Properties

Label 100.9.b.d.51.3
Level $100$
Weight $9$
Character 100.51
Analytic conductor $40.738$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(51,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.51"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 26 x^{14} - 834 x^{13} + 4390 x^{12} - 61783 x^{11} + 466168 x^{10} + \cdots + 206161212459445 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{61}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.3
Root \(-4.16577 + 5.52698i\) of defining polynomial
Character \(\chi\) \(=\) 100.51
Dual form 100.9.b.d.51.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.5676 - 11.0540i) q^{2} +27.2434i q^{3} +(11.6196 + 255.736i) q^{4} +(301.148 - 315.141i) q^{6} -3325.58i q^{7} +(2692.49 - 3086.70i) q^{8} +5818.80 q^{9} +6361.21i q^{11} +(-6967.12 + 316.557i) q^{12} +30777.4 q^{13} +(-36760.8 + 38469.0i) q^{14} +(-65266.0 + 5943.09i) q^{16} -122375. q^{17} +(-67309.6 - 64320.8i) q^{18} -7554.43i q^{19} +90600.1 q^{21} +(70316.6 - 73584.1i) q^{22} +406311. i q^{23} +(84092.2 + 73352.6i) q^{24} +(-356021. - 340213. i) q^{26} +337268. i q^{27} +(850471. - 38641.8i) q^{28} +828838. q^{29} -1.39549e6i q^{31} +(820666. + 652701. i) q^{32} -173301. q^{33} +(1.41559e6 + 1.35273e6i) q^{34} +(67611.9 + 1.48808e6i) q^{36} +386059. q^{37} +(-83506.4 + 87386.8i) q^{38} +838482. i q^{39} -972335. q^{41} +(-1.04803e6 - 1.00149e6i) q^{42} -4.61450e6i q^{43} +(-1.62679e6 + 73914.5i) q^{44} +(4.49135e6 - 4.70005e6i) q^{46} -1.87219e6i q^{47} +(-161910. - 1.77807e6i) q^{48} -5.29467e6 q^{49} -3.33392e6i q^{51} +(357620. + 7.87090e6i) q^{52} +8.01944e6 q^{53} +(3.72815e6 - 3.90139e6i) q^{54} +(-1.02651e7 - 8.95408e6i) q^{56} +205808. q^{57} +(-9.58768e6 - 9.16195e6i) q^{58} -6.18263e6i q^{59} +9.79320e6 q^{61} +(-1.54257e7 + 1.61425e7i) q^{62} -1.93509e7i q^{63} +(-2.27822e6 - 1.66218e7i) q^{64} +(2.00468e6 + 1.91566e6i) q^{66} +1.19411e6i q^{67} +(-1.42195e6 - 3.12958e7i) q^{68} -1.10693e7 q^{69} -3.62332e7i q^{71} +(1.56670e7 - 1.79609e7i) q^{72} -3.35548e7 q^{73} +(-4.46578e6 - 4.26748e6i) q^{74} +(1.93194e6 - 87779.2i) q^{76} +2.11547e7 q^{77} +(9.26855e6 - 9.69923e6i) q^{78} +1.22874e6i q^{79} +2.89888e7 q^{81} +(1.12476e7 + 1.07482e7i) q^{82} -6.96923e7i q^{83} +(1.05273e6 + 2.31697e7i) q^{84} +(-5.10086e7 + 5.33788e7i) q^{86} +2.25804e7i q^{87} +(1.96352e7 + 1.71275e7i) q^{88} +5.58347e7 q^{89} -1.02353e8i q^{91} +(-1.03908e8 + 4.72116e6i) q^{92} +3.80180e7 q^{93} +(-2.06951e7 + 2.16567e7i) q^{94} +(-1.77818e7 + 2.23578e7i) q^{96} +5.97582e7 q^{97} +(6.12467e7 + 5.85271e7i) q^{98} +3.70146e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 4368 q^{6} + 14184 q^{8} - 38800 q^{9} + 64040 q^{12} - 51392 q^{13} + 68472 q^{14} - 81424 q^{16} - 27552 q^{17} + 616994 q^{18} + 414496 q^{21} + 389120 q^{22} + 163792 q^{24}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −11.5676 11.0540i −0.722976 0.690873i
\(3\) 27.2434i 0.336338i 0.985758 + 0.168169i \(0.0537855\pi\)
−0.985758 + 0.168169i \(0.946215\pi\)
\(4\) 11.6196 + 255.736i 0.0453889 + 0.998969i
\(5\) 0 0
\(6\) 301.148 315.141i 0.232367 0.243165i
\(7\) 3325.58i 1.38508i −0.721379 0.692540i \(-0.756492\pi\)
0.721379 0.692540i \(-0.243508\pi\)
\(8\) 2692.49 3086.70i 0.657346 0.753589i
\(9\) 5818.80 0.886877
\(10\) 0 0
\(11\) 6361.21i 0.434479i 0.976118 + 0.217240i \(0.0697053\pi\)
−0.976118 + 0.217240i \(0.930295\pi\)
\(12\) −6967.12 + 316.557i −0.335992 + 0.0152660i
\(13\) 30777.4 1.07760 0.538801 0.842433i \(-0.318877\pi\)
0.538801 + 0.842433i \(0.318877\pi\)
\(14\) −36760.8 + 38469.0i −0.956915 + 1.00138i
\(15\) 0 0
\(16\) −65266.0 + 5943.09i −0.995880 + 0.0906843i
\(17\) −122375. −1.46520 −0.732601 0.680658i \(-0.761694\pi\)
−0.732601 + 0.680658i \(0.761694\pi\)
\(18\) −67309.6 64320.8i −0.641191 0.612719i
\(19\) 7554.43i 0.0579679i −0.999580 0.0289839i \(-0.990773\pi\)
0.999580 0.0289839i \(-0.00922717\pi\)
\(20\) 0 0
\(21\) 90600.1 0.465856
\(22\) 70316.6 73584.1i 0.300170 0.314118i
\(23\) 406311.i 1.45194i 0.687729 + 0.725968i \(0.258608\pi\)
−0.687729 + 0.725968i \(0.741392\pi\)
\(24\) 84092.2 + 73352.6i 0.253461 + 0.221091i
\(25\) 0 0
\(26\) −356021. 340213.i −0.779081 0.744487i
\(27\) 337268.i 0.634629i
\(28\) 850471. 38641.8i 1.38365 0.0628673i
\(29\) 828838. 1.17187 0.585933 0.810360i \(-0.300728\pi\)
0.585933 + 0.810360i \(0.300728\pi\)
\(30\) 0 0
\(31\) 1.39549e6i 1.51106i −0.655116 0.755528i \(-0.727380\pi\)
0.655116 0.755528i \(-0.272620\pi\)
\(32\) 820666. + 652701.i 0.782649 + 0.622464i
\(33\) −173301. −0.146132
\(34\) 1.41559e6 + 1.35273e6i 1.05931 + 1.01227i
\(35\) 0 0
\(36\) 67611.9 + 1.48808e6i 0.0402544 + 0.885962i
\(37\) 386059. 0.205990 0.102995 0.994682i \(-0.467157\pi\)
0.102995 + 0.994682i \(0.467157\pi\)
\(38\) −83506.4 + 87386.8i −0.0400484 + 0.0419094i
\(39\) 838482.i 0.362439i
\(40\) 0 0
\(41\) −972335. −0.344097 −0.172048 0.985089i \(-0.555039\pi\)
−0.172048 + 0.985089i \(0.555039\pi\)
\(42\) −1.04803e6 1.00149e6i −0.336803 0.321847i
\(43\) 4.61450e6i 1.34974i −0.737935 0.674871i \(-0.764199\pi\)
0.737935 0.674871i \(-0.235801\pi\)
\(44\) −1.62679e6 + 73914.5i −0.434032 + 0.0197205i
\(45\) 0 0
\(46\) 4.49135e6 4.70005e6i 1.00310 1.04971i
\(47\) 1.87219e6i 0.383670i −0.981427 0.191835i \(-0.938556\pi\)
0.981427 0.191835i \(-0.0614438\pi\)
\(48\) −161910. 1.77807e6i −0.0305006 0.334953i
\(49\) −5.29467e6 −0.918447
\(50\) 0 0
\(51\) 3.33392e6i 0.492804i
\(52\) 357620. + 7.87090e6i 0.0489112 + 1.07649i
\(53\) 8.01944e6 1.01634 0.508172 0.861256i \(-0.330322\pi\)
0.508172 + 0.861256i \(0.330322\pi\)
\(54\) 3.72815e6 3.90139e6i 0.438448 0.458822i
\(55\) 0 0
\(56\) −1.02651e7 8.95408e6i −1.04378 0.910477i
\(57\) 205808. 0.0194968
\(58\) −9.58768e6 9.16195e6i −0.847231 0.809610i
\(59\) 6.18263e6i 0.510229i −0.966911 0.255115i \(-0.917887\pi\)
0.966911 0.255115i \(-0.0821132\pi\)
\(60\) 0 0
\(61\) 9.79320e6 0.707303 0.353651 0.935377i \(-0.384940\pi\)
0.353651 + 0.935377i \(0.384940\pi\)
\(62\) −1.54257e7 + 1.61425e7i −1.04395 + 1.09246i
\(63\) 1.93509e7i 1.22840i
\(64\) −2.27822e6 1.66218e7i −0.135793 0.990737i
\(65\) 0 0
\(66\) 2.00468e6 + 1.91566e6i 0.105650 + 0.100959i
\(67\) 1.19411e6i 0.0592579i 0.999561 + 0.0296290i \(0.00943257\pi\)
−0.999561 + 0.0296290i \(0.990567\pi\)
\(68\) −1.42195e6 3.12958e7i −0.0665039 1.46369i
\(69\) −1.10693e7 −0.488342
\(70\) 0 0
\(71\) 3.62332e7i 1.42585i −0.701242 0.712923i \(-0.747371\pi\)
0.701242 0.712923i \(-0.252629\pi\)
\(72\) 1.56670e7 1.79609e7i 0.582985 0.668340i
\(73\) −3.35548e7 −1.18158 −0.590790 0.806826i \(-0.701184\pi\)
−0.590790 + 0.806826i \(0.701184\pi\)
\(74\) −4.46578e6 4.26748e6i −0.148926 0.142313i
\(75\) 0 0
\(76\) 1.93194e6 87779.2i 0.0579081 0.00263110i
\(77\) 2.11547e7 0.601789
\(78\) 9.26855e6 9.69923e6i 0.250399 0.262035i
\(79\) 1.22874e6i 0.0315466i 0.999876 + 0.0157733i \(0.00502101\pi\)
−0.999876 + 0.0157733i \(0.994979\pi\)
\(80\) 0 0
\(81\) 2.89888e7 0.673426
\(82\) 1.12476e7 + 1.07482e7i 0.248774 + 0.237727i
\(83\) 6.96923e7i 1.46849i −0.678882 0.734247i \(-0.737535\pi\)
0.678882 0.734247i \(-0.262465\pi\)
\(84\) 1.05273e6 + 2.31697e7i 0.0211447 + 0.465376i
\(85\) 0 0
\(86\) −5.10086e7 + 5.33788e7i −0.932501 + 0.975832i
\(87\) 2.25804e7i 0.394143i
\(88\) 1.96352e7 + 1.71275e7i 0.327419 + 0.285603i
\(89\) 5.58347e7 0.889907 0.444953 0.895554i \(-0.353220\pi\)
0.444953 + 0.895554i \(0.353220\pi\)
\(90\) 0 0
\(91\) 1.02353e8i 1.49257i
\(92\) −1.03908e8 + 4.72116e6i −1.45044 + 0.0659018i
\(93\) 3.80180e7 0.508226
\(94\) −2.06951e7 + 2.16567e7i −0.265067 + 0.277384i
\(95\) 0 0
\(96\) −1.77818e7 + 2.23578e7i −0.209358 + 0.263235i
\(97\) 5.97582e7 0.675010 0.337505 0.941324i \(-0.390417\pi\)
0.337505 + 0.941324i \(0.390417\pi\)
\(98\) 6.12467e7 + 5.85271e7i 0.664016 + 0.634531i
\(99\) 3.70146e7i 0.385329i
\(100\) 0 0
\(101\) 9.62751e7 0.925185 0.462593 0.886571i \(-0.346919\pi\)
0.462593 + 0.886571i \(0.346919\pi\)
\(102\) −3.68530e7 + 3.85655e7i −0.340465 + 0.356285i
\(103\) 1.96312e8i 1.74421i 0.489320 + 0.872104i \(0.337245\pi\)
−0.489320 + 0.872104i \(0.662755\pi\)
\(104\) 8.28678e7 9.50006e7i 0.708358 0.812070i
\(105\) 0 0
\(106\) −9.27658e7 8.86466e7i −0.734792 0.702164i
\(107\) 1.64435e8i 1.25447i −0.778832 0.627233i \(-0.784187\pi\)
0.778832 0.627233i \(-0.215813\pi\)
\(108\) −8.62516e7 + 3.91891e6i −0.633975 + 0.0288051i
\(109\) −1.81680e8 −1.28707 −0.643534 0.765417i \(-0.722533\pi\)
−0.643534 + 0.765417i \(0.722533\pi\)
\(110\) 0 0
\(111\) 1.05176e7i 0.0692824i
\(112\) 1.97642e7 + 2.17047e8i 0.125605 + 1.37937i
\(113\) 1.30629e8 0.801172 0.400586 0.916259i \(-0.368807\pi\)
0.400586 + 0.916259i \(0.368807\pi\)
\(114\) −2.38071e6 2.27500e6i −0.0140957 0.0134698i
\(115\) 0 0
\(116\) 9.63074e6 + 2.11964e8i 0.0531897 + 1.17066i
\(117\) 1.79087e8 0.955700
\(118\) −6.83426e7 + 7.15183e7i −0.352504 + 0.368883i
\(119\) 4.06968e8i 2.02942i
\(120\) 0 0
\(121\) 1.73894e8 0.811228
\(122\) −1.13284e8 1.08254e8i −0.511363 0.488656i
\(123\) 2.64897e7i 0.115733i
\(124\) 3.56878e8 1.62150e7i 1.50950 0.0685852i
\(125\) 0 0
\(126\) −2.13904e8 + 2.23843e8i −0.848665 + 0.888100i
\(127\) 4.45982e8i 1.71436i −0.515015 0.857181i \(-0.672214\pi\)
0.515015 0.857181i \(-0.327786\pi\)
\(128\) −1.57383e8 + 2.17458e8i −0.586299 + 0.810095i
\(129\) 1.25715e8 0.453970
\(130\) 0 0
\(131\) 1.31555e8i 0.446707i 0.974738 + 0.223353i \(0.0717004\pi\)
−0.974738 + 0.223353i \(0.928300\pi\)
\(132\) −2.01368e6 4.43194e7i −0.00663278 0.145981i
\(133\) −2.51228e7 −0.0802902
\(134\) 1.31997e7 1.38130e7i 0.0409397 0.0428421i
\(135\) 0 0
\(136\) −3.29494e8 + 3.77735e8i −0.963145 + 1.10416i
\(137\) 3.26396e8 0.926536 0.463268 0.886218i \(-0.346677\pi\)
0.463268 + 0.886218i \(0.346677\pi\)
\(138\) 1.28045e8 + 1.22360e8i 0.353059 + 0.337382i
\(139\) 6.48927e8i 1.73835i −0.494506 0.869174i \(-0.664651\pi\)
0.494506 0.869174i \(-0.335349\pi\)
\(140\) 0 0
\(141\) 5.10048e7 0.129043
\(142\) −4.00520e8 + 4.19131e8i −0.985079 + 1.03085i
\(143\) 1.95782e8i 0.468196i
\(144\) −3.79769e8 + 3.45816e7i −0.883222 + 0.0804258i
\(145\) 0 0
\(146\) 3.88149e8 + 3.70913e8i 0.854253 + 0.816321i
\(147\) 1.44245e8i 0.308909i
\(148\) 4.48584e6 + 9.87292e7i 0.00934968 + 0.205778i
\(149\) −7.30660e8 −1.48242 −0.741208 0.671276i \(-0.765747\pi\)
−0.741208 + 0.671276i \(0.765747\pi\)
\(150\) 0 0
\(151\) 7.74114e8i 1.48901i −0.667618 0.744504i \(-0.732686\pi\)
0.667618 0.744504i \(-0.267314\pi\)
\(152\) −2.33183e7 2.03402e7i −0.0436840 0.0381049i
\(153\) −7.12076e8 −1.29945
\(154\) −2.44710e8 2.33843e8i −0.435079 0.415760i
\(155\) 0 0
\(156\) −2.14430e8 + 9.74279e6i −0.362066 + 0.0164507i
\(157\) −3.17523e8 −0.522609 −0.261304 0.965256i \(-0.584153\pi\)
−0.261304 + 0.965256i \(0.584153\pi\)
\(158\) 1.35825e7 1.42136e7i 0.0217947 0.0228075i
\(159\) 2.18477e8i 0.341835i
\(160\) 0 0
\(161\) 1.35122e9 2.01105
\(162\) −3.35331e8 3.20441e8i −0.486871 0.465252i
\(163\) 2.02004e7i 0.0286161i 0.999898 + 0.0143081i \(0.00455455\pi\)
−0.999898 + 0.0143081i \(0.995445\pi\)
\(164\) −1.12981e7 2.48661e8i −0.0156182 0.343742i
\(165\) 0 0
\(166\) −7.70376e8 + 8.06174e8i −1.01454 + 1.06169i
\(167\) 5.65743e7i 0.0727366i 0.999338 + 0.0363683i \(0.0115789\pi\)
−0.999338 + 0.0363683i \(0.988421\pi\)
\(168\) 2.43940e8 2.79655e8i 0.306228 0.351064i
\(169\) 1.31518e8 0.161228
\(170\) 0 0
\(171\) 4.39577e7i 0.0514103i
\(172\) 1.18009e9 5.36185e7i 1.34835 0.0612634i
\(173\) 1.09785e9 1.22563 0.612813 0.790228i \(-0.290038\pi\)
0.612813 + 0.790228i \(0.290038\pi\)
\(174\) 2.49603e8 2.61201e8i 0.272303 0.284956i
\(175\) 0 0
\(176\) −3.78052e7 4.15171e8i −0.0394004 0.432689i
\(177\) 1.68436e8 0.171610
\(178\) −6.45875e8 6.17196e8i −0.643381 0.614813i
\(179\) 6.44793e8i 0.628070i 0.949411 + 0.314035i \(0.101681\pi\)
−0.949411 + 0.314035i \(0.898319\pi\)
\(180\) 0 0
\(181\) −6.79018e8 −0.632655 −0.316328 0.948650i \(-0.602450\pi\)
−0.316328 + 0.948650i \(0.602450\pi\)
\(182\) −1.13140e9 + 1.18398e9i −1.03117 + 1.07909i
\(183\) 2.66800e8i 0.237893i
\(184\) 1.25416e9 + 1.09399e9i 1.09416 + 0.954424i
\(185\) 0 0
\(186\) −4.39777e8 4.20250e8i −0.367436 0.351120i
\(187\) 7.78454e8i 0.636600i
\(188\) 4.78786e8 2.17540e7i 0.383275 0.0174144i
\(189\) 1.12161e9 0.879012
\(190\) 0 0
\(191\) 1.53738e8i 0.115518i 0.998331 + 0.0577588i \(0.0183954\pi\)
−0.998331 + 0.0577588i \(0.981605\pi\)
\(192\) 4.52835e8 6.20666e7i 0.333223 0.0456723i
\(193\) −9.67761e7 −0.0697491 −0.0348746 0.999392i \(-0.511103\pi\)
−0.0348746 + 0.999392i \(0.511103\pi\)
\(194\) −6.91259e8 6.60565e8i −0.488016 0.466346i
\(195\) 0 0
\(196\) −6.15217e7 1.35404e9i −0.0416873 0.917501i
\(197\) 2.84766e9 1.89070 0.945352 0.326051i \(-0.105718\pi\)
0.945352 + 0.326051i \(0.105718\pi\)
\(198\) 4.09158e8 4.28171e8i 0.266214 0.278584i
\(199\) 8.71254e8i 0.555562i 0.960644 + 0.277781i \(0.0895990\pi\)
−0.960644 + 0.277781i \(0.910401\pi\)
\(200\) 0 0
\(201\) −3.25317e7 −0.0199307
\(202\) −1.11367e9 1.06422e9i −0.668887 0.639185i
\(203\) 2.75637e9i 1.62313i
\(204\) 8.52603e8 3.87387e7i 0.492296 0.0223678i
\(205\) 0 0
\(206\) 2.17003e9 2.27087e9i 1.20503 1.26102i
\(207\) 2.36424e9i 1.28769i
\(208\) −2.00872e9 + 1.82913e8i −1.07316 + 0.0977216i
\(209\) 4.80553e7 0.0251858
\(210\) 0 0
\(211\) 2.22378e9i 1.12192i −0.827843 0.560960i \(-0.810432\pi\)
0.827843 0.560960i \(-0.189568\pi\)
\(212\) 9.31824e7 + 2.05086e9i 0.0461307 + 1.01530i
\(213\) 9.87114e8 0.479567
\(214\) −1.81766e9 + 1.90212e9i −0.866676 + 0.906949i
\(215\) 0 0
\(216\) 1.04104e9 + 9.08090e8i 0.478249 + 0.417171i
\(217\) −4.64082e9 −2.09293
\(218\) 2.10161e9 + 2.00829e9i 0.930520 + 0.889201i
\(219\) 9.14146e8i 0.397410i
\(220\) 0 0
\(221\) −3.76639e9 −1.57891
\(222\) 1.16261e8 1.21663e8i 0.0478654 0.0500895i
\(223\) 1.76089e9i 0.712054i −0.934476 0.356027i \(-0.884131\pi\)
0.934476 0.356027i \(-0.115869\pi\)
\(224\) 2.17061e9 2.72919e9i 0.862162 1.08403i
\(225\) 0 0
\(226\) −1.51107e9 1.44397e9i −0.579228 0.553508i
\(227\) 1.85447e9i 0.698418i 0.937045 + 0.349209i \(0.113550\pi\)
−0.937045 + 0.349209i \(0.886450\pi\)
\(228\) 2.39140e6 + 5.26327e7i 0.000884940 + 0.0194767i
\(229\) −1.13087e9 −0.411218 −0.205609 0.978634i \(-0.565917\pi\)
−0.205609 + 0.978634i \(0.565917\pi\)
\(230\) 0 0
\(231\) 5.76326e8i 0.202405i
\(232\) 2.23164e9 2.55837e9i 0.770321 0.883105i
\(233\) −2.24935e9 −0.763191 −0.381596 0.924329i \(-0.624625\pi\)
−0.381596 + 0.924329i \(0.624625\pi\)
\(234\) −2.07162e9 1.97963e9i −0.690949 0.660268i
\(235\) 0 0
\(236\) 1.58112e9 7.18395e7i 0.509703 0.0231587i
\(237\) −3.34752e7 −0.0106103
\(238\) 4.49861e9 4.70765e9i 1.40207 1.46722i
\(239\) 2.77234e9i 0.849679i −0.905269 0.424840i \(-0.860331\pi\)
0.905269 0.424840i \(-0.139669\pi\)
\(240\) 0 0
\(241\) −1.60515e8 −0.0475826 −0.0237913 0.999717i \(-0.507574\pi\)
−0.0237913 + 0.999717i \(0.507574\pi\)
\(242\) −2.01154e9 1.92222e9i −0.586498 0.560455i
\(243\) 3.00257e9i 0.861128i
\(244\) 1.13793e8 + 2.50448e9i 0.0321037 + 0.706574i
\(245\) 0 0
\(246\) −2.92817e8 + 3.06423e8i −0.0799568 + 0.0836721i
\(247\) 2.32506e8i 0.0624663i
\(248\) −4.30747e9 3.75735e9i −1.13872 0.993287i
\(249\) 1.89866e9 0.493911
\(250\) 0 0
\(251\) 5.77680e9i 1.45543i 0.685877 + 0.727717i \(0.259419\pi\)
−0.685877 + 0.727717i \(0.740581\pi\)
\(252\) 4.94871e9 2.24849e8i 1.22713 0.0557555i
\(253\) −2.58463e9 −0.630836
\(254\) −4.92987e9 + 5.15895e9i −1.18441 + 1.23944i
\(255\) 0 0
\(256\) 4.22433e9 7.75762e8i 0.983553 0.180621i
\(257\) −4.57743e9 −1.04928 −0.524638 0.851326i \(-0.675799\pi\)
−0.524638 + 0.851326i \(0.675799\pi\)
\(258\) −1.45422e9 1.38965e9i −0.328210 0.313636i
\(259\) 1.28387e9i 0.285313i
\(260\) 0 0
\(261\) 4.82284e9 1.03930
\(262\) 1.45421e9 1.52178e9i 0.308618 0.322958i
\(263\) 4.85941e8i 0.101569i 0.998710 + 0.0507844i \(0.0161721\pi\)
−0.998710 + 0.0507844i \(0.983828\pi\)
\(264\) −4.66611e8 + 5.34929e8i −0.0960593 + 0.110124i
\(265\) 0 0
\(266\) 2.90612e8 + 2.77707e8i 0.0580479 + 0.0554703i
\(267\) 1.52113e9i 0.299310i
\(268\) −3.05378e8 + 1.38751e7i −0.0591968 + 0.00268965i
\(269\) −1.48731e9 −0.284049 −0.142024 0.989863i \(-0.545361\pi\)
−0.142024 + 0.989863i \(0.545361\pi\)
\(270\) 0 0
\(271\) 6.79398e9i 1.25964i 0.776740 + 0.629821i \(0.216872\pi\)
−0.776740 + 0.629821i \(0.783128\pi\)
\(272\) 7.98693e9 7.27286e8i 1.45917 0.132871i
\(273\) 2.78844e9 0.502007
\(274\) −3.77562e9 3.60797e9i −0.669863 0.640118i
\(275\) 0 0
\(276\) −1.28620e8 2.83082e9i −0.0221653 0.487838i
\(277\) −1.54730e9 −0.262818 −0.131409 0.991328i \(-0.541950\pi\)
−0.131409 + 0.991328i \(0.541950\pi\)
\(278\) −7.17322e9 + 7.50654e9i −1.20098 + 1.25678i
\(279\) 8.12009e9i 1.34012i
\(280\) 0 0
\(281\) −9.33090e9 −1.49657 −0.748287 0.663375i \(-0.769123\pi\)
−0.748287 + 0.663375i \(0.769123\pi\)
\(282\) −5.90004e8 5.63805e8i −0.0932950 0.0891523i
\(283\) 7.43824e9i 1.15964i 0.814743 + 0.579822i \(0.196878\pi\)
−0.814743 + 0.579822i \(0.803122\pi\)
\(284\) 9.26613e9 4.21013e8i 1.42438 0.0647176i
\(285\) 0 0
\(286\) 2.16416e9 2.26473e9i 0.323464 0.338495i
\(287\) 3.23358e9i 0.476602i
\(288\) 4.77529e9 + 3.79793e9i 0.694113 + 0.552049i
\(289\) 7.99992e9 1.14682
\(290\) 0 0
\(291\) 1.62802e9i 0.227032i
\(292\) −3.89892e8 8.58117e9i −0.0536306 1.18036i
\(293\) 1.59214e9 0.216028 0.108014 0.994149i \(-0.465551\pi\)
0.108014 + 0.994149i \(0.465551\pi\)
\(294\) −1.59448e9 + 1.66857e9i −0.213417 + 0.223334i
\(295\) 0 0
\(296\) 1.03946e9 1.19165e9i 0.135407 0.155232i
\(297\) −2.14543e9 −0.275733
\(298\) 8.45199e9 + 8.07669e9i 1.07175 + 1.02416i
\(299\) 1.25052e10i 1.56461i
\(300\) 0 0
\(301\) −1.53459e10 −1.86950
\(302\) −8.55703e9 + 8.95465e9i −1.02872 + 1.07652i
\(303\) 2.62286e9i 0.311175i
\(304\) 4.48966e7 + 4.93047e8i 0.00525678 + 0.0577290i
\(305\) 0 0
\(306\) 8.23702e9 + 7.87127e9i 0.939474 + 0.897757i
\(307\) 3.36362e9i 0.378663i −0.981913 0.189332i \(-0.939368\pi\)
0.981913 0.189332i \(-0.0606321\pi\)
\(308\) 2.45808e8 + 5.41002e9i 0.0273145 + 0.601169i
\(309\) −5.34821e9 −0.586644
\(310\) 0 0
\(311\) 1.23254e10i 1.31752i 0.752352 + 0.658761i \(0.228919\pi\)
−0.752352 + 0.658761i \(0.771081\pi\)
\(312\) 2.58814e9 + 2.25760e9i 0.273130 + 0.238248i
\(313\) −2.77987e9 −0.289633 −0.144816 0.989459i \(-0.546259\pi\)
−0.144816 + 0.989459i \(0.546259\pi\)
\(314\) 3.67299e9 + 3.50989e9i 0.377834 + 0.361056i
\(315\) 0 0
\(316\) −3.14234e8 + 1.42775e7i −0.0315141 + 0.00143187i
\(317\) 5.40177e8 0.0534933 0.0267466 0.999642i \(-0.491485\pi\)
0.0267466 + 0.999642i \(0.491485\pi\)
\(318\) 2.41504e9 2.52726e9i 0.236165 0.247139i
\(319\) 5.27241e9i 0.509151i
\(320\) 0 0
\(321\) 4.47977e9 0.421925
\(322\) −1.56304e10 1.49363e10i −1.45394 1.38938i
\(323\) 9.24475e8i 0.0849347i
\(324\) 3.36837e8 + 7.41348e9i 0.0305661 + 0.672732i
\(325\) 0 0
\(326\) 2.23295e8 2.33671e8i 0.0197701 0.0206888i
\(327\) 4.94959e9i 0.432891i
\(328\) −2.61800e9 + 3.00131e9i −0.226191 + 0.259307i
\(329\) −6.22610e9 −0.531414
\(330\) 0 0
\(331\) 1.21115e10i 1.00899i −0.863414 0.504495i \(-0.831679\pi\)
0.863414 0.504495i \(-0.168321\pi\)
\(332\) 1.78228e10 8.09794e8i 1.46698 0.0666534i
\(333\) 2.24640e9 0.182688
\(334\) 6.25370e8 6.54429e8i 0.0502518 0.0525868i
\(335\) 0 0
\(336\) −5.91310e9 + 5.38444e8i −0.463936 + 0.0422458i
\(337\) 9.48812e9 0.735632 0.367816 0.929899i \(-0.380106\pi\)
0.367816 + 0.929899i \(0.380106\pi\)
\(338\) −1.52135e9 1.45380e9i −0.116564 0.111388i
\(339\) 3.55878e9i 0.269465i
\(340\) 0 0
\(341\) 8.87702e9 0.656523
\(342\) −4.85907e8 + 5.08486e8i −0.0355180 + 0.0371685i
\(343\) 1.56347e9i 0.112957i
\(344\) −1.42436e10 1.24245e10i −1.01715 0.887248i
\(345\) 0 0
\(346\) −1.26995e10 1.21356e10i −0.886099 0.846752i
\(347\) 9.01032e9i 0.621473i 0.950496 + 0.310737i \(0.100576\pi\)
−0.950496 + 0.310737i \(0.899424\pi\)
\(348\) −5.77462e9 + 2.62374e8i −0.393737 + 0.0178897i
\(349\) 2.17409e10 1.46547 0.732733 0.680517i \(-0.238245\pi\)
0.732733 + 0.680517i \(0.238245\pi\)
\(350\) 0 0
\(351\) 1.03802e10i 0.683878i
\(352\) −4.15197e9 + 5.22043e9i −0.270448 + 0.340045i
\(353\) 5.60018e9 0.360664 0.180332 0.983606i \(-0.442283\pi\)
0.180332 + 0.983606i \(0.442283\pi\)
\(354\) −1.94840e9 1.86189e9i −0.124070 0.118560i
\(355\) 0 0
\(356\) 6.48775e8 + 1.42790e10i 0.0403919 + 0.888990i
\(357\) −1.10872e10 −0.682573
\(358\) 7.12752e9 7.45872e9i 0.433917 0.454080i
\(359\) 1.31213e10i 0.789952i −0.918692 0.394976i \(-0.870753\pi\)
0.918692 0.394976i \(-0.129247\pi\)
\(360\) 0 0
\(361\) 1.69265e10 0.996640
\(362\) 7.85462e9 + 7.50585e9i 0.457395 + 0.437085i
\(363\) 4.73746e9i 0.272847i
\(364\) 2.61753e10 1.18929e9i 1.49103 0.0677460i
\(365\) 0 0
\(366\) 2.94920e9 3.08624e9i 0.164354 0.171991i
\(367\) 9.89380e9i 0.545379i 0.962102 + 0.272690i \(0.0879132\pi\)
−0.962102 + 0.272690i \(0.912087\pi\)
\(368\) −2.41474e9 2.65183e10i −0.131668 1.44595i
\(369\) −5.65782e9 −0.305171
\(370\) 0 0
\(371\) 2.66693e10i 1.40772i
\(372\) 4.41752e8 + 9.72257e9i 0.0230678 + 0.507703i
\(373\) −1.01496e10 −0.524339 −0.262170 0.965022i \(-0.584438\pi\)
−0.262170 + 0.965022i \(0.584438\pi\)
\(374\) −8.60501e9 + 9.00486e9i −0.439810 + 0.460247i
\(375\) 0 0
\(376\) −5.77888e9 5.04084e9i −0.289129 0.252204i
\(377\) 2.55095e10 1.26281
\(378\) −1.29744e10 1.23982e10i −0.635505 0.607286i
\(379\) 1.39748e10i 0.677312i −0.940910 0.338656i \(-0.890028\pi\)
0.940910 0.338656i \(-0.109972\pi\)
\(380\) 0 0
\(381\) 1.21501e10 0.576606
\(382\) 1.69942e9 1.77838e9i 0.0798080 0.0835165i
\(383\) 2.31617e10i 1.07640i −0.842816 0.538201i \(-0.819104\pi\)
0.842816 0.538201i \(-0.180896\pi\)
\(384\) −5.92430e9 4.28766e9i −0.272466 0.197195i
\(385\) 0 0
\(386\) 1.11947e9 + 1.06976e9i 0.0504269 + 0.0481878i
\(387\) 2.68508e10i 1.19706i
\(388\) 6.94364e8 + 1.52823e10i 0.0306380 + 0.674314i
\(389\) −1.13177e10 −0.494267 −0.247133 0.968981i \(-0.579489\pi\)
−0.247133 + 0.968981i \(0.579489\pi\)
\(390\) 0 0
\(391\) 4.97224e10i 2.12738i
\(392\) −1.42558e10 + 1.63430e10i −0.603738 + 0.692132i
\(393\) −3.58401e9 −0.150245
\(394\) −3.29407e10 3.14780e10i −1.36693 1.30624i
\(395\) 0 0
\(396\) −9.46597e9 + 4.30093e8i −0.384932 + 0.0174897i
\(397\) −1.01291e10 −0.407765 −0.203882 0.978995i \(-0.565356\pi\)
−0.203882 + 0.978995i \(0.565356\pi\)
\(398\) 9.63082e9 1.00783e10i 0.383823 0.401658i
\(399\) 6.84432e8i 0.0270047i
\(400\) 0 0
\(401\) 1.52259e10 0.588850 0.294425 0.955675i \(-0.404872\pi\)
0.294425 + 0.955675i \(0.404872\pi\)
\(402\) 3.76315e8 + 3.59605e8i 0.0144094 + 0.0137696i
\(403\) 4.29496e10i 1.62832i
\(404\) 1.11867e9 + 2.46210e10i 0.0419931 + 0.924232i
\(405\) 0 0
\(406\) −3.04688e10 + 3.18846e10i −1.12137 + 1.17348i
\(407\) 2.45580e9i 0.0894985i
\(408\) −1.02908e10 8.97653e9i −0.371371 0.323942i
\(409\) −5.16482e10 −1.84570 −0.922851 0.385156i \(-0.874148\pi\)
−0.922851 + 0.385156i \(0.874148\pi\)
\(410\) 0 0
\(411\) 8.89213e9i 0.311629i
\(412\) −5.02041e10 + 2.28106e9i −1.74241 + 0.0791678i
\(413\) −2.05608e10 −0.706708
\(414\) 2.61343e10 2.73487e10i 0.889629 0.930968i
\(415\) 0 0
\(416\) 2.52580e10 + 2.00884e10i 0.843384 + 0.670769i
\(417\) 1.76790e10 0.584673
\(418\) −5.55886e8 5.31202e8i −0.0182088 0.0174002i
\(419\) 2.90780e10i 0.943427i 0.881752 + 0.471714i \(0.156364\pi\)
−0.881752 + 0.471714i \(0.843636\pi\)
\(420\) 0 0
\(421\) −2.02634e9 −0.0645037 −0.0322519 0.999480i \(-0.510268\pi\)
−0.0322519 + 0.999480i \(0.510268\pi\)
\(422\) −2.45816e10 + 2.57239e10i −0.775105 + 0.811122i
\(423\) 1.08939e10i 0.340268i
\(424\) 2.15923e10 2.47536e10i 0.668089 0.765905i
\(425\) 0 0
\(426\) −1.14186e10 1.09115e10i −0.346715 0.331320i
\(427\) 3.25681e10i 0.979671i
\(428\) 4.20519e10 1.91066e9i 1.25317 0.0569388i
\(429\) −5.33376e9 −0.157472
\(430\) 0 0
\(431\) 2.31188e10i 0.669972i −0.942223 0.334986i \(-0.891268\pi\)
0.942223 0.334986i \(-0.108732\pi\)
\(432\) −2.00441e9 2.20121e10i −0.0575509 0.632014i
\(433\) 5.16117e10 1.46824 0.734119 0.679021i \(-0.237595\pi\)
0.734119 + 0.679021i \(0.237595\pi\)
\(434\) 5.36832e10 + 5.12995e10i 1.51314 + 1.44595i
\(435\) 0 0
\(436\) −2.11105e9 4.64622e10i −0.0584187 1.28574i
\(437\) 3.06945e9 0.0841656
\(438\) −1.01049e10 + 1.05745e10i −0.274560 + 0.287318i
\(439\) 4.07914e10i 1.09827i 0.835733 + 0.549137i \(0.185043\pi\)
−0.835733 + 0.549137i \(0.814957\pi\)
\(440\) 0 0
\(441\) −3.08086e10 −0.814549
\(442\) 4.35682e10 + 4.16336e10i 1.14151 + 1.09082i
\(443\) 1.78192e9i 0.0462671i 0.999732 + 0.0231336i \(0.00736430\pi\)
−0.999732 + 0.0231336i \(0.992636\pi\)
\(444\) −2.68972e9 + 1.22209e8i −0.0692110 + 0.00314466i
\(445\) 0 0
\(446\) −1.94648e10 + 2.03693e10i −0.491939 + 0.514798i
\(447\) 1.99057e10i 0.498593i
\(448\) −5.52771e10 + 7.57641e9i −1.37225 + 0.188084i
\(449\) 5.74811e10 1.41429 0.707147 0.707067i \(-0.249982\pi\)
0.707147 + 0.707067i \(0.249982\pi\)
\(450\) 0 0
\(451\) 6.18523e9i 0.149503i
\(452\) 1.51785e9 + 3.34066e10i 0.0363643 + 0.800347i
\(453\) 2.10895e10 0.500811
\(454\) 2.04992e10 2.14518e10i 0.482518 0.504940i
\(455\) 0 0
\(456\) 5.54137e8 6.35269e8i 0.0128162 0.0146926i
\(457\) 4.50957e10 1.03388 0.516941 0.856021i \(-0.327071\pi\)
0.516941 + 0.856021i \(0.327071\pi\)
\(458\) 1.30815e10 + 1.25006e10i 0.297301 + 0.284099i
\(459\) 4.12732e10i 0.929860i
\(460\) 0 0
\(461\) 7.73092e10 1.71170 0.855850 0.517225i \(-0.173035\pi\)
0.855850 + 0.517225i \(0.173035\pi\)
\(462\) 6.37069e9 6.66672e9i 0.139836 0.146334i
\(463\) 8.52854e10i 1.85588i 0.372726 + 0.927941i \(0.378423\pi\)
−0.372726 + 0.927941i \(0.621577\pi\)
\(464\) −5.40949e10 + 4.92586e9i −1.16704 + 0.106270i
\(465\) 0 0
\(466\) 2.60196e10 + 2.48643e10i 0.551769 + 0.527268i
\(467\) 3.20726e10i 0.674320i 0.941447 + 0.337160i \(0.109466\pi\)
−0.941447 + 0.337160i \(0.890534\pi\)
\(468\) 2.08092e9 + 4.57991e10i 0.0433782 + 0.954716i
\(469\) 3.97112e9 0.0820770
\(470\) 0 0
\(471\) 8.65041e9i 0.175773i
\(472\) −1.90839e10 1.66467e10i −0.384503 0.335397i
\(473\) 2.93538e10 0.586435
\(474\) 3.87228e8 + 3.70033e8i 0.00767102 + 0.00733040i
\(475\) 0 0
\(476\) −1.04076e11 + 4.72879e9i −2.02733 + 0.0921133i
\(477\) 4.66635e10 0.901371
\(478\) −3.06454e10 + 3.20694e10i −0.587020 + 0.614298i
\(479\) 3.58893e10i 0.681746i 0.940109 + 0.340873i \(0.110723\pi\)
−0.940109 + 0.340873i \(0.889277\pi\)
\(480\) 0 0
\(481\) 1.18819e10 0.221976
\(482\) 1.85678e9 + 1.77433e9i 0.0344010 + 0.0328735i
\(483\) 3.68118e10i 0.676393i
\(484\) 2.02057e9 + 4.44710e10i 0.0368208 + 0.810392i
\(485\) 0 0
\(486\) 3.31903e10 3.47326e10i 0.594930 0.622575i
\(487\) 5.98567e10i 1.06414i −0.846702 0.532068i \(-0.821415\pi\)
0.846702 0.532068i \(-0.178585\pi\)
\(488\) 2.63681e10 3.02287e10i 0.464943 0.533016i
\(489\) −5.50329e8 −0.00962470
\(490\) 0 0
\(491\) 3.00275e10i 0.516645i 0.966059 + 0.258323i \(0.0831698\pi\)
−0.966059 + 0.258323i \(0.916830\pi\)
\(492\) 6.77438e9 3.07799e8i 0.115614 0.00525299i
\(493\) −1.01429e11 −1.71702
\(494\) −2.57011e9 + 2.68954e9i −0.0431563 + 0.0451617i
\(495\) 0 0
\(496\) 8.29353e9 + 9.10782e10i 0.137029 + 1.50483i
\(497\) −1.20496e11 −1.97491
\(498\) −2.19629e10 2.09877e10i −0.357086 0.341230i
\(499\) 2.32602e10i 0.375156i −0.982250 0.187578i \(-0.939936\pi\)
0.982250 0.187578i \(-0.0600637\pi\)
\(500\) 0 0
\(501\) −1.54128e9 −0.0244641
\(502\) 6.38566e10 6.68238e10i 1.00552 1.05224i
\(503\) 2.16574e10i 0.338326i 0.985588 + 0.169163i \(0.0541064\pi\)
−0.985588 + 0.169163i \(0.945894\pi\)
\(504\) −5.97303e10 5.21020e10i −0.925705 0.807481i
\(505\) 0 0
\(506\) 2.98980e10 + 2.85704e10i 0.456079 + 0.435828i
\(507\) 3.58300e9i 0.0542270i
\(508\) 1.14054e11 5.18212e9i 1.71260 0.0778131i
\(509\) 1.21565e10 0.181108 0.0905541 0.995892i \(-0.471136\pi\)
0.0905541 + 0.995892i \(0.471136\pi\)
\(510\) 0 0
\(511\) 1.11589e11i 1.63658i
\(512\) −5.74407e10 3.77219e10i −0.835871 0.548925i
\(513\) 2.54787e9 0.0367881
\(514\) 5.29500e10 + 5.05988e10i 0.758601 + 0.724916i
\(515\) 0 0
\(516\) 1.46075e9 + 3.21498e10i 0.0206052 + 0.453502i
\(517\) 1.19094e10 0.166697
\(518\) −1.41918e10 + 1.48513e10i −0.197115 + 0.206275i
\(519\) 2.99091e10i 0.412225i
\(520\) 0 0
\(521\) −5.20805e10 −0.706845 −0.353422 0.935464i \(-0.614982\pi\)
−0.353422 + 0.935464i \(0.614982\pi\)
\(522\) −5.57888e10 5.33115e10i −0.751389 0.718024i
\(523\) 2.42007e10i 0.323461i −0.986835 0.161731i \(-0.948292\pi\)
0.986835 0.161731i \(-0.0517075\pi\)
\(524\) −3.36434e10 + 1.52861e9i −0.446246 + 0.0202755i
\(525\) 0 0
\(526\) 5.37158e9 5.62118e9i 0.0701712 0.0734319i
\(527\) 1.70774e11i 2.21400i
\(528\) 1.13107e10 1.02994e9i 0.145530 0.0132519i
\(529\) −8.67778e10 −1.10812
\(530\) 0 0
\(531\) 3.59755e10i 0.452510i
\(532\) −2.91917e8 6.42482e9i −0.00364428 0.0802074i
\(533\) −2.99260e10 −0.370800
\(534\) 1.68145e10 1.75958e10i 0.206785 0.216394i
\(535\) 0 0
\(536\) 3.68587e9 + 3.21514e9i 0.0446561 + 0.0389530i
\(537\) −1.75664e10 −0.211244
\(538\) 1.72047e10 + 1.64407e10i 0.205361 + 0.196242i
\(539\) 3.36805e10i 0.399046i
\(540\) 0 0
\(541\) −7.39316e10 −0.863060 −0.431530 0.902099i \(-0.642026\pi\)
−0.431530 + 0.902099i \(0.642026\pi\)
\(542\) 7.51005e10 7.85902e10i 0.870253 0.910692i
\(543\) 1.84988e10i 0.212786i
\(544\) −1.00429e11 7.98743e10i −1.14674 0.912035i
\(545\) 0 0
\(546\) −3.22556e10 3.08233e10i −0.362939 0.346823i
\(547\) 9.08736e10i 1.01505i −0.861636 0.507526i \(-0.830560\pi\)
0.861636 0.507526i \(-0.169440\pi\)
\(548\) 3.79257e9 + 8.34712e10i 0.0420544 + 0.925581i
\(549\) 5.69847e10 0.627290
\(550\) 0 0
\(551\) 6.26140e9i 0.0679305i
\(552\) −2.98040e10 + 3.41676e10i −0.321009 + 0.368009i
\(553\) 4.08628e9 0.0436946
\(554\) 1.78985e10 + 1.71038e10i 0.190011 + 0.181574i
\(555\) 0 0
\(556\) 1.65954e11 7.54025e9i 1.73656 0.0789018i
\(557\) 7.25820e9 0.0754064 0.0377032 0.999289i \(-0.487996\pi\)
0.0377032 + 0.999289i \(0.487996\pi\)
\(558\) −8.97592e10 + 9.39301e10i −0.925853 + 0.968875i
\(559\) 1.42022e11i 1.45449i
\(560\) 0 0
\(561\) 2.12077e10 0.214113
\(562\) 1.07936e11 + 1.03143e11i 1.08199 + 1.03394i
\(563\) 4.02851e10i 0.400969i −0.979697 0.200485i \(-0.935748\pi\)
0.979697 0.200485i \(-0.0642517\pi\)
\(564\) 5.92653e8 + 1.30438e10i 0.00585712 + 0.128910i
\(565\) 0 0
\(566\) 8.22221e10 8.60427e10i 0.801166 0.838394i
\(567\) 9.64045e10i 0.932750i
\(568\) −1.11841e11 9.75574e10i −1.07450 0.937274i
\(569\) 4.42204e10 0.421866 0.210933 0.977501i \(-0.432350\pi\)
0.210933 + 0.977501i \(0.432350\pi\)
\(570\) 0 0
\(571\) 1.92416e11i 1.81008i 0.425327 + 0.905040i \(0.360159\pi\)
−0.425327 + 0.905040i \(0.639841\pi\)
\(572\) −5.00684e10 + 2.27490e9i −0.467714 + 0.0212509i
\(573\) −4.18835e9 −0.0388530
\(574\) 3.57438e10 3.74048e10i 0.329271 0.344572i
\(575\) 0 0
\(576\) −1.32565e10 9.67190e10i −0.120431 0.878662i
\(577\) −5.62180e10 −0.507192 −0.253596 0.967310i \(-0.581613\pi\)
−0.253596 + 0.967310i \(0.581613\pi\)
\(578\) −9.25400e10 8.84309e10i −0.829122 0.792305i
\(579\) 2.63651e9i 0.0234593i
\(580\) 0 0
\(581\) −2.31767e11 −2.03398
\(582\) 1.79960e10 1.88323e10i 0.156850 0.164139i
\(583\) 5.10133e10i 0.441580i
\(584\) −9.03458e10 + 1.03574e11i −0.776706 + 0.890425i
\(585\) 0 0
\(586\) −1.84172e10 1.75994e10i −0.156183 0.149248i
\(587\) 2.12589e11i 1.79056i 0.445508 + 0.895278i \(0.353023\pi\)
−0.445508 + 0.895278i \(0.646977\pi\)
\(588\) 3.68886e10 1.67606e9i 0.308591 0.0140211i
\(589\) −1.05422e10 −0.0875927
\(590\) 0 0
\(591\) 7.75800e10i 0.635916i
\(592\) −2.51965e10 + 2.29438e9i −0.205142 + 0.0186801i
\(593\) 3.64674e10 0.294908 0.147454 0.989069i \(-0.452892\pi\)
0.147454 + 0.989069i \(0.452892\pi\)
\(594\) 2.48175e10 + 2.37155e10i 0.199348 + 0.190497i
\(595\) 0 0
\(596\) −8.48995e9 1.86856e11i −0.0672853 1.48089i
\(597\) −2.37359e10 −0.186857
\(598\) 1.38232e11 1.44655e11i 1.08095 1.13118i
\(599\) 1.54791e11i 1.20237i 0.799111 + 0.601184i \(0.205304\pi\)
−0.799111 + 0.601184i \(0.794696\pi\)
\(600\) 0 0
\(601\) 1.37850e11 1.05659 0.528297 0.849059i \(-0.322831\pi\)
0.528297 + 0.849059i \(0.322831\pi\)
\(602\) 1.77515e11 + 1.69633e11i 1.35161 + 1.29159i
\(603\) 6.94830e9i 0.0525545i
\(604\) 1.97969e11 8.99487e9i 1.48747 0.0675845i
\(605\) 0 0
\(606\) 2.89930e10 3.03403e10i 0.214983 0.224972i
\(607\) 4.21916e10i 0.310793i 0.987852 + 0.155396i \(0.0496655\pi\)
−0.987852 + 0.155396i \(0.950335\pi\)
\(608\) 4.93078e9 6.19967e9i 0.0360829 0.0453685i
\(609\) 7.50928e10 0.545920
\(610\) 0 0
\(611\) 5.76211e10i 0.413444i
\(612\) −8.27401e9 1.82104e11i −0.0589808 1.29811i
\(613\) 1.76436e11 1.24953 0.624763 0.780815i \(-0.285196\pi\)
0.624763 + 0.780815i \(0.285196\pi\)
\(614\) −3.71813e10 + 3.89091e10i −0.261608 + 0.273765i
\(615\) 0 0
\(616\) 5.69588e10 6.52982e10i 0.395583 0.453501i
\(617\) −3.80722e10 −0.262705 −0.131352 0.991336i \(-0.541932\pi\)
−0.131352 + 0.991336i \(0.541932\pi\)
\(618\) 6.18661e10 + 5.91190e10i 0.424130 + 0.405297i
\(619\) 4.67363e10i 0.318340i 0.987251 + 0.159170i \(0.0508818\pi\)
−0.987251 + 0.159170i \(0.949118\pi\)
\(620\) 0 0
\(621\) −1.37036e11 −0.921441
\(622\) 1.36244e11 1.42575e11i 0.910240 0.952537i
\(623\) 1.85683e11i 1.23259i
\(624\) −4.98317e9 5.47243e10i −0.0328675 0.360946i
\(625\) 0 0
\(626\) 3.21565e10 + 3.07286e10i 0.209398 + 0.200099i
\(627\) 1.30919e9i 0.00847096i
\(628\) −3.68948e9 8.12021e10i −0.0237206 0.522070i
\(629\) −4.72440e10 −0.301817
\(630\) 0 0
\(631\) 1.82629e11i 1.15200i −0.817450 0.576000i \(-0.804613\pi\)
0.817450 0.576000i \(-0.195387\pi\)
\(632\) 3.79276e9 + 3.30838e9i 0.0237732 + 0.0207370i
\(633\) 6.05834e10 0.377345
\(634\) −6.24857e9 5.97110e9i −0.0386744 0.0369571i
\(635\) 0 0
\(636\) −5.58724e10 + 2.53861e9i −0.341483 + 0.0155155i
\(637\) −1.62956e11 −0.989721
\(638\) 5.82811e10 6.09893e10i 0.351759 0.368104i
\(639\) 2.10833e11i 1.26455i
\(640\) 0 0
\(641\) 1.05531e11 0.625100 0.312550 0.949901i \(-0.398817\pi\)
0.312550 + 0.949901i \(0.398817\pi\)
\(642\) −5.18202e10 4.95192e10i −0.305042 0.291497i
\(643\) 1.09834e11i 0.642528i 0.946990 + 0.321264i \(0.104108\pi\)
−0.946990 + 0.321264i \(0.895892\pi\)
\(644\) 1.57006e10 + 3.45556e11i 0.0912793 + 2.00898i
\(645\) 0 0
\(646\) 1.02191e10 1.06940e10i 0.0586791 0.0614057i
\(647\) 4.48807e9i 0.0256119i 0.999918 + 0.0128060i \(0.00407638\pi\)
−0.999918 + 0.0128060i \(0.995924\pi\)
\(648\) 7.80520e10 8.94797e10i 0.442674 0.507487i
\(649\) 3.93290e10 0.221684
\(650\) 0 0
\(651\) 1.26432e11i 0.703934i
\(652\) −5.16599e9 + 2.34720e8i −0.0285866 + 0.00129885i
\(653\) −2.96586e11 −1.63117 −0.815583 0.578640i \(-0.803584\pi\)
−0.815583 + 0.578640i \(0.803584\pi\)
\(654\) −5.47126e10 + 5.72550e10i −0.299072 + 0.312970i
\(655\) 0 0
\(656\) 6.34604e10 5.77867e9i 0.342679 0.0312042i
\(657\) −1.95248e11 −1.04791
\(658\) 7.20212e10 + 6.88232e10i 0.384199 + 0.367139i
\(659\) 8.22505e10i 0.436111i 0.975936 + 0.218056i \(0.0699714\pi\)
−0.975936 + 0.218056i \(0.930029\pi\)
\(660\) 0 0
\(661\) −1.54172e11 −0.807608 −0.403804 0.914845i \(-0.632312\pi\)
−0.403804 + 0.914845i \(0.632312\pi\)
\(662\) −1.33881e11 + 1.40102e11i −0.697085 + 0.729476i
\(663\) 1.02609e11i 0.531047i
\(664\) −2.15119e11 1.87646e11i −1.10664 0.965309i
\(665\) 0 0
\(666\) −2.59855e10 2.48316e10i −0.132079 0.126214i
\(667\) 3.36766e11i 1.70147i
\(668\) −1.44681e10 + 6.57368e8i −0.0726616 + 0.00330144i
\(669\) 4.79726e10 0.239491
\(670\) 0 0
\(671\) 6.22966e10i 0.307308i
\(672\) 7.43524e10 + 5.91347e10i 0.364601 + 0.289978i
\(673\) −2.82157e11 −1.37541 −0.687703 0.725992i \(-0.741381\pi\)
−0.687703 + 0.725992i \(0.741381\pi\)
\(674\) −1.09755e11 1.04881e11i −0.531844 0.508228i
\(675\) 0 0
\(676\) 1.52818e9 + 3.36340e10i 0.00731794 + 0.161061i
\(677\) 2.70699e11 1.28864 0.644320 0.764756i \(-0.277140\pi\)
0.644320 + 0.764756i \(0.277140\pi\)
\(678\) 3.93386e10 4.11666e10i 0.186166 0.194817i
\(679\) 1.98730e11i 0.934943i
\(680\) 0 0
\(681\) −5.05220e10 −0.234905
\(682\) −1.02686e11 9.81263e10i −0.474650 0.453574i
\(683\) 3.96155e10i 0.182046i −0.995849 0.0910232i \(-0.970986\pi\)
0.995849 0.0910232i \(-0.0290137\pi\)
\(684\) 1.12416e10 5.10769e8i 0.0513574 0.00233346i
\(685\) 0 0
\(686\) −1.72825e10 + 1.80856e10i −0.0780389 + 0.0816651i
\(687\) 3.08088e10i 0.138308i
\(688\) 2.74244e10 + 3.01170e11i 0.122400 + 1.34418i
\(689\) 2.46818e11 1.09521
\(690\) 0 0
\(691\) 1.26869e11i 0.556472i −0.960513 0.278236i \(-0.910250\pi\)
0.960513 0.278236i \(-0.0897497\pi\)
\(692\) 1.27565e10 + 2.80760e11i 0.0556299 + 1.22436i
\(693\) 1.23095e11 0.533712
\(694\) 9.95998e10 1.04228e11i 0.429359 0.449310i
\(695\) 0 0
\(696\) 6.96988e10 + 6.07974e10i 0.297022 + 0.259088i
\(697\) 1.18990e11 0.504171
\(698\) −2.51490e11 2.40323e11i −1.05950 1.01245i
\(699\) 6.12800e10i 0.256691i
\(700\) 0 0
\(701\) −6.26836e10 −0.259587 −0.129793 0.991541i \(-0.541431\pi\)
−0.129793 + 0.991541i \(0.541431\pi\)
\(702\) 1.14743e11 1.20075e11i 0.472473 0.494427i
\(703\) 2.91646e9i 0.0119408i
\(704\) 1.05735e11 1.44923e10i 0.430455 0.0589991i
\(705\) 0 0
\(706\) −6.47808e10 6.19042e10i −0.260752 0.249173i
\(707\) 3.20170e11i 1.28146i
\(708\) 1.95715e9 + 4.30752e10i 0.00778918 + 0.171433i
\(709\) −3.57762e11 −1.41582 −0.707912 0.706300i \(-0.750363\pi\)
−0.707912 + 0.706300i \(0.750363\pi\)
\(710\) 0 0
\(711\) 7.14981e9i 0.0279780i
\(712\) 1.50334e11 1.72345e11i 0.584977 0.670624i
\(713\) 5.67004e11 2.19396
\(714\) 1.28252e11 + 1.22558e11i 0.493484 + 0.471571i
\(715\) 0 0
\(716\) −1.64897e11 + 7.49222e9i −0.627423 + 0.0285074i
\(717\) 7.55280e10 0.285780
\(718\) −1.45043e11 + 1.51783e11i −0.545756 + 0.571116i
\(719\) 1.70342e11i 0.637392i 0.947857 + 0.318696i \(0.103245\pi\)
−0.947857 + 0.318696i \(0.896755\pi\)
\(720\) 0 0
\(721\) 6.52852e11 2.41587
\(722\) −1.95799e11 1.87105e11i −0.720547 0.688552i
\(723\) 4.37298e9i 0.0160038i
\(724\) −7.88990e9 1.73650e11i −0.0287155 0.632003i
\(725\) 0 0
\(726\) 5.23678e10 5.48011e10i 0.188503 0.197262i
\(727\) 6.56094e10i 0.234870i −0.993081 0.117435i \(-0.962533\pi\)
0.993081 0.117435i \(-0.0374672\pi\)
\(728\) −3.15932e11 2.75583e11i −1.12478 0.981132i
\(729\) 1.08395e11 0.383796
\(730\) 0 0
\(731\) 5.64700e11i 1.97765i
\(732\) −6.82305e10 + 3.10010e9i −0.237648 + 0.0107977i
\(733\) −2.60967e11 −0.904003 −0.452001 0.892017i \(-0.649290\pi\)
−0.452001 + 0.892017i \(0.649290\pi\)
\(734\) 1.09366e11 1.14448e11i 0.376788 0.394296i
\(735\) 0 0
\(736\) −2.65200e11 + 3.33446e11i −0.903778 + 1.13636i
\(737\) −7.59601e9 −0.0257463
\(738\) 6.54475e10 + 6.25414e10i 0.220632 + 0.210835i
\(739\) 4.19763e11i 1.40743i 0.710483 + 0.703715i \(0.248477\pi\)
−0.710483 + 0.703715i \(0.751523\pi\)
\(740\) 0 0
\(741\) 6.33425e9 0.0210098
\(742\) −2.94801e11 + 3.08500e11i −0.972554 + 1.01775i
\(743\) 1.42604e11i 0.467925i −0.972246 0.233962i \(-0.924831\pi\)
0.972246 0.233962i \(-0.0751693\pi\)
\(744\) 1.02363e11 1.17350e11i 0.334081 0.382994i
\(745\) 0 0
\(746\) 1.17406e11 + 1.12193e11i 0.379085 + 0.362252i
\(747\) 4.05525e11i 1.30237i
\(748\) 1.99079e11 9.04530e9i 0.635944 0.0288946i
\(749\) −5.46841e11 −1.73754
\(750\) 0 0
\(751\) 3.26311e10i 0.102582i 0.998684 + 0.0512911i \(0.0163336\pi\)
−0.998684 + 0.0512911i \(0.983666\pi\)
\(752\) 1.11266e10 + 1.22190e11i 0.0347928 + 0.382089i
\(753\) −1.57380e11 −0.489518
\(754\) −2.95084e11 2.81981e11i −0.912978 0.872438i
\(755\) 0 0
\(756\) 1.30326e10 + 2.86836e11i 0.0398974 + 0.878106i
\(757\) 4.36612e11 1.32957 0.664787 0.747033i \(-0.268522\pi\)
0.664787 + 0.747033i \(0.268522\pi\)
\(758\) −1.54477e11 + 1.61655e11i −0.467937 + 0.489680i
\(759\) 7.04142e10i 0.212174i
\(760\) 0 0
\(761\) −1.98059e11 −0.590548 −0.295274 0.955413i \(-0.595411\pi\)
−0.295274 + 0.955413i \(0.595411\pi\)
\(762\) −1.40547e11 1.34307e11i −0.416872 0.398361i
\(763\) 6.04192e11i 1.78269i
\(764\) −3.93164e10 + 1.78637e9i −0.115399 + 0.00524322i
\(765\) 0 0
\(766\) −2.56028e11 + 2.67925e11i −0.743657 + 0.778213i
\(767\) 1.90285e11i 0.549824i
\(768\) 2.11344e10 + 1.15085e11i 0.0607499 + 0.330807i
\(769\) −1.42097e10 −0.0406329 −0.0203165 0.999794i \(-0.506467\pi\)
−0.0203165 + 0.999794i \(0.506467\pi\)
\(770\) 0 0
\(771\) 1.24705e11i 0.352912i
\(772\) −1.12450e9 2.47491e10i −0.00316584 0.0696772i
\(773\) −6.62483e10 −0.185548 −0.0927741 0.995687i \(-0.529573\pi\)
−0.0927741 + 0.995687i \(0.529573\pi\)
\(774\) −2.96808e11 + 3.10600e11i −0.827013 + 0.865442i
\(775\) 0 0
\(776\) 1.60898e11 1.84456e11i 0.443715 0.508680i
\(777\) 3.49770e10 0.0959617
\(778\) 1.30919e11 + 1.25106e11i 0.357343 + 0.341476i
\(779\) 7.34544e9i 0.0199466i
\(780\) 0 0
\(781\) 2.30487e11 0.619501
\(782\) −5.49630e11 + 5.75170e11i −1.46975 + 1.53804i
\(783\) 2.79540e11i 0.743700i
\(784\) 3.45562e11 3.14667e10i 0.914663 0.0832887i
\(785\) 0 0
\(786\) 4.14584e10 + 3.96175e10i 0.108623 + 0.103800i
\(787\) 7.13437e10i 0.185976i −0.995667 0.0929880i \(-0.970358\pi\)
0.995667 0.0929880i \(-0.0296418\pi\)
\(788\) 3.30886e10 + 7.28250e11i 0.0858170 + 1.88876i
\(789\) −1.32387e10 −0.0341615
\(790\) 0 0
\(791\) 4.34417e11i 1.10969i
\(792\) 1.14253e11 + 9.96614e10i 0.290380 + 0.253295i
\(793\) 3.01409e11 0.762191
\(794\) 1.17170e11 + 1.11967e11i 0.294804 + 0.281714i
\(795\) 0 0
\(796\) −2.22811e11 + 1.01236e10i −0.554990 + 0.0252164i
\(797\) −1.11980e11 −0.277527 −0.138764 0.990326i \(-0.544313\pi\)
−0.138764 + 0.990326i \(0.544313\pi\)
\(798\) −7.56569e9 + 7.91725e9i −0.0186568 + 0.0195237i
\(799\) 2.29109e11i 0.562154i
\(800\) 0 0
\(801\) 3.24891e11 0.789237
\(802\) −1.76127e11 1.68306e11i −0.425725 0.406821i
\(803\) 2.13449e11i 0.513372i
\(804\) −3.78004e8 8.31954e9i −0.000904634 0.0199102i
\(805\) 0 0
\(806\) −4.74764e11 + 4.96825e11i −1.12496 + 1.17724i
\(807\) 4.05195e10i 0.0955365i
\(808\) 2.59220e11 2.97172e11i 0.608167 0.697209i
\(809\) 5.57023e10 0.130041 0.0650203 0.997884i \(-0.479289\pi\)
0.0650203 + 0.997884i \(0.479289\pi\)
\(810\) 0 0
\(811\) 7.06448e11i 1.63304i −0.577317 0.816520i \(-0.695900\pi\)
0.577317 0.816520i \(-0.304100\pi\)
\(812\) 7.04902e11 3.20278e10i 1.62145 0.0736720i
\(813\) −1.85091e11 −0.423666
\(814\) 2.71464e10 2.84078e10i 0.0618321 0.0647053i
\(815\) 0 0
\(816\) 1.98137e10 + 2.17591e11i 0.0446896 + 0.490773i
\(817\) −3.48599e10 −0.0782417
\(818\) 5.97446e11 + 5.70917e11i 1.33440 + 1.27515i
\(819\) 5.95569e11i 1.32372i
\(820\) 0 0
\(821\) −8.39733e10 −0.184828 −0.0924142 0.995721i \(-0.529458\pi\)
−0.0924142 + 0.995721i \(0.529458\pi\)
\(822\) 9.82933e10 1.02861e11i 0.215296 0.225301i
\(823\) 1.90143e11i 0.414459i 0.978292 + 0.207229i \(0.0664446\pi\)
−0.978292 + 0.207229i \(0.933555\pi\)
\(824\) 6.05957e11 + 5.28569e11i 1.31442 + 1.14655i
\(825\) 0 0
\(826\) 2.37840e11 + 2.27279e11i 0.510933 + 0.488246i
\(827\) 3.98982e11i 0.852965i 0.904496 + 0.426483i \(0.140247\pi\)
−0.904496 + 0.426483i \(0.859753\pi\)
\(828\) −6.04622e11 + 2.74715e10i −1.28636 + 0.0584468i
\(829\) 9.18641e11 1.94504 0.972518 0.232827i \(-0.0747977\pi\)
0.972518 + 0.232827i \(0.0747977\pi\)
\(830\) 0 0
\(831\) 4.21536e10i 0.0883957i
\(832\) −7.01178e10 5.11576e11i −0.146331 1.06762i
\(833\) 6.47936e11 1.34571
\(834\) −2.04504e11 1.95423e11i −0.422705 0.403935i
\(835\) 0 0
\(836\) 5.58382e8 + 1.22895e10i 0.00114316 + 0.0251599i
\(837\) 4.70655e11 0.958960
\(838\) 3.21427e11 3.36363e11i 0.651789 0.682075i
\(839\) 4.31925e11i 0.871688i 0.900022 + 0.435844i \(0.143550\pi\)
−0.900022 + 0.435844i \(0.856450\pi\)
\(840\) 0 0
\(841\) 1.86726e11 0.373268
\(842\) 2.34400e10 + 2.23991e10i 0.0466347 + 0.0445639i
\(843\) 2.54205e11i 0.503355i
\(844\) 5.68701e11 2.58394e10i 1.12076 0.0509228i
\(845\) 0 0
\(846\) −1.20421e11 + 1.26016e11i −0.235082 + 0.246006i
\(847\) 5.78298e11i 1.12362i
\(848\) −5.23396e11 + 4.76602e10i −1.01216 + 0.0921664i
\(849\) −2.02643e11 −0.390033
\(850\) 0 0
\(851\) 1.56860e11i 0.299085i
\(852\) 1.14698e10 + 2.52441e11i 0.0217670 + 0.479073i
\(853\) −9.29871e11 −1.75641 −0.878206 0.478282i \(-0.841260\pi\)
−0.878206 + 0.478282i \(0.841260\pi\)
\(854\) −3.60006e11 + 3.76735e11i −0.676828 + 0.708279i
\(855\) 0 0
\(856\) −5.07561e11 4.42739e11i −0.945351 0.824618i
\(857\) −1.19713e11 −0.221931 −0.110965 0.993824i \(-0.535394\pi\)
−0.110965 + 0.993824i \(0.535394\pi\)
\(858\) 6.16989e10 + 5.89592e10i 0.113849 + 0.108793i
\(859\) 4.22514e11i 0.776012i 0.921657 + 0.388006i \(0.126836\pi\)
−0.921657 + 0.388006i \(0.873164\pi\)
\(860\) 0 0
\(861\) −8.80936e10 −0.160299
\(862\) −2.55555e11 + 2.67430e11i −0.462865 + 0.484374i
\(863\) 2.84698e11i 0.513264i 0.966509 + 0.256632i \(0.0826129\pi\)
−0.966509 + 0.256632i \(0.917387\pi\)
\(864\) −2.20135e11 + 2.76784e11i −0.395034 + 0.496691i
\(865\) 0 0
\(866\) −5.97024e11 5.70514e11i −1.06150 1.01437i
\(867\) 2.17945e11i 0.385719i
\(868\) −5.39243e10 1.18683e12i −0.0949961 2.09078i
\(869\) −7.81630e9 −0.0137064
\(870\) 0 0
\(871\) 3.67517e10i 0.0638565i
\(872\) −4.89172e11 + 5.60793e11i −0.846049 + 0.969921i
\(873\) 3.47721e11 0.598651
\(874\) −3.55062e10 3.39296e10i −0.0608497 0.0581478i
\(875\) 0 0
\(876\) 2.33780e11 1.06220e10i 0.397001 0.0180380i
\(877\) −1.94476e11 −0.328752 −0.164376 0.986398i \(-0.552561\pi\)
−0.164376 + 0.986398i \(0.552561\pi\)
\(878\) 4.50907e11 4.71859e11i 0.758767 0.794025i
\(879\) 4.33753e10i 0.0726585i
\(880\) 0 0
\(881\) 9.06691e11 1.50507 0.752533 0.658555i \(-0.228832\pi\)
0.752533 + 0.658555i \(0.228832\pi\)
\(882\) 3.56382e11 + 3.40557e11i 0.588900 + 0.562750i
\(883\) 2.26542e11i 0.372654i −0.982488 0.186327i \(-0.940342\pi\)
0.982488 0.186327i \(-0.0596584\pi\)
\(884\) −4.37638e10 9.63202e11i −0.0716648 1.57728i
\(885\) 0 0
\(886\) 1.96973e10 2.06125e10i 0.0319647 0.0334500i
\(887\) 1.70744e11i 0.275837i −0.990444 0.137918i \(-0.955959\pi\)
0.990444 0.137918i \(-0.0440412\pi\)
\(888\) 3.24646e10 + 2.83184e10i 0.0522105 + 0.0455425i
\(889\) −1.48315e12 −2.37453
\(890\) 0 0
\(891\) 1.84404e11i 0.292590i
\(892\) 4.50323e11 2.04608e10i 0.711320 0.0323193i
\(893\) −1.41433e10 −0.0222405
\(894\) −2.20037e11 + 2.30261e11i −0.344465 + 0.360471i
\(895\) 0 0
\(896\) 7.23174e11 + 5.23391e11i 1.12205 + 0.812071i
\(897\) −3.40684e11 −0.526238
\(898\) −6.64919e11 6.35394e11i −1.02250 0.977097i
\(899\) 1.15664e12i 1.77075i
\(900\) 0 0
\(901\) −9.81380e11 −1.48915
\(902\) −6.83713e10 + 7.15484e10i −0.103288 + 0.108087i
\(903\) 4.18074e11i 0.628785i
\(904\) 3.51717e11 4.03213e11i 0.526647 0.603755i
\(905\) 0 0
\(906\) −2.43955e11 2.33123e11i −0.362074 0.345997i
\(907\) 5.20431e11i 0.769013i −0.923122 0.384507i \(-0.874372\pi\)
0.923122 0.384507i \(-0.125628\pi\)
\(908\) −4.74254e11 + 2.15481e10i −0.697698 + 0.0317004i
\(909\) 5.60205e11 0.820525
\(910\) 0 0
\(911\) 5.42499e11i 0.787635i −0.919189 0.393818i \(-0.871154\pi\)
0.919189 0.393818i \(-0.128846\pi\)
\(912\) −1.34323e10 + 1.22314e9i −0.0194165 + 0.00176806i
\(913\) 4.43327e11 0.638030
\(914\) −5.21650e11 4.98487e11i −0.747472 0.714281i
\(915\) 0 0
\(916\) −1.31403e10 2.89205e11i −0.0186647 0.410794i
\(917\) 4.37497e11 0.618725
\(918\) −4.56233e11 + 4.77433e11i −0.642415 + 0.672266i
\(919\) 6.49225e11i 0.910192i 0.890442 + 0.455096i \(0.150395\pi\)
−0.890442 + 0.455096i \(0.849605\pi\)
\(920\) 0 0
\(921\) 9.16364e10 0.127359
\(922\) −8.94283e11 8.54573e11i −1.23752 1.18257i
\(923\) 1.11516e12i 1.53650i
\(924\) −1.47387e11 + 6.69666e9i −0.202196 + 0.00918693i
\(925\) 0 0
\(926\) 9.42742e11 9.86549e11i 1.28218 1.34176i
\(927\) 1.14230e12i 1.54690i
\(928\) 6.80200e11 + 5.40983e11i 0.917159 + 0.729444i
\(929\) 4.98636e11 0.669455 0.334727 0.942315i \(-0.391356\pi\)
0.334727 + 0.942315i \(0.391356\pi\)
\(930\) 0 0
\(931\) 3.99982e10i 0.0532404i
\(932\) −2.61365e10 5.75240e11i −0.0346404 0.762405i
\(933\) −3.35785e11 −0.443133
\(934\) 3.54529e11 3.71003e11i 0.465870 0.487518i
\(935\) 0 0
\(936\) 4.82191e11 5.52789e11i 0.628226 0.720205i
\(937\) −4.01408e11 −0.520748 −0.260374 0.965508i \(-0.583846\pi\)
−0.260374 + 0.965508i \(0.583846\pi\)
\(938\) −4.59364e10 4.38966e10i −0.0593397 0.0567048i
\(939\) 7.57332e10i 0.0974146i
\(940\) 0 0
\(941\) −2.64682e10 −0.0337572 −0.0168786 0.999858i \(-0.505373\pi\)
−0.0168786 + 0.999858i \(0.505373\pi\)
\(942\) −9.56214e10 + 1.00065e11i −0.121437 + 0.127080i
\(943\) 3.95071e11i 0.499606i
\(944\) 3.67439e10 + 4.03515e11i 0.0462698 + 0.508127i
\(945\) 0 0
\(946\) −3.39554e11 3.24476e11i −0.423979 0.405152i
\(947\) 5.71352e11i 0.710401i 0.934790 + 0.355201i \(0.115587\pi\)
−0.934790 + 0.355201i \(0.884413\pi\)
\(948\) −3.88967e8 8.56081e9i −0.000481592 0.0105994i
\(949\) −1.03273e12 −1.27327
\(950\) 0 0
\(951\) 1.47163e10i 0.0179918i
\(952\) 1.25619e12 + 1.09576e12i 1.52935 + 1.33403i
\(953\) 1.09917e12 1.33258 0.666288 0.745694i \(-0.267882\pi\)
0.666288 + 0.745694i \(0.267882\pi\)
\(954\) −5.39785e11 5.15817e11i −0.651670 0.622733i
\(955\) 0 0
\(956\) 7.08988e11 3.22134e10i 0.848803 0.0385660i
\(957\) −1.43639e11 −0.171247
\(958\) 3.96719e11 4.15153e11i 0.471000 0.492886i
\(959\) 1.08545e12i 1.28333i
\(960\) 0 0
\(961\) −1.09451e12 −1.28329
\(962\) −1.37445e11 1.31342e11i −0.160483 0.153357i
\(963\) 9.56813e11i 1.11256i
\(964\) −1.86512e9 4.10495e10i −0.00215972 0.0475335i
\(965\) 0 0
\(966\) 4.06917e11 4.25825e11i 0.467301 0.489016i
\(967\) 8.78566e11i 1.00477i 0.864643 + 0.502387i \(0.167545\pi\)
−0.864643 + 0.502387i \(0.832455\pi\)
\(968\) 4.68207e11 5.36758e11i 0.533257 0.611332i
\(969\) −2.51858e10 −0.0285668
\(970\) 0 0
\(971\) 7.91945e11i 0.890878i 0.895312 + 0.445439i \(0.146952\pi\)
−0.895312 + 0.445439i \(0.853048\pi\)
\(972\) −7.67865e11 + 3.48885e10i −0.860241 + 0.0390857i
\(973\) −2.15806e12 −2.40775
\(974\) −6.61654e11 + 6.92399e11i −0.735182 + 0.769344i
\(975\) 0 0
\(976\) −6.39163e11 + 5.82018e10i −0.704389 + 0.0641413i
\(977\) 5.46919e11 0.600268 0.300134 0.953897i \(-0.402969\pi\)
0.300134 + 0.953897i \(0.402969\pi\)
\(978\) 6.36600e9 + 6.08332e9i 0.00695843 + 0.00664944i
\(979\) 3.55177e11i 0.386646i
\(980\) 0 0
\(981\) −1.05716e12 −1.14147
\(982\) 3.31923e11 3.47346e11i 0.356936 0.373522i
\(983\) 7.38083e11i 0.790481i 0.918578 + 0.395240i \(0.129339\pi\)
−0.918578 + 0.395240i \(0.870661\pi\)
\(984\) −8.17658e10 7.13233e10i −0.0872151 0.0760766i
\(985\) 0 0
\(986\) 1.17329e12 + 1.12119e12i 1.24136 + 1.18624i
\(987\) 1.69620e11i 0.178735i
\(988\) 5.94601e10 2.70162e9i 0.0624020 0.00283528i
\(989\) 1.87492e12 1.95974
\(990\) 0 0
\(991\) 3.73877e11i 0.387645i 0.981037 + 0.193823i \(0.0620886\pi\)
−0.981037 + 0.193823i \(0.937911\pi\)
\(992\) 9.10839e11 1.14523e12i 0.940578 1.18263i
\(993\) 3.29959e11 0.339362
\(994\) 1.39385e12 + 1.33196e12i 1.42781 + 1.36441i
\(995\) 0 0
\(996\) 2.20615e10 + 4.85555e11i 0.0224181 + 0.493402i
\(997\) −1.14224e12 −1.15605 −0.578025 0.816019i \(-0.696177\pi\)
−0.578025 + 0.816019i \(0.696177\pi\)
\(998\) −2.57118e11 + 2.69066e11i −0.259185 + 0.271229i
\(999\) 1.30205e11i 0.130727i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.b.d.51.3 16
4.3 odd 2 inner 100.9.b.d.51.4 16
5.2 odd 4 100.9.d.c.99.23 32
5.3 odd 4 100.9.d.c.99.10 32
5.4 even 2 20.9.b.a.11.14 yes 16
15.14 odd 2 180.9.c.a.91.3 16
20.3 even 4 100.9.d.c.99.24 32
20.7 even 4 100.9.d.c.99.9 32
20.19 odd 2 20.9.b.a.11.13 16
40.19 odd 2 320.9.b.d.191.7 16
40.29 even 2 320.9.b.d.191.10 16
60.59 even 2 180.9.c.a.91.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.13 16 20.19 odd 2
20.9.b.a.11.14 yes 16 5.4 even 2
100.9.b.d.51.3 16 1.1 even 1 trivial
100.9.b.d.51.4 16 4.3 odd 2 inner
100.9.d.c.99.9 32 20.7 even 4
100.9.d.c.99.10 32 5.3 odd 4
100.9.d.c.99.23 32 5.2 odd 4
100.9.d.c.99.24 32 20.3 even 4
180.9.c.a.91.3 16 15.14 odd 2
180.9.c.a.91.4 16 60.59 even 2
320.9.b.d.191.7 16 40.19 odd 2
320.9.b.d.191.10 16 40.29 even 2