Properties

Label 153.2.f.b.64.3
Level $153$
Weight $2$
Character 153.64
Analytic conductor $1.222$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,2,Mod(55,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 153.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22171115093\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 64.3
Root \(0.222191i\) of defining polynomial
Character \(\chi\) \(=\) 153.64
Dual form 153.2.f.b.55.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.222191i q^{2} +1.95063 q^{4} +(0.450006 + 0.450006i) q^{5} +(-1.22219 + 1.22219i) q^{7} +0.877796i q^{8} +(-0.0999875 + 0.0999875i) q^{10} +(3.50062 - 3.50062i) q^{11} -2.50625 q^{13} +(-0.271560 - 0.271560i) q^{14} +3.70622 q^{16} +(-2.17845 + 3.50062i) q^{17} +0.950631i q^{19} +(0.877796 + 0.877796i) q^{20} +(0.777809 + 0.777809i) q^{22} +(-1.50062 + 1.50062i) q^{23} -4.59499i q^{25} -0.556867i q^{26} +(-2.38404 + 2.38404i) q^{28} +(-6.77906 - 6.77906i) q^{29} +(-3.72844 - 3.72844i) q^{31} +2.57908i q^{32} +(-0.777809 - 0.484032i) q^{34} -1.09999 q^{35} +(-6.00125 - 6.00125i) q^{37} -0.211222 q^{38} +(-0.395014 + 0.395014i) q^{40} +(-4.89439 + 4.89439i) q^{41} +7.15061i q^{43} +(6.82843 - 6.82843i) q^{44} +(-0.333426 - 0.333426i) q^{46} +8.10124 q^{47} +4.01250i q^{49} +1.02097 q^{50} -4.88877 q^{52} -6.44438i q^{53} +3.15061 q^{55} +(-1.07283 - 1.07283i) q^{56} +(1.50625 - 1.50625i) q^{58} +10.1125i q^{59} +(2.09999 - 2.09999i) q^{61} +(0.828427 - 0.828427i) q^{62} +6.83940 q^{64} +(-1.12783 - 1.12783i) q^{65} +7.70129 q^{67} +(-4.24934 + 6.82843i) q^{68} -0.244408i q^{70} +(-0.271560 - 0.271560i) q^{71} +(4.60624 + 4.60624i) q^{73} +(1.33343 - 1.33343i) q^{74} +1.85433i q^{76} +8.55687i q^{77} +(1.67782 - 1.67782i) q^{79} +(1.66782 + 1.66782i) q^{80} +(-1.08749 - 1.08749i) q^{82} -13.3581i q^{83} +(-2.55562 + 0.594989i) q^{85} -1.58880 q^{86} +(3.07283 + 3.07283i) q^{88} -1.98875 q^{89} +(3.06311 - 3.06311i) q^{91} +(-2.92717 + 2.92717i) q^{92} +1.80002i q^{94} +(-0.427790 + 0.427790i) q^{95} +(2.15061 + 2.15061i) q^{97} -0.891542 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} + 4 q^{5} - 4 q^{7} - 4 q^{13} - 24 q^{14} + 12 q^{16} + 4 q^{17} + 12 q^{20} + 12 q^{22} + 16 q^{23} - 8 q^{28} - 4 q^{29} - 8 q^{31} - 12 q^{34} - 8 q^{35} + 8 q^{37} - 24 q^{38} + 36 q^{40}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.222191i 0.157113i 0.996910 + 0.0785565i \(0.0250311\pi\)
−0.996910 + 0.0785565i \(0.974969\pi\)
\(3\) 0 0
\(4\) 1.95063 0.975315
\(5\) 0.450006 + 0.450006i 0.201249 + 0.201249i 0.800535 0.599286i \(-0.204549\pi\)
−0.599286 + 0.800535i \(0.704549\pi\)
\(6\) 0 0
\(7\) −1.22219 + 1.22219i −0.461945 + 0.461945i −0.899293 0.437348i \(-0.855918\pi\)
0.437348 + 0.899293i \(0.355918\pi\)
\(8\) 0.877796i 0.310348i
\(9\) 0 0
\(10\) −0.0999875 + 0.0999875i −0.0316188 + 0.0316188i
\(11\) 3.50062 3.50062i 1.05548 1.05548i 0.0571102 0.998368i \(-0.481811\pi\)
0.998368 0.0571102i \(-0.0181886\pi\)
\(12\) 0 0
\(13\) −2.50625 −0.695108 −0.347554 0.937660i \(-0.612988\pi\)
−0.347554 + 0.937660i \(0.612988\pi\)
\(14\) −0.271560 0.271560i −0.0725776 0.0725776i
\(15\) 0 0
\(16\) 3.70622 0.926556
\(17\) −2.17845 + 3.50062i −0.528351 + 0.849026i
\(18\) 0 0
\(19\) 0.950631i 0.218090i 0.994037 + 0.109045i \(0.0347792\pi\)
−0.994037 + 0.109045i \(0.965221\pi\)
\(20\) 0.877796 + 0.877796i 0.196281 + 0.196281i
\(21\) 0 0
\(22\) 0.777809 + 0.777809i 0.165829 + 0.165829i
\(23\) −1.50062 + 1.50062i −0.312902 + 0.312902i −0.846033 0.533131i \(-0.821015\pi\)
0.533131 + 0.846033i \(0.321015\pi\)
\(24\) 0 0
\(25\) 4.59499i 0.918998i
\(26\) 0.556867i 0.109211i
\(27\) 0 0
\(28\) −2.38404 + 2.38404i −0.450542 + 0.450542i
\(29\) −6.77906 6.77906i −1.25884 1.25884i −0.951648 0.307192i \(-0.900611\pi\)
−0.307192 0.951648i \(-0.599389\pi\)
\(30\) 0 0
\(31\) −3.72844 3.72844i −0.669648 0.669648i 0.287987 0.957634i \(-0.407014\pi\)
−0.957634 + 0.287987i \(0.907014\pi\)
\(32\) 2.57908i 0.455922i
\(33\) 0 0
\(34\) −0.777809 0.484032i −0.133393 0.0830108i
\(35\) −1.09999 −0.185932
\(36\) 0 0
\(37\) −6.00125 6.00125i −0.986599 0.986599i 0.0133121 0.999911i \(-0.495763\pi\)
−0.999911 + 0.0133121i \(0.995763\pi\)
\(38\) −0.211222 −0.0342647
\(39\) 0 0
\(40\) −0.395014 + 0.395014i −0.0624572 + 0.0624572i
\(41\) −4.89439 + 4.89439i −0.764375 + 0.764375i −0.977110 0.212735i \(-0.931763\pi\)
0.212735 + 0.977110i \(0.431763\pi\)
\(42\) 0 0
\(43\) 7.15061i 1.09046i 0.838287 + 0.545229i \(0.183557\pi\)
−0.838287 + 0.545229i \(0.816443\pi\)
\(44\) 6.82843 6.82843i 1.02942 1.02942i
\(45\) 0 0
\(46\) −0.333426 0.333426i −0.0491610 0.0491610i
\(47\) 8.10124 1.18169 0.590843 0.806786i \(-0.298795\pi\)
0.590843 + 0.806786i \(0.298795\pi\)
\(48\) 0 0
\(49\) 4.01250i 0.573214i
\(50\) 1.02097 0.144387
\(51\) 0 0
\(52\) −4.88877 −0.677950
\(53\) 6.44438i 0.885204i −0.896718 0.442602i \(-0.854055\pi\)
0.896718 0.442602i \(-0.145945\pi\)
\(54\) 0 0
\(55\) 3.15061 0.424828
\(56\) −1.07283 1.07283i −0.143364 0.143364i
\(57\) 0 0
\(58\) 1.50625 1.50625i 0.197780 0.197780i
\(59\) 10.1125i 1.31653i 0.752785 + 0.658267i \(0.228710\pi\)
−0.752785 + 0.658267i \(0.771290\pi\)
\(60\) 0 0
\(61\) 2.09999 2.09999i 0.268876 0.268876i −0.559771 0.828647i \(-0.689111\pi\)
0.828647 + 0.559771i \(0.189111\pi\)
\(62\) 0.828427 0.828427i 0.105210 0.105210i
\(63\) 0 0
\(64\) 6.83940 0.854925
\(65\) −1.12783 1.12783i −0.139890 0.139890i
\(66\) 0 0
\(67\) 7.70129 0.940862 0.470431 0.882437i \(-0.344098\pi\)
0.470431 + 0.882437i \(0.344098\pi\)
\(68\) −4.24934 + 6.82843i −0.515309 + 0.828068i
\(69\) 0 0
\(70\) 0.244408i 0.0292123i
\(71\) −0.271560 0.271560i −0.0322283 0.0322283i 0.690809 0.723037i \(-0.257255\pi\)
−0.723037 + 0.690809i \(0.757255\pi\)
\(72\) 0 0
\(73\) 4.60624 + 4.60624i 0.539119 + 0.539119i 0.923270 0.384151i \(-0.125506\pi\)
−0.384151 + 0.923270i \(0.625506\pi\)
\(74\) 1.33343 1.33343i 0.155008 0.155008i
\(75\) 0 0
\(76\) 1.85433i 0.212706i
\(77\) 8.55687i 0.975145i
\(78\) 0 0
\(79\) 1.67782 1.67782i 0.188770 0.188770i −0.606394 0.795164i \(-0.707385\pi\)
0.795164 + 0.606394i \(0.207385\pi\)
\(80\) 1.66782 + 1.66782i 0.186468 + 0.186468i
\(81\) 0 0
\(82\) −1.08749 1.08749i −0.120093 0.120093i
\(83\) 13.3581i 1.46625i −0.680096 0.733123i \(-0.738062\pi\)
0.680096 0.733123i \(-0.261938\pi\)
\(84\) 0 0
\(85\) −2.55562 + 0.594989i −0.277196 + 0.0645356i
\(86\) −1.58880 −0.171325
\(87\) 0 0
\(88\) 3.07283 + 3.07283i 0.327565 + 0.327565i
\(89\) −1.98875 −0.210807 −0.105404 0.994430i \(-0.533613\pi\)
−0.105404 + 0.994430i \(0.533613\pi\)
\(90\) 0 0
\(91\) 3.06311 3.06311i 0.321102 0.321102i
\(92\) −2.92717 + 2.92717i −0.305178 + 0.305178i
\(93\) 0 0
\(94\) 1.80002i 0.185658i
\(95\) −0.427790 + 0.427790i −0.0438903 + 0.0438903i
\(96\) 0 0
\(97\) 2.15061 + 2.15061i 0.218361 + 0.218361i 0.807807 0.589446i \(-0.200654\pi\)
−0.589446 + 0.807807i \(0.700654\pi\)
\(98\) −0.891542 −0.0900594
\(99\) 0 0
\(100\) 8.96313i 0.896313i
\(101\) 18.5456 1.84536 0.922679 0.385569i \(-0.125995\pi\)
0.922679 + 0.385569i \(0.125995\pi\)
\(102\) 0 0
\(103\) 3.39501 0.334521 0.167260 0.985913i \(-0.446508\pi\)
0.167260 + 0.985913i \(0.446508\pi\)
\(104\) 2.19998i 0.215725i
\(105\) 0 0
\(106\) 1.43189 0.139077
\(107\) 9.30065 + 9.30065i 0.899128 + 0.899128i 0.995359 0.0962313i \(-0.0306788\pi\)
−0.0962313 + 0.995359i \(0.530679\pi\)
\(108\) 0 0
\(109\) −12.2963 + 12.2963i −1.17777 + 1.17777i −0.197458 + 0.980311i \(0.563269\pi\)
−0.980311 + 0.197458i \(0.936731\pi\)
\(110\) 0.700037i 0.0667460i
\(111\) 0 0
\(112\) −4.52971 + 4.52971i −0.428018 + 0.428018i
\(113\) 0.548744 0.548744i 0.0516215 0.0516215i −0.680825 0.732446i \(-0.738378\pi\)
0.732446 + 0.680825i \(0.238378\pi\)
\(114\) 0 0
\(115\) −1.35058 −0.125942
\(116\) −13.2234 13.2234i −1.22777 1.22777i
\(117\) 0 0
\(118\) −2.24691 −0.206845
\(119\) −1.61596 6.94091i −0.148134 0.636272i
\(120\) 0 0
\(121\) 13.5087i 1.22807i
\(122\) 0.466599 + 0.466599i 0.0422439 + 0.0422439i
\(123\) 0 0
\(124\) −7.27281 7.27281i −0.653118 0.653118i
\(125\) 4.31780 4.31780i 0.386196 0.386196i
\(126\) 0 0
\(127\) 10.8519i 0.962950i 0.876460 + 0.481475i \(0.159899\pi\)
−0.876460 + 0.481475i \(0.840101\pi\)
\(128\) 6.67782i 0.590242i
\(129\) 0 0
\(130\) 0.250594 0.250594i 0.0219785 0.0219785i
\(131\) −0.499375 0.499375i −0.0436306 0.0436306i 0.684955 0.728585i \(-0.259822\pi\)
−0.728585 + 0.684955i \(0.759822\pi\)
\(132\) 0 0
\(133\) −1.16185 1.16185i −0.100745 0.100745i
\(134\) 1.71116i 0.147822i
\(135\) 0 0
\(136\) −3.07283 1.91223i −0.263493 0.163972i
\(137\) −12.3125 −1.05192 −0.525962 0.850508i \(-0.676295\pi\)
−0.525962 + 0.850508i \(0.676295\pi\)
\(138\) 0 0
\(139\) 9.43591 + 9.43591i 0.800344 + 0.800344i 0.983149 0.182805i \(-0.0585178\pi\)
−0.182805 + 0.983149i \(0.558518\pi\)
\(140\) −2.14567 −0.181342
\(141\) 0 0
\(142\) 0.0603384 0.0603384i 0.00506348 0.00506348i
\(143\) −8.77343 + 8.77343i −0.733671 + 0.733671i
\(144\) 0 0
\(145\) 6.10124i 0.506680i
\(146\) −1.02347 + 1.02347i −0.0847026 + 0.0847026i
\(147\) 0 0
\(148\) −11.7062 11.7062i −0.962246 0.962246i
\(149\) 0.356892 0.0292377 0.0146189 0.999893i \(-0.495347\pi\)
0.0146189 + 0.999893i \(0.495347\pi\)
\(150\) 0 0
\(151\) 9.13317i 0.743247i −0.928384 0.371624i \(-0.878801\pi\)
0.928384 0.371624i \(-0.121199\pi\)
\(152\) −0.834460 −0.0676837
\(153\) 0 0
\(154\) −1.90126 −0.153208
\(155\) 3.35564i 0.269532i
\(156\) 0 0
\(157\) −17.5975 −1.40443 −0.702216 0.711964i \(-0.747806\pi\)
−0.702216 + 0.711964i \(0.747806\pi\)
\(158\) 0.372797 + 0.372797i 0.0296582 + 0.0296582i
\(159\) 0 0
\(160\) −1.16060 + 1.16060i −0.0917538 + 0.0917538i
\(161\) 3.66810i 0.289087i
\(162\) 0 0
\(163\) 11.7309 11.7309i 0.918838 0.918838i −0.0781070 0.996945i \(-0.524888\pi\)
0.996945 + 0.0781070i \(0.0248876\pi\)
\(164\) −9.54715 + 9.54715i −0.745507 + 0.745507i
\(165\) 0 0
\(166\) 2.96806 0.230366
\(167\) −10.0575 10.0575i −0.778272 0.778272i 0.201265 0.979537i \(-0.435495\pi\)
−0.979537 + 0.201265i \(0.935495\pi\)
\(168\) 0 0
\(169\) −6.71872 −0.516825
\(170\) −0.132201 0.567836i −0.0101394 0.0435510i
\(171\) 0 0
\(172\) 13.9482i 1.06354i
\(173\) −1.33877 1.33877i −0.101785 0.101785i 0.654381 0.756165i \(-0.272929\pi\)
−0.756165 + 0.654381i \(0.772929\pi\)
\(174\) 0 0
\(175\) 5.61596 + 5.61596i 0.424526 + 0.424526i
\(176\) 12.9741 12.9741i 0.977959 0.977959i
\(177\) 0 0
\(178\) 0.441884i 0.0331206i
\(179\) 22.2469i 1.66281i 0.555666 + 0.831406i \(0.312464\pi\)
−0.555666 + 0.831406i \(0.687536\pi\)
\(180\) 0 0
\(181\) 8.21247 8.21247i 0.610428 0.610428i −0.332629 0.943058i \(-0.607936\pi\)
0.943058 + 0.332629i \(0.107936\pi\)
\(182\) 0.680598 + 0.680598i 0.0504493 + 0.0504493i
\(183\) 0 0
\(184\) −1.31724 1.31724i −0.0971084 0.0971084i
\(185\) 5.40120i 0.397104i
\(186\) 0 0
\(187\) 4.62845 + 19.8803i 0.338466 + 1.45379i
\(188\) 15.8025 1.15252
\(189\) 0 0
\(190\) −0.0950512 0.0950512i −0.00689574 0.00689574i
\(191\) 6.63311 0.479955 0.239978 0.970778i \(-0.422860\pi\)
0.239978 + 0.970778i \(0.422860\pi\)
\(192\) 0 0
\(193\) −2.06311 + 2.06311i −0.148506 + 0.148506i −0.777450 0.628944i \(-0.783487\pi\)
0.628944 + 0.777450i \(0.283487\pi\)
\(194\) −0.477846 + 0.477846i −0.0343074 + 0.0343074i
\(195\) 0 0
\(196\) 7.82690i 0.559064i
\(197\) −3.20685 + 3.20685i −0.228478 + 0.228478i −0.812057 0.583578i \(-0.801652\pi\)
0.583578 + 0.812057i \(0.301652\pi\)
\(198\) 0 0
\(199\) 1.73969 + 1.73969i 0.123323 + 0.123323i 0.766075 0.642752i \(-0.222207\pi\)
−0.642752 + 0.766075i \(0.722207\pi\)
\(200\) 4.03346 0.285209
\(201\) 0 0
\(202\) 4.12068i 0.289930i
\(203\) 16.5706 1.16303
\(204\) 0 0
\(205\) −4.40501 −0.307659
\(206\) 0.754343i 0.0525576i
\(207\) 0 0
\(208\) −9.28872 −0.644057
\(209\) 3.32780 + 3.32780i 0.230189 + 0.230189i
\(210\) 0 0
\(211\) 14.0741 14.0741i 0.968900 0.968900i −0.0306308 0.999531i \(-0.509752\pi\)
0.999531 + 0.0306308i \(0.00975162\pi\)
\(212\) 12.5706i 0.863353i
\(213\) 0 0
\(214\) −2.06652 + 2.06652i −0.141265 + 0.141265i
\(215\) −3.21782 + 3.21782i −0.219453 + 0.219453i
\(216\) 0 0
\(217\) 9.11373 0.618681
\(218\) −2.73213 2.73213i −0.185043 0.185043i
\(219\) 0 0
\(220\) 6.14567 0.414341
\(221\) 5.45973 8.77343i 0.367261 0.590165i
\(222\) 0 0
\(223\) 14.3631i 0.961823i −0.876769 0.480911i \(-0.840306\pi\)
0.876769 0.480911i \(-0.159694\pi\)
\(224\) −3.15213 3.15213i −0.210611 0.210611i
\(225\) 0 0
\(226\) 0.121926 + 0.121926i 0.00811041 + 0.00811041i
\(227\) −7.68935 + 7.68935i −0.510360 + 0.510360i −0.914637 0.404277i \(-0.867523\pi\)
0.404277 + 0.914637i \(0.367523\pi\)
\(228\) 0 0
\(229\) 18.9900i 1.25489i 0.778659 + 0.627447i \(0.215900\pi\)
−0.778659 + 0.627447i \(0.784100\pi\)
\(230\) 0.300087i 0.0197872i
\(231\) 0 0
\(232\) 5.95063 5.95063i 0.390678 0.390678i
\(233\) −5.00687 5.00687i −0.328011 0.328011i 0.523819 0.851830i \(-0.324507\pi\)
−0.851830 + 0.523819i \(0.824507\pi\)
\(234\) 0 0
\(235\) 3.64561 + 3.64561i 0.237813 + 0.237813i
\(236\) 19.7257i 1.28404i
\(237\) 0 0
\(238\) 1.54221 0.359051i 0.0999667 0.0232738i
\(239\) 5.28872 0.342099 0.171049 0.985262i \(-0.445284\pi\)
0.171049 + 0.985262i \(0.445284\pi\)
\(240\) 0 0
\(241\) −4.09999 4.09999i −0.264103 0.264103i 0.562615 0.826719i \(-0.309795\pi\)
−0.826719 + 0.562615i \(0.809795\pi\)
\(242\) 3.00153 0.192945
\(243\) 0 0
\(244\) 4.09630 4.09630i 0.262239 0.262239i
\(245\) −1.80565 + 1.80565i −0.115359 + 0.115359i
\(246\) 0 0
\(247\) 2.38252i 0.151596i
\(248\) 3.27281 3.27281i 0.207824 0.207824i
\(249\) 0 0
\(250\) 0.959379 + 0.959379i 0.0606765 + 0.0606765i
\(251\) −8.33190 −0.525905 −0.262952 0.964809i \(-0.584696\pi\)
−0.262952 + 0.964809i \(0.584696\pi\)
\(252\) 0 0
\(253\) 10.5062i 0.660522i
\(254\) −2.41120 −0.151292
\(255\) 0 0
\(256\) 12.1950 0.762190
\(257\) 4.25565i 0.265460i −0.991152 0.132730i \(-0.957626\pi\)
0.991152 0.132730i \(-0.0423744\pi\)
\(258\) 0 0
\(259\) 14.6694 0.911509
\(260\) −2.19998 2.19998i −0.136437 0.136437i
\(261\) 0 0
\(262\) 0.110957 0.110957i 0.00685494 0.00685494i
\(263\) 9.09999i 0.561129i 0.959835 + 0.280565i \(0.0905217\pi\)
−0.959835 + 0.280565i \(0.909478\pi\)
\(264\) 0 0
\(265\) 2.90001 2.90001i 0.178146 0.178146i
\(266\) 0.258154 0.258154i 0.0158284 0.0158284i
\(267\) 0 0
\(268\) 15.0224 0.917637
\(269\) 15.1194 + 15.1194i 0.921843 + 0.921843i 0.997160 0.0753162i \(-0.0239966\pi\)
−0.0753162 + 0.997160i \(0.523997\pi\)
\(270\) 0 0
\(271\) −19.3213 −1.17368 −0.586842 0.809702i \(-0.699629\pi\)
−0.586842 + 0.809702i \(0.699629\pi\)
\(272\) −8.07381 + 12.9741i −0.489546 + 0.786670i
\(273\) 0 0
\(274\) 2.73572i 0.165271i
\(275\) −16.0853 16.0853i −0.969982 0.969982i
\(276\) 0 0
\(277\) 2.36183 + 2.36183i 0.141908 + 0.141908i 0.774492 0.632584i \(-0.218006\pi\)
−0.632584 + 0.774492i \(0.718006\pi\)
\(278\) −2.09658 + 2.09658i −0.125744 + 0.125744i
\(279\) 0 0
\(280\) 0.965565i 0.0577035i
\(281\) 4.67754i 0.279039i −0.990219 0.139519i \(-0.955444\pi\)
0.990219 0.139519i \(-0.0445558\pi\)
\(282\) 0 0
\(283\) −7.11221 + 7.11221i −0.422777 + 0.422777i −0.886159 0.463382i \(-0.846636\pi\)
0.463382 + 0.886159i \(0.346636\pi\)
\(284\) −0.529714 0.529714i −0.0314327 0.0314327i
\(285\) 0 0
\(286\) −1.94938 1.94938i −0.115269 0.115269i
\(287\) 11.9638i 0.706198i
\(288\) 0 0
\(289\) −7.50875 15.2518i −0.441691 0.897167i
\(290\) 1.35564 0.0796061
\(291\) 0 0
\(292\) 8.98507 + 8.98507i 0.525811 + 0.525811i
\(293\) 5.76934 0.337048 0.168524 0.985698i \(-0.446100\pi\)
0.168524 + 0.985698i \(0.446100\pi\)
\(294\) 0 0
\(295\) −4.55068 + 4.55068i −0.264951 + 0.264951i
\(296\) 5.26787 5.26787i 0.306189 0.306189i
\(297\) 0 0
\(298\) 0.0792983i 0.00459363i
\(299\) 3.76094 3.76094i 0.217501 0.217501i
\(300\) 0 0
\(301\) −8.73941 8.73941i −0.503731 0.503731i
\(302\) 2.02931 0.116774
\(303\) 0 0
\(304\) 3.52325i 0.202072i
\(305\) 1.89001 0.108222
\(306\) 0 0
\(307\) −13.2375 −0.755502 −0.377751 0.925907i \(-0.623302\pi\)
−0.377751 + 0.925907i \(0.623302\pi\)
\(308\) 16.6913i 0.951074i
\(309\) 0 0
\(310\) 0.745595 0.0423469
\(311\) 0.915918 + 0.915918i 0.0519370 + 0.0519370i 0.732598 0.680661i \(-0.238307\pi\)
−0.680661 + 0.732598i \(0.738307\pi\)
\(312\) 0 0
\(313\) −13.5062 + 13.5062i −0.763418 + 0.763418i −0.976939 0.213520i \(-0.931507\pi\)
0.213520 + 0.976939i \(0.431507\pi\)
\(314\) 3.91001i 0.220655i
\(315\) 0 0
\(316\) 3.27281 3.27281i 0.184110 0.184110i
\(317\) 10.6803 10.6803i 0.599867 0.599867i −0.340410 0.940277i \(-0.610566\pi\)
0.940277 + 0.340410i \(0.110566\pi\)
\(318\) 0 0
\(319\) −47.4619 −2.65735
\(320\) 3.07777 + 3.07777i 0.172053 + 0.172053i
\(321\) 0 0
\(322\) 0.815020 0.0454193
\(323\) −3.32780 2.07090i −0.185164 0.115228i
\(324\) 0 0
\(325\) 11.5162i 0.638803i
\(326\) 2.60651 + 2.60651i 0.144361 + 0.144361i
\(327\) 0 0
\(328\) −4.29628 4.29628i −0.237222 0.237222i
\(329\) −9.90126 + 9.90126i −0.545874 + 0.545874i
\(330\) 0 0
\(331\) 22.6769i 1.24644i −0.782048 0.623218i \(-0.785825\pi\)
0.782048 0.623218i \(-0.214175\pi\)
\(332\) 26.0568i 1.43005i
\(333\) 0 0
\(334\) 2.23469 2.23469i 0.122277 0.122277i
\(335\) 3.46563 + 3.46563i 0.189347 + 0.189347i
\(336\) 0 0
\(337\) 1.14317 + 1.14317i 0.0622725 + 0.0622725i 0.737557 0.675285i \(-0.235979\pi\)
−0.675285 + 0.737557i \(0.735979\pi\)
\(338\) 1.49284i 0.0811999i
\(339\) 0 0
\(340\) −4.98507 + 1.16060i −0.270353 + 0.0629426i
\(341\) −26.1037 −1.41360
\(342\) 0 0
\(343\) −13.4594 13.4594i −0.726738 0.726738i
\(344\) −6.27677 −0.338421
\(345\) 0 0
\(346\) 0.297464 0.297464i 0.0159917 0.0159917i
\(347\) 10.8616 10.8616i 0.583082 0.583082i −0.352667 0.935749i \(-0.614725\pi\)
0.935749 + 0.352667i \(0.114725\pi\)
\(348\) 0 0
\(349\) 15.1087i 0.808749i −0.914594 0.404374i \(-0.867489\pi\)
0.914594 0.404374i \(-0.132511\pi\)
\(350\) −1.24782 + 1.24782i −0.0666986 + 0.0666986i
\(351\) 0 0
\(352\) 9.02840 + 9.02840i 0.481215 + 0.481215i
\(353\) −31.2482 −1.66317 −0.831586 0.555396i \(-0.812567\pi\)
−0.831586 + 0.555396i \(0.812567\pi\)
\(354\) 0 0
\(355\) 0.244408i 0.0129718i
\(356\) −3.87932 −0.205604
\(357\) 0 0
\(358\) −4.94307 −0.261249
\(359\) 2.72503i 0.143822i 0.997411 + 0.0719108i \(0.0229097\pi\)
−0.997411 + 0.0719108i \(0.977090\pi\)
\(360\) 0 0
\(361\) 18.0963 0.952437
\(362\) 1.82474 + 1.82474i 0.0959062 + 0.0959062i
\(363\) 0 0
\(364\) 5.97501 5.97501i 0.313175 0.313175i
\(365\) 4.14567i 0.216994i
\(366\) 0 0
\(367\) −13.0472 + 13.0472i −0.681059 + 0.681059i −0.960239 0.279180i \(-0.909937\pi\)
0.279180 + 0.960239i \(0.409937\pi\)
\(368\) −5.56165 + 5.56165i −0.289921 + 0.289921i
\(369\) 0 0
\(370\) 1.20010 0.0623902
\(371\) 7.87627 + 7.87627i 0.408916 + 0.408916i
\(372\) 0 0
\(373\) 24.4049 1.26364 0.631820 0.775115i \(-0.282308\pi\)
0.631820 + 0.775115i \(0.282308\pi\)
\(374\) −4.41723 + 1.02840i −0.228410 + 0.0531774i
\(375\) 0 0
\(376\) 7.11123i 0.366734i
\(377\) 16.9900 + 16.9900i 0.875030 + 0.875030i
\(378\) 0 0
\(379\) −4.16526 4.16526i −0.213955 0.213955i 0.591990 0.805945i \(-0.298342\pi\)
−0.805945 + 0.591990i \(0.798342\pi\)
\(380\) −0.834460 + 0.834460i −0.0428069 + 0.0428069i
\(381\) 0 0
\(382\) 1.47382i 0.0754072i
\(383\) 30.7756i 1.57256i −0.617871 0.786279i \(-0.712005\pi\)
0.617871 0.786279i \(-0.287995\pi\)
\(384\) 0 0
\(385\) −3.85064 + 3.85064i −0.196247 + 0.196247i
\(386\) −0.458406 0.458406i −0.0233323 0.0233323i
\(387\) 0 0
\(388\) 4.19504 + 4.19504i 0.212971 + 0.212971i
\(389\) 19.5244i 0.989925i 0.868914 + 0.494963i \(0.164818\pi\)
−0.868914 + 0.494963i \(0.835182\pi\)
\(390\) 0 0
\(391\) −1.98409 8.52215i −0.100340 0.430984i
\(392\) −3.52215 −0.177896
\(393\) 0 0
\(394\) −0.712534 0.712534i −0.0358969 0.0358969i
\(395\) 1.51006 0.0759794
\(396\) 0 0
\(397\) 0.639421 0.639421i 0.0320916 0.0320916i −0.690879 0.722971i \(-0.742776\pi\)
0.722971 + 0.690879i \(0.242776\pi\)
\(398\) −0.386543 + 0.386543i −0.0193757 + 0.0193757i
\(399\) 0 0
\(400\) 17.0301i 0.851503i
\(401\) −0.894389 + 0.894389i −0.0446637 + 0.0446637i −0.729086 0.684422i \(-0.760055\pi\)
0.684422 + 0.729086i \(0.260055\pi\)
\(402\) 0 0
\(403\) 9.34440 + 9.34440i 0.465477 + 0.465477i
\(404\) 36.1757 1.79981
\(405\) 0 0
\(406\) 3.68185i 0.182727i
\(407\) −42.0162 −2.08267
\(408\) 0 0
\(409\) 28.6350 1.41591 0.707954 0.706258i \(-0.249618\pi\)
0.707954 + 0.706258i \(0.249618\pi\)
\(410\) 0.978756i 0.0483373i
\(411\) 0 0
\(412\) 6.62242 0.326263
\(413\) −12.3594 12.3594i −0.608166 0.608166i
\(414\) 0 0
\(415\) 6.01125 6.01125i 0.295081 0.295081i
\(416\) 6.46382i 0.316915i
\(417\) 0 0
\(418\) −0.739409 + 0.739409i −0.0361657 + 0.0361657i
\(419\) 16.9409 16.9409i 0.827618 0.827618i −0.159569 0.987187i \(-0.551010\pi\)
0.987187 + 0.159569i \(0.0510105\pi\)
\(420\) 0 0
\(421\) 12.5312 0.610735 0.305368 0.952235i \(-0.401221\pi\)
0.305368 + 0.952235i \(0.401221\pi\)
\(422\) 3.12714 + 3.12714i 0.152227 + 0.152227i
\(423\) 0 0
\(424\) 5.65685 0.274721
\(425\) 16.0853 + 10.0099i 0.780253 + 0.485553i
\(426\) 0 0
\(427\) 5.13317i 0.248412i
\(428\) 18.1421 + 18.1421i 0.876933 + 0.876933i
\(429\) 0 0
\(430\) −0.714971 0.714971i −0.0344790 0.0344790i
\(431\) −12.4965 + 12.4965i −0.601937 + 0.601937i −0.940826 0.338890i \(-0.889949\pi\)
0.338890 + 0.940826i \(0.389949\pi\)
\(432\) 0 0
\(433\) 14.0076i 0.673160i −0.941655 0.336580i \(-0.890730\pi\)
0.941655 0.336580i \(-0.109270\pi\)
\(434\) 2.02499i 0.0972028i
\(435\) 0 0
\(436\) −23.9855 + 23.9855i −1.14870 + 1.14870i
\(437\) −1.42654 1.42654i −0.0682407 0.0682407i
\(438\) 0 0
\(439\) 8.18407 + 8.18407i 0.390604 + 0.390604i 0.874903 0.484299i \(-0.160925\pi\)
−0.484299 + 0.874903i \(0.660925\pi\)
\(440\) 2.76559i 0.131844i
\(441\) 0 0
\(442\) 1.94938 + 1.21310i 0.0927226 + 0.0577015i
\(443\) 35.6174 1.69223 0.846117 0.532997i \(-0.178934\pi\)
0.846117 + 0.532997i \(0.178934\pi\)
\(444\) 0 0
\(445\) −0.894951 0.894951i −0.0424248 0.0424248i
\(446\) 3.19135 0.151115
\(447\) 0 0
\(448\) −8.35905 + 8.35905i −0.394928 + 0.394928i
\(449\) 15.6596 15.6596i 0.739024 0.739024i −0.233365 0.972389i \(-0.574974\pi\)
0.972389 + 0.233365i \(0.0749738\pi\)
\(450\) 0 0
\(451\) 34.2668i 1.61356i
\(452\) 1.07040 1.07040i 0.0503473 0.0503473i
\(453\) 0 0
\(454\) −1.70851 1.70851i −0.0801842 0.0801842i
\(455\) 2.75684 0.129243
\(456\) 0 0
\(457\) 9.90632i 0.463398i −0.972787 0.231699i \(-0.925572\pi\)
0.972787 0.231699i \(-0.0744285\pi\)
\(458\) −4.21941 −0.197160
\(459\) 0 0
\(460\) −2.63449 −0.122834
\(461\) 9.62367i 0.448219i −0.974564 0.224109i \(-0.928053\pi\)
0.974564 0.224109i \(-0.0719473\pi\)
\(462\) 0 0
\(463\) −15.3013 −0.711113 −0.355557 0.934655i \(-0.615709\pi\)
−0.355557 + 0.934655i \(0.615709\pi\)
\(464\) −25.1247 25.1247i −1.16639 1.16639i
\(465\) 0 0
\(466\) 1.11248 1.11248i 0.0515348 0.0515348i
\(467\) 22.3150i 1.03261i 0.856404 + 0.516307i \(0.172693\pi\)
−0.856404 + 0.516307i \(0.827307\pi\)
\(468\) 0 0
\(469\) −9.41245 + 9.41245i −0.434626 + 0.434626i
\(470\) −0.810022 + 0.810022i −0.0373636 + 0.0373636i
\(471\) 0 0
\(472\) −8.87670 −0.408583
\(473\) 25.0316 + 25.0316i 1.15095 + 1.15095i
\(474\) 0 0
\(475\) 4.36814 0.200424
\(476\) −3.15213 13.5392i −0.144478 0.620566i
\(477\) 0 0
\(478\) 1.17511i 0.0537481i
\(479\) −11.0006 11.0006i −0.502629 0.502629i 0.409625 0.912254i \(-0.365659\pi\)
−0.912254 + 0.409625i \(0.865659\pi\)
\(480\) 0 0
\(481\) 15.0406 + 15.0406i 0.685793 + 0.685793i
\(482\) 0.910982 0.910982i 0.0414941 0.0414941i
\(483\) 0 0
\(484\) 26.3506i 1.19775i
\(485\) 1.93557i 0.0878898i
\(486\) 0 0
\(487\) 0.0209669 0.0209669i 0.000950100 0.000950100i −0.706632 0.707582i \(-0.749786\pi\)
0.707582 + 0.706632i \(0.249786\pi\)
\(488\) 1.84336 + 1.84336i 0.0834450 + 0.0834450i
\(489\) 0 0
\(490\) −0.401200 0.401200i −0.0181243 0.0181243i
\(491\) 6.66935i 0.300984i 0.988611 + 0.150492i \(0.0480857\pi\)
−0.988611 + 0.150492i \(0.951914\pi\)
\(492\) 0 0
\(493\) 38.4987 8.96313i 1.73390 0.403679i
\(494\) 0.529375 0.0238177
\(495\) 0 0
\(496\) −13.8184 13.8184i −0.620466 0.620466i
\(497\) 0.663798 0.0297754
\(498\) 0 0
\(499\) 13.1853 13.1853i 0.590256 0.590256i −0.347445 0.937701i \(-0.612951\pi\)
0.937701 + 0.347445i \(0.112951\pi\)
\(500\) 8.42244 8.42244i 0.376663 0.376663i
\(501\) 0 0
\(502\) 1.85128i 0.0826265i
\(503\) −18.2007 + 18.2007i −0.811527 + 0.811527i −0.984863 0.173335i \(-0.944546\pi\)
0.173335 + 0.984863i \(0.444546\pi\)
\(504\) 0 0
\(505\) 8.34564 + 8.34564i 0.371376 + 0.371376i
\(506\) −2.33440 −0.103777
\(507\) 0 0
\(508\) 21.1680i 0.939180i
\(509\) −41.1950 −1.82594 −0.912968 0.408032i \(-0.866215\pi\)
−0.912968 + 0.408032i \(0.866215\pi\)
\(510\) 0 0
\(511\) −11.2594 −0.498087
\(512\) 16.0653i 0.709992i
\(513\) 0 0
\(514\) 0.945570 0.0417073
\(515\) 1.52778 + 1.52778i 0.0673219 + 0.0673219i
\(516\) 0 0
\(517\) 28.3594 28.3594i 1.24724 1.24724i
\(518\) 3.25940i 0.143210i
\(519\) 0 0
\(520\) 0.990002 0.990002i 0.0434145 0.0434145i
\(521\) 6.35127 6.35127i 0.278254 0.278254i −0.554158 0.832412i \(-0.686960\pi\)
0.832412 + 0.554158i \(0.186960\pi\)
\(522\) 0 0
\(523\) 5.38995 0.235686 0.117843 0.993032i \(-0.462402\pi\)
0.117843 + 0.993032i \(0.462402\pi\)
\(524\) −0.974097 0.974097i −0.0425536 0.0425536i
\(525\) 0 0
\(526\) −2.02194 −0.0881607
\(527\) 21.1741 4.92966i 0.922357 0.214740i
\(528\) 0 0
\(529\) 18.4963i 0.804185i
\(530\) 0.644358 + 0.644358i 0.0279891 + 0.0279891i
\(531\) 0 0
\(532\) −2.26635 2.26635i −0.0982586 0.0982586i
\(533\) 12.2666 12.2666i 0.531323 0.531323i
\(534\) 0 0
\(535\) 8.37070i 0.361897i
\(536\) 6.76016i 0.291994i
\(537\) 0 0
\(538\) −3.35939 + 3.35939i −0.144834 + 0.144834i
\(539\) 14.0462 + 14.0462i 0.605015 + 0.605015i
\(540\) 0 0
\(541\) −0.868076 0.868076i −0.0373215 0.0373215i 0.688200 0.725521i \(-0.258401\pi\)
−0.725521 + 0.688200i \(0.758401\pi\)
\(542\) 4.29302i 0.184401i
\(543\) 0 0
\(544\) −9.02840 5.61839i −0.387090 0.240887i
\(545\) −11.0668 −0.474050
\(546\) 0 0
\(547\) −9.56534 9.56534i −0.408984 0.408984i 0.472400 0.881384i \(-0.343388\pi\)
−0.881384 + 0.472400i \(0.843388\pi\)
\(548\) −24.0171 −1.02596
\(549\) 0 0
\(550\) 3.57402 3.57402i 0.152397 0.152397i
\(551\) 6.44438 6.44438i 0.274540 0.274540i
\(552\) 0 0
\(553\) 4.10124i 0.174402i
\(554\) −0.524778 + 0.524778i −0.0222957 + 0.0222957i
\(555\) 0 0
\(556\) 18.4060 + 18.4060i 0.780588 + 0.780588i
\(557\) −18.3599 −0.777936 −0.388968 0.921251i \(-0.627168\pi\)
−0.388968 + 0.921251i \(0.627168\pi\)
\(558\) 0 0
\(559\) 17.9212i 0.757986i
\(560\) −4.07680 −0.172276
\(561\) 0 0
\(562\) 1.03931 0.0438406
\(563\) 3.33315i 0.140475i 0.997530 + 0.0702377i \(0.0223758\pi\)
−0.997530 + 0.0702377i \(0.977624\pi\)
\(564\) 0 0
\(565\) 0.493877 0.0207775
\(566\) −1.58027 1.58027i −0.0664237 0.0664237i
\(567\) 0 0
\(568\) 0.238375 0.238375i 0.0100020 0.0100020i
\(569\) 29.4369i 1.23406i −0.786940 0.617029i \(-0.788336\pi\)
0.786940 0.617029i \(-0.211664\pi\)
\(570\) 0 0
\(571\) −18.2628 + 18.2628i −0.764275 + 0.764275i −0.977092 0.212817i \(-0.931736\pi\)
0.212817 + 0.977092i \(0.431736\pi\)
\(572\) −17.1137 + 17.1137i −0.715561 + 0.715561i
\(573\) 0 0
\(574\) 2.65824 0.110953
\(575\) 6.89535 + 6.89535i 0.287556 + 0.287556i
\(576\) 0 0
\(577\) −22.1850 −0.923575 −0.461788 0.886990i \(-0.652792\pi\)
−0.461788 + 0.886990i \(0.652792\pi\)
\(578\) 3.38883 1.66838i 0.140957 0.0693954i
\(579\) 0 0
\(580\) 11.9013i 0.494173i
\(581\) 16.3262 + 16.3262i 0.677325 + 0.677325i
\(582\) 0 0
\(583\) −22.5594 22.5594i −0.934313 0.934313i
\(584\) −4.04334 + 4.04334i −0.167314 + 0.167314i
\(585\) 0 0
\(586\) 1.28190i 0.0529547i
\(587\) 32.1482i 1.32690i −0.748222 0.663448i \(-0.769092\pi\)
0.748222 0.663448i \(-0.230908\pi\)
\(588\) 0 0
\(589\) 3.54437 3.54437i 0.146043 0.146043i
\(590\) −1.01112 1.01112i −0.0416272 0.0416272i
\(591\) 0 0
\(592\) −22.2420 22.2420i −0.914139 0.914139i
\(593\) 29.3406i 1.20488i −0.798166 0.602438i \(-0.794196\pi\)
0.798166 0.602438i \(-0.205804\pi\)
\(594\) 0 0
\(595\) 2.39626 3.85064i 0.0982372 0.157861i
\(596\) 0.696164 0.0285160
\(597\) 0 0
\(598\) 0.835648 + 0.835648i 0.0341722 + 0.0341722i
\(599\) −36.2632 −1.48167 −0.740836 0.671686i \(-0.765570\pi\)
−0.740836 + 0.671686i \(0.765570\pi\)
\(600\) 0 0
\(601\) −32.3418 + 32.3418i −1.31925 + 1.31925i −0.404882 + 0.914369i \(0.632687\pi\)
−0.914369 + 0.404882i \(0.867313\pi\)
\(602\) 1.94182 1.94182i 0.0791427 0.0791427i
\(603\) 0 0
\(604\) 17.8155i 0.724900i
\(605\) 6.07902 6.07902i 0.247147 0.247147i
\(606\) 0 0
\(607\) −23.8041 23.8041i −0.966177 0.966177i 0.0332698 0.999446i \(-0.489408\pi\)
−0.999446 + 0.0332698i \(0.989408\pi\)
\(608\) −2.45176 −0.0994318
\(609\) 0 0
\(610\) 0.419945i 0.0170031i
\(611\) −20.3037 −0.821400
\(612\) 0 0
\(613\) −5.89120 −0.237943 −0.118972 0.992898i \(-0.537960\pi\)
−0.118972 + 0.992898i \(0.537960\pi\)
\(614\) 2.94125i 0.118699i
\(615\) 0 0
\(616\) −7.51118 −0.302634
\(617\) 24.9028 + 24.9028i 1.00255 + 1.00255i 0.999997 + 0.00255180i \(0.000812263\pi\)
0.00255180 + 0.999997i \(0.499188\pi\)
\(618\) 0 0
\(619\) −23.2134 + 23.2134i −0.933027 + 0.933027i −0.997894 0.0648669i \(-0.979338\pi\)
0.0648669 + 0.997894i \(0.479338\pi\)
\(620\) 6.54562i 0.262878i
\(621\) 0 0
\(622\) −0.203509 + 0.203509i −0.00815997 + 0.00815997i
\(623\) 2.43064 2.43064i 0.0973814 0.0973814i
\(624\) 0 0
\(625\) −19.0889 −0.763555
\(626\) −3.00097 3.00097i −0.119943 0.119943i
\(627\) 0 0
\(628\) −34.3262 −1.36976
\(629\) 34.0815 7.93473i 1.35892 0.316378i
\(630\) 0 0
\(631\) 10.7057i 0.426186i −0.977032 0.213093i \(-0.931646\pi\)
0.977032 0.213093i \(-0.0683537\pi\)
\(632\) 1.47278 + 1.47278i 0.0585842 + 0.0585842i
\(633\) 0 0
\(634\) 2.37308 + 2.37308i 0.0942468 + 0.0942468i
\(635\) −4.88342 + 4.88342i −0.193793 + 0.193793i
\(636\) 0 0
\(637\) 10.0563i 0.398446i
\(638\) 10.5456i 0.417505i
\(639\) 0 0
\(640\) −3.00506 + 3.00506i −0.118785 + 0.118785i
\(641\) 26.1231 + 26.1231i 1.03180 + 1.03180i 0.999477 + 0.0323232i \(0.0102906\pi\)
0.0323232 + 0.999477i \(0.489709\pi\)
\(642\) 0 0
\(643\) 27.7990 + 27.7990i 1.09629 + 1.09629i 0.994841 + 0.101444i \(0.0323462\pi\)
0.101444 + 0.994841i \(0.467654\pi\)
\(644\) 7.15511i 0.281951i
\(645\) 0 0
\(646\) 0.460136 0.739409i 0.0181038 0.0290917i
\(647\) 14.8806 0.585016 0.292508 0.956263i \(-0.405510\pi\)
0.292508 + 0.956263i \(0.405510\pi\)
\(648\) 0 0
\(649\) 35.4000 + 35.4000i 1.38957 + 1.38957i
\(650\) −2.55880 −0.100364
\(651\) 0 0
\(652\) 22.8827 22.8827i 0.896157 0.896157i
\(653\) −17.1762 + 17.1762i −0.672155 + 0.672155i −0.958212 0.286057i \(-0.907655\pi\)
0.286057 + 0.958212i \(0.407655\pi\)
\(654\) 0 0
\(655\) 0.449444i 0.0175612i
\(656\) −18.1397 + 18.1397i −0.708236 + 0.708236i
\(657\) 0 0
\(658\) −2.19998 2.19998i −0.0857640 0.0857640i
\(659\) −9.14192 −0.356119 −0.178059 0.984020i \(-0.556982\pi\)
−0.178059 + 0.984020i \(0.556982\pi\)
\(660\) 0 0
\(661\) 16.7951i 0.653253i 0.945153 + 0.326627i \(0.105912\pi\)
−0.945153 + 0.326627i \(0.894088\pi\)
\(662\) 5.03861 0.195831
\(663\) 0 0
\(664\) 11.7257 0.455046
\(665\) 1.04568i 0.0405498i
\(666\) 0 0
\(667\) 20.3456 0.787787
\(668\) −19.6185 19.6185i −0.759061 0.759061i
\(669\) 0 0
\(670\) −0.770032 + 0.770032i −0.0297490 + 0.0297490i
\(671\) 14.7025i 0.567585i
\(672\) 0 0
\(673\) 13.1743 13.1743i 0.507834 0.507834i −0.406027 0.913861i \(-0.633086\pi\)
0.913861 + 0.406027i \(0.133086\pi\)
\(674\) −0.254003 + 0.254003i −0.00978382 + 0.00978382i
\(675\) 0 0
\(676\) −13.1057 −0.504067
\(677\) 7.63748 + 7.63748i 0.293532 + 0.293532i 0.838474 0.544942i \(-0.183448\pi\)
−0.544942 + 0.838474i \(0.683448\pi\)
\(678\) 0 0
\(679\) −5.25690 −0.201741
\(680\) −0.522279 2.24331i −0.0200285 0.0860270i
\(681\) 0 0
\(682\) 5.80002i 0.222094i
\(683\) −15.7118 15.7118i −0.601197 0.601197i 0.339433 0.940630i \(-0.389765\pi\)
−0.940630 + 0.339433i \(0.889765\pi\)
\(684\) 0 0
\(685\) −5.54068 5.54068i −0.211699 0.211699i
\(686\) 2.99056 2.99056i 0.114180 0.114180i
\(687\) 0 0
\(688\) 26.5017i 1.01037i
\(689\) 16.1512i 0.615313i
\(690\) 0 0
\(691\) 27.2528 27.2528i 1.03675 1.03675i 0.0374473 0.999299i \(-0.488077\pi\)
0.999299 0.0374473i \(-0.0119226\pi\)
\(692\) −2.61145 2.61145i −0.0992724 0.0992724i
\(693\) 0 0
\(694\) 2.41336 + 2.41336i 0.0916098 + 0.0916098i
\(695\) 8.49244i 0.322137i
\(696\) 0 0
\(697\) −6.47126 27.7956i −0.245116 1.05283i
\(698\) 3.35702 0.127065
\(699\) 0 0
\(700\) 10.9547 + 10.9547i 0.414047 + 0.414047i
\(701\) 18.0843 0.683034 0.341517 0.939876i \(-0.389059\pi\)
0.341517 + 0.939876i \(0.389059\pi\)
\(702\) 0 0
\(703\) 5.70497 5.70497i 0.215167 0.215167i
\(704\) 23.9422 23.9422i 0.902354 0.902354i
\(705\) 0 0
\(706\) 6.94307i 0.261306i
\(707\) −22.6663 + 22.6663i −0.852454 + 0.852454i
\(708\) 0 0
\(709\) 36.9544 + 36.9544i 1.38785 + 1.38785i 0.829821 + 0.558030i \(0.188443\pi\)
0.558030 + 0.829821i \(0.311557\pi\)
\(710\) 0.0543053 0.00203804
\(711\) 0 0
\(712\) 1.74572i 0.0654236i
\(713\) 11.1900 0.419068
\(714\) 0 0
\(715\) −7.89620 −0.295301
\(716\) 43.3955i 1.62177i
\(717\) 0 0
\(718\) −0.605478 −0.0225962
\(719\) −1.59686 1.59686i −0.0595530 0.0595530i 0.676703 0.736256i \(-0.263408\pi\)
−0.736256 + 0.676703i \(0.763408\pi\)
\(720\) 0 0
\(721\) −4.14936 + 4.14936i −0.154530 + 0.154530i
\(722\) 4.02084i 0.149640i
\(723\) 0 0
\(724\) 16.0195 16.0195i 0.595360 0.595360i
\(725\) −31.1497 + 31.1497i −1.15687 + 1.15687i
\(726\) 0 0
\(727\) 39.5601 1.46720 0.733601 0.679581i \(-0.237838\pi\)
0.733601 + 0.679581i \(0.237838\pi\)
\(728\) 2.68879 + 2.68879i 0.0996532 + 0.0996532i
\(729\) 0 0
\(730\) −0.921132 −0.0340926
\(731\) −25.0316 15.5772i −0.925827 0.576144i
\(732\) 0 0
\(733\) 13.5137i 0.499139i 0.968357 + 0.249570i \(0.0802892\pi\)
−0.968357 + 0.249570i \(0.919711\pi\)
\(734\) −2.89898 2.89898i −0.107003 0.107003i
\(735\) 0 0
\(736\) −3.87024 3.87024i −0.142659 0.142659i
\(737\) 26.9593 26.9593i 0.993059 0.993059i
\(738\) 0 0
\(739\) 10.7282i 0.394642i −0.980339 0.197321i \(-0.936776\pi\)
0.980339 0.197321i \(-0.0632241\pi\)
\(740\) 10.5357i 0.387302i
\(741\) 0 0
\(742\) −1.75004 + 1.75004i −0.0642460 + 0.0642460i
\(743\) 31.1071 + 31.1071i 1.14121 + 1.14121i 0.988229 + 0.152981i \(0.0488875\pi\)
0.152981 + 0.988229i \(0.451113\pi\)
\(744\) 0 0
\(745\) 0.160604 + 0.160604i 0.00588406 + 0.00588406i
\(746\) 5.42257i 0.198534i
\(747\) 0 0
\(748\) 9.02840 + 38.7791i 0.330111 + 1.41791i
\(749\) −22.7343 −0.830695
\(750\) 0 0
\(751\) 8.84217 + 8.84217i 0.322655 + 0.322655i 0.849785 0.527129i \(-0.176732\pi\)
−0.527129 + 0.849785i \(0.676732\pi\)
\(752\) 30.0250 1.09490
\(753\) 0 0
\(754\) −3.77503 + 3.77503i −0.137479 + 0.137479i
\(755\) 4.10999 4.10999i 0.149578 0.149578i
\(756\) 0 0
\(757\) 35.8474i 1.30290i −0.758693 0.651449i \(-0.774162\pi\)
0.758693 0.651449i \(-0.225838\pi\)
\(758\) 0.925485 0.925485i 0.0336151 0.0336151i
\(759\) 0 0
\(760\) −0.375512 0.375512i −0.0136213 0.0136213i
\(761\) −23.4468 −0.849944 −0.424972 0.905206i \(-0.639716\pi\)
−0.424972 + 0.905206i \(0.639716\pi\)
\(762\) 0 0
\(763\) 30.0568i 1.08813i
\(764\) 12.9388 0.468108
\(765\) 0 0
\(766\) 6.83807 0.247070
\(767\) 25.3444i 0.915133i
\(768\) 0 0
\(769\) −22.8938 −0.825573 −0.412786 0.910828i \(-0.635444\pi\)
−0.412786 + 0.910828i \(0.635444\pi\)
\(770\) −0.855580 0.855580i −0.0308330 0.0308330i
\(771\) 0 0
\(772\) −4.02438 + 4.02438i −0.144840 + 0.144840i
\(773\) 34.1287i 1.22753i −0.789491 0.613763i \(-0.789655\pi\)
0.789491 0.613763i \(-0.210345\pi\)
\(774\) 0 0
\(775\) −17.1321 + 17.1321i −0.615405 + 0.615405i
\(776\) −1.88779 + 1.88779i −0.0677678 + 0.0677678i
\(777\) 0 0
\(778\) −4.33815 −0.155530
\(779\) −4.65276 4.65276i −0.166702 0.166702i
\(780\) 0 0
\(781\) −1.90126 −0.0680325
\(782\) 1.89355 0.440849i 0.0677132 0.0157647i
\(783\) 0 0
\(784\) 14.8712i 0.531115i
\(785\) −7.91898 7.91898i −0.282640 0.282640i
\(786\) 0 0
\(787\) 9.31474 + 9.31474i 0.332035 + 0.332035i 0.853359 0.521324i \(-0.174562\pi\)
−0.521324 + 0.853359i \(0.674562\pi\)
\(788\) −6.25538 + 6.25538i −0.222839 + 0.222839i
\(789\) 0 0
\(790\) 0.335522i 0.0119373i
\(791\) 1.34134i 0.0476926i
\(792\) 0 0
\(793\) −5.26309 + 5.26309i −0.186898 + 0.186898i
\(794\) 0.142074 + 0.142074i 0.00504202 + 0.00504202i
\(795\) 0 0
\(796\) 3.39349 + 3.39349i 0.120279 + 0.120279i
\(797\) 36.3506i 1.28761i 0.765191 + 0.643803i \(0.222644\pi\)
−0.765191 + 0.643803i \(0.777356\pi\)
\(798\) 0 0
\(799\) −17.6481 + 28.3594i −0.624345 + 1.00328i
\(800\) 11.8509 0.418991
\(801\) 0 0
\(802\) −0.198726 0.198726i −0.00701724 0.00701724i
\(803\) 32.2494 1.13806
\(804\) 0 0
\(805\) 1.65067 1.65067i 0.0581784 0.0581784i
\(806\) −2.07624 + 2.07624i −0.0731326 + 0.0731326i
\(807\) 0 0
\(808\) 16.2793i 0.572703i
\(809\) 31.9094 31.9094i 1.12187 1.12187i 0.130415 0.991460i \(-0.458369\pi\)
0.991460 0.130415i \(-0.0416309\pi\)
\(810\) 0 0
\(811\) −2.35336 2.35336i −0.0826376 0.0826376i 0.664580 0.747217i \(-0.268611\pi\)
−0.747217 + 0.664580i \(0.768611\pi\)
\(812\) 32.3232 1.13432
\(813\) 0 0
\(814\) 9.33565i 0.327214i
\(815\) 10.5580 0.369830
\(816\) 0 0
\(817\) −6.79759 −0.237817
\(818\) 6.36244i 0.222458i
\(819\) 0 0
\(820\) −8.59255 −0.300065
\(821\) 5.28197 + 5.28197i 0.184342 + 0.184342i 0.793245 0.608903i \(-0.208390\pi\)
−0.608903 + 0.793245i \(0.708390\pi\)
\(822\) 0 0
\(823\) 38.3134 38.3134i 1.33552 1.33552i 0.435178 0.900345i \(-0.356686\pi\)
0.900345 0.435178i \(-0.143314\pi\)
\(824\) 2.98013i 0.103818i
\(825\) 0 0
\(826\) 2.74615 2.74615i 0.0955508 0.0955508i
\(827\) −3.50062 + 3.50062i −0.121729 + 0.121729i −0.765347 0.643618i \(-0.777433\pi\)
0.643618 + 0.765347i \(0.277433\pi\)
\(828\) 0 0
\(829\) 0.0762440 0.00264806 0.00132403 0.999999i \(-0.499579\pi\)
0.00132403 + 0.999999i \(0.499579\pi\)
\(830\) 1.33565 + 1.33565i 0.0463610 + 0.0463610i
\(831\) 0 0
\(832\) −17.1412 −0.594265
\(833\) −14.0462 8.74101i −0.486674 0.302858i
\(834\) 0 0
\(835\) 9.05187i 0.313253i
\(836\) 6.49131 + 6.49131i 0.224507 + 0.224507i
\(837\) 0 0
\(838\) 3.76412 + 3.76412i 0.130030 + 0.130030i
\(839\) −25.7725 + 25.7725i −0.889766 + 0.889766i −0.994500 0.104734i \(-0.966601\pi\)
0.104734 + 0.994500i \(0.466601\pi\)
\(840\) 0 0
\(841\) 62.9113i 2.16935i
\(842\) 2.78433i 0.0959545i
\(843\) 0 0
\(844\) 27.4533 27.4533i 0.944983 0.944983i
\(845\) −3.02347 3.02347i −0.104010 0.104010i
\(846\) 0 0
\(847\) 16.5103 + 16.5103i 0.567300 + 0.567300i
\(848\) 23.8843i 0.820191i
\(849\) 0 0
\(850\) −2.22412 + 3.57402i −0.0762867 + 0.122588i
\(851\) 18.0112 0.617418
\(852\) 0 0
\(853\) −28.2619 28.2619i −0.967669 0.967669i 0.0318244 0.999493i \(-0.489868\pi\)
−0.999493 + 0.0318244i \(0.989868\pi\)
\(854\) −1.14055 −0.0390287
\(855\) 0 0
\(856\) −8.16407 + 8.16407i −0.279042 + 0.279042i
\(857\) 2.09277 2.09277i 0.0714875 0.0714875i −0.670459 0.741947i \(-0.733903\pi\)
0.741947 + 0.670459i \(0.233903\pi\)
\(858\) 0 0
\(859\) 22.4494i 0.765963i −0.923756 0.382981i \(-0.874897\pi\)
0.923756 0.382981i \(-0.125103\pi\)
\(860\) −6.27677 + 6.27677i −0.214036 + 0.214036i
\(861\) 0 0
\(862\) −2.77662 2.77662i −0.0945721 0.0945721i
\(863\) −27.8981 −0.949661 −0.474831 0.880077i \(-0.657491\pi\)
−0.474831 + 0.880077i \(0.657491\pi\)
\(864\) 0 0
\(865\) 1.20491i 0.0409682i
\(866\) 3.11236 0.105762
\(867\) 0 0
\(868\) 17.7775 0.603409
\(869\) 11.7468i 0.398484i
\(870\) 0 0
\(871\) −19.3013 −0.654001
\(872\) −10.7936 10.7936i −0.365518 0.365518i
\(873\) 0 0
\(874\) 0.316965 0.316965i 0.0107215 0.0107215i
\(875\) 10.5544i 0.356803i
\(876\) 0 0
\(877\) 14.6344 14.6344i 0.494167 0.494167i −0.415449 0.909616i \(-0.636376\pi\)
0.909616 + 0.415449i \(0.136376\pi\)
\(878\) −1.81843 + 1.81843i −0.0613690 + 0.0613690i
\(879\) 0 0
\(880\) 11.6768 0.393627
\(881\) −15.7260 15.7260i −0.529822 0.529822i 0.390697 0.920519i \(-0.372234\pi\)
−0.920519 + 0.390697i \(0.872234\pi\)
\(882\) 0 0
\(883\) 4.23253 0.142436 0.0712180 0.997461i \(-0.477311\pi\)
0.0712180 + 0.997461i \(0.477311\pi\)
\(884\) 10.6499 17.1137i 0.358195 0.575597i
\(885\) 0 0
\(886\) 7.91388i 0.265872i
\(887\) −25.6713 25.6713i −0.861957 0.861957i 0.129608 0.991565i \(-0.458628\pi\)
−0.991565 + 0.129608i \(0.958628\pi\)
\(888\) 0 0
\(889\) −13.2631 13.2631i −0.444830 0.444830i
\(890\) 0.198850 0.198850i 0.00666548 0.00666548i
\(891\) 0 0
\(892\) 28.0171i 0.938081i
\(893\) 7.70129i 0.257714i
\(894\) 0 0
\(895\) −10.0112 + 10.0112i −0.334639 + 0.334639i
\(896\) −8.16158 8.16158i −0.272659 0.272659i
\(897\) 0 0
\(898\) 3.47943 + 3.47943i 0.116110 + 0.116110i
\(899\) 50.5506i 1.68596i
\(900\) 0 0
\(901\) 22.5594 + 14.0387i 0.751561 + 0.467698i
\(902\) −7.61380 −0.253512
\(903\) 0 0
\(904\) 0.481686 + 0.481686i 0.0160206 + 0.0160206i
\(905\) 7.39133 0.245696
\(906\) 0 0
\(907\) −17.2334 + 17.2334i −0.572227 + 0.572227i −0.932750 0.360523i \(-0.882598\pi\)
0.360523 + 0.932750i \(0.382598\pi\)
\(908\) −14.9991 + 14.9991i −0.497762 + 0.497762i
\(909\) 0 0
\(910\) 0.612546i 0.0203057i
\(911\) −19.0337 + 19.0337i −0.630616 + 0.630616i −0.948223 0.317606i \(-0.897121\pi\)
0.317606 + 0.948223i \(0.397121\pi\)
\(912\) 0 0
\(913\) −46.7618 46.7618i −1.54759 1.54759i
\(914\) 2.20110 0.0728059
\(915\) 0 0
\(916\) 37.0425i 1.22392i
\(917\) 1.22066 0.0403099
\(918\) 0 0
\(919\) −23.8000 −0.785088 −0.392544 0.919733i \(-0.628405\pi\)
−0.392544 + 0.919733i \(0.628405\pi\)
\(920\) 1.18553i 0.0390859i
\(921\) 0 0
\(922\) 2.13830 0.0704210
\(923\) 0.680598 + 0.680598i 0.0224021 + 0.0224021i
\(924\) 0 0
\(925\) −27.5757 + 27.5757i −0.906683 + 0.906683i
\(926\) 3.39983i 0.111725i
\(927\) 0 0
\(928\) 17.4838 17.4838i 0.573932 0.573932i
\(929\) −4.12061 + 4.12061i −0.135193 + 0.135193i −0.771465 0.636272i \(-0.780476\pi\)
0.636272 + 0.771465i \(0.280476\pi\)
\(930\) 0 0
\(931\) −3.81440 −0.125012
\(932\) −9.76656 9.76656i −0.319914 0.319914i
\(933\) 0 0
\(934\) −4.95819 −0.162237
\(935\) −6.86342 + 11.0291i −0.224458 + 0.360690i
\(936\) 0 0
\(937\) 55.4424i 1.81123i −0.424106 0.905613i \(-0.639411\pi\)
0.424106 0.905613i \(-0.360589\pi\)
\(938\) −2.09136 2.09136i −0.0682855 0.0682855i
\(939\) 0 0
\(940\) 7.11123 + 7.11123i 0.231943 + 0.231943i
\(941\) −14.9692 + 14.9692i −0.487981 + 0.487981i −0.907669 0.419688i \(-0.862140\pi\)
0.419688 + 0.907669i \(0.362140\pi\)
\(942\) 0 0
\(943\) 14.6893i 0.478349i
\(944\) 37.4791i 1.21984i
\(945\) 0 0
\(946\) −5.56180 + 5.56180i −0.180830 + 0.180830i
\(947\) −26.5753 26.5753i −0.863580 0.863580i 0.128172 0.991752i \(-0.459089\pi\)
−0.991752 + 0.128172i \(0.959089\pi\)
\(948\) 0 0
\(949\) −11.5444 11.5444i −0.374746 0.374746i
\(950\) 0.970563i 0.0314892i
\(951\) 0 0
\(952\) 6.09270 1.41848i 0.197466 0.0459732i
\(953\) −21.2794 −0.689307 −0.344654 0.938730i \(-0.612004\pi\)
−0.344654 + 0.938730i \(0.612004\pi\)
\(954\) 0 0
\(955\) 2.98494 + 2.98494i 0.0965904 + 0.0965904i
\(956\) 10.3163 0.333654
\(957\) 0 0
\(958\) 2.44423 2.44423i 0.0789695 0.0789695i
\(959\) 15.0482 15.0482i 0.485931 0.485931i
\(960\) 0 0
\(961\) 3.19748i 0.103144i
\(962\) −3.34190 + 3.34190i −0.107747 + 0.107747i
\(963\) 0 0
\(964\) −7.99756 7.99756i −0.257584 0.257584i
\(965\) −1.85683 −0.0597734
\(966\) 0 0
\(967\) 26.2320i 0.843563i 0.906697 + 0.421782i \(0.138595\pi\)
−0.906697 + 0.421782i \(0.861405\pi\)
\(968\) 11.8579 0.381128
\(969\) 0 0
\(970\) −0.430067 −0.0138086
\(971\) 20.8243i 0.668285i −0.942523 0.334142i \(-0.891553\pi\)
0.942523 0.334142i \(-0.108447\pi\)
\(972\) 0 0
\(973\) −23.0650 −0.739429
\(974\) 0.00465866 + 0.00465866i 0.000149273 + 0.000149273i
\(975\) 0 0
\(976\) 7.78302 7.78302i 0.249128 0.249128i
\(977\) 16.2900i 0.521162i −0.965452 0.260581i \(-0.916086\pi\)
0.965452 0.260581i \(-0.0839141\pi\)
\(978\) 0 0
\(979\) −6.96188 + 6.96188i −0.222503 + 0.222503i
\(980\) −3.52215 + 3.52215i −0.112511 + 0.112511i
\(981\) 0 0
\(982\) −1.48187 −0.0472884
\(983\) 0.658791 + 0.658791i 0.0210122 + 0.0210122i 0.717535 0.696523i \(-0.245270\pi\)
−0.696523 + 0.717535i \(0.745270\pi\)
\(984\) 0 0
\(985\) −2.88620 −0.0919621
\(986\) 1.99153 + 8.55409i 0.0634232 + 0.272418i
\(987\) 0 0
\(988\) 4.64741i 0.147854i
\(989\) −10.7304 10.7304i −0.341206 0.341206i
\(990\) 0 0
\(991\) −15.3422 15.3422i −0.487362 0.487362i 0.420111 0.907473i \(-0.361991\pi\)
−0.907473 + 0.420111i \(0.861991\pi\)
\(992\) 9.61596 9.61596i 0.305307 0.305307i
\(993\) 0 0
\(994\) 0.147490i 0.00467810i
\(995\) 1.56574i 0.0496373i
\(996\) 0 0
\(997\) 2.28190 2.28190i 0.0722684 0.0722684i −0.670049 0.742317i \(-0.733727\pi\)
0.742317 + 0.670049i \(0.233727\pi\)
\(998\) 2.92966 + 2.92966i 0.0927369 + 0.0927369i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.2.f.b.64.3 8
3.2 odd 2 51.2.e.a.13.2 yes 8
4.3 odd 2 2448.2.be.x.1441.3 8
12.11 even 2 816.2.bd.e.625.3 8
17.2 even 8 2601.2.a.bf.1.2 4
17.4 even 4 inner 153.2.f.b.55.2 8
17.15 even 8 2601.2.a.be.1.2 4
51.2 odd 8 867.2.a.k.1.3 4
51.5 even 16 867.2.h.i.733.4 16
51.8 odd 8 867.2.d.f.577.4 8
51.11 even 16 867.2.h.i.757.4 16
51.14 even 16 867.2.h.k.712.2 16
51.20 even 16 867.2.h.k.712.1 16
51.23 even 16 867.2.h.i.757.3 16
51.26 odd 8 867.2.d.f.577.3 8
51.29 even 16 867.2.h.i.733.3 16
51.32 odd 8 867.2.a.l.1.3 4
51.38 odd 4 51.2.e.a.4.3 8
51.41 even 16 867.2.h.k.688.1 16
51.44 even 16 867.2.h.k.688.2 16
51.47 odd 4 867.2.e.g.616.3 8
51.50 odd 2 867.2.e.g.829.2 8
68.55 odd 4 2448.2.be.x.1585.3 8
204.191 even 4 816.2.bd.e.769.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.3 8 51.38 odd 4
51.2.e.a.13.2 yes 8 3.2 odd 2
153.2.f.b.55.2 8 17.4 even 4 inner
153.2.f.b.64.3 8 1.1 even 1 trivial
816.2.bd.e.625.3 8 12.11 even 2
816.2.bd.e.769.3 8 204.191 even 4
867.2.a.k.1.3 4 51.2 odd 8
867.2.a.l.1.3 4 51.32 odd 8
867.2.d.f.577.3 8 51.26 odd 8
867.2.d.f.577.4 8 51.8 odd 8
867.2.e.g.616.3 8 51.47 odd 4
867.2.e.g.829.2 8 51.50 odd 2
867.2.h.i.733.3 16 51.29 even 16
867.2.h.i.733.4 16 51.5 even 16
867.2.h.i.757.3 16 51.23 even 16
867.2.h.i.757.4 16 51.11 even 16
867.2.h.k.688.1 16 51.41 even 16
867.2.h.k.688.2 16 51.44 even 16
867.2.h.k.712.1 16 51.20 even 16
867.2.h.k.712.2 16 51.14 even 16
2448.2.be.x.1441.3 8 4.3 odd 2
2448.2.be.x.1585.3 8 68.55 odd 4
2601.2.a.be.1.2 4 17.15 even 8
2601.2.a.bf.1.2 4 17.2 even 8