Properties

Label 2-320-4.3-c8-0-27
Degree $2$
Conductor $320$
Sign $1$
Analytic cond. $130.361$
Root an. cond. $11.4175$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27.2i·3-s − 279.·5-s − 3.32e3i·7-s + 5.81e3·9-s + 6.36e3i·11-s + 3.07e4·13-s + 7.61e3i·15-s + 1.22e5·17-s − 7.55e3i·19-s − 9.06e4·21-s + 4.06e5i·23-s + 7.81e4·25-s − 3.37e5i·27-s − 8.28e5·29-s + 1.39e6i·31-s + ⋯
L(s)  = 1  − 0.336i·3-s − 0.447·5-s − 1.38i·7-s + 0.886·9-s + 0.434i·11-s + 1.07·13-s + 0.150i·15-s + 1.46·17-s − 0.0579i·19-s − 0.465·21-s + 1.45i·23-s + 0.200·25-s − 0.634i·27-s − 1.17·29-s + 1.51i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $1$
Analytic conductor: \(130.361\)
Root analytic conductor: \(11.4175\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{320} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(2.426586157\)
\(L(\frac12)\) \(\approx\) \(2.426586157\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 279.T \)
good3 \( 1 + 27.2iT - 6.56e3T^{2} \)
7 \( 1 + 3.32e3iT - 5.76e6T^{2} \)
11 \( 1 - 6.36e3iT - 2.14e8T^{2} \)
13 \( 1 - 3.07e4T + 8.15e8T^{2} \)
17 \( 1 - 1.22e5T + 6.97e9T^{2} \)
19 \( 1 + 7.55e3iT - 1.69e10T^{2} \)
23 \( 1 - 4.06e5iT - 7.83e10T^{2} \)
29 \( 1 + 8.28e5T + 5.00e11T^{2} \)
31 \( 1 - 1.39e6iT - 8.52e11T^{2} \)
37 \( 1 - 3.86e5T + 3.51e12T^{2} \)
41 \( 1 + 9.72e5T + 7.98e12T^{2} \)
43 \( 1 - 4.61e6iT - 1.16e13T^{2} \)
47 \( 1 + 1.87e6iT - 2.38e13T^{2} \)
53 \( 1 - 8.01e6T + 6.22e13T^{2} \)
59 \( 1 + 6.18e6iT - 1.46e14T^{2} \)
61 \( 1 + 9.79e6T + 1.91e14T^{2} \)
67 \( 1 + 1.19e6iT - 4.06e14T^{2} \)
71 \( 1 - 3.62e7iT - 6.45e14T^{2} \)
73 \( 1 - 3.35e7T + 8.06e14T^{2} \)
79 \( 1 + 1.22e6iT - 1.51e15T^{2} \)
83 \( 1 - 6.96e7iT - 2.25e15T^{2} \)
89 \( 1 - 5.58e7T + 3.93e15T^{2} \)
97 \( 1 + 5.97e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28234397433221762617824194898, −9.479236875542400998390043775380, −8.024525202152438143795278471044, −7.42930023976520065324172284990, −6.68194077282461114467537117155, −5.29314534622042816949614217318, −4.02405731954334166483105136330, −3.44538132494109705016778077818, −1.48341339286142970202700776394, −0.957190284064567229060271828164, 0.62072710287105591199763040007, 1.93964199615977298050581333958, 3.23518421961919699164726233741, 4.16650334824713073751836255871, 5.43823645742812373528788072352, 6.18705326991688342092870482666, 7.53161531805598829047244080123, 8.469699376163418144385107918015, 9.233426944548369903123367837411, 10.24537935031140268628081234507

Graph of the $Z$-function along the critical line