9i 0.0461307 1.01530i
\(213\) 0 0
\(214\) −1.81766e9 1.90212e9i −0.866676 0.906949i
\(215\) 1.28979e9i 0.603623i
\(216\) 0 0
\(217\) 4.64082e9 2.09293
\(218\) 2.10161e9 2.00829e9i 0.930520 0.889201i
\(219\) 0 0
\(220\) −4.54702e8 2.06597e7i −0.194105 0.00881930i
\(221\) 3.76639e9 1.57891
\(222\) 0 0
\(223\) 1.76089e9i 0.712054i −0.934476 0.356027i \(-0.884131\pi\)
0.934476 0.356027i \(-0.115869\pi\)
\(224\) −2.17061e9 2.72919e9i −0.862162 1.08403i
\(225\) 0 0
\(226\) −1.51107e9 + 1.44397e9i −0.579228 + 0.553508i
\(227\) 1.85447e9i 0.698418i −0.937045 0.349209i \(-0.886450\pi\)
0.937045 0.349209i \(-0.113550\pi\)
\(228\) 0 0
\(229\) −1.13087e9 −0.411218 −0.205609 0.978634i \(-0.565917\pi\)
−0.205609 + 0.978634i \(0.565917\pi\)
\(230\) −1.25537e9 1.31370e9i −0.448601 0.469447i
\(231\) 0 0
\(232\) −2.23164e9 2.55837e9i −0.770321 0.883105i
\(233\) −2.24935e9 −0.763191 −0.381596 0.924329i \(-0.624625\pi\)
−0.381596 + 0.924329i \(0.624625\pi\)
\(234\) 0 0
\(235\) 5.23292e8i 0.171582i
\(236\) −1.58112e9 7.18395e7i −0.509703 0.0231587i
\(237\) 0 0
\(238\) −4.49861e9 4.70765e9i −1.40207 1.46722i
\(239\) 2.77234e9i 0.849679i −0.905269 0.424840i \(-0.860331\pi\)
0.905269 0.424840i \(-0.139669\pi\)
\(240\) 0 0
\(241\) −1.60515e8 −0.0475826 −0.0237913 0.999717i \(-0.507574\pi\)
−0.0237913 + 0.999717i \(0.507574\pi\)
\(242\) −2.01154e9 + 1.92222e9i −0.586498 + 0.560455i
\(243\) 0 0
\(244\) 1.13793e8 2.50448e9i 0.0321037 0.706574i
\(245\) 1.47990e9 0.410742
\(246\) 0 0
\(247\) 2.32506e8i 0.0624663i
\(248\) −4.30747e9 + 3.75735e9i −1.13872 + 0.993287i
\(249\) 0 0
\(250\) 2.52597e8 2.41381e8i 0.0646649 0.0617936i
\(251\) 5.77680e9i 1.45543i 0.685877 + 0.727717i \(0.259419\pi\)
−0.685877 + 0.727717i \(0.740581\pi\)
\(252\) 0 0
\(253\) 2.58463e9 0.630836
\(254\) 4.92987e9 + 5.15895e9i 1.18441 + 1.23944i
\(255\) 0 0
\(256\) 4.22433e9 + 7.75762e8i 0.983553 + 0.180621i
\(257\) −4.57743e9 −1.04928 −0.524638 0.851326i \(-0.675799\pi\)
−0.524638 + 0.851326i \(0.675799\pi\)
\(258\) 0 0
\(259\) 1.28387e9i 0.285313i
\(260\) 9.99578e7 2.19998e9i 0.0218738 0.481422i
\(261\) 0 0
\(262\) −1.45421e9 1.52178e9i −0.308618 0.322958i
\(263\) 4.85941e8i 0.101569i −0.998710 0.0507844i \(-0.983828\pi\)
0.998710 0.0507844i \(-0.0161721\pi\)
\(264\) 0 0
\(265\) −2.24150e9 −0.454523
\(266\) −2.90612e8 + 2.77707e8i −0.0580479 + 0.0554703i
\(267\) 0 0
\(268\) 3.05378e8 + 1.38751e7i 0.0591968 + 0.00268965i
\(269\) 1.48731e9 0.284049 0.142024 0.989863i \(-0.454639\pi\)
0.142024 + 0.989863i \(0.454639\pi\)
\(270\) 0 0
\(271\) 6.79398e9i 1.25964i −0.776740 0.629821i \(-0.783128\pi\)
0.776740 0.629821i \(-0.216872\pi\)
\(272\) 7.98693e9 + 7.27286e8i 1.45917 + 0.132871i
\(273\) 0 0
\(274\) −3.77562e9 + 3.60797e9i −0.669863 + 0.640118i
\(275\) 4.96970e8i 0.0868959i
\(276\) 0 0
\(277\) 1.54730e9 0.262818 0.131409 0.991328i \(-0.458050\pi\)
0.131409 + 0.991328i \(0.458050\pi\)
\(278\) −7.17322e9 7.50654e9i −1.20098 1.25678i
\(279\) 0 0
\(280\) −2.86917e9 + 2.50274e9i −0.466793 + 0.407178i
\(281\) 9.33090e9 1.49657 0.748287 0.663375i \(-0.230877\pi\)
0.748287 + 0.663375i \(0.230877\pi\)
\(282\) 0 0
\(283\) 7.43824e9i 1.15964i 0.814743 + 0.579822i \(0.196878\pi\)
−0.814743 + 0.579822i \(0.803122\pi\)
\(284\) −9.26613e9 4.21013e8i −1.42438 0.0647176i
\(285\) 0 0
\(286\) 2.16416e9 + 2.26473e9i 0.323464 + 0.338495i
\(287\) 3.23358e9i 0.476602i
\(288\) 0 0
\(289\) 7.99992e9 1.14682
\(290\) −2.67984e9 + 2.56084e9i −0.378893 + 0.362069i
\(291\) 0 0
\(292\) 3.89892e8 8.58117e9i 0.0536306 1.18036i
\(293\) 1.59214e9 0.216028 0.108014 0.994149i \(-0.465551\pi\)
0.108014 + 0.994149i \(0.465551\pi\)
\(294\) 0 0
\(295\) 1.72810e9i 0.228181i
\(296\) −1.03946e9 1.19165e9i −0.135407 0.155232i
\(297\) 0 0
\(298\) −8.45199e9 + 8.07669e9i −1.07175 + 1.02416i
\(299\) 1.25052e10i 1.56461i
\(300\) 0 0
\(301\) −1.53459e10 −1.86950
\(302\) −8.55703e9 8.95465e9i −1.02872 1.07652i
\(303\) 0 0
\(304\) 4.48966e7 4.93047e8i 0.00525678 0.0577290i
\(305\) −2.73728e9 −0.316315
\(306\) 0 0
\(307\) 3.36362e9i 0.378663i −0.981913 0.189332i \(-0.939368\pi\)
0.981913 0.189332i \(-0.0606321\pi\)
\(308\) 2.45808e8 5.41002e9i 0.0273145 0.601169i
\(309\) 0 0
\(310\) 4.31162e9 + 4.51197e9i 0.466868 + 0.488562i
\(311\) 1.23254e10i 1.31752i 0.752352 + 0.658761i \(0.228919\pi\)
−0.752352 + 0.658761i \(0.771081\pi\)
\(312\) 0 0
\(313\) 2.77987e9 0.289633 0.144816 0.989459i \(-0.453741\pi\)
0.144816 + 0.989459i \(0.453741\pi\)
\(314\) −3.67299e9 + 3.50989e9i −0.377834 + 0.361056i
\(315\) 0 0
\(316\) −3.14234e8 1.42775e7i −0.0315141 0.00143187i
\(317\) 5.40177e8 0.0534933 0.0267466 0.999642i \(-0.491485\pi\)
0.0267466 + 0.999642i \(0.491485\pi\)
\(318\) 0 0
\(319\) 5.27241e9i 0.509151i
\(320\) 6.36783e8 4.64594e9i 0.0607284 0.443071i
\(321\) 0 0
\(322\) 1.56304e10 1.49363e10i 1.45394 1.38938i
\(323\) 9.24475e8i 0.0849347i
\(324\) 0 0
\(325\) −2.40449e9 −0.215521
\(326\) −2.23295e8 2.33671e8i −0.0197701 0.0206888i
\(327\) 0 0
\(328\) 2.61800e9 + 3.00131e9i 0.226191 + 0.259307i
\(329\) 6.22610e9 0.531414
\(330\) 0 0
\(331\) 1.21115e10i 1.00899i 0.863414 + 0.504495i \(0.168321\pi\)
−0.863414 + 0.504495i \(0.831679\pi\)
\(332\) 1.78228e10 + 8.09794e8i 1.46698 + 0.0666534i
\(333\) 0 0
\(334\) 6.25370e8 + 6.54429e8i 0.0502518 + 0.0525868i
\(335\) 3.33765e8i 0.0265009i
\(336\) 0 0
\(337\) −9.48812e9 −0.735632 −0.367816 0.929899i \(-0.619894\pi\)
−0.367816 + 0.929899i \(0.619894\pi\)
\(338\) −1.52135e9 + 1.45380e9i −0.116564 + 0.111388i
\(339\) 0 0
\(340\) 3.97446e8 8.74743e9i 0.0297415 0.654583i
\(341\) −8.87702e9 −0.656523
\(342\) 0 0
\(343\) 1.56347e9i 0.112957i
\(344\) 1.42436e10 1.24245e10i 1.01715 0.887248i
\(345\) 0 0
\(346\) −1.26995e10 + 1.21356e10i −0.886099 + 0.846752i
\(347\) 9.01032e9i 0.621473i −0.950496 0.310737i \(-0.899424\pi\)
0.950496 0.310737i \(-0.100576\pi\)
\(348\) 0 0
\(349\) 2.17409e10 1.46547 0.732733 0.680517i \(-0.238245\pi\)
0.732733 + 0.680517i \(0.238245\pi\)
\(350\) 2.87194e9 + 3.00539e9i 0.191383 + 0.200276i
\(351\) 0 0
\(352\) 4.15197e9 + 5.22043e9i 0.270448 + 0.340045i
\(353\) 5.60018e9 0.360664 0.180332 0.983606i \(-0.442283\pi\)
0.180332 + 0.983606i \(0.442283\pi\)
\(354\) 0 0
\(355\) 1.01275e10i 0.637658i
\(356\) −6.48775e8 + 1.42790e10i −0.0403919 + 0.888990i
\(357\) 0 0
\(358\) −7.12752e9 7.45872e9i −0.433917 0.454080i
\(359\) 1.31213e10i 0.789952i −0.918692 0.394976i \(-0.870753\pi\)
0.918692 0.394976i \(-0.129247\pi\)
\(360\) 0 0
\(361\) 1.69265e10 0.996640
\(362\) 7.85462e9 7.50585e9i 0.457395 0.437085i
\(363\) 0 0
\(364\) 2.61753e10 + 1.18929e9i 1.49103 + 0.0677460i
\(365\) −9.37884e9 −0.528418
\(366\) 0 0
\(367\) 9.89380e9i 0.545379i 0.962102 + 0.272690i \(0.0879132\pi\)
−0.962102 + 0.272690i \(0.912087\pi\)
\(368\) −2.41474e9 + 2.65183e10i −0.131668 + 1.44595i
\(369\) 0 0
\(370\) −1.24822e9 + 1.19280e9i −0.0666018 + 0.0636444i
\(371\) 2.66693e10i 1.40772i
\(372\) 0 0
\(373\) 1.01496e10 0.524339 0.262170 0.965022i \(-0.415562\pi\)
0.262170 + 0.965022i \(0.415562\pi\)
\(374\) 8.60501e9 + 9.00486e9i 0.439810 + 0.460247i
\(375\) 0 0
\(376\) −5.77888e9 + 5.04084e9i −0.289129 + 0.252204i
\(377\) 2.55095e10 1.26281
\(378\) 0 0
\(379\) 1.39748e10i 0.677312i 0.940910 + 0.338656i \(0.109972\pi\)
−0.940910 + 0.338656i \(0.890028\pi\)
\(380\) −5.39994e8 2.45350e7i −0.0258973 0.00117666i
\(381\) 0 0
\(382\) −1.69942e9 1.77838e9i −0.0798080 0.0835165i
\(383\) 2.31617e10i 1.07640i 0.842816 + 0.538201i \(0.180896\pi\)
−0.842816 + 0.538201i \(0.819104\pi\)
\(384\) 0 0
\(385\) −5.91292e9 −0.269128
\(386\) −1.11947e9 + 1.06976e9i −0.0504269 + 0.0481878i
\(387\) 0 0
\(388\) −6.94364e8 + 1.52823e10i −0.0306380 + 0.674314i
\(389\) 1.13177e10 0.494267 0.247133 0.968981i \(-0.420511\pi\)
0.247133 + 0.968981i \(0.420511\pi\)
\(390\) 0 0
\(391\) 4.97224e10i 2.12738i
\(392\) −1.42558e10 1.63430e10i −0.603738 0.692132i
\(393\) 0 0
\(394\) −3.29407e10 + 3.14780e10i −1.36693 + 1.30624i
\(395\) 3.43444e8i 0.0141081i
\(396\) 0 0
\(397\) 1.01291e10 0.407765 0.203882 0.978995i \(-0.434644\pi\)
0.203882 + 0.978995i \(0.434644\pi\)
\(398\) 9.63082e9 + 1.00783e10i 0.383823 + 0.401658i
\(399\) 0 0
\(400\) −5.09890e9 4.64304e8i −0.199176 0.0181369i
\(401\) −1.52259e10 −0.588850 −0.294425 0.955675i \(-0.595128\pi\)
−0.294425 + 0.955675i \(0.595128\pi\)
\(402\) 0 0
\(403\) 4.29496e10i 1.62832i
\(404\) −1.11867e9 + 2.46210e10i −0.0419931 + 0.924232i
\(405\) 0 0
\(406\) −3.04688e10 3.18846e10i −1.12137 1.17348i
\(407\) 2.45580e9i 0.0894985i
\(408\) 0 0
\(409\) −5.16482e10 −1.84570 −0.922851 0.385156i \(-0.874148\pi\)
−0.922851 + 0.385156i \(0.874148\pi\)
\(410\) 3.14380e9 3.00420e9i 0.111255 0.106315i
\(411\) 0 0
\(412\) 5.02041e10 + 2.28106e9i 1.74241 + 0.0791678i
\(413\) −2.05608e10 −0.706708
\(414\) 0 0
\(415\) 1.94796e10i 0.656731i
\(416\) −2.52580e10 + 2.00884e10i −0.843384 + 0.670769i
\(417\) 0 0
\(418\) 5.55886e8 5.31202e8i 0.0182088 0.0174002i
\(419\) 2.90780e10i 0.943427i 0.881752 + 0.471714i \(0.156364\pi\)
−0.881752 + 0.471714i \(0.843636\pi\)
\(420\) 0 0
\(421\) −2.02634e9 −0.0645037 −0.0322519 0.999480i \(-0.510268\pi\)
−0.0322519 + 0.999480i \(0.510268\pi\)
\(422\) −2.45816e10 2.57239e10i −0.775105 0.811122i
\(423\) 0 0
\(424\) 2.15923e10 + 2.47536e10i 0.668089 + 0.765905i
\(425\) −9.56056e9 −0.293040
\(426\) 0 0
\(427\) 3.25681e10i 0.979671i
\(428\) 4.20519e10 + 1.91066e9i 1.25317 + 0.0569388i
\(429\) 0 0
\(430\) −1.42573e10 1.49198e10i −0.417027 0.436405i
\(431\) 2.31188e10i 0.669972i −0.942223 0.334986i \(-0.891268\pi\)
0.942223 0.334986i \(-0.108732\pi\)
\(432\) 0 0
\(433\) −5.16117e10 −1.46824 −0.734119 0.679021i \(-0.762405\pi\)
−0.734119 + 0.679021i \(0.762405\pi\)
\(434\) −5.36832e10 + 5.12995e10i −1.51314 + 1.44595i
\(435\) 0 0
\(436\) −2.11105e9 + 4.64622e10i −0.0584187 + 1.28574i
\(437\) 3.06945e9 0.0841656
\(438\) 0 0
\(439\) 4.07914e10i 1.09827i −0.835733 0.549137i \(-0.814957\pi\)
0.835733 0.549137i \(-0.185043\pi\)
\(440\) 5.48819e9 4.78728e9i 0.146426 0.127726i
\(441\) 0 0
\(442\) −4.35682e10 + 4.16336e10i −1.14151 + 1.09082i
\(443\) 1.78192e9i 0.0462671i −0.999732 0.0231336i \(-0.992636\pi\)
0.999732 0.0231336i \(-0.00736430\pi\)
\(444\) 0 0
\(445\) 1.56063e10 0.397978
\(446\) 1.94648e10 + 2.03693e10i 0.491939 + 0.514798i
\(447\) 0 0
\(448\) 5.52771e10 + 7.57641e9i 1.37225 + 0.188084i
\(449\) −5.74811e10 −1.41429 −0.707147 0.707067i \(-0.750018\pi\)
−0.707147 + 0.707067i \(0.750018\pi\)
\(450\) 0 0
\(451\) 6.18523e9i 0.149503i
\(452\) 1.51785e9 3.34066e10i 0.0363643 0.800347i
\(453\) 0 0
\(454\) 2.04992e10 + 2.14518e10i 0.482518 + 0.504940i
\(455\) 2.86084e10i 0.667496i
\(456\) 0 0
\(457\) −4.50957e10 −1.03388 −0.516941 0.856021i \(-0.672929\pi\)
−0.516941 + 0.856021i \(0.672929\pi\)
\(458\) 1.30815e10 1.25006e10i 0.297301 0.284099i
\(459\) 0 0
\(460\) 2.90433e10 + 1.31960e9i 0.648656 + 0.0294722i
\(461\) −7.73092e10 −1.71170 −0.855850 0.517225i \(-0.826965\pi\)
−0.855850 + 0.517225i \(0.826965\pi\)
\(462\) 0 0
\(463\) 8.52854e10i 1.85588i 0.372726 + 0.927941i \(0.378423\pi\)
−0.372726 + 0.927941i \(0.621577\pi\)
\(464\) 5.40949e10 + 4.92586e9i 1.16704 + 0.106270i
\(465\) 0 0
\(466\) 2.60196e10 2.48643e10i 0.551769 0.527268i
\(467\) 3.20726e10i 0.674320i −0.941447 0.337160i \(-0.890534\pi\)
0.941447 0.337160i \(-0.109466\pi\)
\(468\) 0 0
\(469\) 3.97112e9 0.0820770
\(470\) 5.78446e9 + 6.05324e9i 0.118542 + 0.124050i
\(471\) 0 0
\(472\) 1.90839e10 1.66467e10i 0.384503 0.335397i
\(473\) 2.93538e10 0.586435
\(474\) 0 0
\(475\) 5.90190e8i 0.0115936i
\(476\) 1.04076e11 + 4.72879e9i 2.02733 + 0.0921133i
\(477\) 0 0
\(478\) 3.06454e10 + 3.20694e10i 0.587020 + 0.614298i
\(479\) 3.58893e10i 0.681746i 0.940109 + 0.340873i \(0.110723\pi\)
−0.940109 + 0.340873i \(0.889277\pi\)
\(480\) 0 0
\(481\) 1.18819e10 0.221976
\(482\) 1.85678e9 1.77433e9i 0.0344010 0.0328735i
\(483\) 0 0
\(484\) 2.02057e9 4.44710e10i 0.0368208 0.810392i
\(485\) 1.67029e10 0.301874
\(486\) 0 0
\(487\) 5.98567e10i 1.06414i −0.846702 0.532068i \(-0.821415\pi\)
0.846702 0.532068i \(-0.178585\pi\)
\(488\) 2.63681e10 + 3.02287e10i 0.464943 + 0.533016i
\(489\) 0 0
\(490\) −1.71190e10 + 1.63588e10i −0.296957 + 0.283771i
\(491\) 3.00275e10i 0.516645i 0.966059 + 0.258323i \(0.0831698\pi\)
−0.966059 + 0.258323i \(0.916830\pi\)
\(492\) 0 0
\(493\) 1.01429e11 1.71702
\(494\) 2.57011e9 + 2.68954e9i 0.0431563 + 0.0451617i
\(495\) 0 0
\(496\) 8.29353e9 9.10782e10i 0.137029 1.50483i
\(497\) −1.20496e11 −1.97491
\(498\) 0 0
\(499\) 2.32602e10i 0.375156i 0.982250 + 0.187578i \(0.0600637\pi\)
−0.982250 + 0.187578i \(0.939936\pi\)
\(500\) −2.53732e8 + 5.58441e9i −0.00405971 + 0.0893505i
\(501\) 0 0
\(502\) −6.38566e10 6.68238e10i −1.00552 1.05224i
\(503\) 2.16574e10i 0.338326i −0.985588 0.169163i \(-0.945894\pi\)
0.985588 0.169163i \(-0.0541064\pi\)
\(504\) 0 0
\(505\) 2.69097e10 0.413755
\(506\) −2.98980e10 + 2.85704e10i −0.456079 + 0.435828i
\(507\) 0 0
\(508\) −1.14054e11 5.18212e9i −1.71260 0.0778131i
\(509\) −1.21565e10 −0.181108 −0.0905541 0.995892i \(-0.528864\pi\)
−0.0905541 + 0.995892i \(0.528864\pi\)
\(510\) 0 0
\(511\) 1.11589e11i 1.63658i
\(512\) −5.74407e10 + 3.77219e10i −0.835871 + 0.548925i
\(513\) 0 0
\(514\) 5.29500e10 5.05988e10i 0.758601 0.724916i
\(515\) 5.48709e10i 0.780034i
\(516\) 0 0
\(517\) −1.19094e10 −0.166697
\(518\) −1.41918e10 1.48513e10i −0.197115 0.206275i
\(519\) 0 0
\(520\) 2.31623e10 + 2.65535e10i 0.316787 + 0.363169i
\(521\) 5.20805e10 0.706845 0.353422 0.935464i \(-0.385018\pi\)
0.353422 + 0.935464i \(0.385018\pi\)
\(522\) 0 0
\(523\) 2.42007e10i 0.323461i −0.986835 0.161731i \(-0.948292\pi\)
0.986835 0.161731i \(-0.0517075\pi\)
\(524\) 3.36434e10 + 1.52861e9i 0.446246 + 0.0202755i
\(525\) 0 0
\(526\) 5.37158e9 + 5.62118e9i 0.0701712 + 0.0734319i
\(527\) 1.70774e11i 2.21400i
\(528\) 0 0
\(529\) −8.67778e10 −1.10812
\(530\) 2.59288e10 2.47775e10i 0.328609 0.314017i
\(531\) 0 0
\(532\) 2.91917e8 6.42482e9i 0.00364428 0.0802074i
\(533\) −2.99260e10 −0.370800
\(534\) 0 0
\(535\) 4.59609e10i 0.561014i
\(536\) −3.68587e9 + 3.21514e9i −0.0446561 + 0.0389530i
\(537\) 0 0
\(538\) −1.72047e10 + 1.64407e10i −0.205361 + 0.196242i
\(539\) 3.36805e10i 0.399046i
\(540\) 0 0
\(541\) −7.39316e10 −0.863060 −0.431530 0.902099i \(-0.642026\pi\)
−0.431530 + 0.902099i \(0.642026\pi\)
\(542\) 7.51005e10 + 7.85902e10i 0.870253 + 0.910692i
\(543\) 0 0
\(544\) −1.00429e11 + 7.98743e10i −1.14674 + 0.912035i
\(545\) 5.07812e10 0.575595
\(546\) 0 0
\(547\) 9.08736e10i 1.01505i −0.861636 0.507526i \(-0.830560\pi\)
0.861636 0.507526i \(-0.169440\pi\)
\(548\) 3.79257e9 8.34712e10i 0.0420544 0.925581i
\(549\) 0 0
\(550\) −5.49349e9 5.74875e9i −0.0600340 0.0628236i
\(551\) 6.26140e9i 0.0679305i
\(552\) 0 0
\(553\) −4.08628e9 −0.0436946
\(554\) −1.78985e10 + 1.71038e10i −0.190011 + 0.181574i
\(555\) 0 0
\(556\) 1.65954e11 + 7.54025e9i 1.73656 + 0.0789018i
\(557\) 7.25820e9 0.0754064 0.0377032 0.999289i \(-0.487996\pi\)
0.0377032 + 0.999289i \(0.487996\pi\)
\(558\) 0 0
\(559\) 1.42022e11i 1.45449i
\(560\) 5.52426e9 6.06665e10i 0.0561723 0.616875i
\(561\) 0 0
\(562\) −1.07936e11 + 1.03143e11i −1.08199 + 1.03394i
\(563\) 4.02851e10i 0.400969i 0.979697 + 0.200485i \(0.0642517\pi\)
−0.979697 + 0.200485i \(0.935748\pi\)
\(564\) 0 0
\(565\) −3.65119e10 −0.358295
\(566\) −8.22221e10 8.60427e10i −0.801166 0.838394i
\(567\) 0 0
\(568\) 1.11841e11 9.75574e10i 1.07450 0.937274i
\(569\) −4.42204e10 −0.421866 −0.210933 0.977501i \(-0.567650\pi\)
−0.210933 + 0.977501i \(0.567650\pi\)
\(570\) 0 0
\(571\) 1.92416e11i 1.81008i −0.425327 0.905040i \(-0.639841\pi\)
0.425327 0.905040i \(-0.360159\pi\)
\(572\) −5.00684e10 2.27490e9i −0.467714 0.0212509i
\(573\) 0 0
\(574\) 3.57438e10 + 3.74048e10i 0.329271 + 0.344572i
\(575\) 3.17431e10i 0.290387i
\(576\) 0 0
\(577\) 5.62180e10 0.507192 0.253596 0.967310i \(-0.418387\pi\)
0.253596 + 0.967310i \(0.418387\pi\)
\(578\) −9.25400e10 + 8.84309e10i −0.829122 + 0.792305i
\(579\) 0 0
\(580\) 2.69187e9 5.92457e10i 0.0237872 0.523534i
\(581\) 2.31767e11 2.03398
\(582\) 0 0
\(583\) 5.10133e10i 0.441580i
\(584\) 9.03458e10 + 1.03574e11i 0.776706 + 0.890425i
\(585\) 0 0
\(586\) −1.84172e10 + 1.75994e10i −0.156183 + 0.149248i
\(587\) 2.12589e11i 1.79056i −0.445508 0.895278i \(-0.646977\pi\)
0.445508 0.895278i \(-0.353023\pi\)
\(588\) 0 0
\(589\) −1.05422e10 −0.0875927
\(590\) −1.91023e10 1.99900e10i −0.157644 0.164970i
\(591\) 0 0
\(592\) 2.51965e10 + 2.29438e9i 0.205142 + 0.0186801i
\(593\) 3.64674e10 0.294908 0.147454 0.989069i \(-0.452892\pi\)
0.147454 + 0.989069i \(0.452892\pi\)
\(594\) 0 0
\(595\) 1.13751e11i 0.907585i
\(596\) 8.48995e9 1.86856e11i 0.0672853 1.48089i
\(597\) 0 0
\(598\) −1.38232e11 1.44655e11i −1.08095 1.13118i
\(599\) 1.54791e11i 1.20237i 0.799111 + 0.601184i \(0.205304\pi\)
−0.799111 + 0.601184i \(0.794696\pi\)
\(600\) 0 0
\(601\) 1.37850e11 1.05659 0.528297 0.849059i \(-0.322831\pi\)
0.528297 + 0.849059i \(0.322831\pi\)
\(602\) 1.77515e11 1.69633e11i 1.35161 1.29159i
\(603\) 0 0
\(604\) 1.97969e11 + 8.99487e9i 1.48747 + 0.0675845i
\(605\) −4.86048e10 −0.362792
\(606\) 0 0
\(607\) 4.21916e10i 0.310793i 0.987852 + 0.155396i \(0.0496655\pi\)
−0.987852 + 0.155396i \(0.950335\pi\)
\(608\) 4.93078e9 + 6.19967e9i 0.0360829 + 0.0453685i
\(609\) 0 0
\(610\) 3.16638e10 3.02578e10i 0.228689 0.218534i
\(611\) 5.76211e10i 0.413444i
\(612\) 0 0
\(613\) −1.76436e11 −1.24953 −0.624763 0.780815i \(-0.714804\pi\)
−0.624763 + 0.780815i \(0.714804\pi\)
\(614\) 3.71813e10 + 3.89091e10i 0.261608 + 0.273765i
\(615\) 0 0
\(616\) 5.69588e10 + 6.52982e10i 0.395583 + 0.453501i
\(617\) −3.80722e10 −0.262705 −0.131352 0.991336i \(-0.541932\pi\)
−0.131352 + 0.991336i \(0.541932\pi\)
\(618\) 0 0
\(619\) 4.67363e10i 0.318340i −0.987251 0.159170i \(-0.949118\pi\)
0.987251 0.159170i \(-0.0508818\pi\)
\(620\) −9.97504e10 4.53223e9i −0.675069 0.0306722i
\(621\) 0 0
\(622\) −1.36244e11 1.42575e11i −0.910240 0.952537i
\(623\) 1.85683e11i 1.23259i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) −3.21565e10 + 3.07286e10i −0.209398 + 0.200099i
\(627\) 0 0
\(628\) 3.68948e9 8.12021e10i 0.0237206 0.522070i
\(629\) 4.72440e10 0.301817
\(630\) 0 0
\(631\) 1.82629e11i 1.15200i 0.817450 + 0.576000i \(0.195387\pi\)
−0.817450 + 0.576000i \(0.804613\pi\)
\(632\) 3.79276e9 3.30838e9i 0.0237732 0.0207370i
\(633\) 0 0
\(634\) −6.24857e9 + 5.97110e9i −0.0386744 + 0.0369571i
\(635\) 1.24656e11i 0.766686i
\(636\) 0 0
\(637\) 1.62956e11 0.989721
\(638\) 5.82811e10 + 6.09893e10i 0.351759 + 0.368104i
\(639\) 0 0
\(640\) 4.39900e10 + 6.07814e10i 0.262201 + 0.362285i
\(641\) −1.05531e11 −0.625100 −0.312550 0.949901i \(-0.601183\pi\)
−0.312550 + 0.949901i \(0.601183\pi\)
\(642\) 0 0
\(643\) 1.09834e11i 0.642528i 0.946990 + 0.321264i \(0.104108\pi\)
−0.946990 + 0.321264i \(0.895892\pi\)
\(644\) −1.57006e10 + 3.45556e11i −0.0912793 + 2.00898i
\(645\) 0 0
\(646\) 1.02191e10 + 1.06940e10i 0.0586791 + 0.0614057i
\(647\) 4.48807e9i 0.0256119i −0.999918 0.0128060i \(-0.995924\pi\)
0.999918 0.0128060i \(-0.00407638\pi\)
\(648\) 0 0
\(649\) 3.93290e10 0.221684
\(650\) 2.78142e10 2.65791e10i 0.155816 0.148897i
\(651\) 0 0
\(652\) 5.16599e9 + 2.34720e8i 0.0285866 + 0.00129885i
\(653\) −2.96586e11 −1.63117 −0.815583 0.578640i \(-0.803584\pi\)
−0.815583 + 0.578640i \(0.803584\pi\)
\(654\) 0 0
\(655\) 3.67708e10i 0.199773i
\(656\) −6.34604e10 5.77867e9i −0.342679 0.0312042i
\(657\) 0 0
\(658\) −7.20212e10 + 6.88232e10i −0.384199 + 0.367139i
\(659\) 8.22505e10i 0.436111i 0.975936 + 0.218056i \(0.0699714\pi\)
−0.975936 + 0.218056i \(0.930029\pi\)
\(660\) 0 0
\(661\) −1.54172e11 −0.807608 −0.403804 0.914845i \(-0.632312\pi\)
−0.403804 + 0.914845i \(0.632312\pi\)
\(662\) −1.33881e11 1.40102e11i −0.697085 0.729476i
\(663\) 0 0
\(664\) −2.15119e11 + 1.87646e11i −1.10664 + 0.965309i
\(665\) −7.02205e9 −0.0359068
\(666\) 0 0
\(667\) 3.36766e11i 1.70147i
\(668\) −1.44681e10 6.57368e8i −0.0726616 0.00330144i
\(669\) 0 0
\(670\) 3.68943e9 + 3.86086e9i 0.0183088 + 0.0191596i
\(671\) 6.22966e10i 0.307308i
\(672\) 0 0
\(673\) 2.82157e11 1.37541 0.687703 0.725992i \(-0.258619\pi\)
0.687703 + 0.725992i \(0.258619\pi\)
\(674\) 1.09755e11 1.04881e11i 0.531844 0.508228i
\(675\) 0 0
\(676\) 1.52818e9 3.36340e10i 0.00731794 0.161061i
\(677\) 2.70699e11 1.28864 0.644320 0.764756i \(-0.277140\pi\)
0.644320 + 0.764756i \(0.277140\pi\)
\(678\) 0 0
\(679\) 1.98730e11i 0.934943i
\(680\) 9.20963e10 + 1.05580e11i 0.430731 + 0.493795i
\(681\) 0 0
\(682\) 1.02686e11 9.81263e10i 0.474650 0.453574i
\(683\) 3.96155e10i 0.182046i 0.995849 + 0.0910232i \(0.0290137\pi\)
−0.995849 + 0.0910232i \(0.970986\pi\)
\(684\) 0 0
\(685\) −9.12304e10 −0.414359
\(686\) 1.72825e10 + 1.80856e10i 0.0780389 + 0.0816651i
\(687\) 0 0
\(688\) −2.74244e10 + 3.01170e11i −0.122400 + 1.34418i
\(689\) −2.46818e11 −1.09521
\(690\) 0 0
\(691\) 1.26869e11i 0.556472i 0.960513 + 0.278236i \(0.0897497\pi\)
−0.960513 + 0.278236i \(0.910250\pi\)
\(692\) 1.27565e10 2.80760e11i 0.0556299 1.22436i
\(693\) 0 0
\(694\) 9.95998e10 + 1.04228e11i 0.429359 + 0.449310i
\(695\) 1.81381e11i 0.777413i
\(696\) 0 0
\(697\) −1.18990e11 −0.504171
\(698\) −2.51490e11 + 2.40323e11i −1.05950 + 1.01245i
\(699\) 0 0
\(700\) −6.64430e10 3.01889e9i −0.276731 0.0125735i
\(701\) 6.26836e10 0.259587 0.129793 0.991541i \(-0.458569\pi\)
0.129793 + 0.991541i \(0.458569\pi\)
\(702\) 0 0
\(703\) 2.91646e9i 0.0119408i
\(704\) −1.05735e11 1.44923e10i −0.430455 0.0589991i
\(705\) 0 0
\(706\) −6.47808e10 + 6.19042e10i −0.260752 + 0.249173i
\(707\) 3.20170e11i 1.28146i
\(708\) 0 0
\(709\) −3.57762e11 −1.41582 −0.707912 0.706300i \(-0.750363\pi\)
−0.707912 + 0.706300i \(0.750363\pi\)
\(710\) −1.11949e11 1.17151e11i −0.440541 0.461011i
\(711\) 0 0
\(712\) −1.50334e11 1.72345e11i −0.584977 0.670624i
\(713\) 5.67004e11 2.19396
\(714\) 0 0
\(715\) 5.47226e10i 0.209384i
\(716\) 1.64897e11 + 7.49222e9i 0.627423 + 0.0285074i
\(717\) 0 0
\(718\) 1.45043e11 + 1.51783e11i 0.545756 + 0.571116i
\(719\) 1.70342e11i 0.637392i 0.947857 + 0.318696i \(0.103245\pi\)
−0.947857 + 0.318696i \(0.896755\pi\)
\(720\) 0 0
\(721\) 6.52852e11 2.41587
\(722\) −1.95799e11 + 1.87105e11i −0.720547 + 0.688552i
\(723\) 0 0
\(724\) −7.88990e9 + 1.73650e11i −0.0287155 + 0.632003i
\(725\) −6.47530e10 −0.234373
\(726\) 0 0
\(727\) 6.56094e10i 0.234870i −0.993081 0.117435i \(-0.962533\pi\)
0.993081 0.117435i \(-0.0374672\pi\)
\(728\) −3.15932e11 + 2.75583e11i −1.12478 + 0.981132i
\(729\) 0 0
\(730\) 1.08491e11 1.03673e11i 0.382034 0.365070i
\(731\) 5.64700e11i 1.97765i
\(732\) 0 0
\(733\) 2.60967e11 0.904003 0.452001 0.892017i \(-0.350710\pi\)
0.452001 + 0.892017i \(0.350710\pi\)
\(734\) −1.09366e11 1.14448e11i −0.376788 0.394296i
\(735\) 0 0
\(736\) −2.65200e11 3.33446e11i −0.903778 1.13636i
\(737\) −7.59601e9 −0.0257463
\(738\) 0 0
\(739\) 4.19763e11i 1.40743i −0.710483 0.703715i \(-0.751523\pi\)
0.710483 0.703715i \(-0.248477\pi\)
\(740\) 1.25383e9 2.75957e10i 0.00418130 0.0920267i
\(741\) 0 0
\(742\) 2.94801e11 + 3.08500e11i 0.972554 + 1.01775i
\(743\) 1.42604e11i 0.467925i 0.972246 + 0.233962i \(0.0751693\pi\)
−0.972246 + 0.233962i \(0.924831\pi\)
\(744\) 0 0
\(745\) −2.04226e11 −0.662957
\(746\) −1.17406e11 + 1.12193e11i −0.379085 + 0.362252i
\(747\) 0 0
\(748\) −1.99079e11 9.04530e9i −0.635944 0.0288946i
\(749\) 5.46841e11 1.73754
\(750\) 0 0
\(751\) 3.26311e10i 0.102582i −0.998684 0.0512911i \(-0.983666\pi\)
0.998684 0.0512911i \(-0.0163336\pi\)
\(752\) 1.11266e10 1.22190e11i 0.0347928 0.382089i
\(753\) 0 0
\(754\) −2.95084e11 + 2.81981e11i −0.912978 + 0.872438i
\(755\) 2.16371e11i 0.665905i
\(756\) 0 0
\(757\) −4.36612e11 −1.32957 −0.664787 0.747033i \(-0.731478\pi\)
−0.664787 + 0.747033i \(0.731478\pi\)
\(758\) −1.54477e11 1.61655e11i −0.467937 0.489680i
\(759\) 0 0
\(760\) 6.51765e9 5.68526e9i 0.0195361 0.0170410i
\(761\) 1.98059e11 0.590548 0.295274 0.955413i \(-0.404589\pi\)
0.295274 + 0.955413i \(0.404589\pi\)
\(762\) 0 0
\(763\) 6.04192e11i 1.78269i
\(764\) 3.93164e10 + 1.78637e9i 0.115399 + 0.00524322i
\(765\) 0 0
\(766\) −2.56028e11 2.67925e11i −0.743657 0.778213i
\(767\) 1.90285e11i 0.549824i
\(768\) 0 0
\(769\) −1.42097e10 −0.0406329 −0.0203165 0.999794i \(-0.506467\pi\)
−0.0203165 + 0.999794i \(0.506467\pi\)
\(770\) 6.83984e10 6.53612e10i 0.194573 0.185933i
\(771\) 0 0
\(772\) 1.12450e9 2.47491e10i 0.00316584 0.0696772i
\(773\) −6.62483e10 −0.185548 −0.0927741 0.995687i \(-0.529573\pi\)
−0.0927741 + 0.995687i \(0.529573\pi\)
\(774\) 0 0
\(775\) 1.09023e11i 0.302211i
\(776\) −1.60898e11 1.84456e11i −0.443715 0.508680i
\(777\) 0 0
\(778\) −1.30919e11 + 1.25106e11i −0.357343 + 0.341476i
\(779\) 7.34544e9i 0.0199466i
\(780\) 0 0
\(781\) 2.30487e11 0.619501
\(782\) −5.49630e11 5.75170e11i −1.46975 1.53804i
\(783\) 0 0
\(784\) 3.45562e11 + 3.14667e10i 0.914663 + 0.0832887i
\(785\) −8.87504e10 −0.233718
\(786\) 0 0
\(787\) 7.13437e10i 0.185976i −0.995667 0.0929880i \(-0.970358\pi\)
0.995667 0.0929880i \(-0.0296418\pi\)
\(788\) 3.30886e10 7.28250e11i 0.0858170 1.88876i
\(789\) 0 0
\(790\) −3.79642e9 3.97283e9i −0.00974689 0.0101998i
\(791\) 4.34417e11i 1.10969i
\(792\) 0 0
\(793\) −3.01409e11 −0.762191
\(794\) −1.17170e11 + 1.11967e11i −0.294804 + 0.281714i
\(795\) 0 0
\(796\) −2.22811e11 1.01236e10i −0.554990 0.0252164i
\(797\) −1.11980e11 −0.277527 −0.138764 0.990326i \(-0.544313\pi\)
−0.138764 + 0.990326i \(0.544313\pi\)
\(798\) 0 0
\(799\) 2.29109e11i 0.562154i
\(800\) 6.41146e10 5.09922e10i 0.156530 0.124493i
\(801\) 0 0
\(802\) 1.76127e11 1.68306e11i 0.425725 0.406821i
\(803\) 2.13449e11i 0.513372i
\(804\) 0 0
\(805\) 3.77677e11 0.899368
\(806\) 4.74764e11 + 4.96825e11i 1.12496 + 1.17724i
\(807\) 0 0
\(808\) −2.59220e11 2.97172e11i −0.608167 0.697209i
\(809\) −5.57023e10 −0.130041 −0.0650203 0.997884i \(-0.520711\pi\)
−0.0650203 + 0.997884i \(0.520711\pi\)
\(810\) 0 0
\(811\) 7.06448e11i 1.63304i 0.577317 + 0.816520i \(0.304100\pi\)
−0.577317 + 0.816520i \(0.695900\pi\)
\(812\) 7.04902e11 + 3.20278e10i 1.62145 + 0.0736720i
\(813\) 0 0
\(814\) 2.71464e10 + 2.84078e10i 0.0618321 + 0.0647053i
\(815\) 5.64620e9i 0.0127975i
\(816\) 0 0
\(817\) 3.48599e10 0.0782417
\(818\) 5.97446e11 5.70917e11i 1.33440 1.27515i
\(819\) 0 0
\(820\) −3.15792e9 + 6.95029e10i −0.00698466 + 0.153726i
\(821\) 8.39733e10 0.184828 0.0924142 0.995721i \(-0.470542\pi\)
0.0924142 + 0.995721i \(0.470542\pi\)
\(822\) 0 0
\(823\) 1.90143e11i 0.414459i 0.978292 + 0.207229i \(0.0664446\pi\)
−0.978292 + 0.207229i \(0.933555\pi\)
\(824\) −6.05957e11 + 5.28569e11i −1.31442 + 1.14655i
\(825\) 0 0
\(826\) 2.37840e11 2.27279e11i 0.510933 0.488246i
\(827\) 3.98982e11i 0.852965i −0.904496 0.426483i \(-0.859753\pi\)
0.904496 0.426483i \(-0.140247\pi\)
\(828\) 0 0
\(829\) 9.18641e11 1.94504 0.972518 0.232827i \(-0.0747977\pi\)
0.972518 + 0.232827i \(0.0747977\pi\)
\(830\) 2.15327e11 + 2.25332e11i 0.453718 + 0.474801i
\(831\) 0 0
\(832\) 7.01178e10 5.11576e11i 0.146331 1.06762i
\(833\) 6.47936e11 1.34571
\(834\) 0 0
\(835\) 1.58130e10i 0.0325288i
\(836\) −5.58382e8 + 1.22895e10i −0.00114316 + 0.0251599i
\(837\) 0 0
\(838\) −3.21427e11 3.36363e11i −0.651789 0.682075i
\(839\) 4.31925e11i 0.871688i 0.900022 + 0.435844i \(0.143550\pi\)
−0.900022 + 0.435844i \(0.856450\pi\)
\(840\) 0 0
\(841\) 1.86726e11 0.373268
\(842\) 2.34400e10 2.23991e10i 0.0466347 0.0445639i
\(843\) 0 0
\(844\) 5.68701e11 + 2.58394e10i 1.12076 + 0.0509228i
\(845\) −3.67605e10 −0.0721031
\(846\) 0 0
\(847\) 5.78298e11i 1.12362i
\(848\) −5.23396e11 4.76602e10i −1.01216 0.0921664i
\(849\) 0 0
\(850\) 1.10593e11 1.05682e11i 0.211861 0.202454i
\(851\) 1.56860e11i 0.299085i
\(852\) 0 0
\(853\) 9.29871e11 1.75641 0.878206 0.478282i \(-0.158740\pi\)
0.878206 + 0.478282i \(0.158740\pi\)
\(854\) 3.60006e11 + 3.76735e11i 0.676828 + 0.708279i
\(855\) 0 0
\(856\) −5.07561e11 + 4.42739e11i −0.945351 + 0.824618i
\(857\) −1.19713e11 −0.221931 −0.110965 0.993824i \(-0.535394\pi\)
−0.110965 + 0.993824i \(0.535394\pi\)
\(858\) 0 0
\(859\) 4.22514e11i 0.776012i −0.921657 0.388006i \(-0.873164\pi\)
0.921657 0.388006i \(-0.126836\pi\)
\(860\) 3.29847e11 + 1.49868e10i 0.603001 + 0.0273978i
\(861\) 0 0
\(862\) 2.55555e11 + 2.67430e11i 0.462865 + 0.484374i
\(863\) 2.84698e11i 0.513264i −0.966509 0.256632i \(-0.917387\pi\)
0.966509 0.256632i \(-0.0826129\pi\)
\(864\) 0 0
\(865\) −3.06858e11 −0.548117
\(866\) 5.97024e11 5.70514e11i 1.06150 1.01437i
\(867\) 0 0
\(868\) 5.39243e10 1.18683e12i 0.0949961 2.09078i
\(869\) 7.81630e9 0.0137064
\(870\) 0 0
\(871\) 3.67517e10i 0.0638565i
\(872\) −4.89172e11 5.60793e11i −0.846049 0.969921i
\(873\) 0 0
\(874\) −3.55062e10 + 3.39296e10i −0.0608497 + 0.0581478i
\(875\) 7.26193e10i 0.123885i
\(876\) 0 0
\(877\) 1.94476e11 0.328752 0.164376 0.986398i \(-0.447439\pi\)
0.164376 + 0.986398i \(0.447439\pi\)
\(878\) 4.50907e11 + 4.71859e11i 0.758767 + 0.794025i
\(879\) 0 0
\(880\) −1.05669e10 + 1.16044e11i −0.0176204 + 0.193504i
\(881\) −9.06691e11 −1.50507 −0.752533 0.658555i \(-0.771168\pi\)
−0.752533 + 0.658555i \(0.771168\pi\)
\(882\) 0 0
\(883\) 2.26542e11i 0.372654i −0.982488 0.186327i \(-0.940342\pi\)
0.982488 0.186327i \(-0.0596584\pi\)
\(884\) 4.37638e10 9.63202e11i 0.0716648 1.57728i
\(885\) 0 0
\(886\) 1.96973e10 + 2.06125e10i 0.0319647 + 0.0334500i
\(887\) 1.70744e11i 0.275837i 0.990444 + 0.137918i \(0.0440412\pi\)
−0.990444 + 0.137918i \(0.955959\pi\)
\(888\) 0 0
\(889\) −1.48315e12 −2.37453
\(890\) −1.80528e11 + 1.72511e11i −0.287729 + 0.274953i
\(891\) 0 0
\(892\) −4.50323e11 2.04608e10i −0.711320 0.0323193i
\(893\) −1.41433e10 −0.0222405
\(894\) 0 0
\(895\) 1.80225e11i 0.280882i
\(896\) −7.23174e11 + 5.23391e11i −1.12205 + 0.812071i
\(897\) 0 0
\(898\) 6.64919e11 6.35394e11i 1.02250 0.977097i
\(899\) 1.15664e12i 1.77075i
\(900\) 0 0
\(901\) −9.81380e11 −1.48915
\(902\) −6.83713e10 7.15484e10i −0.103288 0.108087i
\(903\) 0 0
\(904\) 3.51717e11 + 4.03213e11i 0.526647 + 0.603755i
\(905\) 1.89791e11 0.282932
\(906\) 0 0
\(907\) 5.20431e11i 0.769013i −0.923122 0.384507i \(-0.874372\pi\)
0.923122 0.384507i \(-0.125628\pi\)
\(908\) −4.74254e11 2.15481e10i −0.697698 0.0317004i
\(909\) 0 0
\(910\) 3.16237e11 + 3.30932e11i 0.461155 + 0.482584i
\(911\) 5.42499e11i 0.787635i −0.919189 0.393818i \(-0.871154\pi\)
0.919189 0.393818i \(-0.128846\pi\)
\(912\) 0 0
\(913\) −4.43327e11 −0.638030
\(914\) 5.21650e11 4.98487e11i 0.747472 0.714281i
\(915\) 0 0
\(916\) −1.31403e10 + 2.89205e11i −0.0186647 + 0.410794i
\(917\) 4.37497e11 0.618725
\(918\) 0 0
\(919\) 6.49225e11i 0.910192i −0.890442 0.455096i \(-0.849605\pi\)
0.890442 0.455096i \(-0.150395\pi\)
\(920\) −3.50549e11 + 3.05779e11i −0.489325 + 0.426831i
\(921\) 0 0
\(922\) 8.94283e11 8.54573e11i 1.23752 1.18257i
\(923\) 1.11516e12i 1.53650i
\(924\) 0 0
\(925\) −3.01609e10 −0.0411981
\(926\) −9.42742e11 9.86549e11i −1.28218 1.34176i
\(927\) 0 0
\(928\) −6.80200e11 + 5.40983e11i −0.917159 + 0.729444i
\(929\) −4.98636e11 −0.669455 −0.334727 0.942315i \(-0.608644\pi\)
−0.334727 + 0.942315i \(0.608644\pi\)
\(930\) 0 0
\(931\) 3.99982e10i 0.0532404i
\(932\) −2.61365e10 + 5.75240e11i −0.0346404 + 0.762405i
\(933\) 0 0
\(934\) 3.54529e11 + 3.71003e11i 0.465870 + 0.487518i
\(935\) 2.17585e11i 0.284696i
\(936\) 0 0
\(937\) 4.01408e11 0.520748 0.260374 0.965508i \(-0.416154\pi\)
0.260374 + 0.965508i \(0.416154\pi\)
\(938\) −4.59364e10 + 4.38966e10i −0.0593397 + 0.0567048i
\(939\) 0 0
\(940\) −1.33825e11 6.08043e9i −0.171406 0.00778794i
\(941\) 2.64682e10 0.0337572 0.0168786 0.999858i \(-0.494627\pi\)
0.0168786 + 0.999858i \(0.494627\pi\)
\(942\) 0 0
\(943\) 3.95071e11i 0.499606i
\(944\) −3.67439e10 + 4.03515e11i −0.0462698 + 0.508127i
\(945\) 0 0
\(946\) −3.39554e11 + 3.24476e11i −0.423979 + 0.405152i
\(947\) 5.71352e11i 0.710401i −0.934790 0.355201i \(-0.884413\pi\)
0.934790 0.355201i \(-0.115587\pi\)
\(948\) 0 0
\(949\) −1.03273e12 −1.27327
\(950\) −6.52394e9 6.82709e9i −0.00800969 0.00838188i
\(951\) 0 0
\(952\) −1.25619e12 + 1.09576e12i −1.52935 + 1.33403i
\(953\) 1.09917e12 1.33258 0.666288 0.745694i \(-0.267882\pi\)
0.666288 + 0.745694i \(0.267882\pi\)
\(954\) 0 0
\(955\) 4.29711e10i 0.0516611i
\(956\) −7.08988e11 3.22134e10i −0.848803 0.0385660i
\(957\) 0 0
\(958\) −3.96719e11 4.15153e11i −0.471000 0.492886i
\(959\) 1.08545e12i 1.28333i
\(960\) 0 0
\(961\) −1.09451e12 −1.28329
\(962\) −1.37445e11 + 1.31342e11i −0.160483 + 0.153357i
\(963\) 0 0
\(964\) −1.86512e9 + 4.10495e10i −0.00215972 + 0.0475335i
\(965\) −2.70497e10 −0.0311928
\(966\) 0 0
\(967\) 8.78566e11i 1.00477i 0.864643 + 0.502387i \(0.167545\pi\)
−0.864643 + 0.502387i \(0.832455\pi\)
\(968\) 4.68207e11 + 5.36758e11i 0.533257 + 0.611332i
\(969\) 0 0
\(970\) −1.93213e11 + 1.84633e11i −0.218247 + 0.208556i
\(971\) 7.91945e11i 0.890878i 0.895312 + 0.445439i \(0.146952\pi\)
−0.895312 + 0.445439i \(0.853048\pi\)
\(972\) 0 0
\(973\) 2.15806e12 2.40775
\(974\) 6.61654e11 + 6.92399e11i 0.735182 + 0.769344i
\(975\) 0 0
\(976\) −6.39163e11 5.82018e10i −0.704389 0.0641413i
\(977\) 5.46919e11 0.600268 0.300134 0.953897i \(-0.402969\pi\)
0.300134 + 0.953897i \(0.402969\pi\)
\(978\) 0 0
\(979\) 3.55177e11i 0.386646i
\(980\) 1.71958e10 3.78465e11i 0.0186431 0.410319i
\(981\) 0 0
\(982\) −3.31923e11 3.47346e11i −0.356936 0.373522i
\(983\) 7.38083e11i 0.790481i −0.918578 0.395240i \(-0.870661\pi\)
0.918578 0.395240i \(-0.129339\pi\)
\(984\) 0 0
\(985\) −7.95946e11 −0.845549
\(986\) −1.17329e12 + 1.12119e12i −1.24136 + 1.18624i
\(987\) 0 0
\(988\) −5.94601e10 2.70162e9i −0.0624020 0.00283528i
\(989\) −1.87492e12 −1.95974
\(990\) 0 0
\(991\) 3.73877e11i 0.387645i −0.981037 0.193823i \(-0.937911\pi\)
0.981037 0.193823i \(-0.0620886\pi\)
\(992\) 9.10839e11 + 1.14523e12i 0.940578 + 1.18263i
\(993\) 0 0
\(994\) 1.39385e12 1.33196e12i 1.42781 1.36441i
\(995\) 2.43523e11i 0.248455i
\(996\) 0 0
\(997\) 1.14224e12 1.15605 0.578025 0.816019i \(-0.303823\pi\)
0.578025 + 0.816019i \(0.303823\pi\)
\(998\) −2.57118e11 2.69066e11i −0.259185 0.271229i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.a.91.4 16
3.2 odd 2 20.9.b.a.11.13 16
4.3 odd 2 inner 180.9.c.a.91.3 16
12.11 even 2 20.9.b.a.11.14 yes 16
15.2 even 4 100.9.d.c.99.24 32
15.8 even 4 100.9.d.c.99.9 32
15.14 odd 2 100.9.b.d.51.4 16
24.5 odd 2 320.9.b.d.191.7 16
24.11 even 2 320.9.b.d.191.10 16
60.23 odd 4 100.9.d.c.99.23 32
60.47 odd 4 100.9.d.c.99.10 32
60.59 even 2 100.9.b.d.51.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.13 16 3.2 odd 2
20.9.b.a.11.14 yes 16 12.11 even 2
100.9.b.d.51.3 16 60.59 even 2
100.9.b.d.51.4 16 15.14 odd 2
100.9.d.c.99.9 32 15.8 even 4
100.9.d.c.99.10 32 60.47 odd 4
100.9.d.c.99.23 32 60.23 odd 4
100.9.d.c.99.24 32 15.2 even 4
180.9.c.a.91.3 16 4.3 odd 2 inner
180.9.c.a.91.4 16 1.1 even 1 trivial
320.9.b.d.191.7 16 24.5 odd 2
320.9.b.d.191.10 16 24.11 even 2