Properties

Label 100.9.d.c.99.24
Level $100$
Weight $9$
Character 100.99
Analytic conductor $40.738$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(99,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.99"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,104] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.24
Character \(\chi\) \(=\) 100.99
Dual form 100.9.d.c.99.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(11.0540 + 11.5676i) q^{2} +27.2434 q^{3} +(-11.6196 + 255.736i) q^{4} +(301.148 + 315.141i) q^{6} +3325.58 q^{7} +(-3086.70 + 2692.49i) q^{8} -5818.80 q^{9} -6361.21i q^{11} +(-316.557 + 6967.12i) q^{12} +30777.4i q^{13} +(36760.8 + 38469.0i) q^{14} +(-65266.0 - 5943.09i) q^{16} +122375. i q^{17} +(-64320.8 - 67309.6i) q^{18} -7554.43i q^{19} +90600.1 q^{21} +(73584.1 - 70316.6i) q^{22} +406311. q^{23} +(-84092.2 + 73352.6i) q^{24} +(-356021. + 340213. i) q^{26} -337268. q^{27} +(-38641.8 + 850471. i) q^{28} -828838. q^{29} +1.39549e6i q^{31} +(-652701. - 820666. i) q^{32} -173301. i q^{33} +(-1.41559e6 + 1.35273e6i) q^{34} +(67611.9 - 1.48808e6i) q^{36} -386059. i q^{37} +(87386.8 - 83506.4i) q^{38} +838482. i q^{39} -972335. q^{41} +(1.00149e6 + 1.04803e6i) q^{42} -4.61450e6 q^{43} +(1.62679e6 + 73914.5i) q^{44} +(4.49135e6 + 4.70005e6i) q^{46} +1.87219e6 q^{47} +(-1.77807e6 - 161910. i) q^{48} +5.29467e6 q^{49} +3.33392e6i q^{51} +(-7.87090e6 - 357620. i) q^{52} +8.01944e6i q^{53} +(-3.72815e6 - 3.90139e6i) q^{54} +(-1.02651e7 + 8.95408e6i) q^{56} -205808. i q^{57} +(-9.16195e6 - 9.58768e6i) q^{58} -6.18263e6i q^{59} +9.79320e6 q^{61} +(-1.61425e7 + 1.54257e7i) q^{62} -1.93509e7 q^{63} +(2.27822e6 - 1.66218e7i) q^{64} +(2.00468e6 - 1.91566e6i) q^{66} -1.19411e6 q^{67} +(-3.12958e7 - 1.42195e6i) q^{68} +1.10693e7 q^{69} +3.62332e7i q^{71} +(1.79609e7 - 1.56670e7i) q^{72} -3.35548e7i q^{73} +(4.46578e6 - 4.26748e6i) q^{74} +(1.93194e6 + 87779.2i) q^{76} -2.11547e7i q^{77} +(-9.69923e6 + 9.26855e6i) q^{78} +1.22874e6i q^{79} +2.89888e7 q^{81} +(-1.07482e7 - 1.12476e7i) q^{82} -6.96923e7 q^{83} +(-1.05273e6 + 2.31697e7i) q^{84} +(-5.10086e7 - 5.33788e7i) q^{86} -2.25804e7 q^{87} +(1.71275e7 + 1.96352e7i) q^{88} -5.58347e7 q^{89} +1.02353e8i q^{91} +(-4.72116e6 + 1.03908e8i) q^{92} +3.80180e7i q^{93} +(2.06951e7 + 2.16567e7i) q^{94} +(-1.77818e7 - 2.23578e7i) q^{96} -5.97582e7i q^{97} +(5.85271e7 + 6.12467e7i) q^{98} +3.70146e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 104 q^{4} + 8736 q^{6} + 77600 q^{9} - 136944 q^{14} - 162848 q^{16} + 828992 q^{21} - 327584 q^{24} + 2074248 q^{26} - 5529792 q^{29} - 7587928 q^{34} - 10937832 q^{36} - 17152896 q^{41} - 33842400 q^{44}+ \cdots - 906779904 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 11.0540 + 11.5676i 0.690873 + 0.722976i
\(3\) 27.2434 0.336338 0.168169 0.985758i \(-0.446215\pi\)
0.168169 + 0.985758i \(0.446215\pi\)
\(4\) −11.6196 + 255.736i −0.0453889 + 0.998969i
\(5\) 0 0
\(6\) 301.148 + 315.141i 0.232367 + 0.243165i
\(7\) 3325.58 1.38508 0.692540 0.721379i \(-0.256492\pi\)
0.692540 + 0.721379i \(0.256492\pi\)
\(8\) −3086.70 + 2692.49i −0.753589 + 0.657346i
\(9\) −5818.80 −0.886877
\(10\) 0 0
\(11\) 6361.21i 0.434479i −0.976118 0.217240i \(-0.930295\pi\)
0.976118 0.217240i \(-0.0697053\pi\)
\(12\) −316.557 + 6967.12i −0.0152660 + 0.335992i
\(13\) 30777.4i 1.07760i 0.842433 + 0.538801i \(0.181123\pi\)
−0.842433 + 0.538801i \(0.818877\pi\)
\(14\) 36760.8 + 38469.0i 0.956915 + 1.00138i
\(15\) 0 0
\(16\) −65266.0 5943.09i −0.995880 0.0906843i
\(17\) 122375.i 1.46520i 0.680658 + 0.732601i \(0.261694\pi\)
−0.680658 + 0.732601i \(0.738306\pi\)
\(18\) −64320.8 67309.6i −0.612719 0.641191i
\(19\) 7554.43i 0.0579679i −0.999580 0.0289839i \(-0.990773\pi\)
0.999580 0.0289839i \(-0.00922717\pi\)
\(20\) 0 0
\(21\) 90600.1 0.465856
\(22\) 73584.1 70316.6i 0.314118 0.300170i
\(23\) 406311. 1.45194 0.725968 0.687729i \(-0.241392\pi\)
0.725968 + 0.687729i \(0.241392\pi\)
\(24\) −84092.2 + 73352.6i −0.253461 + 0.221091i
\(25\) 0 0
\(26\) −356021. + 340213.i −0.779081 + 0.744487i
\(27\) −337268. −0.634629
\(28\) −38641.8 + 850471.i −0.0628673 + 1.38365i
\(29\) −828838. −1.17187 −0.585933 0.810360i \(-0.699272\pi\)
−0.585933 + 0.810360i \(0.699272\pi\)
\(30\) 0 0
\(31\) 1.39549e6i 1.51106i 0.655116 + 0.755528i \(0.272620\pi\)
−0.655116 + 0.755528i \(0.727380\pi\)
\(32\) −652701. 820666.i −0.622464 0.782649i
\(33\) 173301.i 0.146132i
\(34\) −1.41559e6 + 1.35273e6i −1.05931 + 1.01227i
\(35\) 0 0
\(36\) 67611.9 1.48808e6i 0.0402544 0.885962i
\(37\) 386059.i 0.205990i −0.994682 0.102995i \(-0.967157\pi\)
0.994682 0.102995i \(-0.0328426\pi\)
\(38\) 87386.8 83506.4i 0.0419094 0.0400484i
\(39\) 838482.i 0.362439i
\(40\) 0 0
\(41\) −972335. −0.344097 −0.172048 0.985089i \(-0.555039\pi\)
−0.172048 + 0.985089i \(0.555039\pi\)
\(42\) 1.00149e6 + 1.04803e6i 0.321847 + 0.336803i
\(43\) −4.61450e6 −1.34974 −0.674871 0.737935i \(-0.735801\pi\)
−0.674871 + 0.737935i \(0.735801\pi\)
\(44\) 1.62679e6 + 73914.5i 0.434032 + 0.0197205i
\(45\) 0 0
\(46\) 4.49135e6 + 4.70005e6i 1.00310 + 1.04971i
\(47\) 1.87219e6 0.383670 0.191835 0.981427i \(-0.438556\pi\)
0.191835 + 0.981427i \(0.438556\pi\)
\(48\) −1.77807e6 161910.i −0.334953 0.0305006i
\(49\) 5.29467e6 0.918447
\(50\) 0 0
\(51\) 3.33392e6i 0.492804i
\(52\) −7.87090e6 357620.i −1.07649 0.0489112i
\(53\) 8.01944e6i 1.01634i 0.861256 + 0.508172i \(0.169678\pi\)
−0.861256 + 0.508172i \(0.830322\pi\)
\(54\) −3.72815e6 3.90139e6i −0.438448 0.458822i
\(55\) 0 0
\(56\) −1.02651e7 + 8.95408e6i −1.04378 + 0.910477i
\(57\) 205808.i 0.0194968i
\(58\) −9.16195e6 9.58768e6i −0.809610 0.847231i
\(59\) 6.18263e6i 0.510229i −0.966911 0.255115i \(-0.917887\pi\)
0.966911 0.255115i \(-0.0821132\pi\)
\(60\) 0 0
\(61\) 9.79320e6 0.707303 0.353651 0.935377i \(-0.384940\pi\)
0.353651 + 0.935377i \(0.384940\pi\)
\(62\) −1.61425e7 + 1.54257e7i −1.09246 + 1.04395i
\(63\) −1.93509e7 −1.22840
\(64\) 2.27822e6 1.66218e7i 0.135793 0.990737i
\(65\) 0 0
\(66\) 2.00468e6 1.91566e6i 0.105650 0.100959i
\(67\) −1.19411e6 −0.0592579 −0.0296290 0.999561i \(-0.509433\pi\)
−0.0296290 + 0.999561i \(0.509433\pi\)
\(68\) −3.12958e7 1.42195e6i −1.46369 0.0665039i
\(69\) 1.10693e7 0.488342
\(70\) 0 0
\(71\) 3.62332e7i 1.42585i 0.701242 + 0.712923i \(0.252629\pi\)
−0.701242 + 0.712923i \(0.747371\pi\)
\(72\) 1.79609e7 1.56670e7i 0.668340 0.582985i
\(73\) 3.35548e7i 1.18158i −0.806826 0.590790i \(-0.798816\pi\)
0.806826 0.590790i \(-0.201184\pi\)
\(74\) 4.46578e6 4.26748e6i 0.148926 0.142313i
\(75\) 0 0
\(76\) 1.93194e6 + 87779.2i 0.0579081 + 0.00263110i
\(77\) 2.11547e7i 0.601789i
\(78\) −9.69923e6 + 9.26855e6i −0.262035 + 0.250399i
\(79\) 1.22874e6i 0.0315466i 0.999876 + 0.0157733i \(0.00502101\pi\)
−0.999876 + 0.0157733i \(0.994979\pi\)
\(80\) 0 0
\(81\) 2.89888e7 0.673426
\(82\) −1.07482e7 1.12476e7i −0.237727 0.248774i
\(83\) −6.96923e7 −1.46849 −0.734247 0.678882i \(-0.762465\pi\)
−0.734247 + 0.678882i \(0.762465\pi\)
\(84\) −1.05273e6 + 2.31697e7i −0.0211447 + 0.465376i
\(85\) 0 0
\(86\) −5.10086e7 5.33788e7i −0.932501 0.975832i
\(87\) −2.25804e7 −0.394143
\(88\) 1.71275e7 + 1.96352e7i 0.285603 + 0.327419i
\(89\) −5.58347e7 −0.889907 −0.444953 0.895554i \(-0.646780\pi\)
−0.444953 + 0.895554i \(0.646780\pi\)
\(90\) 0 0
\(91\) 1.02353e8i 1.49257i
\(92\) −4.72116e6 + 1.03908e8i −0.0659018 + 1.45044i
\(93\) 3.80180e7i 0.508226i
\(94\) 2.06951e7 + 2.16567e7i 0.265067 + 0.277384i
\(95\) 0 0
\(96\) −1.77818e7 2.23578e7i −0.209358 0.263235i
\(97\) 5.97582e7i 0.675010i −0.941324 0.337505i \(-0.890417\pi\)
0.941324 0.337505i \(-0.109583\pi\)
\(98\) 5.85271e7 + 6.12467e7i 0.634531 + 0.664016i
\(99\) 3.70146e7i 0.385329i
\(100\) 0 0
\(101\) 9.62751e7 0.925185 0.462593 0.886571i \(-0.346919\pi\)
0.462593 + 0.886571i \(0.346919\pi\)
\(102\) −3.85655e7 + 3.68530e7i −0.356285 + 0.340465i
\(103\) 1.96312e8 1.74421 0.872104 0.489320i \(-0.162755\pi\)
0.872104 + 0.489320i \(0.162755\pi\)
\(104\) −8.28678e7 9.50006e7i −0.708358 0.812070i
\(105\) 0 0
\(106\) −9.27658e7 + 8.86466e7i −0.734792 + 0.702164i
\(107\) 1.64435e8 1.25447 0.627233 0.778832i \(-0.284187\pi\)
0.627233 + 0.778832i \(0.284187\pi\)
\(108\) 3.91891e6 8.62516e7i 0.0288051 0.633975i
\(109\) 1.81680e8 1.28707 0.643534 0.765417i \(-0.277467\pi\)
0.643534 + 0.765417i \(0.277467\pi\)
\(110\) 0 0
\(111\) 1.05176e7i 0.0692824i
\(112\) −2.17047e8 1.97642e7i −1.37937 0.125605i
\(113\) 1.30629e8i 0.801172i 0.916259 + 0.400586i \(0.131193\pi\)
−0.916259 + 0.400586i \(0.868807\pi\)
\(114\) 2.38071e6 2.27500e6i 0.0140957 0.0134698i
\(115\) 0 0
\(116\) 9.63074e6 2.11964e8i 0.0531897 1.17066i
\(117\) 1.79087e8i 0.955700i
\(118\) 7.15183e7 6.83426e7i 0.368883 0.352504i
\(119\) 4.06968e8i 2.02942i
\(120\) 0 0
\(121\) 1.73894e8 0.811228
\(122\) 1.08254e8 + 1.13284e8i 0.488656 + 0.511363i
\(123\) −2.64897e7 −0.115733
\(124\) −3.56878e8 1.62150e7i −1.50950 0.0685852i
\(125\) 0 0
\(126\) −2.13904e8 2.23843e8i −0.848665 0.888100i
\(127\) 4.45982e8 1.71436 0.857181 0.515015i \(-0.172214\pi\)
0.857181 + 0.515015i \(0.172214\pi\)
\(128\) 2.17458e8 1.57383e8i 0.810095 0.586299i
\(129\) −1.25715e8 −0.453970
\(130\) 0 0
\(131\) 1.31555e8i 0.446707i −0.974738 0.223353i \(-0.928300\pi\)
0.974738 0.223353i \(-0.0717004\pi\)
\(132\) 4.43194e7 + 2.01368e6i 0.145981 + 0.00663278i
\(133\) 2.51228e7i 0.0802902i
\(134\) −1.31997e7 1.38130e7i −0.0409397 0.0428421i
\(135\) 0 0
\(136\) −3.29494e8 3.77735e8i −0.963145 1.10416i
\(137\) 3.26396e8i 0.926536i −0.886218 0.463268i \(-0.846677\pi\)
0.886218 0.463268i \(-0.153323\pi\)
\(138\) 1.22360e8 + 1.28045e8i 0.337382 + 0.353059i
\(139\) 6.48927e8i 1.73835i −0.494506 0.869174i \(-0.664651\pi\)
0.494506 0.869174i \(-0.335349\pi\)
\(140\) 0 0
\(141\) 5.10048e7 0.129043
\(142\) −4.19131e8 + 4.00520e8i −1.03085 + 0.985079i
\(143\) 1.95782e8 0.468196
\(144\) 3.79769e8 + 3.45816e7i 0.883222 + 0.0804258i
\(145\) 0 0
\(146\) 3.88149e8 3.70913e8i 0.854253 0.816321i
\(147\) 1.44245e8 0.308909
\(148\) 9.87292e7 + 4.48584e6i 0.205778 + 0.00934968i
\(149\) 7.30660e8 1.48242 0.741208 0.671276i \(-0.234253\pi\)
0.741208 + 0.671276i \(0.234253\pi\)
\(150\) 0 0
\(151\) 7.74114e8i 1.48901i 0.667618 + 0.744504i \(0.267314\pi\)
−0.667618 + 0.744504i \(0.732686\pi\)
\(152\) 2.03402e7 + 2.33183e7i 0.0381049 + 0.0436840i
\(153\) 7.12076e8i 1.29945i
\(154\) 2.44710e8 2.33843e8i 0.435079 0.415760i
\(155\) 0 0
\(156\) −2.14430e8 9.74279e6i −0.362066 0.0164507i
\(157\) 3.17523e8i 0.522609i 0.965256 + 0.261304i \(0.0841526\pi\)
−0.965256 + 0.261304i \(0.915847\pi\)
\(158\) −1.42136e7 + 1.35825e7i −0.0228075 + 0.0217947i
\(159\) 2.18477e8i 0.341835i
\(160\) 0 0
\(161\) 1.35122e9 2.01105
\(162\) 3.20441e8 + 3.35331e8i 0.465252 + 0.486871i
\(163\) 2.02004e7 0.0286161 0.0143081 0.999898i \(-0.495445\pi\)
0.0143081 + 0.999898i \(0.495445\pi\)
\(164\) 1.12981e7 2.48661e8i 0.0156182 0.343742i
\(165\) 0 0
\(166\) −7.70376e8 8.06174e8i −1.01454 1.06169i
\(167\) −5.65743e7 −0.0727366 −0.0363683 0.999338i \(-0.511579\pi\)
−0.0363683 + 0.999338i \(0.511579\pi\)
\(168\) −2.79655e8 + 2.43940e8i −0.351064 + 0.306228i
\(169\) −1.31518e8 −0.161228
\(170\) 0 0
\(171\) 4.39577e7i 0.0514103i
\(172\) 5.36185e7 1.18009e9i 0.0612634 1.34835i
\(173\) 1.09785e9i 1.22563i 0.790228 + 0.612813i \(0.209962\pi\)
−0.790228 + 0.612813i \(0.790038\pi\)
\(174\) −2.49603e8 2.61201e8i −0.272303 0.284956i
\(175\) 0 0
\(176\) −3.78052e7 + 4.15171e8i −0.0394004 + 0.432689i
\(177\) 1.68436e8i 0.171610i
\(178\) −6.17196e8 6.45875e8i −0.614813 0.643381i
\(179\) 6.44793e8i 0.628070i 0.949411 + 0.314035i \(0.101681\pi\)
−0.949411 + 0.314035i \(0.898319\pi\)
\(180\) 0 0
\(181\) −6.79018e8 −0.632655 −0.316328 0.948650i \(-0.602450\pi\)
−0.316328 + 0.948650i \(0.602450\pi\)
\(182\) −1.18398e9 + 1.13140e9i −1.07909 + 1.03117i
\(183\) 2.66800e8 0.237893
\(184\) −1.25416e9 + 1.09399e9i −1.09416 + 0.954424i
\(185\) 0 0
\(186\) −4.39777e8 + 4.20250e8i −0.367436 + 0.351120i
\(187\) 7.78454e8 0.636600
\(188\) −2.17540e7 + 4.78786e8i −0.0174144 + 0.383275i
\(189\) −1.12161e9 −0.879012
\(190\) 0 0
\(191\) 1.53738e8i 0.115518i −0.998331 0.0577588i \(-0.981605\pi\)
0.998331 0.0577588i \(-0.0183954\pi\)
\(192\) 6.20666e7 4.52835e8i 0.0456723 0.333223i
\(193\) 9.67761e7i 0.0697491i −0.999392 0.0348746i \(-0.988897\pi\)
0.999392 0.0348746i \(-0.0111032\pi\)
\(194\) 6.91259e8 6.60565e8i 0.488016 0.466346i
\(195\) 0 0
\(196\) −6.15217e7 + 1.35404e9i −0.0416873 + 0.917501i
\(197\) 2.84766e9i 1.89070i −0.326051 0.945352i \(-0.605718\pi\)
0.326051 0.945352i \(-0.394282\pi\)
\(198\) −4.28171e8 + 4.09158e8i −0.278584 + 0.266214i
\(199\) 8.71254e8i 0.555562i 0.960644 + 0.277781i \(0.0895990\pi\)
−0.960644 + 0.277781i \(0.910401\pi\)
\(200\) 0 0
\(201\) −3.25317e7 −0.0199307
\(202\) 1.06422e9 + 1.11367e9i 0.639185 + 0.668887i
\(203\) −2.75637e9 −1.62313
\(204\) −8.52603e8 3.87387e7i −0.492296 0.0223678i
\(205\) 0 0
\(206\) 2.17003e9 + 2.27087e9i 1.20503 + 1.26102i
\(207\) −2.36424e9 −1.28769
\(208\) 1.82913e8 2.00872e9i 0.0977216 1.07316i
\(209\) −4.80553e7 −0.0251858
\(210\) 0 0
\(211\) 2.22378e9i 1.12192i 0.827843 + 0.560960i \(0.189568\pi\)
−0.827843 + 0.560960i \(0.810432\pi\)
\(212\) −2.05086e9 9.31824e7i −1.01530 0.0461307i
\(213\) 9.87114e8i 0.479567i
\(214\) 1.81766e9 + 1.90212e9i 0.866676 + 0.906949i
\(215\) 0 0
\(216\) 1.04104e9 9.08090e8i 0.478249 0.417171i
\(217\) 4.64082e9i 2.09293i
\(218\) 2.00829e9 + 2.10161e9i 0.889201 + 0.930520i
\(219\) 9.14146e8i 0.397410i
\(220\) 0 0
\(221\) −3.76639e9 −1.57891
\(222\) 1.21663e8 1.16261e8i 0.0500895 0.0478654i
\(223\) −1.76089e9 −0.712054 −0.356027 0.934476i \(-0.615869\pi\)
−0.356027 + 0.934476i \(0.615869\pi\)
\(224\) −2.17061e9 2.72919e9i −0.862162 1.08403i
\(225\) 0 0
\(226\) −1.51107e9 + 1.44397e9i −0.579228 + 0.553508i
\(227\) −1.85447e9 −0.698418 −0.349209 0.937045i \(-0.613550\pi\)
−0.349209 + 0.937045i \(0.613550\pi\)
\(228\) 5.26327e7 + 2.39140e6i 0.0194767 + 0.000884940i
\(229\) 1.13087e9 0.411218 0.205609 0.978634i \(-0.434083\pi\)
0.205609 + 0.978634i \(0.434083\pi\)
\(230\) 0 0
\(231\) 5.76326e8i 0.202405i
\(232\) 2.55837e9 2.23164e9i 0.883105 0.770321i
\(233\) 2.24935e9i 0.763191i −0.924329 0.381596i \(-0.875375\pi\)
0.924329 0.381596i \(-0.124625\pi\)
\(234\) 2.07162e9 1.97963e9i 0.690949 0.660268i
\(235\) 0 0
\(236\) 1.58112e9 + 7.18395e7i 0.509703 + 0.0231587i
\(237\) 3.34752e7i 0.0106103i
\(238\) −4.70765e9 + 4.49861e9i −1.46722 + 1.40207i
\(239\) 2.77234e9i 0.849679i −0.905269 0.424840i \(-0.860331\pi\)
0.905269 0.424840i \(-0.139669\pi\)
\(240\) 0 0
\(241\) −1.60515e8 −0.0475826 −0.0237913 0.999717i \(-0.507574\pi\)
−0.0237913 + 0.999717i \(0.507574\pi\)
\(242\) 1.92222e9 + 2.01154e9i 0.560455 + 0.586498i
\(243\) 3.00257e9 0.861128
\(244\) −1.13793e8 + 2.50448e9i −0.0321037 + 0.706574i
\(245\) 0 0
\(246\) −2.92817e8 3.06423e8i −0.0799568 0.0836721i
\(247\) 2.32506e8 0.0624663
\(248\) −3.75735e9 4.30747e9i −0.993287 1.13872i
\(249\) −1.89866e9 −0.493911
\(250\) 0 0
\(251\) 5.77680e9i 1.45543i −0.685877 0.727717i \(-0.740581\pi\)
0.685877 0.727717i \(-0.259419\pi\)
\(252\) 2.24849e8 4.94871e9i 0.0557555 1.22713i
\(253\) 2.58463e9i 0.630836i
\(254\) 4.92987e9 + 5.15895e9i 1.18441 + 1.23944i
\(255\) 0 0
\(256\) 4.22433e9 + 7.75762e8i 0.983553 + 0.180621i
\(257\) 4.57743e9i 1.04928i 0.851326 + 0.524638i \(0.175799\pi\)
−0.851326 + 0.524638i \(0.824201\pi\)
\(258\) −1.38965e9 1.45422e9i −0.313636 0.328210i
\(259\) 1.28387e9i 0.285313i
\(260\) 0 0
\(261\) 4.82284e9 1.03930
\(262\) 1.52178e9 1.45421e9i 0.322958 0.308618i
\(263\) 4.85941e8 0.101569 0.0507844 0.998710i \(-0.483828\pi\)
0.0507844 + 0.998710i \(0.483828\pi\)
\(264\) 4.66611e8 + 5.34929e8i 0.0960593 + 0.110124i
\(265\) 0 0
\(266\) 2.90612e8 2.77707e8i 0.0580479 0.0554703i
\(267\) −1.52113e9 −0.299310
\(268\) 1.38751e7 3.05378e8i 0.00268965 0.0591968i
\(269\) 1.48731e9 0.284049 0.142024 0.989863i \(-0.454639\pi\)
0.142024 + 0.989863i \(0.454639\pi\)
\(270\) 0 0
\(271\) 6.79398e9i 1.25964i −0.776740 0.629821i \(-0.783128\pi\)
0.776740 0.629821i \(-0.216872\pi\)
\(272\) 7.27286e8 7.98693e9i 0.132871 1.45917i
\(273\) 2.78844e9i 0.502007i
\(274\) 3.77562e9 3.60797e9i 0.669863 0.640118i
\(275\) 0 0
\(276\) −1.28620e8 + 2.83082e9i −0.0221653 + 0.487838i
\(277\) 1.54730e9i 0.262818i 0.991328 + 0.131409i \(0.0419501\pi\)
−0.991328 + 0.131409i \(0.958050\pi\)
\(278\) 7.50654e9 7.17322e9i 1.25678 1.20098i
\(279\) 8.12009e9i 1.34012i
\(280\) 0 0
\(281\) −9.33090e9 −1.49657 −0.748287 0.663375i \(-0.769123\pi\)
−0.748287 + 0.663375i \(0.769123\pi\)
\(282\) 5.63805e8 + 5.90004e8i 0.0891523 + 0.0932950i
\(283\) 7.43824e9 1.15964 0.579822 0.814743i \(-0.303122\pi\)
0.579822 + 0.814743i \(0.303122\pi\)
\(284\) −9.26613e9 4.21013e8i −1.42438 0.0647176i
\(285\) 0 0
\(286\) 2.16416e9 + 2.26473e9i 0.323464 + 0.338495i
\(287\) −3.23358e9 −0.476602
\(288\) 3.79793e9 + 4.77529e9i 0.552049 + 0.694113i
\(289\) −7.99992e9 −1.14682
\(290\) 0 0
\(291\) 1.62802e9i 0.227032i
\(292\) 8.58117e9 + 3.89892e8i 1.18036 + 0.0536306i
\(293\) 1.59214e9i 0.216028i 0.994149 + 0.108014i \(0.0344492\pi\)
−0.994149 + 0.108014i \(0.965551\pi\)
\(294\) 1.59448e9 + 1.66857e9i 0.213417 + 0.223334i
\(295\) 0 0
\(296\) 1.03946e9 + 1.19165e9i 0.135407 + 0.155232i
\(297\) 2.14543e9i 0.275733i
\(298\) 8.07669e9 + 8.45199e9i 1.02416 + 1.07175i
\(299\) 1.25052e10i 1.56461i
\(300\) 0 0
\(301\) −1.53459e10 −1.86950
\(302\) −8.95465e9 + 8.55703e9i −1.07652 + 1.02872i
\(303\) 2.62286e9 0.311175
\(304\) −4.48966e7 + 4.93047e8i −0.00525678 + 0.0577290i
\(305\) 0 0
\(306\) 8.23702e9 7.87127e9i 0.939474 0.897757i
\(307\) 3.36362e9 0.378663 0.189332 0.981913i \(-0.439368\pi\)
0.189332 + 0.981913i \(0.439368\pi\)
\(308\) 5.41002e9 + 2.45808e8i 0.601169 + 0.0273145i
\(309\) 5.34821e9 0.586644
\(310\) 0 0
\(311\) 1.23254e10i 1.31752i −0.752352 0.658761i \(-0.771081\pi\)
0.752352 0.658761i \(-0.228919\pi\)
\(312\) −2.25760e9 2.58814e9i −0.238248 0.273130i
\(313\) 2.77987e9i 0.289633i −0.989459 0.144816i \(-0.953741\pi\)
0.989459 0.144816i \(-0.0462591\pi\)
\(314\) −3.67299e9 + 3.50989e9i −0.377834 + 0.361056i
\(315\) 0 0
\(316\) −3.14234e8 1.42775e7i −0.0315141 0.00143187i
\(317\) 5.40177e8i 0.0534933i −0.999642 0.0267466i \(-0.991485\pi\)
0.999642 0.0267466i \(-0.00851474\pi\)
\(318\) −2.52726e9 + 2.41504e9i −0.247139 + 0.236165i
\(319\) 5.27241e9i 0.509151i
\(320\) 0 0
\(321\) 4.47977e9 0.421925
\(322\) 1.49363e10 + 1.56304e10i 1.38938 + 1.45394i
\(323\) 9.24475e8 0.0849347
\(324\) −3.36837e8 + 7.41348e9i −0.0305661 + 0.672732i
\(325\) 0 0
\(326\) 2.23295e8 + 2.33671e8i 0.0197701 + 0.0206888i
\(327\) 4.94959e9 0.432891
\(328\) 3.00131e9 2.61800e9i 0.259307 0.226191i
\(329\) 6.22610e9 0.531414
\(330\) 0 0
\(331\) 1.21115e10i 1.00899i 0.863414 + 0.504495i \(0.168321\pi\)
−0.863414 + 0.504495i \(0.831679\pi\)
\(332\) 8.09794e8 1.78228e10i 0.0666534 1.46698i
\(333\) 2.24640e9i 0.182688i
\(334\) −6.25370e8 6.54429e8i −0.0502518 0.0525868i
\(335\) 0 0
\(336\) −5.91310e9 5.38444e8i −0.463936 0.0422458i
\(337\) 9.48812e9i 0.735632i −0.929899 0.367816i \(-0.880106\pi\)
0.929899 0.367816i \(-0.119894\pi\)
\(338\) −1.45380e9 1.52135e9i −0.111388 0.116564i
\(339\) 3.55878e9i 0.269465i
\(340\) 0 0
\(341\) 8.87702e9 0.656523
\(342\) −5.08486e8 + 4.85907e8i −0.0371685 + 0.0355180i
\(343\) −1.56347e9 −0.112957
\(344\) 1.42436e10 1.24245e10i 1.01715 0.887248i
\(345\) 0 0
\(346\) −1.26995e10 + 1.21356e10i −0.886099 + 0.846752i
\(347\) −9.01032e9 −0.621473 −0.310737 0.950496i \(-0.600576\pi\)
−0.310737 + 0.950496i \(0.600576\pi\)
\(348\) 2.62374e8 5.77462e9i 0.0178897 0.393737i
\(349\) −2.17409e10 −1.46547 −0.732733 0.680517i \(-0.761755\pi\)
−0.732733 + 0.680517i \(0.761755\pi\)
\(350\) 0 0
\(351\) 1.03802e10i 0.683878i
\(352\) −5.22043e9 + 4.15197e9i −0.340045 + 0.270448i
\(353\) 5.60018e9i 0.360664i 0.983606 + 0.180332i \(0.0577173\pi\)
−0.983606 + 0.180332i \(0.942283\pi\)
\(354\) 1.94840e9 1.86189e9i 0.124070 0.118560i
\(355\) 0 0
\(356\) 6.48775e8 1.42790e10i 0.0403919 0.888990i
\(357\) 1.10872e10i 0.682573i
\(358\) −7.45872e9 + 7.12752e9i −0.454080 + 0.433917i
\(359\) 1.31213e10i 0.789952i −0.918692 0.394976i \(-0.870753\pi\)
0.918692 0.394976i \(-0.129247\pi\)
\(360\) 0 0
\(361\) 1.69265e10 0.996640
\(362\) −7.50585e9 7.85462e9i −0.437085 0.457395i
\(363\) 4.73746e9 0.272847
\(364\) −2.61753e10 1.18929e9i −1.49103 0.0677460i
\(365\) 0 0
\(366\) 2.94920e9 + 3.08624e9i 0.164354 + 0.171991i
\(367\) −9.89380e9 −0.545379 −0.272690 0.962102i \(-0.587913\pi\)
−0.272690 + 0.962102i \(0.587913\pi\)
\(368\) −2.65183e10 2.41474e9i −1.44595 0.131668i
\(369\) 5.65782e9 0.305171
\(370\) 0 0
\(371\) 2.66693e10i 1.40772i
\(372\) −9.72257e9 4.41752e8i −0.507703 0.0230678i
\(373\) 1.01496e10i 0.524339i −0.965022 0.262170i \(-0.915562\pi\)
0.965022 0.262170i \(-0.0844380\pi\)
\(374\) 8.60501e9 + 9.00486e9i 0.439810 + 0.460247i
\(375\) 0 0
\(376\) −5.77888e9 + 5.04084e9i −0.289129 + 0.252204i
\(377\) 2.55095e10i 1.26281i
\(378\) −1.23982e10 1.29744e10i −0.607286 0.635505i
\(379\) 1.39748e10i 0.677312i −0.940910 0.338656i \(-0.890028\pi\)
0.940910 0.338656i \(-0.109972\pi\)
\(380\) 0 0
\(381\) 1.21501e10 0.576606
\(382\) 1.77838e9 1.69942e9i 0.0835165 0.0798080i
\(383\) −2.31617e10 −1.07640 −0.538201 0.842816i \(-0.680896\pi\)
−0.538201 + 0.842816i \(0.680896\pi\)
\(384\) 5.92430e9 4.28766e9i 0.272466 0.197195i
\(385\) 0 0
\(386\) 1.11947e9 1.06976e9i 0.0504269 0.0481878i
\(387\) 2.68508e10 1.19706
\(388\) 1.52823e10 + 6.94364e8i 0.674314 + 0.0306380i
\(389\) 1.13177e10 0.494267 0.247133 0.968981i \(-0.420511\pi\)
0.247133 + 0.968981i \(0.420511\pi\)
\(390\) 0 0
\(391\) 4.97224e10i 2.12738i
\(392\) −1.63430e10 + 1.42558e10i −0.692132 + 0.603738i
\(393\) 3.58401e9i 0.150245i
\(394\) 3.29407e10 3.14780e10i 1.36693 1.30624i
\(395\) 0 0
\(396\) −9.46597e9 4.30093e8i −0.384932 0.0174897i
\(397\) 1.01291e10i 0.407765i 0.978995 + 0.203882i \(0.0653560\pi\)
−0.978995 + 0.203882i \(0.934644\pi\)
\(398\) −1.00783e10 + 9.63082e9i −0.401658 + 0.383823i
\(399\) 6.84432e8i 0.0270047i
\(400\) 0 0
\(401\) 1.52259e10 0.588850 0.294425 0.955675i \(-0.404872\pi\)
0.294425 + 0.955675i \(0.404872\pi\)
\(402\) −3.59605e8 3.76315e8i −0.0137696 0.0144094i
\(403\) −4.29496e10 −1.62832
\(404\) −1.11867e9 + 2.46210e10i −0.0419931 + 0.924232i
\(405\) 0 0
\(406\) −3.04688e10 3.18846e10i −1.12137 1.17348i
\(407\) −2.45580e9 −0.0894985
\(408\) −8.97653e9 1.02908e10i −0.323942 0.371371i
\(409\) 5.16482e10 1.84570 0.922851 0.385156i \(-0.125852\pi\)
0.922851 + 0.385156i \(0.125852\pi\)
\(410\) 0 0
\(411\) 8.89213e9i 0.311629i
\(412\) −2.28106e9 + 5.02041e10i −0.0791678 + 1.74241i
\(413\) 2.05608e10i 0.706708i
\(414\) −2.61343e10 2.73487e10i −0.889629 0.930968i
\(415\) 0 0
\(416\) 2.52580e10 2.00884e10i 0.843384 0.670769i
\(417\) 1.76790e10i 0.584673i
\(418\) −5.31202e8 5.55886e8i −0.0174002 0.0182088i
\(419\) 2.90780e10i 0.943427i 0.881752 + 0.471714i \(0.156364\pi\)
−0.881752 + 0.471714i \(0.843636\pi\)
\(420\) 0 0
\(421\) −2.02634e9 −0.0645037 −0.0322519 0.999480i \(-0.510268\pi\)
−0.0322519 + 0.999480i \(0.510268\pi\)
\(422\) −2.57239e10 + 2.45816e10i −0.811122 + 0.775105i
\(423\) −1.08939e10 −0.340268
\(424\) −2.15923e10 2.47536e10i −0.668089 0.765905i
\(425\) 0 0
\(426\) −1.14186e10 + 1.09115e10i −0.346715 + 0.331320i
\(427\) 3.25681e10 0.979671
\(428\) −1.91066e9 + 4.20519e10i −0.0569388 + 1.25317i
\(429\) 5.33376e9 0.157472
\(430\) 0 0
\(431\) 2.31188e10i 0.669972i 0.942223 + 0.334986i \(0.108732\pi\)
−0.942223 + 0.334986i \(0.891268\pi\)
\(432\) 2.20121e10 + 2.00441e9i 0.632014 + 0.0575509i
\(433\) 5.16117e10i 1.46824i 0.679021 + 0.734119i \(0.262405\pi\)
−0.679021 + 0.734119i \(0.737595\pi\)
\(434\) −5.36832e10 + 5.12995e10i −1.51314 + 1.44595i
\(435\) 0 0
\(436\) −2.11105e9 + 4.64622e10i −0.0584187 + 1.28574i
\(437\) 3.06945e9i 0.0841656i
\(438\) 1.05745e10 1.01049e10i 0.287318 0.274560i
\(439\) 4.07914e10i 1.09827i 0.835733 + 0.549137i \(0.185043\pi\)
−0.835733 + 0.549137i \(0.814957\pi\)
\(440\) 0 0
\(441\) −3.08086e10 −0.814549
\(442\) −4.16336e10 4.35682e10i −1.09082 1.14151i
\(443\) 1.78192e9 0.0462671 0.0231336 0.999732i \(-0.492636\pi\)
0.0231336 + 0.999732i \(0.492636\pi\)
\(444\) 2.68972e9 + 1.22209e8i 0.0692110 + 0.00314466i
\(445\) 0 0
\(446\) −1.94648e10 2.03693e10i −0.491939 0.514798i
\(447\) 1.99057e10 0.498593
\(448\) 7.57641e9 5.52771e10i 0.188084 1.37225i
\(449\) −5.74811e10 −1.41429 −0.707147 0.707067i \(-0.750018\pi\)
−0.707147 + 0.707067i \(0.750018\pi\)
\(450\) 0 0
\(451\) 6.18523e9i 0.149503i
\(452\) −3.34066e10 1.51785e9i −0.800347 0.0363643i
\(453\) 2.10895e10i 0.500811i
\(454\) −2.04992e10 2.14518e10i −0.482518 0.504940i
\(455\) 0 0
\(456\) 5.54137e8 + 6.35269e8i 0.0128162 + 0.0146926i
\(457\) 4.50957e10i 1.03388i −0.856021 0.516941i \(-0.827071\pi\)
0.856021 0.516941i \(-0.172929\pi\)
\(458\) 1.25006e10 + 1.30815e10i 0.284099 + 0.297301i
\(459\) 4.12732e10i 0.929860i
\(460\) 0 0
\(461\) 7.73092e10 1.71170 0.855850 0.517225i \(-0.173035\pi\)
0.855850 + 0.517225i \(0.173035\pi\)
\(462\) 6.66672e9 6.37069e9i 0.146334 0.139836i
\(463\) 8.52854e10 1.85588 0.927941 0.372726i \(-0.121577\pi\)
0.927941 + 0.372726i \(0.121577\pi\)
\(464\) 5.40949e10 + 4.92586e9i 1.16704 + 0.106270i
\(465\) 0 0
\(466\) 2.60196e10 2.48643e10i 0.551769 0.527268i
\(467\) −3.20726e10 −0.674320 −0.337160 0.941447i \(-0.609466\pi\)
−0.337160 + 0.941447i \(0.609466\pi\)
\(468\) 4.57991e10 + 2.08092e9i 0.954716 + 0.0433782i
\(469\) −3.97112e9 −0.0820770
\(470\) 0 0
\(471\) 8.65041e9i 0.175773i
\(472\) 1.66467e10 + 1.90839e10i 0.335397 + 0.384503i
\(473\) 2.93538e10i 0.586435i
\(474\) −3.87228e8 + 3.70033e8i −0.00767102 + 0.00733040i
\(475\) 0 0
\(476\) −1.04076e11 4.72879e9i −2.02733 0.0921133i
\(477\) 4.66635e10i 0.901371i
\(478\) 3.20694e10 3.06454e10i 0.614298 0.587020i
\(479\) 3.58893e10i 0.681746i 0.940109 + 0.340873i \(0.110723\pi\)
−0.940109 + 0.340873i \(0.889277\pi\)
\(480\) 0 0
\(481\) 1.18819e10 0.221976
\(482\) −1.77433e9 1.85678e9i −0.0328735 0.0344010i
\(483\) 3.68118e10 0.676393
\(484\) −2.02057e9 + 4.44710e10i −0.0368208 + 0.810392i
\(485\) 0 0
\(486\) 3.31903e10 + 3.47326e10i 0.594930 + 0.622575i
\(487\) 5.98567e10 1.06414 0.532068 0.846702i \(-0.321415\pi\)
0.532068 + 0.846702i \(0.321415\pi\)
\(488\) −3.02287e10 + 2.63681e10i −0.533016 + 0.464943i
\(489\) 5.50329e8 0.00962470
\(490\) 0 0
\(491\) 3.00275e10i 0.516645i −0.966059 0.258323i \(-0.916830\pi\)
0.966059 0.258323i \(-0.0831698\pi\)
\(492\) 3.07799e8 6.77438e9i 0.00525299 0.115614i
\(493\) 1.01429e11i 1.71702i
\(494\) 2.57011e9 + 2.68954e9i 0.0431563 + 0.0451617i
\(495\) 0 0
\(496\) 8.29353e9 9.10782e10i 0.137029 1.50483i
\(497\) 1.20496e11i 1.97491i
\(498\) −2.09877e10 2.19629e10i −0.341230 0.357086i
\(499\) 2.32602e10i 0.375156i −0.982250 0.187578i \(-0.939936\pi\)
0.982250 0.187578i \(-0.0600637\pi\)
\(500\) 0 0
\(501\) −1.54128e9 −0.0244641
\(502\) 6.68238e10 6.38566e10i 1.05224 1.00552i
\(503\) 2.16574e10 0.338326 0.169163 0.985588i \(-0.445894\pi\)
0.169163 + 0.985588i \(0.445894\pi\)
\(504\) 5.97303e10 5.21020e10i 0.925705 0.807481i
\(505\) 0 0
\(506\) 2.98980e10 2.85704e10i 0.456079 0.435828i
\(507\) −3.58300e9 −0.0542270
\(508\) −5.18212e9 + 1.14054e11i −0.0778131 + 1.71260i
\(509\) −1.21565e10 −0.181108 −0.0905541 0.995892i \(-0.528864\pi\)
−0.0905541 + 0.995892i \(0.528864\pi\)
\(510\) 0 0
\(511\) 1.11589e11i 1.63658i
\(512\) 3.77219e10 + 5.74407e10i 0.548925 + 0.835871i
\(513\) 2.54787e9i 0.0367881i
\(514\) −5.29500e10 + 5.05988e10i −0.758601 + 0.724916i
\(515\) 0 0
\(516\) 1.46075e9 3.21498e10i 0.0206052 0.453502i
\(517\) 1.19094e10i 0.166697i
\(518\) 1.48513e10 1.41918e10i 0.206275 0.197115i
\(519\) 2.99091e10i 0.412225i
\(520\) 0 0
\(521\) −5.20805e10 −0.706845 −0.353422 0.935464i \(-0.614982\pi\)
−0.353422 + 0.935464i \(0.614982\pi\)
\(522\) 5.33115e10 + 5.57888e10i 0.718024 + 0.751389i
\(523\) −2.42007e10 −0.323461 −0.161731 0.986835i \(-0.551708\pi\)
−0.161731 + 0.986835i \(0.551708\pi\)
\(524\) 3.36434e10 + 1.52861e9i 0.446246 + 0.0202755i
\(525\) 0 0
\(526\) 5.37158e9 + 5.62118e9i 0.0701712 + 0.0734319i
\(527\) −1.70774e11 −2.21400
\(528\) −1.02994e9 + 1.13107e10i −0.0132519 + 0.145530i
\(529\) 8.67778e10 1.10812
\(530\) 0 0
\(531\) 3.59755e10i 0.452510i
\(532\) 6.42482e9 + 2.91917e8i 0.0802074 + 0.00364428i
\(533\) 2.99260e10i 0.370800i
\(534\) −1.68145e10 1.75958e10i −0.206785 0.216394i
\(535\) 0 0
\(536\) 3.68587e9 3.21514e9i 0.0446561 0.0389530i
\(537\) 1.75664e10i 0.211244i
\(538\) 1.64407e10 + 1.72047e10i 0.196242 + 0.205361i
\(539\) 3.36805e10i 0.399046i
\(540\) 0 0
\(541\) −7.39316e10 −0.863060 −0.431530 0.902099i \(-0.642026\pi\)
−0.431530 + 0.902099i \(0.642026\pi\)
\(542\) 7.85902e10 7.51005e10i 0.910692 0.870253i
\(543\) −1.84988e10 −0.212786
\(544\) 1.00429e11 7.98743e10i 1.14674 0.912035i
\(545\) 0 0
\(546\) −3.22556e10 + 3.08233e10i −0.362939 + 0.346823i
\(547\) 9.08736e10 1.01505 0.507526 0.861636i \(-0.330560\pi\)
0.507526 + 0.861636i \(0.330560\pi\)
\(548\) 8.34712e10 + 3.79257e9i 0.925581 + 0.0420544i
\(549\) −5.69847e10 −0.627290
\(550\) 0 0
\(551\) 6.26140e9i 0.0679305i
\(552\) −3.41676e10 + 2.98040e10i −0.368009 + 0.321009i
\(553\) 4.08628e9i 0.0436946i
\(554\) −1.78985e10 + 1.71038e10i −0.190011 + 0.181574i
\(555\) 0 0
\(556\) 1.65954e11 + 7.54025e9i 1.73656 + 0.0789018i
\(557\) 7.25820e9i 0.0754064i −0.999289 0.0377032i \(-0.987996\pi\)
0.999289 0.0377032i \(-0.0120041\pi\)
\(558\) 9.39301e10 8.97592e10i 0.968875 0.925853i
\(559\) 1.42022e11i 1.45449i
\(560\) 0 0
\(561\) 2.12077e10 0.214113
\(562\) −1.03143e11 1.07936e11i −1.03394 1.08199i
\(563\) −4.02851e10 −0.400969 −0.200485 0.979697i \(-0.564252\pi\)
−0.200485 + 0.979697i \(0.564252\pi\)
\(564\) −5.92653e8 + 1.30438e10i −0.00585712 + 0.128910i
\(565\) 0 0
\(566\) 8.22221e10 + 8.60427e10i 0.801166 + 0.838394i
\(567\) 9.64045e10 0.932750
\(568\) −9.75574e10 1.11841e11i −0.937274 1.07450i
\(569\) −4.42204e10 −0.421866 −0.210933 0.977501i \(-0.567650\pi\)
−0.210933 + 0.977501i \(0.567650\pi\)
\(570\) 0 0
\(571\) 1.92416e11i 1.81008i −0.425327 0.905040i \(-0.639841\pi\)
0.425327 0.905040i \(-0.360159\pi\)
\(572\) −2.27490e9 + 5.00684e10i −0.0212509 + 0.467714i
\(573\) 4.18835e9i 0.0388530i
\(574\) −3.57438e10 3.74048e10i −0.329271 0.344572i
\(575\) 0 0
\(576\) −1.32565e10 + 9.67190e10i −0.120431 + 0.878662i
\(577\) 5.62180e10i 0.507192i 0.967310 + 0.253596i \(0.0816134\pi\)
−0.967310 + 0.253596i \(0.918387\pi\)
\(578\) −8.84309e10 9.25400e10i −0.792305 0.829122i
\(579\) 2.63651e9i 0.0234593i
\(580\) 0 0
\(581\) −2.31767e11 −2.03398
\(582\) 1.88323e10 1.79960e10i 0.164139 0.156850i
\(583\) 5.10133e10 0.441580
\(584\) 9.03458e10 + 1.03574e11i 0.776706 + 0.890425i
\(585\) 0 0
\(586\) −1.84172e10 + 1.75994e10i −0.156183 + 0.149248i
\(587\) −2.12589e11 −1.79056 −0.895278 0.445508i \(-0.853023\pi\)
−0.895278 + 0.445508i \(0.853023\pi\)
\(588\) −1.67606e9 + 3.68886e10i −0.0140211 + 0.308591i
\(589\) 1.05422e10 0.0875927
\(590\) 0 0
\(591\) 7.75800e10i 0.635916i
\(592\) −2.29438e9 + 2.51965e10i −0.0186801 + 0.205142i
\(593\) 3.64674e10i 0.294908i 0.989069 + 0.147454i \(0.0471078\pi\)
−0.989069 + 0.147454i \(0.952892\pi\)
\(594\) −2.48175e10 + 2.37155e10i −0.199348 + 0.190497i
\(595\) 0 0
\(596\) −8.48995e9 + 1.86856e11i −0.0672853 + 1.48089i
\(597\) 2.37359e10i 0.186857i
\(598\) −1.44655e11 + 1.38232e11i −1.13118 + 1.08095i
\(599\) 1.54791e11i 1.20237i 0.799111 + 0.601184i \(0.205304\pi\)
−0.799111 + 0.601184i \(0.794696\pi\)
\(600\) 0 0
\(601\) 1.37850e11 1.05659 0.528297 0.849059i \(-0.322831\pi\)
0.528297 + 0.849059i \(0.322831\pi\)
\(602\) −1.69633e11 1.77515e11i −1.29159 1.35161i
\(603\) 6.94830e9 0.0525545
\(604\) −1.97969e11 8.99487e9i −1.48747 0.0675845i
\(605\) 0 0
\(606\) 2.89930e10 + 3.03403e10i 0.214983 + 0.224972i
\(607\) −4.21916e10 −0.310793 −0.155396 0.987852i \(-0.549665\pi\)
−0.155396 + 0.987852i \(0.549665\pi\)
\(608\) −6.19967e9 + 4.93078e9i −0.0453685 + 0.0360829i
\(609\) −7.50928e10 −0.545920
\(610\) 0 0
\(611\) 5.76211e10i 0.413444i
\(612\) 1.82104e11 + 8.27401e9i 1.29811 + 0.0589808i
\(613\) 1.76436e11i 1.24953i 0.780815 + 0.624763i \(0.214804\pi\)
−0.780815 + 0.624763i \(0.785196\pi\)
\(614\) 3.71813e10 + 3.89091e10i 0.261608 + 0.273765i
\(615\) 0 0
\(616\) 5.69588e10 + 6.52982e10i 0.395583 + 0.453501i
\(617\) 3.80722e10i 0.262705i 0.991336 + 0.131352i \(0.0419319\pi\)
−0.991336 + 0.131352i \(0.958068\pi\)
\(618\) 5.91190e10 + 6.18661e10i 0.405297 + 0.424130i
\(619\) 4.67363e10i 0.318340i 0.987251 + 0.159170i \(0.0508818\pi\)
−0.987251 + 0.159170i \(0.949118\pi\)
\(620\) 0 0
\(621\) −1.37036e11 −0.921441
\(622\) 1.42575e11 1.36244e11i 0.952537 0.910240i
\(623\) −1.85683e11 −1.23259
\(624\) 4.98317e9 5.47243e10i 0.0328675 0.360946i
\(625\) 0 0
\(626\) 3.21565e10 3.07286e10i 0.209398 0.200099i
\(627\) −1.30919e9 −0.00847096
\(628\) −8.12021e10 3.68948e9i −0.522070 0.0237206i
\(629\) 4.72440e10 0.301817
\(630\) 0 0
\(631\) 1.82629e11i 1.15200i 0.817450 + 0.576000i \(0.195387\pi\)
−0.817450 + 0.576000i \(0.804613\pi\)
\(632\) −3.30838e9 3.79276e9i −0.0207370 0.0237732i
\(633\) 6.05834e10i 0.377345i
\(634\) 6.24857e9 5.97110e9i 0.0386744 0.0369571i
\(635\) 0 0
\(636\) −5.58724e10 2.53861e9i −0.341483 0.0155155i
\(637\) 1.62956e11i 0.989721i
\(638\) −6.09893e10 + 5.82811e10i −0.368104 + 0.351759i
\(639\) 2.10833e11i 1.26455i
\(640\) 0 0
\(641\) 1.05531e11 0.625100 0.312550 0.949901i \(-0.398817\pi\)
0.312550 + 0.949901i \(0.398817\pi\)
\(642\) 4.95192e10 + 5.18202e10i 0.291497 + 0.305042i
\(643\) 1.09834e11 0.642528 0.321264 0.946990i \(-0.395892\pi\)
0.321264 + 0.946990i \(0.395892\pi\)
\(644\) −1.57006e10 + 3.45556e11i −0.0912793 + 2.00898i
\(645\) 0 0
\(646\) 1.02191e10 + 1.06940e10i 0.0586791 + 0.0614057i
\(647\) −4.48807e9 −0.0256119 −0.0128060 0.999918i \(-0.504076\pi\)
−0.0128060 + 0.999918i \(0.504076\pi\)
\(648\) −8.94797e10 + 7.80520e10i −0.507487 + 0.442674i
\(649\) −3.93290e10 −0.221684
\(650\) 0 0
\(651\) 1.26432e11i 0.703934i
\(652\) −2.34720e8 + 5.16599e9i −0.00129885 + 0.0285866i
\(653\) 2.96586e11i 1.63117i −0.578640 0.815583i \(-0.696416\pi\)
0.578640 0.815583i \(-0.303584\pi\)
\(654\) 5.47126e10 + 5.72550e10i 0.299072 + 0.312970i
\(655\) 0 0
\(656\) 6.34604e10 + 5.77867e9i 0.342679 + 0.0312042i
\(657\) 1.95248e11i 1.04791i
\(658\) 6.88232e10 + 7.20212e10i 0.367139 + 0.384199i
\(659\) 8.22505e10i 0.436111i 0.975936 + 0.218056i \(0.0699714\pi\)
−0.975936 + 0.218056i \(0.930029\pi\)
\(660\) 0 0
\(661\) −1.54172e11 −0.807608 −0.403804 0.914845i \(-0.632312\pi\)
−0.403804 + 0.914845i \(0.632312\pi\)
\(662\) −1.40102e11 + 1.33881e11i −0.729476 + 0.697085i
\(663\) −1.02609e11 −0.531047
\(664\) 2.15119e11 1.87646e11i 1.10664 0.965309i
\(665\) 0 0
\(666\) −2.59855e10 + 2.48316e10i −0.132079 + 0.126214i
\(667\) −3.36766e11 −1.70147
\(668\) 6.57368e8 1.44681e10i 0.00330144 0.0726616i
\(669\) −4.79726e10 −0.239491
\(670\) 0 0
\(671\) 6.22966e10i 0.307308i
\(672\) −5.91347e10 7.43524e10i −0.289978 0.364601i
\(673\) 2.82157e11i 1.37541i −0.725992 0.687703i \(-0.758619\pi\)
0.725992 0.687703i \(-0.241381\pi\)
\(674\) 1.09755e11 1.04881e11i 0.531844 0.508228i
\(675\) 0 0
\(676\) 1.52818e9 3.36340e10i 0.00731794 0.161061i
\(677\) 2.70699e11i 1.28864i −0.764756 0.644320i \(-0.777140\pi\)
0.764756 0.644320i \(-0.222860\pi\)
\(678\) −4.11666e10 + 3.93386e10i −0.194817 + 0.186166i
\(679\) 1.98730e11i 0.934943i
\(680\) 0 0
\(681\) −5.05220e10 −0.234905
\(682\) 9.81263e10 + 1.02686e11i 0.453574 + 0.474650i
\(683\) −3.96155e10 −0.182046 −0.0910232 0.995849i \(-0.529014\pi\)
−0.0910232 + 0.995849i \(0.529014\pi\)
\(684\) −1.12416e10 5.10769e8i −0.0513574 0.00233346i
\(685\) 0 0
\(686\) −1.72825e10 1.80856e10i −0.0780389 0.0816651i
\(687\) 3.08088e10 0.138308
\(688\) 3.01170e11 + 2.74244e10i 1.34418 + 0.122400i
\(689\) −2.46818e11 −1.09521
\(690\) 0 0
\(691\) 1.26869e11i 0.556472i 0.960513 + 0.278236i \(0.0897497\pi\)
−0.960513 + 0.278236i \(0.910250\pi\)
\(692\) −2.80760e11 1.27565e10i −1.22436 0.0556299i
\(693\) 1.23095e11i 0.533712i
\(694\) −9.95998e10 1.04228e11i −0.429359 0.449310i
\(695\) 0 0
\(696\) 6.96988e10 6.07974e10i 0.297022 0.259088i
\(697\) 1.18990e11i 0.504171i
\(698\) −2.40323e11 2.51490e11i −1.01245 1.05950i
\(699\) 6.12800e10i 0.256691i
\(700\) 0 0
\(701\) −6.26836e10 −0.259587 −0.129793 0.991541i \(-0.541431\pi\)
−0.129793 + 0.991541i \(0.541431\pi\)
\(702\) 1.20075e11 1.14743e11i 0.494427 0.472473i
\(703\) −2.91646e9 −0.0119408
\(704\) −1.05735e11 1.44923e10i −0.430455 0.0589991i
\(705\) 0 0
\(706\) −6.47808e10 + 6.19042e10i −0.260752 + 0.249173i
\(707\) 3.20170e11 1.28146
\(708\) 4.30752e10 + 1.95715e9i 0.171433 + 0.00778918i
\(709\) 3.57762e11 1.41582 0.707912 0.706300i \(-0.249637\pi\)
0.707912 + 0.706300i \(0.249637\pi\)
\(710\) 0 0
\(711\) 7.14981e9i 0.0279780i
\(712\) 1.72345e11 1.50334e11i 0.670624 0.584977i
\(713\) 5.67004e11i 2.19396i
\(714\) −1.28252e11 + 1.22558e11i −0.493484 + 0.471571i
\(715\) 0 0
\(716\) −1.64897e11 7.49222e9i −0.627423 0.0285074i
\(717\) 7.55280e10i 0.285780i
\(718\) 1.51783e11 1.45043e11i 0.571116 0.545756i
\(719\) 1.70342e11i 0.637392i 0.947857 + 0.318696i \(0.103245\pi\)
−0.947857 + 0.318696i \(0.896755\pi\)
\(720\) 0 0
\(721\) 6.52852e11 2.41587
\(722\) 1.87105e11 + 1.95799e11i 0.688552 + 0.720547i
\(723\) −4.37298e9 −0.0160038
\(724\) 7.88990e9 1.73650e11i 0.0287155 0.632003i
\(725\) 0 0
\(726\) 5.23678e10 + 5.48011e10i 0.188503 + 0.197262i
\(727\) 6.56094e10 0.234870 0.117435 0.993081i \(-0.462533\pi\)
0.117435 + 0.993081i \(0.462533\pi\)
\(728\) −2.75583e11 3.15932e11i −0.981132 1.12478i
\(729\) −1.08395e11 −0.383796
\(730\) 0 0
\(731\) 5.64700e11i 1.97765i
\(732\) −3.10010e9 + 6.82305e10i −0.0107977 + 0.237648i
\(733\) 2.60967e11i 0.904003i −0.892017 0.452001i \(-0.850710\pi\)
0.892017 0.452001i \(-0.149290\pi\)
\(734\) −1.09366e11 1.14448e11i −0.376788 0.394296i
\(735\) 0 0
\(736\) −2.65200e11 3.33446e11i −0.903778 1.13636i
\(737\) 7.59601e9i 0.0257463i
\(738\) 6.25414e10 + 6.54475e10i 0.210835 + 0.220632i
\(739\) 4.19763e11i 1.40743i 0.710483 + 0.703715i \(0.248477\pi\)
−0.710483 + 0.703715i \(0.751523\pi\)
\(740\) 0 0
\(741\) 6.33425e9 0.0210098
\(742\) −3.08500e11 + 2.94801e11i −1.01775 + 0.972554i
\(743\) −1.42604e11 −0.467925 −0.233962 0.972246i \(-0.575169\pi\)
−0.233962 + 0.972246i \(0.575169\pi\)
\(744\) −1.02363e11 1.17350e11i −0.334081 0.382994i
\(745\) 0 0
\(746\) 1.17406e11 1.12193e11i 0.379085 0.362252i
\(747\) 4.05525e11 1.30237
\(748\) −9.04530e9 + 1.99079e11i −0.0288946 + 0.635944i
\(749\) 5.46841e11 1.73754
\(750\) 0 0
\(751\) 3.26311e10i 0.102582i −0.998684 0.0512911i \(-0.983666\pi\)
0.998684 0.0512911i \(-0.0163336\pi\)
\(752\) −1.22190e11 1.11266e10i −0.382089 0.0347928i
\(753\) 1.57380e11i 0.489518i
\(754\) 2.95084e11 2.81981e11i 0.912978 0.872438i
\(755\) 0 0
\(756\) 1.30326e10 2.86836e11i 0.0398974 0.878106i
\(757\) 4.36612e11i 1.32957i −0.747033 0.664787i \(-0.768522\pi\)
0.747033 0.664787i \(-0.231478\pi\)
\(758\) 1.61655e11 1.54477e11i 0.489680 0.467937i
\(759\) 7.04142e10i 0.212174i
\(760\) 0 0
\(761\) −1.98059e11 −0.590548 −0.295274 0.955413i \(-0.595411\pi\)
−0.295274 + 0.955413i \(0.595411\pi\)
\(762\) 1.34307e11 + 1.40547e11i 0.398361 + 0.416872i
\(763\) 6.04192e11 1.78269
\(764\) 3.93164e10 + 1.78637e9i 0.115399 + 0.00524322i
\(765\) 0 0
\(766\) −2.56028e11 2.67925e11i −0.743657 0.778213i
\(767\) 1.90285e11 0.549824
\(768\) 1.15085e11 + 2.11344e10i 0.330807 + 0.0607499i
\(769\) 1.42097e10 0.0406329 0.0203165 0.999794i \(-0.493533\pi\)
0.0203165 + 0.999794i \(0.493533\pi\)
\(770\) 0 0
\(771\) 1.24705e11i 0.352912i
\(772\) 2.47491e10 + 1.12450e9i 0.0696772 + 0.00316584i
\(773\) 6.62483e10i 0.185548i −0.995687 0.0927741i \(-0.970427\pi\)
0.995687 0.0927741i \(-0.0295734\pi\)
\(774\) 2.96808e11 + 3.10600e11i 0.827013 + 0.865442i
\(775\) 0 0
\(776\) 1.60898e11 + 1.84456e11i 0.443715 + 0.508680i
\(777\) 3.49770e10i 0.0959617i
\(778\) 1.25106e11 + 1.30919e11i 0.341476 + 0.357343i
\(779\) 7.34544e9i 0.0199466i
\(780\) 0 0
\(781\) 2.30487e11 0.619501
\(782\) −5.75170e11 + 5.49630e11i −1.53804 + 1.46975i
\(783\) 2.79540e11 0.743700
\(784\) −3.45562e11 3.14667e10i −0.914663 0.0832887i
\(785\) 0 0
\(786\) 4.14584e10 3.96175e10i 0.108623 0.103800i
\(787\) 7.13437e10 0.185976 0.0929880 0.995667i \(-0.470358\pi\)
0.0929880 + 0.995667i \(0.470358\pi\)
\(788\) 7.28250e11 + 3.30886e10i 1.88876 + 0.0858170i
\(789\) 1.32387e10 0.0341615
\(790\) 0 0
\(791\) 4.34417e11i 1.10969i
\(792\) −9.96614e10 1.14253e11i −0.253295 0.290380i
\(793\) 3.01409e11i 0.762191i
\(794\) −1.17170e11 + 1.11967e11i −0.294804 + 0.281714i
\(795\) 0 0
\(796\) −2.22811e11 1.01236e10i −0.554990 0.0252164i
\(797\) 1.11980e11i 0.277527i 0.990326 + 0.138764i \(0.0443128\pi\)
−0.990326 + 0.138764i \(0.955687\pi\)
\(798\) 7.91725e9 7.56569e9i 0.0195237 0.0186568i
\(799\) 2.29109e11i 0.562154i
\(800\) 0 0
\(801\) 3.24891e11 0.789237
\(802\) 1.68306e11 + 1.76127e11i 0.406821 + 0.425725i
\(803\) −2.13449e11 −0.513372
\(804\) 3.78004e8 8.31954e9i 0.000904634 0.0199102i
\(805\) 0 0
\(806\) −4.74764e11 4.96825e11i −1.12496 1.17724i
\(807\) 4.05195e10 0.0955365
\(808\) −2.97172e11 + 2.59220e11i −0.697209 + 0.608167i
\(809\) −5.57023e10 −0.130041 −0.0650203 0.997884i \(-0.520711\pi\)
−0.0650203 + 0.997884i \(0.520711\pi\)
\(810\) 0 0
\(811\) 7.06448e11i 1.63304i 0.577317 + 0.816520i \(0.304100\pi\)
−0.577317 + 0.816520i \(0.695900\pi\)
\(812\) 3.20278e10 7.04902e11i 0.0736720 1.62145i
\(813\) 1.85091e11i 0.423666i
\(814\) −2.71464e10 2.84078e10i −0.0618321 0.0647053i
\(815\) 0 0
\(816\) 1.98137e10 2.17591e11i 0.0446896 0.490773i
\(817\) 3.48599e10i 0.0782417i
\(818\) 5.70917e11 + 5.97446e11i 1.27515 + 1.33440i
\(819\) 5.95569e11i 1.32372i
\(820\) 0 0
\(821\) −8.39733e10 −0.184828 −0.0924142 0.995721i \(-0.529458\pi\)
−0.0924142 + 0.995721i \(0.529458\pi\)
\(822\) 1.02861e11 9.82933e10i 0.225301 0.215296i
\(823\) 1.90143e11 0.414459 0.207229 0.978292i \(-0.433555\pi\)
0.207229 + 0.978292i \(0.433555\pi\)
\(824\) −6.05957e11 + 5.28569e11i −1.31442 + 1.14655i
\(825\) 0 0
\(826\) 2.37840e11 2.27279e11i 0.510933 0.488246i
\(827\) −3.98982e11 −0.852965 −0.426483 0.904496i \(-0.640247\pi\)
−0.426483 + 0.904496i \(0.640247\pi\)
\(828\) 2.74715e10 6.04622e11i 0.0584468 1.28636i
\(829\) −9.18641e11 −1.94504 −0.972518 0.232827i \(-0.925202\pi\)
−0.972518 + 0.232827i \(0.925202\pi\)
\(830\) 0 0
\(831\) 4.21536e10i 0.0883957i
\(832\) 5.11576e11 + 7.01178e10i 1.06762 + 0.146331i
\(833\) 6.47936e11i 1.34571i
\(834\) 2.04504e11 1.95423e11i 0.422705 0.403935i
\(835\) 0 0
\(836\) 5.58382e8 1.22895e10i 0.00114316 0.0251599i
\(837\) 4.70655e11i 0.958960i
\(838\) −3.36363e11 + 3.21427e11i −0.682075 + 0.651789i
\(839\) 4.31925e11i 0.871688i 0.900022 + 0.435844i \(0.143550\pi\)
−0.900022 + 0.435844i \(0.856450\pi\)
\(840\) 0 0
\(841\) 1.86726e11 0.373268
\(842\) −2.23991e10 2.34400e10i −0.0445639 0.0466347i
\(843\) −2.54205e11 −0.503355
\(844\) −5.68701e11 2.58394e10i −1.12076 0.0509228i
\(845\) 0 0
\(846\) −1.20421e11 1.26016e11i −0.235082 0.246006i
\(847\) 5.78298e11 1.12362
\(848\) 4.76602e10 5.23396e11i 0.0921664 1.01216i
\(849\) 2.02643e11 0.390033
\(850\) 0 0
\(851\) 1.56860e11i 0.299085i
\(852\) −2.52441e11 1.14698e10i −0.479073 0.0217670i
\(853\) 9.29871e11i 1.75641i −0.478282 0.878206i \(-0.658740\pi\)
0.478282 0.878206i \(-0.341260\pi\)
\(854\) 3.60006e11 + 3.76735e11i 0.676828 + 0.708279i
\(855\) 0 0
\(856\) −5.07561e11 + 4.42739e11i −0.945351 + 0.824618i
\(857\) 1.19713e11i 0.221931i 0.993824 + 0.110965i \(0.0353943\pi\)
−0.993824 + 0.110965i \(0.964606\pi\)
\(858\) 5.89592e10 + 6.16989e10i 0.108793 + 0.113849i
\(859\) 4.22514e11i 0.776012i 0.921657 + 0.388006i \(0.126836\pi\)
−0.921657 + 0.388006i \(0.873164\pi\)
\(860\) 0 0
\(861\) −8.80936e10 −0.160299
\(862\) −2.67430e11 + 2.55555e11i −0.484374 + 0.462865i
\(863\) 2.84698e11 0.513264 0.256632 0.966509i \(-0.417387\pi\)
0.256632 + 0.966509i \(0.417387\pi\)
\(864\) 2.20135e11 + 2.76784e11i 0.395034 + 0.496691i
\(865\) 0 0
\(866\) −5.97024e11 + 5.70514e11i −1.06150 + 1.01437i
\(867\) −2.17945e11 −0.385719
\(868\) −1.18683e12 5.39243e10i −2.09078 0.0949961i
\(869\) 7.81630e9 0.0137064
\(870\) 0 0
\(871\) 3.67517e10i 0.0638565i
\(872\) −5.60793e11 + 4.89172e11i −0.969921 + 0.846049i
\(873\) 3.47721e11i 0.598651i
\(874\) 3.55062e10 3.39296e10i 0.0608497 0.0581478i
\(875\) 0 0
\(876\) 2.33780e11 + 1.06220e10i 0.397001 + 0.0180380i
\(877\) 1.94476e11i 0.328752i 0.986398 + 0.164376i \(0.0525610\pi\)
−0.986398 + 0.164376i \(0.947439\pi\)
\(878\) −4.71859e11 + 4.50907e11i −0.794025 + 0.758767i
\(879\) 4.33753e10i 0.0726585i
\(880\) 0 0
\(881\) 9.06691e11 1.50507 0.752533 0.658555i \(-0.228832\pi\)
0.752533 + 0.658555i \(0.228832\pi\)
\(882\) −3.40557e11 3.56382e11i −0.562750 0.588900i
\(883\) −2.26542e11 −0.372654 −0.186327 0.982488i \(-0.559658\pi\)
−0.186327 + 0.982488i \(0.559658\pi\)
\(884\) 4.37638e10 9.63202e11i 0.0716648 1.57728i
\(885\) 0 0
\(886\) 1.96973e10 + 2.06125e10i 0.0319647 + 0.0334500i
\(887\) 1.70744e11 0.275837 0.137918 0.990444i \(-0.455959\pi\)
0.137918 + 0.990444i \(0.455959\pi\)
\(888\) 2.83184e10 + 3.24646e10i 0.0455425 + 0.0522105i
\(889\) 1.48315e12 2.37453
\(890\) 0 0
\(891\) 1.84404e11i 0.292590i
\(892\) 2.04608e10 4.50323e11i 0.0323193 0.711320i
\(893\) 1.41433e10i 0.0222405i
\(894\) 2.20037e11 + 2.30261e11i 0.344465 + 0.360471i
\(895\) 0 0
\(896\) 7.23174e11 5.23391e11i 1.12205 0.812071i
\(897\) 3.40684e11i 0.526238i
\(898\) −6.35394e11 6.64919e11i −0.977097 1.02250i
\(899\) 1.15664e12i 1.77075i
\(900\) 0 0
\(901\) −9.81380e11 −1.48915
\(902\) −7.15484e10 + 6.83713e10i −0.108087 + 0.103288i
\(903\) −4.18074e11 −0.628785
\(904\) −3.51717e11 4.03213e11i −0.526647 0.603755i
\(905\) 0 0
\(906\) −2.43955e11 + 2.33123e11i −0.362074 + 0.345997i
\(907\) 5.20431e11 0.769013 0.384507 0.923122i \(-0.374372\pi\)
0.384507 + 0.923122i \(0.374372\pi\)
\(908\) 2.15481e10 4.74254e11i 0.0317004 0.697698i
\(909\) −5.60205e11 −0.820525
\(910\) 0 0
\(911\) 5.42499e11i 0.787635i 0.919189 + 0.393818i \(0.128846\pi\)
−0.919189 + 0.393818i \(0.871154\pi\)
\(912\) −1.22314e9 + 1.34323e10i −0.00176806 + 0.0194165i
\(913\) 4.43327e11i 0.638030i
\(914\) 5.21650e11 4.98487e11i 0.747472 0.714281i
\(915\) 0 0
\(916\) −1.31403e10 + 2.89205e11i −0.0186647 + 0.410794i
\(917\) 4.37497e11i 0.618725i
\(918\) 4.77433e11 4.56233e11i 0.672266 0.642415i
\(919\) 6.49225e11i 0.910192i 0.890442 + 0.455096i \(0.150395\pi\)
−0.890442 + 0.455096i \(0.849605\pi\)
\(920\) 0 0
\(921\) 9.16364e10 0.127359
\(922\) 8.54573e11 + 8.94283e11i 1.18257 + 1.23752i
\(923\) −1.11516e12 −1.53650
\(924\) 1.47387e11 + 6.69666e9i 0.202196 + 0.00918693i
\(925\) 0 0
\(926\) 9.42742e11 + 9.86549e11i 1.28218 + 1.34176i
\(927\) −1.14230e12 −1.54690
\(928\) 5.40983e11 + 6.80200e11i 0.729444 + 0.917159i
\(929\) −4.98636e11 −0.669455 −0.334727 0.942315i \(-0.608644\pi\)
−0.334727 + 0.942315i \(0.608644\pi\)
\(930\) 0 0
\(931\) 3.99982e10i 0.0532404i
\(932\) 5.75240e11 + 2.61365e10i 0.762405 + 0.0346404i
\(933\) 3.35785e11i 0.443133i
\(934\) −3.54529e11 3.71003e11i −0.465870 0.487518i
\(935\) 0 0
\(936\) 4.82191e11 + 5.52789e11i 0.628226 + 0.720205i
\(937\) 4.01408e11i 0.520748i 0.965508 + 0.260374i \(0.0838459\pi\)
−0.965508 + 0.260374i \(0.916154\pi\)
\(938\) −4.38966e10 4.59364e10i −0.0567048 0.0593397i
\(939\) 7.57332e10i 0.0974146i
\(940\) 0 0
\(941\) −2.64682e10 −0.0337572 −0.0168786 0.999858i \(-0.505373\pi\)
−0.0168786 + 0.999858i \(0.505373\pi\)
\(942\) −1.00065e11 + 9.56214e10i −0.127080 + 0.121437i
\(943\) −3.95071e11 −0.499606
\(944\) −3.67439e10 + 4.03515e11i −0.0462698 + 0.508127i
\(945\) 0 0
\(946\) −3.39554e11 + 3.24476e11i −0.423979 + 0.405152i
\(947\) −5.71352e11 −0.710401 −0.355201 0.934790i \(-0.615587\pi\)
−0.355201 + 0.934790i \(0.615587\pi\)
\(948\) −8.56081e9 3.88967e8i −0.0105994 0.000481592i
\(949\) 1.03273e12 1.27327
\(950\) 0 0
\(951\) 1.47163e10i 0.0179918i
\(952\) −1.09576e12 1.25619e12i −1.33403 1.52935i
\(953\) 1.09917e12i 1.33258i 0.745694 + 0.666288i \(0.232118\pi\)
−0.745694 + 0.666288i \(0.767882\pi\)
\(954\) 5.39785e11 5.15817e11i 0.651670 0.622733i
\(955\) 0 0
\(956\) 7.08988e11 + 3.22134e10i 0.848803 + 0.0385660i
\(957\) 1.43639e11i 0.171247i
\(958\) −4.15153e11 + 3.96719e11i −0.492886 + 0.471000i
\(959\) 1.08545e12i 1.28333i
\(960\) 0 0
\(961\) −1.09451e12 −1.28329
\(962\) 1.31342e11 + 1.37445e11i 0.153357 + 0.160483i
\(963\) −9.56813e11 −1.11256
\(964\) 1.86512e9 4.10495e10i 0.00215972 0.0475335i
\(965\) 0 0
\(966\) 4.06917e11 + 4.25825e11i 0.467301 + 0.489016i
\(967\) −8.78566e11 −1.00477 −0.502387 0.864643i \(-0.667545\pi\)
−0.502387 + 0.864643i \(0.667545\pi\)
\(968\) −5.36758e11 + 4.68207e11i −0.611332 + 0.533257i
\(969\) 2.51858e10 0.0285668
\(970\) 0 0
\(971\) 7.91945e11i 0.890878i −0.895312 0.445439i \(-0.853048\pi\)
0.895312 0.445439i \(-0.146952\pi\)
\(972\) −3.48885e10 + 7.67865e11i −0.0390857 + 0.860241i
\(973\) 2.15806e12i 2.40775i
\(974\) 6.61654e11 + 6.92399e11i 0.735182 + 0.769344i
\(975\) 0 0
\(976\) −6.39163e11 5.82018e10i −0.704389 0.0641413i
\(977\) 5.46919e11i 0.600268i −0.953897 0.300134i \(-0.902969\pi\)
0.953897 0.300134i \(-0.0970313\pi\)
\(978\) 6.08332e9 + 6.36600e9i 0.00664944 + 0.00695843i
\(979\) 3.55177e11i 0.386646i
\(980\) 0 0
\(981\) −1.05716e12 −1.14147
\(982\) 3.47346e11 3.31923e11i 0.373522 0.356936i
\(983\) 7.38083e11 0.790481 0.395240 0.918578i \(-0.370661\pi\)
0.395240 + 0.918578i \(0.370661\pi\)
\(984\) 8.17658e10 7.13233e10i 0.0872151 0.0760766i
\(985\) 0 0
\(986\) 1.17329e12 1.12119e12i 1.24136 1.18624i
\(987\) 1.69620e11 0.178735
\(988\) −2.70162e9 + 5.94601e10i −0.00283528 + 0.0624020i
\(989\) −1.87492e12 −1.95974
\(990\) 0 0
\(991\) 3.73877e11i 0.387645i −0.981037 0.193823i \(-0.937911\pi\)
0.981037 0.193823i \(-0.0620886\pi\)
\(992\) 1.14523e12 9.10839e11i 1.18263 0.940578i
\(993\) 3.29959e11i 0.339362i
\(994\) −1.39385e12 + 1.33196e12i −1.42781 + 1.36441i
\(995\) 0 0
\(996\) 2.20615e10 4.85555e11i 0.0224181 0.493402i
\(997\) 1.14224e12i 1.15605i 0.816019 + 0.578025i \(0.196177\pi\)
−0.816019 + 0.578025i \(0.803823\pi\)
\(998\) 2.69066e11 2.57118e11i 0.271229 0.259185i
\(999\) 1.30205e11i 0.130727i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.d.c.99.24 32
4.3 odd 2 inner 100.9.d.c.99.10 32
5.2 odd 4 100.9.b.d.51.4 16
5.3 odd 4 20.9.b.a.11.13 16
5.4 even 2 inner 100.9.d.c.99.9 32
15.8 even 4 180.9.c.a.91.4 16
20.3 even 4 20.9.b.a.11.14 yes 16
20.7 even 4 100.9.b.d.51.3 16
20.19 odd 2 inner 100.9.d.c.99.23 32
40.3 even 4 320.9.b.d.191.10 16
40.13 odd 4 320.9.b.d.191.7 16
60.23 odd 4 180.9.c.a.91.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.13 16 5.3 odd 4
20.9.b.a.11.14 yes 16 20.3 even 4
100.9.b.d.51.3 16 20.7 even 4
100.9.b.d.51.4 16 5.2 odd 4
100.9.d.c.99.9 32 5.4 even 2 inner
100.9.d.c.99.10 32 4.3 odd 2 inner
100.9.d.c.99.23 32 20.19 odd 2 inner
100.9.d.c.99.24 32 1.1 even 1 trivial
180.9.c.a.91.3 16 60.23 odd 4
180.9.c.a.91.4 16 15.8 even 4
320.9.b.d.191.7 16 40.13 odd 4
320.9.b.d.191.10 16 40.3 even 4