Properties

Label 320.9.b.d.191.7
Level $320$
Weight $9$
Character 320.191
Analytic conductor $130.361$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,9,Mod(191,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.191"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 320.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-38800] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(130.361155220\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 26 x^{14} - 834 x^{13} + 4390 x^{12} - 61783 x^{11} + 466168 x^{10} + \cdots + 206161212459445 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{120}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.7
Root \(-4.16577 - 5.52698i\) of defining polynomial
Character \(\chi\) \(=\) 320.191
Dual form 320.9.b.d.191.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.2434i q^{3} -279.508 q^{5} -3325.58i q^{7} +5818.80 q^{9} +6361.21i q^{11} +30777.4 q^{13} +7614.76i q^{15} +122375. q^{17} -7554.43i q^{19} -90600.1 q^{21} +406311. i q^{23} +78125.0 q^{25} -337268. i q^{27} -828838. q^{29} +1.39549e6i q^{31} +173301. q^{33} +929527. i q^{35} +386059. q^{37} -838482. i q^{39} -972335. q^{41} +4.61450e6i q^{43} -1.62640e6 q^{45} -1.87219e6i q^{47} -5.29467e6 q^{49} -3.33392e6i q^{51} +8.01944e6 q^{53} -1.77801e6i q^{55} -205808. q^{57} -6.18263e6i q^{59} -9.79320e6 q^{61} -1.93509e7i q^{63} -8.60255e6 q^{65} -1.19411e6i q^{67} +1.10693e7 q^{69} +3.62332e7i q^{71} +3.35548e7 q^{73} -2.12839e6i q^{75} +2.11547e7 q^{77} -1.22874e6i q^{79} +2.89888e7 q^{81} +6.96923e7i q^{83} -3.42049e7 q^{85} +2.25804e7i q^{87} +5.58347e7 q^{89} -1.02353e8i q^{91} +3.80180e7 q^{93} +2.11153e6i q^{95} -5.97582e7 q^{97} +3.70146e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 38800 q^{9} - 51392 q^{13} + 27552 q^{17} - 414496 q^{21} + 1250000 q^{25} - 2764896 q^{29} - 5521600 q^{33} - 9009472 q^{37} - 8576448 q^{41} - 1580000 q^{45} - 32803600 q^{49} - 2452032 q^{53}+ \cdots + 171851232 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 27.2434i − 0.336338i −0.985758 0.168169i \(-0.946215\pi\)
0.985758 0.168169i \(-0.0537855\pi\)
\(4\) 0 0
\(5\) −279.508 −0.447214
\(6\) 0 0
\(7\) − 3325.58i − 1.38508i −0.721379 0.692540i \(-0.756492\pi\)
0.721379 0.692540i \(-0.243508\pi\)
\(8\) 0 0
\(9\) 5818.80 0.886877
\(10\) 0 0
\(11\) 6361.21i 0.434479i 0.976118 + 0.217240i \(0.0697053\pi\)
−0.976118 + 0.217240i \(0.930295\pi\)
\(12\) 0 0
\(13\) 30777.4 1.07760 0.538801 0.842433i \(-0.318877\pi\)
0.538801 + 0.842433i \(0.318877\pi\)
\(14\) 0 0
\(15\) 7614.76i 0.150415i
\(16\) 0 0
\(17\) 122375. 1.46520 0.732601 0.680658i \(-0.238306\pi\)
0.732601 + 0.680658i \(0.238306\pi\)
\(18\) 0 0
\(19\) − 7554.43i − 0.0579679i −0.999580 0.0289839i \(-0.990773\pi\)
0.999580 0.0289839i \(-0.00922717\pi\)
\(20\) 0 0
\(21\) −90600.1 −0.465856
\(22\) 0 0
\(23\) 406311.i 1.45194i 0.687729 + 0.725968i \(0.258608\pi\)
−0.687729 + 0.725968i \(0.741392\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 0 0
\(27\) − 337268.i − 0.634629i
\(28\) 0 0
\(29\) −828838. −1.17187 −0.585933 0.810360i \(-0.699272\pi\)
−0.585933 + 0.810360i \(0.699272\pi\)
\(30\) 0 0
\(31\) 1.39549e6i 1.51106i 0.655116 + 0.755528i \(0.272620\pi\)
−0.655116 + 0.755528i \(0.727380\pi\)
\(32\) 0 0
\(33\) 173301. 0.146132
\(34\) 0 0
\(35\) 929527.i 0.619427i
\(36\) 0 0
\(37\) 386059. 0.205990 0.102995 0.994682i \(-0.467157\pi\)
0.102995 + 0.994682i \(0.467157\pi\)
\(38\) 0 0
\(39\) − 838482.i − 0.362439i
\(40\) 0 0
\(41\) −972335. −0.344097 −0.172048 0.985089i \(-0.555039\pi\)
−0.172048 + 0.985089i \(0.555039\pi\)
\(42\) 0 0
\(43\) 4.61450e6i 1.34974i 0.737935 + 0.674871i \(0.235801\pi\)
−0.737935 + 0.674871i \(0.764199\pi\)
\(44\) 0 0
\(45\) −1.62640e6 −0.396623
\(46\) 0 0
\(47\) − 1.87219e6i − 0.383670i −0.981427 0.191835i \(-0.938556\pi\)
0.981427 0.191835i \(-0.0614438\pi\)
\(48\) 0 0
\(49\) −5.29467e6 −0.918447
\(50\) 0 0
\(51\) − 3.33392e6i − 0.492804i
\(52\) 0 0
\(53\) 8.01944e6 1.01634 0.508172 0.861256i \(-0.330322\pi\)
0.508172 + 0.861256i \(0.330322\pi\)
\(54\) 0 0
\(55\) − 1.77801e6i − 0.194305i
\(56\) 0 0
\(57\) −205808. −0.0194968
\(58\) 0 0
\(59\) − 6.18263e6i − 0.510229i −0.966911 0.255115i \(-0.917887\pi\)
0.966911 0.255115i \(-0.0821132\pi\)
\(60\) 0 0
\(61\) −9.79320e6 −0.707303 −0.353651 0.935377i \(-0.615060\pi\)
−0.353651 + 0.935377i \(0.615060\pi\)
\(62\) 0 0
\(63\) − 1.93509e7i − 1.22840i
\(64\) 0 0
\(65\) −8.60255e6 −0.481919
\(66\) 0 0
\(67\) − 1.19411e6i − 0.0592579i −0.999561 0.0296290i \(-0.990567\pi\)
0.999561 0.0296290i \(-0.00943257\pi\)
\(68\) 0 0
\(69\) 1.10693e7 0.488342
\(70\) 0 0
\(71\) 3.62332e7i 1.42585i 0.701242 + 0.712923i \(0.252629\pi\)
−0.701242 + 0.712923i \(0.747371\pi\)
\(72\) 0 0
\(73\) 3.35548e7 1.18158 0.590790 0.806826i \(-0.298816\pi\)
0.590790 + 0.806826i \(0.298816\pi\)
\(74\) 0 0
\(75\) − 2.12839e6i − 0.0672677i
\(76\) 0 0
\(77\) 2.11547e7 0.601789
\(78\) 0 0
\(79\) − 1.22874e6i − 0.0315466i −0.999876 0.0157733i \(-0.994979\pi\)
0.999876 0.0157733i \(-0.00502101\pi\)
\(80\) 0 0
\(81\) 2.89888e7 0.673426
\(82\) 0 0
\(83\) 6.96923e7i 1.46849i 0.678882 + 0.734247i \(0.262465\pi\)
−0.678882 + 0.734247i \(0.737535\pi\)
\(84\) 0 0
\(85\) −3.42049e7 −0.655258
\(86\) 0 0
\(87\) 2.25804e7i 0.394143i
\(88\) 0 0
\(89\) 5.58347e7 0.889907 0.444953 0.895554i \(-0.353220\pi\)
0.444953 + 0.895554i \(0.353220\pi\)
\(90\) 0 0
\(91\) − 1.02353e8i − 1.49257i
\(92\) 0 0
\(93\) 3.80180e7 0.508226
\(94\) 0 0
\(95\) 2.11153e6i 0.0259240i
\(96\) 0 0
\(97\) −5.97582e7 −0.675010 −0.337505 0.941324i \(-0.609583\pi\)
−0.337505 + 0.941324i \(0.609583\pi\)
\(98\) 0 0
\(99\) 3.70146e7i 0.385329i
\(100\) 0 0
\(101\) −9.62751e7 −0.925185 −0.462593 0.886571i \(-0.653081\pi\)
−0.462593 + 0.886571i \(0.653081\pi\)
\(102\) 0 0
\(103\) 1.96312e8i 1.74421i 0.489320 + 0.872104i \(0.337245\pi\)
−0.489320 + 0.872104i \(0.662755\pi\)
\(104\) 0 0
\(105\) 2.53235e7 0.208337
\(106\) 0 0
\(107\) 1.64435e8i 1.25447i 0.778832 + 0.627233i \(0.215813\pi\)
−0.778832 + 0.627233i \(0.784187\pi\)
\(108\) 0 0
\(109\) 1.81680e8 1.28707 0.643534 0.765417i \(-0.277467\pi\)
0.643534 + 0.765417i \(0.277467\pi\)
\(110\) 0 0
\(111\) − 1.05176e7i − 0.0692824i
\(112\) 0 0
\(113\) −1.30629e8 −0.801172 −0.400586 0.916259i \(-0.631193\pi\)
−0.400586 + 0.916259i \(0.631193\pi\)
\(114\) 0 0
\(115\) − 1.13567e8i − 0.649325i
\(116\) 0 0
\(117\) 1.79087e8 0.955700
\(118\) 0 0
\(119\) − 4.06968e8i − 2.02942i
\(120\) 0 0
\(121\) 1.73894e8 0.811228
\(122\) 0 0
\(123\) 2.64897e7i 0.115733i
\(124\) 0 0
\(125\) −2.18366e7 −0.0894427
\(126\) 0 0
\(127\) − 4.45982e8i − 1.71436i −0.515015 0.857181i \(-0.672214\pi\)
0.515015 0.857181i \(-0.327786\pi\)
\(128\) 0 0
\(129\) 1.25715e8 0.453970
\(130\) 0 0
\(131\) 1.31555e8i 0.446707i 0.974738 + 0.223353i \(0.0717004\pi\)
−0.974738 + 0.223353i \(0.928300\pi\)
\(132\) 0 0
\(133\) −2.51228e7 −0.0802902
\(134\) 0 0
\(135\) 9.42692e7i 0.283815i
\(136\) 0 0
\(137\) −3.26396e8 −0.926536 −0.463268 0.886218i \(-0.653323\pi\)
−0.463268 + 0.886218i \(0.653323\pi\)
\(138\) 0 0
\(139\) − 6.48927e8i − 1.73835i −0.494506 0.869174i \(-0.664651\pi\)
0.494506 0.869174i \(-0.335349\pi\)
\(140\) 0 0
\(141\) −5.10048e7 −0.129043
\(142\) 0 0
\(143\) 1.95782e8i 0.468196i
\(144\) 0 0
\(145\) 2.31667e8 0.524074
\(146\) 0 0
\(147\) 1.44245e8i 0.308909i
\(148\) 0 0
\(149\) 7.30660e8 1.48242 0.741208 0.671276i \(-0.234253\pi\)
0.741208 + 0.671276i \(0.234253\pi\)
\(150\) 0 0
\(151\) 7.74114e8i 1.48901i 0.667618 + 0.744504i \(0.267314\pi\)
−0.667618 + 0.744504i \(0.732686\pi\)
\(152\) 0 0
\(153\) 7.12076e8 1.29945
\(154\) 0 0
\(155\) − 3.90052e8i − 0.675765i
\(156\) 0 0
\(157\) −3.17523e8 −0.522609 −0.261304 0.965256i \(-0.584153\pi\)
−0.261304 + 0.965256i \(0.584153\pi\)
\(158\) 0 0
\(159\) − 2.18477e8i − 0.341835i
\(160\) 0 0
\(161\) 1.35122e9 2.01105
\(162\) 0 0
\(163\) − 2.02004e7i − 0.0286161i −0.999898 0.0143081i \(-0.995445\pi\)
0.999898 0.0143081i \(-0.00455455\pi\)
\(164\) 0 0
\(165\) −4.84391e7 −0.0653522
\(166\) 0 0
\(167\) 5.65743e7i 0.0727366i 0.999338 + 0.0363683i \(0.0115789\pi\)
−0.999338 + 0.0363683i \(0.988421\pi\)
\(168\) 0 0
\(169\) 1.31518e8 0.161228
\(170\) 0 0
\(171\) − 4.39577e7i − 0.0514103i
\(172\) 0 0
\(173\) 1.09785e9 1.22563 0.612813 0.790228i \(-0.290038\pi\)
0.612813 + 0.790228i \(0.290038\pi\)
\(174\) 0 0
\(175\) − 2.59811e8i − 0.277016i
\(176\) 0 0
\(177\) −1.68436e8 −0.171610
\(178\) 0 0
\(179\) 6.44793e8i 0.628070i 0.949411 + 0.314035i \(0.101681\pi\)
−0.949411 + 0.314035i \(0.898319\pi\)
\(180\) 0 0
\(181\) 6.79018e8 0.632655 0.316328 0.948650i \(-0.397550\pi\)
0.316328 + 0.948650i \(0.397550\pi\)
\(182\) 0 0
\(183\) 2.66800e8i 0.237893i
\(184\) 0 0
\(185\) −1.07907e8 −0.0921217
\(186\) 0 0
\(187\) 7.78454e8i 0.636600i
\(188\) 0 0
\(189\) −1.12161e9 −0.879012
\(190\) 0 0
\(191\) − 1.53738e8i − 0.115518i −0.998331 0.0577588i \(-0.981605\pi\)
0.998331 0.0577588i \(-0.0183954\pi\)
\(192\) 0 0
\(193\) 9.67761e7 0.0697491 0.0348746 0.999392i \(-0.488897\pi\)
0.0348746 + 0.999392i \(0.488897\pi\)
\(194\) 0 0
\(195\) 2.34363e8i 0.162088i
\(196\) 0 0
\(197\) 2.84766e9 1.89070 0.945352 0.326051i \(-0.105718\pi\)
0.945352 + 0.326051i \(0.105718\pi\)
\(198\) 0 0
\(199\) − 8.71254e8i − 0.555562i −0.960644 0.277781i \(-0.910401\pi\)
0.960644 0.277781i \(-0.0895990\pi\)
\(200\) 0 0
\(201\) −3.25317e7 −0.0199307
\(202\) 0 0
\(203\) 2.75637e9i 1.62313i
\(204\) 0 0
\(205\) 2.71776e8 0.153885
\(206\) 0 0
\(207\) 2.36424e9i 1.28769i
\(208\) 0 0
\(209\) 4.80553e7 0.0251858
\(210\) 0 0
\(211\) − 2.22378e9i − 1.12192i −0.827843 0.560960i \(-0.810432\pi\)
0.827843 0.560960i \(-0.189568\pi\)
\(212\) 0 0
\(213\) 9.87114e8 0.479567
\(214\) 0 0
\(215\) − 1.28979e9i − 0.603623i
\(216\) 0 0
\(217\) 4.64082e9 2.09293
\(218\) 0 0
\(219\) − 9.14146e8i − 0.397410i
\(220\) 0 0
\(221\) 3.76639e9 1.57891
\(222\) 0 0
\(223\) − 1.76089e9i − 0.712054i −0.934476 0.356027i \(-0.884131\pi\)
0.934476 0.356027i \(-0.115869\pi\)
\(224\) 0 0
\(225\) 4.54593e8 0.177375
\(226\) 0 0
\(227\) − 1.85447e9i − 0.698418i −0.937045 0.349209i \(-0.886450\pi\)
0.937045 0.349209i \(-0.113550\pi\)
\(228\) 0 0
\(229\) 1.13087e9 0.411218 0.205609 0.978634i \(-0.434083\pi\)
0.205609 + 0.978634i \(0.434083\pi\)
\(230\) 0 0
\(231\) − 5.76326e8i − 0.202405i
\(232\) 0 0
\(233\) 2.24935e9 0.763191 0.381596 0.924329i \(-0.375375\pi\)
0.381596 + 0.924329i \(0.375375\pi\)
\(234\) 0 0
\(235\) 5.23292e8i 0.171582i
\(236\) 0 0
\(237\) −3.34752e7 −0.0106103
\(238\) 0 0
\(239\) 2.77234e9i 0.849679i 0.905269 + 0.424840i \(0.139669\pi\)
−0.905269 + 0.424840i \(0.860331\pi\)
\(240\) 0 0
\(241\) −1.60515e8 −0.0475826 −0.0237913 0.999717i \(-0.507574\pi\)
−0.0237913 + 0.999717i \(0.507574\pi\)
\(242\) 0 0
\(243\) − 3.00257e9i − 0.861128i
\(244\) 0 0
\(245\) 1.47990e9 0.410742
\(246\) 0 0
\(247\) − 2.32506e8i − 0.0624663i
\(248\) 0 0
\(249\) 1.89866e9 0.493911
\(250\) 0 0
\(251\) 5.77680e9i 1.45543i 0.685877 + 0.727717i \(0.259419\pi\)
−0.685877 + 0.727717i \(0.740581\pi\)
\(252\) 0 0
\(253\) −2.58463e9 −0.630836
\(254\) 0 0
\(255\) 9.31858e8i 0.220389i
\(256\) 0 0
\(257\) 4.57743e9 1.04928 0.524638 0.851326i \(-0.324201\pi\)
0.524638 + 0.851326i \(0.324201\pi\)
\(258\) 0 0
\(259\) − 1.28387e9i − 0.285313i
\(260\) 0 0
\(261\) −4.82284e9 −1.03930
\(262\) 0 0
\(263\) 4.85941e8i 0.101569i 0.998710 + 0.0507844i \(0.0161721\pi\)
−0.998710 + 0.0507844i \(0.983828\pi\)
\(264\) 0 0
\(265\) −2.24150e9 −0.454523
\(266\) 0 0
\(267\) − 1.52113e9i − 0.299310i
\(268\) 0 0
\(269\) 1.48731e9 0.284049 0.142024 0.989863i \(-0.454639\pi\)
0.142024 + 0.989863i \(0.454639\pi\)
\(270\) 0 0
\(271\) − 6.79398e9i − 1.25964i −0.776740 0.629821i \(-0.783128\pi\)
0.776740 0.629821i \(-0.216872\pi\)
\(272\) 0 0
\(273\) −2.78844e9 −0.502007
\(274\) 0 0
\(275\) 4.96970e8i 0.0868959i
\(276\) 0 0
\(277\) −1.54730e9 −0.262818 −0.131409 0.991328i \(-0.541950\pi\)
−0.131409 + 0.991328i \(0.541950\pi\)
\(278\) 0 0
\(279\) 8.12009e9i 1.34012i
\(280\) 0 0
\(281\) −9.33090e9 −1.49657 −0.748287 0.663375i \(-0.769123\pi\)
−0.748287 + 0.663375i \(0.769123\pi\)
\(282\) 0 0
\(283\) − 7.43824e9i − 1.15964i −0.814743 0.579822i \(-0.803122\pi\)
0.814743 0.579822i \(-0.196878\pi\)
\(284\) 0 0
\(285\) 5.75252e7 0.00871924
\(286\) 0 0
\(287\) 3.23358e9i 0.476602i
\(288\) 0 0
\(289\) 7.99992e9 1.14682
\(290\) 0 0
\(291\) 1.62802e9i 0.227032i
\(292\) 0 0
\(293\) 1.59214e9 0.216028 0.108014 0.994149i \(-0.465551\pi\)
0.108014 + 0.994149i \(0.465551\pi\)
\(294\) 0 0
\(295\) 1.72810e9i 0.228181i
\(296\) 0 0
\(297\) 2.14543e9 0.275733
\(298\) 0 0
\(299\) 1.25052e10i 1.56461i
\(300\) 0 0
\(301\) 1.53459e10 1.86950
\(302\) 0 0
\(303\) 2.62286e9i 0.311175i
\(304\) 0 0
\(305\) 2.73728e9 0.316315
\(306\) 0 0
\(307\) 3.36362e9i 0.378663i 0.981913 + 0.189332i \(0.0606321\pi\)
−0.981913 + 0.189332i \(0.939368\pi\)
\(308\) 0 0
\(309\) 5.34821e9 0.586644
\(310\) 0 0
\(311\) − 1.23254e10i − 1.31752i −0.752352 0.658761i \(-0.771081\pi\)
0.752352 0.658761i \(-0.228919\pi\)
\(312\) 0 0
\(313\) 2.77987e9 0.289633 0.144816 0.989459i \(-0.453741\pi\)
0.144816 + 0.989459i \(0.453741\pi\)
\(314\) 0 0
\(315\) 5.40873e9i 0.549355i
\(316\) 0 0
\(317\) 5.40177e8 0.0534933 0.0267466 0.999642i \(-0.491485\pi\)
0.0267466 + 0.999642i \(0.491485\pi\)
\(318\) 0 0
\(319\) − 5.27241e9i − 0.509151i
\(320\) 0 0
\(321\) 4.47977e9 0.421925
\(322\) 0 0
\(323\) − 9.24475e8i − 0.0849347i
\(324\) 0 0
\(325\) 2.40449e9 0.215521
\(326\) 0 0
\(327\) − 4.94959e9i − 0.432891i
\(328\) 0 0
\(329\) −6.22610e9 −0.531414
\(330\) 0 0
\(331\) − 1.21115e10i − 1.00899i −0.863414 0.504495i \(-0.831679\pi\)
0.863414 0.504495i \(-0.168321\pi\)
\(332\) 0 0
\(333\) 2.24640e9 0.182688
\(334\) 0 0
\(335\) 3.33765e8i 0.0265009i
\(336\) 0 0
\(337\) −9.48812e9 −0.735632 −0.367816 0.929899i \(-0.619894\pi\)
−0.367816 + 0.929899i \(0.619894\pi\)
\(338\) 0 0
\(339\) 3.55878e9i 0.269465i
\(340\) 0 0
\(341\) −8.87702e9 −0.656523
\(342\) 0 0
\(343\) − 1.56347e9i − 0.112957i
\(344\) 0 0
\(345\) −3.09396e9 −0.218393
\(346\) 0 0
\(347\) − 9.01032e9i − 0.621473i −0.950496 0.310737i \(-0.899424\pi\)
0.950496 0.310737i \(-0.100576\pi\)
\(348\) 0 0
\(349\) −2.17409e10 −1.46547 −0.732733 0.680517i \(-0.761755\pi\)
−0.732733 + 0.680517i \(0.761755\pi\)
\(350\) 0 0
\(351\) − 1.03802e10i − 0.683878i
\(352\) 0 0
\(353\) −5.60018e9 −0.360664 −0.180332 0.983606i \(-0.557717\pi\)
−0.180332 + 0.983606i \(0.557717\pi\)
\(354\) 0 0
\(355\) − 1.01275e10i − 0.637658i
\(356\) 0 0
\(357\) −1.10872e10 −0.682573
\(358\) 0 0
\(359\) 1.31213e10i 0.789952i 0.918692 + 0.394976i \(0.129247\pi\)
−0.918692 + 0.394976i \(0.870753\pi\)
\(360\) 0 0
\(361\) 1.69265e10 0.996640
\(362\) 0 0
\(363\) − 4.73746e9i − 0.272847i
\(364\) 0 0
\(365\) −9.37884e9 −0.528418
\(366\) 0 0
\(367\) 9.89380e9i 0.545379i 0.962102 + 0.272690i \(0.0879132\pi\)
−0.962102 + 0.272690i \(0.912087\pi\)
\(368\) 0 0
\(369\) −5.65782e9 −0.305171
\(370\) 0 0
\(371\) − 2.66693e10i − 1.40772i
\(372\) 0 0
\(373\) −1.01496e10 −0.524339 −0.262170 0.965022i \(-0.584438\pi\)
−0.262170 + 0.965022i \(0.584438\pi\)
\(374\) 0 0
\(375\) 5.94903e8i 0.0300830i
\(376\) 0 0
\(377\) −2.55095e10 −1.26281
\(378\) 0 0
\(379\) − 1.39748e10i − 0.677312i −0.940910 0.338656i \(-0.890028\pi\)
0.940910 0.338656i \(-0.109972\pi\)
\(380\) 0 0
\(381\) −1.21501e10 −0.576606
\(382\) 0 0
\(383\) − 2.31617e10i − 1.07640i −0.842816 0.538201i \(-0.819104\pi\)
0.842816 0.538201i \(-0.180896\pi\)
\(384\) 0 0
\(385\) −5.91292e9 −0.269128
\(386\) 0 0
\(387\) 2.68508e10i 1.19706i
\(388\) 0 0
\(389\) 1.13177e10 0.494267 0.247133 0.968981i \(-0.420511\pi\)
0.247133 + 0.968981i \(0.420511\pi\)
\(390\) 0 0
\(391\) 4.97224e10i 2.12738i
\(392\) 0 0
\(393\) 3.58401e9 0.150245
\(394\) 0 0
\(395\) 3.43444e8i 0.0141081i
\(396\) 0 0
\(397\) −1.01291e10 −0.407765 −0.203882 0.978995i \(-0.565356\pi\)
−0.203882 + 0.978995i \(0.565356\pi\)
\(398\) 0 0
\(399\) 6.84432e8i 0.0270047i
\(400\) 0 0
\(401\) 1.52259e10 0.588850 0.294425 0.955675i \(-0.404872\pi\)
0.294425 + 0.955675i \(0.404872\pi\)
\(402\) 0 0
\(403\) 4.29496e10i 1.62832i
\(404\) 0 0
\(405\) −8.10262e9 −0.301165
\(406\) 0 0
\(407\) 2.45580e9i 0.0894985i
\(408\) 0 0
\(409\) −5.16482e10 −1.84570 −0.922851 0.385156i \(-0.874148\pi\)
−0.922851 + 0.385156i \(0.874148\pi\)
\(410\) 0 0
\(411\) 8.89213e9i 0.311629i
\(412\) 0 0
\(413\) −2.05608e10 −0.706708
\(414\) 0 0
\(415\) − 1.94796e10i − 0.656731i
\(416\) 0 0
\(417\) −1.76790e10 −0.584673
\(418\) 0 0
\(419\) 2.90780e10i 0.943427i 0.881752 + 0.471714i \(0.156364\pi\)
−0.881752 + 0.471714i \(0.843636\pi\)
\(420\) 0 0
\(421\) 2.02634e9 0.0645037 0.0322519 0.999480i \(-0.489732\pi\)
0.0322519 + 0.999480i \(0.489732\pi\)
\(422\) 0 0
\(423\) − 1.08939e10i − 0.340268i
\(424\) 0 0
\(425\) 9.56056e9 0.293040
\(426\) 0 0
\(427\) 3.25681e10i 0.979671i
\(428\) 0 0
\(429\) 5.33376e9 0.157472
\(430\) 0 0
\(431\) 2.31188e10i 0.669972i 0.942223 + 0.334986i \(0.108732\pi\)
−0.942223 + 0.334986i \(0.891268\pi\)
\(432\) 0 0
\(433\) −5.16117e10 −1.46824 −0.734119 0.679021i \(-0.762405\pi\)
−0.734119 + 0.679021i \(0.762405\pi\)
\(434\) 0 0
\(435\) − 6.31141e9i − 0.176266i
\(436\) 0 0
\(437\) 3.06945e9 0.0841656
\(438\) 0 0
\(439\) − 4.07914e10i − 1.09827i −0.835733 0.549137i \(-0.814957\pi\)
0.835733 0.549137i \(-0.185043\pi\)
\(440\) 0 0
\(441\) −3.08086e10 −0.814549
\(442\) 0 0
\(443\) − 1.78192e9i − 0.0462671i −0.999732 0.0231336i \(-0.992636\pi\)
0.999732 0.0231336i \(-0.00736430\pi\)
\(444\) 0 0
\(445\) −1.56063e10 −0.397978
\(446\) 0 0
\(447\) − 1.99057e10i − 0.498593i
\(448\) 0 0
\(449\) 5.74811e10 1.41429 0.707147 0.707067i \(-0.249982\pi\)
0.707147 + 0.707067i \(0.249982\pi\)
\(450\) 0 0
\(451\) − 6.18523e9i − 0.149503i
\(452\) 0 0
\(453\) 2.10895e10 0.500811
\(454\) 0 0
\(455\) 2.86084e10i 0.667496i
\(456\) 0 0
\(457\) −4.50957e10 −1.03388 −0.516941 0.856021i \(-0.672929\pi\)
−0.516941 + 0.856021i \(0.672929\pi\)
\(458\) 0 0
\(459\) − 4.12732e10i − 0.929860i
\(460\) 0 0
\(461\) −7.73092e10 −1.71170 −0.855850 0.517225i \(-0.826965\pi\)
−0.855850 + 0.517225i \(0.826965\pi\)
\(462\) 0 0
\(463\) 8.52854e10i 1.85588i 0.372726 + 0.927941i \(0.378423\pi\)
−0.372726 + 0.927941i \(0.621577\pi\)
\(464\) 0 0
\(465\) −1.06263e10 −0.227286
\(466\) 0 0
\(467\) − 3.20726e10i − 0.674320i −0.941447 0.337160i \(-0.890534\pi\)
0.941447 0.337160i \(-0.109466\pi\)
\(468\) 0 0
\(469\) −3.97112e9 −0.0820770
\(470\) 0 0
\(471\) 8.65041e9i 0.175773i
\(472\) 0 0
\(473\) −2.93538e10 −0.586435
\(474\) 0 0
\(475\) − 5.90190e8i − 0.0115936i
\(476\) 0 0
\(477\) 4.66635e10 0.901371
\(478\) 0 0
\(479\) − 3.58893e10i − 0.681746i −0.940109 0.340873i \(-0.889277\pi\)
0.940109 0.340873i \(-0.110723\pi\)
\(480\) 0 0
\(481\) 1.18819e10 0.221976
\(482\) 0 0
\(483\) − 3.68118e10i − 0.676393i
\(484\) 0 0
\(485\) 1.67029e10 0.301874
\(486\) 0 0
\(487\) − 5.98567e10i − 1.06414i −0.846702 0.532068i \(-0.821415\pi\)
0.846702 0.532068i \(-0.178585\pi\)
\(488\) 0 0
\(489\) −5.50329e8 −0.00962470
\(490\) 0 0
\(491\) 3.00275e10i 0.516645i 0.966059 + 0.258323i \(0.0831698\pi\)
−0.966059 + 0.258323i \(0.916830\pi\)
\(492\) 0 0
\(493\) −1.01429e11 −1.71702
\(494\) 0 0
\(495\) − 1.03459e10i − 0.172325i
\(496\) 0 0
\(497\) 1.20496e11 1.97491
\(498\) 0 0
\(499\) − 2.32602e10i − 0.375156i −0.982250 0.187578i \(-0.939936\pi\)
0.982250 0.187578i \(-0.0600637\pi\)
\(500\) 0 0
\(501\) 1.54128e9 0.0244641
\(502\) 0 0
\(503\) 2.16574e10i 0.338326i 0.985588 + 0.169163i \(0.0541064\pi\)
−0.985588 + 0.169163i \(0.945894\pi\)
\(504\) 0 0
\(505\) 2.69097e10 0.413755
\(506\) 0 0
\(507\) − 3.58300e9i − 0.0542270i
\(508\) 0 0
\(509\) −1.21565e10 −0.181108 −0.0905541 0.995892i \(-0.528864\pi\)
−0.0905541 + 0.995892i \(0.528864\pi\)
\(510\) 0 0
\(511\) − 1.11589e11i − 1.63658i
\(512\) 0 0
\(513\) −2.54787e9 −0.0367881
\(514\) 0 0
\(515\) − 5.48709e10i − 0.780034i
\(516\) 0 0
\(517\) 1.19094e10 0.166697
\(518\) 0 0
\(519\) − 2.99091e10i − 0.412225i
\(520\) 0 0
\(521\) −5.20805e10 −0.706845 −0.353422 0.935464i \(-0.614982\pi\)
−0.353422 + 0.935464i \(0.614982\pi\)
\(522\) 0 0
\(523\) 2.42007e10i 0.323461i 0.986835 + 0.161731i \(0.0517075\pi\)
−0.986835 + 0.161731i \(0.948292\pi\)
\(524\) 0 0
\(525\) −7.07813e9 −0.0931711
\(526\) 0 0
\(527\) 1.70774e11i 2.21400i
\(528\) 0 0
\(529\) −8.67778e10 −1.10812
\(530\) 0 0
\(531\) − 3.59755e10i − 0.452510i
\(532\) 0 0
\(533\) −2.99260e10 −0.370800
\(534\) 0 0
\(535\) − 4.59609e10i − 0.561014i
\(536\) 0 0
\(537\) 1.75664e10 0.211244
\(538\) 0 0
\(539\) − 3.36805e10i − 0.399046i
\(540\) 0 0
\(541\) 7.39316e10 0.863060 0.431530 0.902099i \(-0.357974\pi\)
0.431530 + 0.902099i \(0.357974\pi\)
\(542\) 0 0
\(543\) − 1.84988e10i − 0.212786i
\(544\) 0 0
\(545\) −5.07812e10 −0.575595
\(546\) 0 0
\(547\) 9.08736e10i 1.01505i 0.861636 + 0.507526i \(0.169440\pi\)
−0.861636 + 0.507526i \(0.830560\pi\)
\(548\) 0 0
\(549\) −5.69847e10 −0.627290
\(550\) 0 0
\(551\) 6.26140e9i 0.0679305i
\(552\) 0 0
\(553\) −4.08628e9 −0.0436946
\(554\) 0 0
\(555\) 2.93975e9i 0.0309840i
\(556\) 0 0
\(557\) 7.25820e9 0.0754064 0.0377032 0.999289i \(-0.487996\pi\)
0.0377032 + 0.999289i \(0.487996\pi\)
\(558\) 0 0
\(559\) 1.42022e11i 1.45449i
\(560\) 0 0
\(561\) 2.12077e10 0.214113
\(562\) 0 0
\(563\) 4.02851e10i 0.400969i 0.979697 + 0.200485i \(0.0642517\pi\)
−0.979697 + 0.200485i \(0.935748\pi\)
\(564\) 0 0
\(565\) 3.65119e10 0.358295
\(566\) 0 0
\(567\) − 9.64045e10i − 0.932750i
\(568\) 0 0
\(569\) 4.42204e10 0.421866 0.210933 0.977501i \(-0.432350\pi\)
0.210933 + 0.977501i \(0.432350\pi\)
\(570\) 0 0
\(571\) 1.92416e11i 1.81008i 0.425327 + 0.905040i \(0.360159\pi\)
−0.425327 + 0.905040i \(0.639841\pi\)
\(572\) 0 0
\(573\) −4.18835e9 −0.0388530
\(574\) 0 0
\(575\) 3.17431e10i 0.290387i
\(576\) 0 0
\(577\) 5.62180e10 0.507192 0.253596 0.967310i \(-0.418387\pi\)
0.253596 + 0.967310i \(0.418387\pi\)
\(578\) 0 0
\(579\) − 2.63651e9i − 0.0234593i
\(580\) 0 0
\(581\) 2.31767e11 2.03398
\(582\) 0 0
\(583\) 5.10133e10i 0.441580i
\(584\) 0 0
\(585\) −5.00565e10 −0.427402
\(586\) 0 0
\(587\) − 2.12589e11i − 1.79056i −0.445508 0.895278i \(-0.646977\pi\)
0.445508 0.895278i \(-0.353023\pi\)
\(588\) 0 0
\(589\) 1.05422e10 0.0875927
\(590\) 0 0
\(591\) − 7.75800e10i − 0.635916i
\(592\) 0 0
\(593\) −3.64674e10 −0.294908 −0.147454 0.989069i \(-0.547108\pi\)
−0.147454 + 0.989069i \(0.547108\pi\)
\(594\) 0 0
\(595\) 1.13751e11i 0.907585i
\(596\) 0 0
\(597\) −2.37359e10 −0.186857
\(598\) 0 0
\(599\) − 1.54791e11i − 1.20237i −0.799111 0.601184i \(-0.794696\pi\)
0.799111 0.601184i \(-0.205304\pi\)
\(600\) 0 0
\(601\) 1.37850e11 1.05659 0.528297 0.849059i \(-0.322831\pi\)
0.528297 + 0.849059i \(0.322831\pi\)
\(602\) 0 0
\(603\) − 6.94830e9i − 0.0525545i
\(604\) 0 0
\(605\) −4.86048e10 −0.362792
\(606\) 0 0
\(607\) 4.21916e10i 0.310793i 0.987852 + 0.155396i \(0.0496655\pi\)
−0.987852 + 0.155396i \(0.950335\pi\)
\(608\) 0 0
\(609\) 7.50928e10 0.545920
\(610\) 0 0
\(611\) − 5.76211e10i − 0.413444i
\(612\) 0 0
\(613\) 1.76436e11 1.24953 0.624763 0.780815i \(-0.285196\pi\)
0.624763 + 0.780815i \(0.285196\pi\)
\(614\) 0 0
\(615\) − 7.40410e9i − 0.0517573i
\(616\) 0 0
\(617\) 3.80722e10 0.262705 0.131352 0.991336i \(-0.458068\pi\)
0.131352 + 0.991336i \(0.458068\pi\)
\(618\) 0 0
\(619\) 4.67363e10i 0.318340i 0.987251 + 0.159170i \(0.0508818\pi\)
−0.987251 + 0.159170i \(0.949118\pi\)
\(620\) 0 0
\(621\) 1.37036e11 0.921441
\(622\) 0 0
\(623\) − 1.85683e11i − 1.23259i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 0 0
\(627\) − 1.30919e9i − 0.00847096i
\(628\) 0 0
\(629\) 4.72440e10 0.301817
\(630\) 0 0
\(631\) 1.82629e11i 1.15200i 0.817450 + 0.576000i \(0.195387\pi\)
−0.817450 + 0.576000i \(0.804613\pi\)
\(632\) 0 0
\(633\) −6.05834e10 −0.377345
\(634\) 0 0
\(635\) 1.24656e11i 0.766686i
\(636\) 0 0
\(637\) −1.62956e11 −0.989721
\(638\) 0 0
\(639\) 2.10833e11i 1.26455i
\(640\) 0 0
\(641\) 1.05531e11 0.625100 0.312550 0.949901i \(-0.398817\pi\)
0.312550 + 0.949901i \(0.398817\pi\)
\(642\) 0 0
\(643\) − 1.09834e11i − 0.642528i −0.946990 0.321264i \(-0.895892\pi\)
0.946990 0.321264i \(-0.104108\pi\)
\(644\) 0 0
\(645\) −3.51383e10 −0.203022
\(646\) 0 0
\(647\) 4.48807e9i 0.0256119i 0.999918 + 0.0128060i \(0.00407638\pi\)
−0.999918 + 0.0128060i \(0.995924\pi\)
\(648\) 0 0
\(649\) 3.93290e10 0.221684
\(650\) 0 0
\(651\) − 1.26432e11i − 0.703934i
\(652\) 0 0
\(653\) −2.96586e11 −1.63117 −0.815583 0.578640i \(-0.803584\pi\)
−0.815583 + 0.578640i \(0.803584\pi\)
\(654\) 0 0
\(655\) − 3.67708e10i − 0.199773i
\(656\) 0 0
\(657\) 1.95248e11 1.04791
\(658\) 0 0
\(659\) 8.22505e10i 0.436111i 0.975936 + 0.218056i \(0.0699714\pi\)
−0.975936 + 0.218056i \(0.930029\pi\)
\(660\) 0 0
\(661\) 1.54172e11 0.807608 0.403804 0.914845i \(-0.367688\pi\)
0.403804 + 0.914845i \(0.367688\pi\)
\(662\) 0 0
\(663\) − 1.02609e11i − 0.531047i
\(664\) 0 0
\(665\) 7.02205e9 0.0359068
\(666\) 0 0
\(667\) − 3.36766e11i − 1.70147i
\(668\) 0 0
\(669\) −4.79726e10 −0.239491
\(670\) 0 0
\(671\) − 6.22966e10i − 0.307308i
\(672\) 0 0
\(673\) 2.82157e11 1.37541 0.687703 0.725992i \(-0.258619\pi\)
0.687703 + 0.725992i \(0.258619\pi\)
\(674\) 0 0
\(675\) − 2.63491e10i − 0.126926i
\(676\) 0 0
\(677\) 2.70699e11 1.28864 0.644320 0.764756i \(-0.277140\pi\)
0.644320 + 0.764756i \(0.277140\pi\)
\(678\) 0 0
\(679\) 1.98730e11i 0.934943i
\(680\) 0 0
\(681\) −5.05220e10 −0.234905
\(682\) 0 0
\(683\) 3.96155e10i 0.182046i 0.995849 + 0.0910232i \(0.0290137\pi\)
−0.995849 + 0.0910232i \(0.970986\pi\)
\(684\) 0 0
\(685\) 9.12304e10 0.414359
\(686\) 0 0
\(687\) − 3.08088e10i − 0.138308i
\(688\) 0 0
\(689\) 2.46818e11 1.09521
\(690\) 0 0
\(691\) − 1.26869e11i − 0.556472i −0.960513 0.278236i \(-0.910250\pi\)
0.960513 0.278236i \(-0.0897497\pi\)
\(692\) 0 0
\(693\) 1.23095e11 0.533712
\(694\) 0 0
\(695\) 1.81381e11i 0.777413i
\(696\) 0 0
\(697\) −1.18990e11 −0.504171
\(698\) 0 0
\(699\) − 6.12800e10i − 0.256691i
\(700\) 0 0
\(701\) 6.26836e10 0.259587 0.129793 0.991541i \(-0.458569\pi\)
0.129793 + 0.991541i \(0.458569\pi\)
\(702\) 0 0
\(703\) − 2.91646e9i − 0.0119408i
\(704\) 0 0
\(705\) 1.42563e10 0.0577098
\(706\) 0 0
\(707\) 3.20170e11i 1.28146i
\(708\) 0 0
\(709\) 3.57762e11 1.41582 0.707912 0.706300i \(-0.249637\pi\)
0.707912 + 0.706300i \(0.249637\pi\)
\(710\) 0 0
\(711\) − 7.14981e9i − 0.0279780i
\(712\) 0 0
\(713\) −5.67004e11 −2.19396
\(714\) 0 0
\(715\) − 5.47226e10i − 0.209384i
\(716\) 0 0
\(717\) 7.55280e10 0.285780
\(718\) 0 0
\(719\) − 1.70342e11i − 0.637392i −0.947857 0.318696i \(-0.896755\pi\)
0.947857 0.318696i \(-0.103245\pi\)
\(720\) 0 0
\(721\) 6.52852e11 2.41587
\(722\) 0 0
\(723\) 4.37298e9i 0.0160038i
\(724\) 0 0
\(725\) −6.47530e10 −0.234373
\(726\) 0 0
\(727\) − 6.56094e10i − 0.234870i −0.993081 0.117435i \(-0.962533\pi\)
0.993081 0.117435i \(-0.0374672\pi\)
\(728\) 0 0
\(729\) 1.08395e11 0.383796
\(730\) 0 0
\(731\) 5.64700e11i 1.97765i
\(732\) 0 0
\(733\) −2.60967e11 −0.904003 −0.452001 0.892017i \(-0.649290\pi\)
−0.452001 + 0.892017i \(0.649290\pi\)
\(734\) 0 0
\(735\) − 4.03176e10i − 0.138148i
\(736\) 0 0
\(737\) 7.59601e9 0.0257463
\(738\) 0 0
\(739\) 4.19763e11i 1.40743i 0.710483 + 0.703715i \(0.248477\pi\)
−0.710483 + 0.703715i \(0.751523\pi\)
\(740\) 0 0
\(741\) −6.33425e9 −0.0210098
\(742\) 0 0
\(743\) − 1.42604e11i − 0.467925i −0.972246 0.233962i \(-0.924831\pi\)
0.972246 0.233962i \(-0.0751693\pi\)
\(744\) 0 0
\(745\) −2.04226e11 −0.662957
\(746\) 0 0
\(747\) 4.05525e11i 1.30237i
\(748\) 0 0
\(749\) 5.46841e11 1.73754
\(750\) 0 0
\(751\) − 3.26311e10i − 0.102582i −0.998684 0.0512911i \(-0.983666\pi\)
0.998684 0.0512911i \(-0.0163336\pi\)
\(752\) 0 0
\(753\) 1.57380e11 0.489518
\(754\) 0 0
\(755\) − 2.16371e11i − 0.665905i
\(756\) 0 0
\(757\) 4.36612e11 1.32957 0.664787 0.747033i \(-0.268522\pi\)
0.664787 + 0.747033i \(0.268522\pi\)
\(758\) 0 0
\(759\) 7.04142e10i 0.212174i
\(760\) 0 0
\(761\) −1.98059e11 −0.590548 −0.295274 0.955413i \(-0.595411\pi\)
−0.295274 + 0.955413i \(0.595411\pi\)
\(762\) 0 0
\(763\) − 6.04192e11i − 1.78269i
\(764\) 0 0
\(765\) −1.99031e11 −0.581133
\(766\) 0 0
\(767\) − 1.90285e11i − 0.549824i
\(768\) 0 0
\(769\) −1.42097e10 −0.0406329 −0.0203165 0.999794i \(-0.506467\pi\)
−0.0203165 + 0.999794i \(0.506467\pi\)
\(770\) 0 0
\(771\) − 1.24705e11i − 0.352912i
\(772\) 0 0
\(773\) −6.62483e10 −0.185548 −0.0927741 0.995687i \(-0.529573\pi\)
−0.0927741 + 0.995687i \(0.529573\pi\)
\(774\) 0 0
\(775\) 1.09023e11i 0.302211i
\(776\) 0 0
\(777\) −3.49770e10 −0.0959617
\(778\) 0 0
\(779\) 7.34544e9i 0.0199466i
\(780\) 0 0
\(781\) −2.30487e11 −0.619501
\(782\) 0 0
\(783\) 2.79540e11i 0.743700i
\(784\) 0 0
\(785\) 8.87504e10 0.233718
\(786\) 0 0
\(787\) 7.13437e10i 0.185976i 0.995667 + 0.0929880i \(0.0296418\pi\)
−0.995667 + 0.0929880i \(0.970358\pi\)
\(788\) 0 0
\(789\) 1.32387e10 0.0341615
\(790\) 0 0
\(791\) 4.34417e11i 1.10969i
\(792\) 0 0
\(793\) −3.01409e11 −0.762191
\(794\) 0 0
\(795\) 6.10661e10i 0.152873i
\(796\) 0 0
\(797\) −1.11980e11 −0.277527 −0.138764 0.990326i \(-0.544313\pi\)
−0.138764 + 0.990326i \(0.544313\pi\)
\(798\) 0 0
\(799\) − 2.29109e11i − 0.562154i
\(800\) 0 0
\(801\) 3.24891e11 0.789237
\(802\) 0 0
\(803\) 2.13449e11i 0.513372i
\(804\) 0 0
\(805\) −3.77677e11 −0.899368
\(806\) 0 0
\(807\) − 4.05195e10i − 0.0955365i
\(808\) 0 0
\(809\) 5.57023e10 0.130041 0.0650203 0.997884i \(-0.479289\pi\)
0.0650203 + 0.997884i \(0.479289\pi\)
\(810\) 0 0
\(811\) − 7.06448e11i − 1.63304i −0.577317 0.816520i \(-0.695900\pi\)
0.577317 0.816520i \(-0.304100\pi\)
\(812\) 0 0
\(813\) −1.85091e11 −0.423666
\(814\) 0 0
\(815\) 5.64620e9i 0.0127975i
\(816\) 0 0
\(817\) 3.48599e10 0.0782417
\(818\) 0 0
\(819\) − 5.95569e11i − 1.32372i
\(820\) 0 0
\(821\) 8.39733e10 0.184828 0.0924142 0.995721i \(-0.470542\pi\)
0.0924142 + 0.995721i \(0.470542\pi\)
\(822\) 0 0
\(823\) 1.90143e11i 0.414459i 0.978292 + 0.207229i \(0.0664446\pi\)
−0.978292 + 0.207229i \(0.933555\pi\)
\(824\) 0 0
\(825\) 1.35391e10 0.0292264
\(826\) 0 0
\(827\) − 3.98982e11i − 0.852965i −0.904496 0.426483i \(-0.859753\pi\)
0.904496 0.426483i \(-0.140247\pi\)
\(828\) 0 0
\(829\) −9.18641e11 −1.94504 −0.972518 0.232827i \(-0.925202\pi\)
−0.972518 + 0.232827i \(0.925202\pi\)
\(830\) 0 0
\(831\) 4.21536e10i 0.0883957i
\(832\) 0 0
\(833\) −6.47936e11 −1.34571
\(834\) 0 0
\(835\) − 1.58130e10i − 0.0325288i
\(836\) 0 0
\(837\) 4.70655e11 0.958960
\(838\) 0 0
\(839\) − 4.31925e11i − 0.871688i −0.900022 0.435844i \(-0.856450\pi\)
0.900022 0.435844i \(-0.143550\pi\)
\(840\) 0 0
\(841\) 1.86726e11 0.373268
\(842\) 0 0
\(843\) 2.54205e11i 0.503355i
\(844\) 0 0
\(845\) −3.67605e10 −0.0721031
\(846\) 0 0
\(847\) − 5.78298e11i − 1.12362i
\(848\) 0 0
\(849\) −2.02643e11 −0.390033
\(850\) 0 0
\(851\) 1.56860e11i 0.299085i
\(852\) 0 0
\(853\) −9.29871e11 −1.75641 −0.878206 0.478282i \(-0.841260\pi\)
−0.878206 + 0.478282i \(0.841260\pi\)
\(854\) 0 0
\(855\) 1.22866e10i 0.0229914i
\(856\) 0 0
\(857\) 1.19713e11 0.221931 0.110965 0.993824i \(-0.464606\pi\)
0.110965 + 0.993824i \(0.464606\pi\)
\(858\) 0 0
\(859\) 4.22514e11i 0.776012i 0.921657 + 0.388006i \(0.126836\pi\)
−0.921657 + 0.388006i \(0.873164\pi\)
\(860\) 0 0
\(861\) 8.80936e10 0.160299
\(862\) 0 0
\(863\) 2.84698e11i 0.513264i 0.966509 + 0.256632i \(0.0826129\pi\)
−0.966509 + 0.256632i \(0.917387\pi\)
\(864\) 0 0
\(865\) −3.06858e11 −0.548117
\(866\) 0 0
\(867\) − 2.17945e11i − 0.385719i
\(868\) 0 0
\(869\) 7.81630e9 0.0137064
\(870\) 0 0
\(871\) − 3.67517e10i − 0.0638565i
\(872\) 0 0
\(873\) −3.47721e11 −0.598651
\(874\) 0 0
\(875\) 7.26193e10i 0.123885i
\(876\) 0 0
\(877\) −1.94476e11 −0.328752 −0.164376 0.986398i \(-0.552561\pi\)
−0.164376 + 0.986398i \(0.552561\pi\)
\(878\) 0 0
\(879\) − 4.33753e10i − 0.0726585i
\(880\) 0 0
\(881\) 9.06691e11 1.50507 0.752533 0.658555i \(-0.228832\pi\)
0.752533 + 0.658555i \(0.228832\pi\)
\(882\) 0 0
\(883\) 2.26542e11i 0.372654i 0.982488 + 0.186327i \(0.0596584\pi\)
−0.982488 + 0.186327i \(0.940342\pi\)
\(884\) 0 0
\(885\) 4.70793e10 0.0767462
\(886\) 0 0
\(887\) − 1.70744e11i − 0.275837i −0.990444 0.137918i \(-0.955959\pi\)
0.990444 0.137918i \(-0.0440412\pi\)
\(888\) 0 0
\(889\) −1.48315e12 −2.37453
\(890\) 0 0
\(891\) 1.84404e11i 0.292590i
\(892\) 0 0
\(893\) −1.41433e10 −0.0222405
\(894\) 0 0
\(895\) − 1.80225e11i − 0.280882i
\(896\) 0 0
\(897\) 3.40684e11 0.526238
\(898\) 0 0
\(899\) − 1.15664e12i − 1.77075i
\(900\) 0 0
\(901\) 9.81380e11 1.48915
\(902\) 0 0
\(903\) − 4.18074e11i − 0.628785i
\(904\) 0 0
\(905\) −1.89791e11 −0.282932
\(906\) 0 0
\(907\) 5.20431e11i 0.769013i 0.923122 + 0.384507i \(0.125628\pi\)
−0.923122 + 0.384507i \(0.874372\pi\)
\(908\) 0 0
\(909\) −5.60205e11 −0.820525
\(910\) 0 0
\(911\) 5.42499e11i 0.787635i 0.919189 + 0.393818i \(0.128846\pi\)
−0.919189 + 0.393818i \(0.871154\pi\)
\(912\) 0 0
\(913\) −4.43327e11 −0.638030
\(914\) 0 0
\(915\) − 7.45729e10i − 0.106389i
\(916\) 0 0
\(917\) 4.37497e11 0.618725
\(918\) 0 0
\(919\) − 6.49225e11i − 0.910192i −0.890442 0.455096i \(-0.849605\pi\)
0.890442 0.455096i \(-0.150395\pi\)
\(920\) 0 0
\(921\) 9.16364e10 0.127359
\(922\) 0 0
\(923\) 1.11516e12i 1.53650i
\(924\) 0 0
\(925\) 3.01609e10 0.0411981
\(926\) 0 0
\(927\) 1.14230e12i 1.54690i
\(928\) 0 0
\(929\) 4.98636e11 0.669455 0.334727 0.942315i \(-0.391356\pi\)
0.334727 + 0.942315i \(0.391356\pi\)
\(930\) 0 0
\(931\) 3.99982e10i 0.0532404i
\(932\) 0 0
\(933\) −3.35785e11 −0.443133
\(934\) 0 0
\(935\) − 2.17585e11i − 0.284696i
\(936\) 0 0
\(937\) 4.01408e11 0.520748 0.260374 0.965508i \(-0.416154\pi\)
0.260374 + 0.965508i \(0.416154\pi\)
\(938\) 0 0
\(939\) − 7.57332e10i − 0.0974146i
\(940\) 0 0
\(941\) 2.64682e10 0.0337572 0.0168786 0.999858i \(-0.494627\pi\)
0.0168786 + 0.999858i \(0.494627\pi\)
\(942\) 0 0
\(943\) − 3.95071e11i − 0.499606i
\(944\) 0 0
\(945\) 3.13500e11 0.393106
\(946\) 0 0
\(947\) − 5.71352e11i − 0.710401i −0.934790 0.355201i \(-0.884413\pi\)
0.934790 0.355201i \(-0.115587\pi\)
\(948\) 0 0
\(949\) 1.03273e12 1.27327
\(950\) 0 0
\(951\) − 1.47163e10i − 0.0179918i
\(952\) 0 0
\(953\) −1.09917e12 −1.33258 −0.666288 0.745694i \(-0.732118\pi\)
−0.666288 + 0.745694i \(0.732118\pi\)
\(954\) 0 0
\(955\) 4.29711e10i 0.0516611i
\(956\) 0 0
\(957\) −1.43639e11 −0.171247
\(958\) 0 0
\(959\) 1.08545e12i 1.28333i
\(960\) 0 0
\(961\) −1.09451e12 −1.28329
\(962\) 0 0
\(963\) 9.56813e11i 1.11256i
\(964\) 0 0
\(965\) −2.70497e10 −0.0311928
\(966\) 0 0
\(967\) 8.78566e11i 1.00477i 0.864643 + 0.502387i \(0.167545\pi\)
−0.864643 + 0.502387i \(0.832455\pi\)
\(968\) 0 0
\(969\) −2.51858e10 −0.0285668
\(970\) 0 0
\(971\) 7.91945e11i 0.890878i 0.895312 + 0.445439i \(0.146952\pi\)
−0.895312 + 0.445439i \(0.853048\pi\)
\(972\) 0 0
\(973\) −2.15806e12 −2.40775
\(974\) 0 0
\(975\) − 6.55064e10i − 0.0724878i
\(976\) 0 0
\(977\) −5.46919e11 −0.600268 −0.300134 0.953897i \(-0.597031\pi\)
−0.300134 + 0.953897i \(0.597031\pi\)
\(978\) 0 0
\(979\) 3.55177e11i 0.386646i
\(980\) 0 0
\(981\) 1.05716e12 1.14147
\(982\) 0 0
\(983\) 7.38083e11i 0.790481i 0.918578 + 0.395240i \(0.129339\pi\)
−0.918578 + 0.395240i \(0.870661\pi\)
\(984\) 0 0
\(985\) −7.95946e11 −0.845549
\(986\) 0 0
\(987\) 1.69620e11i 0.178735i
\(988\) 0 0
\(989\) −1.87492e12 −1.95974
\(990\) 0 0
\(991\) − 3.73877e11i − 0.387645i −0.981037 0.193823i \(-0.937911\pi\)
0.981037 0.193823i \(-0.0620886\pi\)
\(992\) 0 0
\(993\) −3.29959e11 −0.339362
\(994\) 0 0
\(995\) 2.43523e11i 0.248455i
\(996\) 0 0
\(997\) −1.14224e12 −1.15605 −0.578025 0.816019i \(-0.696177\pi\)
−0.578025 + 0.816019i \(0.696177\pi\)
\(998\) 0 0
\(999\) − 1.30205e11i − 0.130727i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.9.b.d.191.7 16
4.3 odd 2 inner 320.9.b.d.191.10 16
8.3 odd 2 20.9.b.a.11.14 yes 16
8.5 even 2 20.9.b.a.11.13 16
24.5 odd 2 180.9.c.a.91.4 16
24.11 even 2 180.9.c.a.91.3 16
40.3 even 4 100.9.d.c.99.23 32
40.13 odd 4 100.9.d.c.99.9 32
40.19 odd 2 100.9.b.d.51.3 16
40.27 even 4 100.9.d.c.99.10 32
40.29 even 2 100.9.b.d.51.4 16
40.37 odd 4 100.9.d.c.99.24 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.13 16 8.5 even 2
20.9.b.a.11.14 yes 16 8.3 odd 2
100.9.b.d.51.3 16 40.19 odd 2
100.9.b.d.51.4 16 40.29 even 2
100.9.d.c.99.9 32 40.13 odd 4
100.9.d.c.99.10 32 40.27 even 4
100.9.d.c.99.23 32 40.3 even 4
100.9.d.c.99.24 32 40.37 odd 4
180.9.c.a.91.3 16 24.11 even 2
180.9.c.a.91.4 16 24.5 odd 2
320.9.b.d.191.7 16 1.1 even 1 trivial
320.9.b.d.191.10 16 4.3 odd 2 inner