Properties

Label 867.2.a.l.1.3
Level 867867
Weight 22
Character 867.1
Self dual yes
Analytic conductor 6.9236.923
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(1,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 867=3172 867 = 3 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 867.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.923029855256.92302985525
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.7232.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x42x35x2+4x+4 x^{4} - 2x^{3} - 5x^{2} + 4x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 51)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 1.63640-1.63640 of defining polynomial
Character χ\chi == 867.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.222191q2+1.00000q31.95063q40.636405q5+0.222191q61.72844q70.877796q8+1.00000q90.141404q10+4.95063q111.95063q12+2.50625q130.384044q140.636405q15+3.70622q16+0.222191q180.950631q19+1.24139q201.72844q21+1.09999q222.12220q230.877796q244.59499q25+0.556867q26+1.00000q27+3.37155q28+9.58704q290.141404q30+5.27281q31+2.57908q32+4.95063q33+1.09999q351.95063q36+8.48705q370.211222q38+2.50625q39+0.558634q40+6.92171q410.384044q42+7.15061q439.65685q440.636405q450.471535q46+8.10124q47+3.70622q484.01250q491.02097q504.88877q526.44438q53+0.222191q543.15061q55+1.51722q560.950631q57+2.13016q5810.1125q59+1.24139q60+2.96983q61+1.17157q621.72844q636.83940q641.59499q65+1.09999q66+7.70129q672.12220q69+0.244408q700.384044q710.877796q72+6.51420q73+1.88575q744.59499q75+1.85433q768.55687q77+0.556867q782.37280q792.35866q80+1.00000q81+1.53794q8213.3581q83+3.37155q84+1.58880q86+9.58704q874.34564q881.98875q890.141404q904.33190q91+4.13964q92+5.27281q93+1.80002q94+0.604986q95+2.57908q96+3.04142q970.891542q98+4.95063q99+O(q100)q+0.222191 q^{2} +1.00000 q^{3} -1.95063 q^{4} -0.636405 q^{5} +0.222191 q^{6} -1.72844 q^{7} -0.877796 q^{8} +1.00000 q^{9} -0.141404 q^{10} +4.95063 q^{11} -1.95063 q^{12} +2.50625 q^{13} -0.384044 q^{14} -0.636405 q^{15} +3.70622 q^{16} +0.222191 q^{18} -0.950631 q^{19} +1.24139 q^{20} -1.72844 q^{21} +1.09999 q^{22} -2.12220 q^{23} -0.877796 q^{24} -4.59499 q^{25} +0.556867 q^{26} +1.00000 q^{27} +3.37155 q^{28} +9.58704 q^{29} -0.141404 q^{30} +5.27281 q^{31} +2.57908 q^{32} +4.95063 q^{33} +1.09999 q^{35} -1.95063 q^{36} +8.48705 q^{37} -0.211222 q^{38} +2.50625 q^{39} +0.558634 q^{40} +6.92171 q^{41} -0.384044 q^{42} +7.15061 q^{43} -9.65685 q^{44} -0.636405 q^{45} -0.471535 q^{46} +8.10124 q^{47} +3.70622 q^{48} -4.01250 q^{49} -1.02097 q^{50} -4.88877 q^{52} -6.44438 q^{53} +0.222191 q^{54} -3.15061 q^{55} +1.51722 q^{56} -0.950631 q^{57} +2.13016 q^{58} -10.1125 q^{59} +1.24139 q^{60} +2.96983 q^{61} +1.17157 q^{62} -1.72844 q^{63} -6.83940 q^{64} -1.59499 q^{65} +1.09999 q^{66} +7.70129 q^{67} -2.12220 q^{69} +0.244408 q^{70} -0.384044 q^{71} -0.877796 q^{72} +6.51420 q^{73} +1.88575 q^{74} -4.59499 q^{75} +1.85433 q^{76} -8.55687 q^{77} +0.556867 q^{78} -2.37280 q^{79} -2.35866 q^{80} +1.00000 q^{81} +1.53794 q^{82} -13.3581 q^{83} +3.37155 q^{84} +1.58880 q^{86} +9.58704 q^{87} -4.34564 q^{88} -1.98875 q^{89} -0.141404 q^{90} -4.33190 q^{91} +4.13964 q^{92} +5.27281 q^{93} +1.80002 q^{94} +0.604986 q^{95} +2.57908 q^{96} +3.04142 q^{97} -0.891542 q^{98} +4.95063 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q2+4q3+6q4+6q52q6+4q76q8+4q912q10+6q11+6q12+2q13+4q14+6q15+6q162q18+10q19+16q20+4q21++6q99+O(q100) 4 q - 2 q^{2} + 4 q^{3} + 6 q^{4} + 6 q^{5} - 2 q^{6} + 4 q^{7} - 6 q^{8} + 4 q^{9} - 12 q^{10} + 6 q^{11} + 6 q^{12} + 2 q^{13} + 4 q^{14} + 6 q^{15} + 6 q^{16} - 2 q^{18} + 10 q^{19} + 16 q^{20} + 4 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.222191 0.157113 0.0785565 0.996910i 0.474969π-0.474969\pi
0.0785565 + 0.996910i 0.474969π0.474969\pi
33 1.00000 0.577350
44 −1.95063 −0.975315
55 −0.636405 −0.284609 −0.142304 0.989823i 0.545451π-0.545451\pi
−0.142304 + 0.989823i 0.545451π0.545451\pi
66 0.222191 0.0907092
77 −1.72844 −0.653289 −0.326644 0.945147i 0.605918π-0.605918\pi
−0.326644 + 0.945147i 0.605918π0.605918\pi
88 −0.877796 −0.310348
99 1.00000 0.333333
1010 −0.141404 −0.0447158
1111 4.95063 1.49267 0.746336 0.665570i 0.231811π-0.231811\pi
0.746336 + 0.665570i 0.231811π0.231811\pi
1212 −1.95063 −0.563099
1313 2.50625 0.695108 0.347554 0.937660i 0.387012π-0.387012\pi
0.347554 + 0.937660i 0.387012π0.387012\pi
1414 −0.384044 −0.102640
1515 −0.636405 −0.164319
1616 3.70622 0.926556
1717 0 0
1818 0.222191 0.0523710
1919 −0.950631 −0.218090 −0.109045 0.994037i 0.534779π-0.534779\pi
−0.109045 + 0.994037i 0.534779π0.534779\pi
2020 1.24139 0.277584
2121 −1.72844 −0.377176
2222 1.09999 0.234518
2323 −2.12220 −0.442510 −0.221255 0.975216i 0.571015π-0.571015\pi
−0.221255 + 0.975216i 0.571015π0.571015\pi
2424 −0.877796 −0.179179
2525 −4.59499 −0.918998
2626 0.556867 0.109211
2727 1.00000 0.192450
2828 3.37155 0.637163
2929 9.58704 1.78027 0.890134 0.455699i 0.150611π-0.150611\pi
0.890134 + 0.455699i 0.150611π0.150611\pi
3030 −0.141404 −0.0258167
3131 5.27281 0.947025 0.473512 0.880787i 0.342986π-0.342986\pi
0.473512 + 0.880787i 0.342986π0.342986\pi
3232 2.57908 0.455922
3333 4.95063 0.861794
3434 0 0
3535 1.09999 0.185932
3636 −1.95063 −0.325105
3737 8.48705 1.39526 0.697631 0.716457i 0.254237π-0.254237\pi
0.697631 + 0.716457i 0.254237π0.254237\pi
3838 −0.211222 −0.0342647
3939 2.50625 0.401321
4040 0.558634 0.0883278
4141 6.92171 1.08099 0.540495 0.841347i 0.318237π-0.318237\pi
0.540495 + 0.841347i 0.318237π0.318237\pi
4242 −0.384044 −0.0592593
4343 7.15061 1.09046 0.545229 0.838287i 0.316443π-0.316443\pi
0.545229 + 0.838287i 0.316443π0.316443\pi
4444 −9.65685 −1.45583
4545 −0.636405 −0.0948696
4646 −0.471535 −0.0695241
4747 8.10124 1.18169 0.590843 0.806786i 0.298795π-0.298795\pi
0.590843 + 0.806786i 0.298795π0.298795\pi
4848 3.70622 0.534947
4949 −4.01250 −0.573214
5050 −1.02097 −0.144387
5151 0 0
5252 −4.88877 −0.677950
5353 −6.44438 −0.885204 −0.442602 0.896718i 0.645945π-0.645945\pi
−0.442602 + 0.896718i 0.645945π0.645945\pi
5454 0.222191 0.0302364
5555 −3.15061 −0.424828
5656 1.51722 0.202747
5757 −0.950631 −0.125914
5858 2.13016 0.279703
5959 −10.1125 −1.31653 −0.658267 0.752785i 0.728710π-0.728710\pi
−0.658267 + 0.752785i 0.728710π0.728710\pi
6060 1.24139 0.160263
6161 2.96983 0.380248 0.190124 0.981760i 0.439111π-0.439111\pi
0.190124 + 0.981760i 0.439111π0.439111\pi
6262 1.17157 0.148790
6363 −1.72844 −0.217763
6464 −6.83940 −0.854925
6565 −1.59499 −0.197834
6666 1.09999 0.135399
6767 7.70129 0.940862 0.470431 0.882437i 0.344098π-0.344098\pi
0.470431 + 0.882437i 0.344098π0.344098\pi
6868 0 0
6969 −2.12220 −0.255483
7070 0.244408 0.0292123
7171 −0.384044 −0.0455777 −0.0227888 0.999740i 0.507255π-0.507255\pi
−0.0227888 + 0.999740i 0.507255π0.507255\pi
7272 −0.877796 −0.103449
7373 6.51420 0.762430 0.381215 0.924487i 0.375506π-0.375506\pi
0.381215 + 0.924487i 0.375506π0.375506\pi
7474 1.88575 0.219214
7575 −4.59499 −0.530584
7676 1.85433 0.212706
7777 −8.55687 −0.975145
7878 0.556867 0.0630527
7979 −2.37280 −0.266961 −0.133480 0.991051i 0.542615π-0.542615\pi
−0.133480 + 0.991051i 0.542615π0.542615\pi
8080 −2.35866 −0.263706
8181 1.00000 0.111111
8282 1.53794 0.169838
8383 −13.3581 −1.46625 −0.733123 0.680096i 0.761938π-0.761938\pi
−0.733123 + 0.680096i 0.761938π0.761938\pi
8484 3.37155 0.367866
8585 0 0
8686 1.58880 0.171325
8787 9.58704 1.02784
8888 −4.34564 −0.463247
8989 −1.98875 −0.210807 −0.105404 0.994430i 0.533613π-0.533613\pi
−0.105404 + 0.994430i 0.533613π0.533613\pi
9090 −0.141404 −0.0149053
9191 −4.33190 −0.454106
9292 4.13964 0.431587
9393 5.27281 0.546765
9494 1.80002 0.185658
9595 0.604986 0.0620703
9696 2.57908 0.263227
9797 3.04142 0.308809 0.154405 0.988008i 0.450654π-0.450654\pi
0.154405 + 0.988008i 0.450654π0.450654\pi
9898 −0.891542 −0.0900594
9999 4.95063 0.497557
100100 8.96313 0.896313
101101 −18.5456 −1.84536 −0.922679 0.385569i 0.874005π-0.874005\pi
−0.922679 + 0.385569i 0.874005π0.874005\pi
102102 0 0
103103 3.39501 0.334521 0.167260 0.985913i 0.446508π-0.446508\pi
0.167260 + 0.985913i 0.446508π0.446508\pi
104104 −2.19998 −0.215725
105105 1.09999 0.107348
106106 −1.43189 −0.139077
107107 −13.1531 −1.27156 −0.635779 0.771871i 0.719321π-0.719321\pi
−0.635779 + 0.771871i 0.719321π0.719321\pi
108108 −1.95063 −0.187700
109109 −17.3896 −1.66562 −0.832809 0.553561i 0.813269π-0.813269\pi
−0.832809 + 0.553561i 0.813269π0.813269\pi
110110 −0.700037 −0.0667460
111111 8.48705 0.805555
112112 −6.40598 −0.605309
113113 0.776042 0.0730039 0.0365019 0.999334i 0.488378π-0.488378\pi
0.0365019 + 0.999334i 0.488378π0.488378\pi
114114 −0.211222 −0.0197828
115115 1.35058 0.125942
116116 −18.7008 −1.73632
117117 2.50625 0.231703
118118 −2.24691 −0.206845
119119 0 0
120120 0.558634 0.0509961
121121 13.5087 1.22807
122122 0.659871 0.0597419
123123 6.92171 0.624110
124124 −10.2853 −0.923648
125125 6.10630 0.546164
126126 −0.384044 −0.0342134
127127 10.8519 0.962950 0.481475 0.876460i 0.340101π-0.340101\pi
0.481475 + 0.876460i 0.340101π0.340101\pi
128128 −6.67782 −0.590242
129129 7.15061 0.629576
130130 −0.354393 −0.0310823
131131 0.706223 0.0617030 0.0308515 0.999524i 0.490178π-0.490178\pi
0.0308515 + 0.999524i 0.490178π0.490178\pi
132132 −9.65685 −0.840521
133133 1.64311 0.142476
134134 1.71116 0.147822
135135 −0.636405 −0.0547730
136136 0 0
137137 12.3125 1.05192 0.525962 0.850508i 0.323705π-0.323705\pi
0.525962 + 0.850508i 0.323705π0.323705\pi
138138 −0.471535 −0.0401398
139139 −13.3444 −1.13186 −0.565928 0.824454i 0.691482π-0.691482\pi
−0.565928 + 0.824454i 0.691482π0.691482\pi
140140 −2.14567 −0.181342
141141 8.10124 0.682247
142142 −0.0853313 −0.00716085
143143 12.4075 1.03757
144144 3.70622 0.308852
145145 −6.10124 −0.506680
146146 1.44740 0.119788
147147 −4.01250 −0.330945
148148 −16.5551 −1.36082
149149 0.356892 0.0292377 0.0146189 0.999893i 0.495347π-0.495347\pi
0.0146189 + 0.999893i 0.495347π0.495347\pi
150150 −1.02097 −0.0833616
151151 9.13317 0.743247 0.371624 0.928384i 0.378801π-0.378801\pi
0.371624 + 0.928384i 0.378801π0.378801\pi
152152 0.834460 0.0676837
153153 0 0
154154 −1.90126 −0.153208
155155 −3.35564 −0.269532
156156 −4.88877 −0.391414
157157 17.5975 1.40443 0.702216 0.711964i 0.252194π-0.252194\pi
0.702216 + 0.711964i 0.252194π0.252194\pi
158158 −0.527215 −0.0419430
159159 −6.44438 −0.511073
160160 −1.64134 −0.129759
161161 3.66810 0.289087
162162 0.222191 0.0174570
163163 16.5901 1.29943 0.649717 0.760177i 0.274888π-0.274888\pi
0.649717 + 0.760177i 0.274888π0.274888\pi
164164 −13.5017 −1.05431
165165 −3.15061 −0.245274
166166 −2.96806 −0.230366
167167 −14.2234 −1.10064 −0.550321 0.834953i 0.685495π-0.685495\pi
−0.550321 + 0.834953i 0.685495π0.685495\pi
168168 1.51722 0.117056
169169 −6.71872 −0.516825
170170 0 0
171171 −0.950631 −0.0726966
172172 −13.9482 −1.06354
173173 −1.89331 −0.143946 −0.0719728 0.997407i 0.522929π-0.522929\pi
−0.0719728 + 0.997407i 0.522929π0.522929\pi
174174 2.13016 0.161487
175175 7.94216 0.600371
176176 18.3481 1.38304
177177 −10.1125 −0.760101
178178 −0.441884 −0.0331206
179179 −22.2469 −1.66281 −0.831406 0.555666i 0.812464π-0.812464\pi
−0.831406 + 0.555666i 0.812464π0.812464\pi
180180 1.24139 0.0925278
181181 −11.6142 −0.863276 −0.431638 0.902047i 0.642064π-0.642064\pi
−0.431638 + 0.902047i 0.642064π0.642064\pi
182182 −0.962511 −0.0713460
183183 2.96983 0.219536
184184 1.86286 0.137332
185185 −5.40120 −0.397104
186186 1.17157 0.0859039
187187 0 0
188188 −15.8025 −1.15252
189189 −1.72844 −0.125725
190190 0.134423 0.00975205
191191 6.63311 0.479955 0.239978 0.970778i 0.422860π-0.422860\pi
0.239978 + 0.970778i 0.422860π0.422860\pi
192192 −6.83940 −0.493591
193193 2.91769 0.210020 0.105010 0.994471i 0.466513π-0.466513\pi
0.105010 + 0.994471i 0.466513π0.466513\pi
194194 0.675776 0.0485179
195195 −1.59499 −0.114220
196196 7.82690 0.559064
197197 4.53517 0.323117 0.161559 0.986863i 0.448348π-0.448348\pi
0.161559 + 0.986863i 0.448348π0.448348\pi
198198 1.09999 0.0781727
199199 2.46029 0.174405 0.0872026 0.996191i 0.472207π-0.472207\pi
0.0872026 + 0.996191i 0.472207π0.472207\pi
200200 4.03346 0.285209
201201 7.70129 0.543207
202202 −4.12068 −0.289930
203203 −16.5706 −1.16303
204204 0 0
205205 −4.40501 −0.307659
206206 0.754343 0.0525576
207207 −2.12220 −0.147503
208208 9.28872 0.644057
209209 −4.70622 −0.325536
210210 0.244408 0.0168657
211211 19.9038 1.37023 0.685116 0.728434i 0.259752π-0.259752\pi
0.685116 + 0.728434i 0.259752π0.259752\pi
212212 12.5706 0.863353
213213 −0.384044 −0.0263143
214214 −2.92251 −0.199778
215215 −4.55068 −0.310354
216216 −0.877796 −0.0597265
217217 −9.11373 −0.618681
218218 −3.86381 −0.261690
219219 6.51420 0.440189
220220 6.14567 0.414341
221221 0 0
222222 1.88575 0.126563
223223 14.3631 0.961823 0.480911 0.876769i 0.340306π-0.340306\pi
0.480911 + 0.876769i 0.340306π0.340306\pi
224224 −4.45779 −0.297849
225225 −4.59499 −0.306333
226226 0.172430 0.0114699
227227 −10.8744 −0.721758 −0.360879 0.932613i 0.617523π-0.617523\pi
−0.360879 + 0.932613i 0.617523π0.617523\pi
228228 1.85433 0.122806
229229 18.9900 1.25489 0.627447 0.778659i 0.284100π-0.284100\pi
0.627447 + 0.778659i 0.284100π0.284100\pi
230230 0.300087 0.0197872
231231 −8.55687 −0.563000
232232 −8.41546 −0.552502
233233 7.08079 0.463878 0.231939 0.972730i 0.425493π-0.425493\pi
0.231939 + 0.972730i 0.425493π0.425493\pi
234234 0.556867 0.0364035
235235 −5.15567 −0.336319
236236 19.7257 1.28404
237237 −2.37280 −0.154130
238238 0 0
239239 −5.28872 −0.342099 −0.171049 0.985262i 0.554716π-0.554716\pi
−0.171049 + 0.985262i 0.554716π0.554716\pi
240240 −2.35866 −0.152251
241241 5.79826 0.373499 0.186749 0.982408i 0.440205π-0.440205\pi
0.186749 + 0.982408i 0.440205π0.440205\pi
242242 3.00153 0.192945
243243 1.00000 0.0641500
244244 −5.79304 −0.370862
245245 2.55357 0.163142
246246 1.53794 0.0980558
247247 −2.38252 −0.151596
248248 −4.62845 −0.293907
249249 −13.3581 −0.846538
250250 1.35677 0.0858095
251251 −8.33190 −0.525905 −0.262952 0.964809i 0.584696π-0.584696\pi
−0.262952 + 0.964809i 0.584696π0.584696\pi
252252 3.37155 0.212388
253253 −10.5062 −0.660522
254254 2.41120 0.151292
255255 0 0
256256 12.1950 0.762190
257257 −4.25565 −0.265460 −0.132730 0.991152i 0.542374π-0.542374\pi
−0.132730 + 0.991152i 0.542374π0.542374\pi
258258 1.58880 0.0989146
259259 −14.6694 −0.911509
260260 3.11123 0.192951
261261 9.58704 0.593423
262262 0.156917 0.00969435
263263 −9.09999 −0.561129 −0.280565 0.959835i 0.590522π-0.590522\pi
−0.280565 + 0.959835i 0.590522π0.590522\pi
264264 −4.34564 −0.267456
265265 4.10124 0.251937
266266 0.365084 0.0223848
267267 −1.98875 −0.121710
268268 −15.0224 −0.917637
269269 21.3820 1.30368 0.651842 0.758355i 0.273997π-0.273997\pi
0.651842 + 0.758355i 0.273997π0.273997\pi
270270 −0.141404 −0.00860555
271271 −19.3213 −1.17368 −0.586842 0.809702i 0.699629π-0.699629\pi
−0.586842 + 0.809702i 0.699629π0.699629\pi
272272 0 0
273273 −4.33190 −0.262178
274274 2.73572 0.165271
275275 −22.7481 −1.37176
276276 4.13964 0.249177
277277 3.34013 0.200689 0.100344 0.994953i 0.468006π-0.468006\pi
0.100344 + 0.994953i 0.468006π0.468006\pi
278278 −2.96501 −0.177829
279279 5.27281 0.315675
280280 −0.965565 −0.0577035
281281 4.67754 0.279039 0.139519 0.990219i 0.455444π-0.455444\pi
0.139519 + 0.990219i 0.455444π0.455444\pi
282282 1.80002 0.107190
283283 10.0582 0.597897 0.298948 0.954269i 0.403364π-0.403364\pi
0.298948 + 0.954269i 0.403364π0.403364\pi
284284 0.749129 0.0444526
285285 0.604986 0.0358363
286286 2.75684 0.163015
287287 −11.9638 −0.706198
288288 2.57908 0.151974
289289 0 0
290290 −1.35564 −0.0796061
291291 3.04142 0.178291
292292 −12.7068 −0.743609
293293 5.76934 0.337048 0.168524 0.985698i 0.446100π-0.446100\pi
0.168524 + 0.985698i 0.446100π0.446100\pi
294294 −0.891542 −0.0519958
295295 6.43563 0.374697
296296 −7.44990 −0.433017
297297 4.95063 0.287265
298298 0.0792983 0.00459363
299299 −5.31877 −0.307592
300300 8.96313 0.517486
301301 −12.3594 −0.712383
302302 2.02931 0.116774
303303 −18.5456 −1.06542
304304 −3.52325 −0.202072
305305 −1.89001 −0.108222
306306 0 0
307307 −13.2375 −0.755502 −0.377751 0.925907i 0.623302π-0.623302\pi
−0.377751 + 0.925907i 0.623302π0.623302\pi
308308 16.6913 0.951074
309309 3.39501 0.193136
310310 −0.745595 −0.0423469
311311 −1.29530 −0.0734499 −0.0367250 0.999325i 0.511693π-0.511693\pi
−0.0367250 + 0.999325i 0.511693π0.511693\pi
312312 −2.19998 −0.124549
313313 −19.1007 −1.07964 −0.539818 0.841782i 0.681507π-0.681507\pi
−0.539818 + 0.841782i 0.681507π0.681507\pi
314314 3.91001 0.220655
315315 1.09999 0.0619773
316316 4.62845 0.260371
317317 15.1043 0.848339 0.424170 0.905583i 0.360566π-0.360566\pi
0.424170 + 0.905583i 0.360566π0.360566\pi
318318 −1.43189 −0.0802962
319319 47.4619 2.65735
320320 4.35263 0.243319
321321 −13.1531 −0.734135
322322 0.815020 0.0454193
323323 0 0
324324 −1.95063 −0.108368
325325 −11.5162 −0.638803
326326 3.68617 0.204158
327327 −17.3896 −0.961645
328328 −6.07585 −0.335483
329329 −14.0025 −0.771983
330330 −0.700037 −0.0385358
331331 −22.6769 −1.24644 −0.623218 0.782048i 0.714175π-0.714175\pi
−0.623218 + 0.782048i 0.714175π0.714175\pi
332332 26.0568 1.43005
333333 8.48705 0.465087
334334 −3.16033 −0.172925
335335 −4.90114 −0.267778
336336 −6.40598 −0.349475
337337 −1.61669 −0.0880666 −0.0440333 0.999030i 0.514021π-0.514021\pi
−0.0440333 + 0.999030i 0.514021π0.514021\pi
338338 −1.49284 −0.0811999
339339 0.776042 0.0421488
340340 0 0
341341 26.1037 1.41360
342342 −0.211222 −0.0114216
343343 19.0344 1.02776
344344 −6.27677 −0.338421
345345 1.35058 0.0727128
346346 −0.420677 −0.0226157
347347 −15.3606 −0.824602 −0.412301 0.911048i 0.635275π-0.635275\pi
−0.412301 + 0.911048i 0.635275π0.635275\pi
348348 −18.7008 −1.00247
349349 −15.1087 −0.808749 −0.404374 0.914594i 0.632511π-0.632511\pi
−0.404374 + 0.914594i 0.632511π0.632511\pi
350350 1.76468 0.0943261
351351 2.50625 0.133774
352352 12.7681 0.680541
353353 −31.2482 −1.66317 −0.831586 0.555396i 0.812567π-0.812567\pi
−0.831586 + 0.555396i 0.812567π0.812567\pi
354354 −2.24691 −0.119422
355355 0.244408 0.0129718
356356 3.87932 0.205604
357357 0 0
358358 −4.94307 −0.261249
359359 2.72503 0.143822 0.0719108 0.997411i 0.477090π-0.477090\pi
0.0719108 + 0.997411i 0.477090π0.477090\pi
360360 0.558634 0.0294426
361361 −18.0963 −0.952437
362362 −2.58057 −0.135632
363363 13.5087 0.709025
364364 8.44994 0.442897
365365 −4.14567 −0.216994
366366 0.659871 0.0344920
367367 −18.4515 −0.963163 −0.481581 0.876401i 0.659937π-0.659937\pi
−0.481581 + 0.876401i 0.659937π0.659937\pi
368368 −7.86536 −0.410010
369369 6.92171 0.360330
370370 −1.20010 −0.0623902
371371 11.1387 0.578294
372372 −10.2853 −0.533268
373373 24.4049 1.26364 0.631820 0.775115i 0.282308π-0.282308\pi
0.631820 + 0.775115i 0.282308π0.282308\pi
374374 0 0
375375 6.10630 0.315328
376376 −7.11123 −0.366734
377377 24.0275 1.23748
378378 −0.384044 −0.0197531
379379 −5.89057 −0.302578 −0.151289 0.988490i 0.548342π-0.548342\pi
−0.151289 + 0.988490i 0.548342π0.548342\pi
380380 −1.18010 −0.0605381
381381 10.8519 0.555959
382382 1.47382 0.0754072
383383 30.7756 1.57256 0.786279 0.617871i 0.212005π-0.212005\pi
0.786279 + 0.617871i 0.212005π0.212005\pi
384384 −6.67782 −0.340776
385385 5.44563 0.277535
386386 0.648284 0.0329968
387387 7.15061 0.363486
388388 −5.93268 −0.301186
389389 19.5244 0.989925 0.494963 0.868914i 0.335182π-0.335182\pi
0.494963 + 0.868914i 0.335182π0.335182\pi
390390 −0.354393 −0.0179454
391391 0 0
392392 3.52215 0.177896
393393 0.706223 0.0356243
394394 1.00768 0.0507659
395395 1.51006 0.0759794
396396 −9.65685 −0.485275
397397 −0.904279 −0.0453844 −0.0226922 0.999742i 0.507224π-0.507224\pi
−0.0226922 + 0.999742i 0.507224π0.507224\pi
398398 0.546655 0.0274013
399399 1.64311 0.0822583
400400 −17.0301 −0.851503
401401 1.26486 0.0631639 0.0315820 0.999501i 0.489945π-0.489945\pi
0.0315820 + 0.999501i 0.489945π0.489945\pi
402402 1.71116 0.0853449
403403 13.2150 0.658285
404404 36.1757 1.79981
405405 −0.636405 −0.0316232
406406 −3.68185 −0.182727
407407 42.0162 2.08267
408408 0 0
409409 28.6350 1.41591 0.707954 0.706258i 0.249618π-0.249618\pi
0.707954 + 0.706258i 0.249618π0.249618\pi
410410 −0.978756 −0.0483373
411411 12.3125 0.607329
412412 −6.62242 −0.326263
413413 17.4788 0.860076
414414 −0.471535 −0.0231747
415415 8.50119 0.417307
416416 6.46382 0.316915
417417 −13.3444 −0.653478
418418 −1.04568 −0.0511460
419419 23.9581 1.17043 0.585214 0.810879i 0.301010π-0.301010\pi
0.585214 + 0.810879i 0.301010π0.301010\pi
420420 −2.14567 −0.104698
421421 −12.5312 −0.610735 −0.305368 0.952235i 0.598779π-0.598779\pi
−0.305368 + 0.952235i 0.598779π0.598779\pi
422422 4.42244 0.215281
423423 8.10124 0.393896
424424 5.65685 0.274721
425425 0 0
426426 −0.0853313 −0.00413432
427427 −5.13317 −0.248412
428428 25.6569 1.24017
429429 12.4075 0.599040
430430 −1.01112 −0.0487606
431431 −17.6728 −0.851267 −0.425633 0.904896i 0.639949π-0.639949\pi
−0.425633 + 0.904896i 0.639949π0.639949\pi
432432 3.70622 0.178316
433433 −14.0076 −0.673160 −0.336580 0.941655i 0.609270π-0.609270\pi
−0.336580 + 0.941655i 0.609270π0.609270\pi
434434 −2.02499 −0.0972028
435435 −6.10124 −0.292532
436436 33.9206 1.62450
437437 2.01743 0.0965069
438438 1.44740 0.0691594
439439 −11.5740 −0.552398 −0.276199 0.961100i 0.589075π-0.589075\pi
−0.276199 + 0.961100i 0.589075π0.589075\pi
440440 2.76559 0.131844
441441 −4.01250 −0.191071
442442 0 0
443443 −35.6174 −1.69223 −0.846117 0.532997i 0.821066π-0.821066\pi
−0.846117 + 0.532997i 0.821066π0.821066\pi
444444 −16.5551 −0.785670
445445 1.26565 0.0599977
446446 3.19135 0.151115
447447 0.356892 0.0168804
448448 11.8215 0.558513
449449 −22.1461 −1.04514 −0.522569 0.852597i 0.675026π-0.675026\pi
−0.522569 + 0.852597i 0.675026π0.675026\pi
450450 −1.02097 −0.0481288
451451 34.2668 1.61356
452452 −1.51377 −0.0712018
453453 9.13317 0.429114
454454 −2.41619 −0.113398
455455 2.75684 0.129243
456456 0.834460 0.0390772
457457 9.90632 0.463398 0.231699 0.972787i 0.425572π-0.425572\pi
0.231699 + 0.972787i 0.425572π0.425572\pi
458458 4.21941 0.197160
459459 0 0
460460 −2.63449 −0.122834
461461 −9.62367 −0.448219 −0.224109 0.974564i 0.571947π-0.571947\pi
−0.224109 + 0.974564i 0.571947π0.571947\pi
462462 −1.90126 −0.0884547
463463 15.3013 0.711113 0.355557 0.934655i 0.384291π-0.384291\pi
0.355557 + 0.934655i 0.384291π0.384291\pi
464464 35.5317 1.64952
465465 −3.35564 −0.155614
466466 1.57329 0.0728812
467467 −22.3150 −1.03261 −0.516307 0.856404i 0.672693π-0.672693\pi
−0.516307 + 0.856404i 0.672693π0.672693\pi
468468 −4.88877 −0.225983
469469 −13.3112 −0.614655
470470 −1.14554 −0.0528400
471471 17.5975 0.810849
472472 8.87670 0.408583
473473 35.4000 1.62769
474474 −0.527215 −0.0242158
475475 4.36814 0.200424
476476 0 0
477477 −6.44438 −0.295068
478478 −1.17511 −0.0537481
479479 −15.5571 −0.710824 −0.355412 0.934710i 0.615659π-0.615659\pi
−0.355412 + 0.934710i 0.615659π0.615659\pi
480480 −1.64134 −0.0749166
481481 21.2707 0.969858
482482 1.28832 0.0586815
483483 3.66810 0.166904
484484 −26.3506 −1.19775
485485 −1.93557 −0.0878898
486486 0.222191 0.0100788
487487 −0.0296516 −0.00134364 −0.000671822 1.00000i 0.500214π-0.500214\pi
−0.000671822 1.00000i 0.500214π0.500214\pi
488488 −2.60691 −0.118009
489489 16.5901 0.750228
490490 0.567382 0.0256317
491491 6.66935 0.300984 0.150492 0.988611i 0.451914π-0.451914\pi
0.150492 + 0.988611i 0.451914π0.451914\pi
492492 −13.5017 −0.608704
493493 0 0
494494 −0.529375 −0.0238177
495495 −3.15061 −0.141609
496496 19.5422 0.877471
497497 0.663798 0.0297754
498498 −2.96806 −0.133002
499499 −18.6469 −0.834748 −0.417374 0.908735i 0.637049π-0.637049\pi
−0.417374 + 0.908735i 0.637049π0.637049\pi
500500 −11.9111 −0.532682
501501 −14.2234 −0.635456
502502 −1.85128 −0.0826265
503503 25.7396 1.14767 0.573837 0.818970i 0.305454π-0.305454\pi
0.573837 + 0.818970i 0.305454π0.305454\pi
504504 1.51722 0.0675822
505505 11.8025 0.525205
506506 −2.33440 −0.103777
507507 −6.71872 −0.298389
508508 −21.1680 −0.939180
509509 41.1950 1.82594 0.912968 0.408032i 0.133785π-0.133785\pi
0.912968 + 0.408032i 0.133785π0.133785\pi
510510 0 0
511511 −11.2594 −0.498087
512512 16.0653 0.709992
513513 −0.950631 −0.0419714
514514 −0.945570 −0.0417073
515515 −2.16060 −0.0952076
516516 −13.9482 −0.614035
517517 40.1062 1.76387
518518 −3.25940 −0.143210
519519 −1.89331 −0.0831070
520520 1.40007 0.0613973
521521 8.98205 0.393511 0.196755 0.980453i 0.436960π-0.436960\pi
0.196755 + 0.980453i 0.436960π0.436960\pi
522522 2.13016 0.0932344
523523 −5.38995 −0.235686 −0.117843 0.993032i 0.537598π-0.537598\pi
−0.117843 + 0.993032i 0.537598π0.537598\pi
524524 −1.37758 −0.0601799
525525 7.94216 0.346624
526526 −2.02194 −0.0881607
527527 0 0
528528 18.3481 0.798500
529529 −18.4963 −0.804185
530530 0.911259 0.0395826
531531 −10.1125 −0.438844
532532 −3.20510 −0.138959
533533 17.3475 0.751405
534534 −0.441884 −0.0191222
535535 8.37070 0.361897
536536 −6.76016 −0.291994
537537 −22.2469 −0.960025
538538 4.75090 0.204826
539539 −19.8644 −0.855620
540540 1.24139 0.0534210
541541 1.22765 0.0527806 0.0263903 0.999652i 0.491599π-0.491599\pi
0.0263903 + 0.999652i 0.491599π0.491599\pi
542542 −4.29302 −0.184401
543543 −11.6142 −0.498413
544544 0 0
545545 11.0668 0.474050
546546 −0.962511 −0.0411916
547547 13.5274 0.578391 0.289196 0.957270i 0.406612π-0.406612\pi
0.289196 + 0.957270i 0.406612π0.406612\pi
548548 −24.0171 −1.02596
549549 2.96983 0.126749
550550 −5.05443 −0.215522
551551 −9.11373 −0.388258
552552 1.86286 0.0792887
553553 4.10124 0.174402
554554 0.742148 0.0315308
555555 −5.40120 −0.229268
556556 26.0300 1.10392
557557 −18.3599 −0.777936 −0.388968 0.921251i 0.627168π-0.627168\pi
−0.388968 + 0.921251i 0.627168π0.627168\pi
558558 1.17157 0.0495966
559559 17.9212 0.757986
560560 4.07680 0.172276
561561 0 0
562562 1.03931 0.0438406
563563 3.33315 0.140475 0.0702377 0.997530i 0.477624π-0.477624\pi
0.0702377 + 0.997530i 0.477624π0.477624\pi
564564 −15.8025 −0.665406
565565 −0.493877 −0.0207775
566566 2.23484 0.0939374
567567 −1.72844 −0.0725876
568568 0.337113 0.0141449
569569 29.4369 1.23406 0.617029 0.786940i 0.288336π-0.288336\pi
0.617029 + 0.786940i 0.288336π0.288336\pi
570570 0.134423 0.00563035
571571 −25.8275 −1.08085 −0.540424 0.841393i 0.681736π-0.681736\pi
−0.540424 + 0.841393i 0.681736π0.681736\pi
572572 −24.2025 −1.01196
573573 6.63311 0.277102
574574 −2.65824 −0.110953
575575 9.75150 0.406666
576576 −6.83940 −0.284975
577577 −22.1850 −0.923575 −0.461788 0.886990i 0.652792π-0.652792\pi
−0.461788 + 0.886990i 0.652792π0.652792\pi
578578 0 0
579579 2.91769 0.121255
580580 11.9013 0.494173
581581 23.0887 0.957882
582582 0.675776 0.0280118
583583 −31.9038 −1.32132
584584 −5.71814 −0.236618
585585 −1.59499 −0.0659447
586586 1.28190 0.0529547
587587 32.1482 1.32690 0.663448 0.748222i 0.269092π-0.269092\pi
0.663448 + 0.748222i 0.269092π0.269092\pi
588588 7.82690 0.322776
589589 −5.01250 −0.206536
590590 1.42994 0.0588698
591591 4.53517 0.186552
592592 31.4549 1.29279
593593 −29.3406 −1.20488 −0.602438 0.798166i 0.705804π-0.705804\pi
−0.602438 + 0.798166i 0.705804π0.705804\pi
594594 1.09999 0.0451330
595595 0 0
596596 −0.696164 −0.0285160
597597 2.46029 0.100693
598598 −1.18178 −0.0483268
599599 −36.2632 −1.48167 −0.740836 0.671686i 0.765570π-0.765570\pi
−0.740836 + 0.671686i 0.765570π0.765570\pi
600600 4.03346 0.164665
601601 45.7383 1.86570 0.932851 0.360262i 0.117313π-0.117313\pi
0.932851 + 0.360262i 0.117313π0.117313\pi
602602 −2.74615 −0.111925
603603 7.70129 0.313621
604604 −17.8155 −0.724900
605605 −8.59703 −0.349519
606606 −4.12068 −0.167391
607607 −33.6640 −1.36638 −0.683190 0.730241i 0.739408π-0.739408\pi
−0.683190 + 0.730241i 0.739408π0.739408\pi
608608 −2.45176 −0.0994318
609609 −16.5706 −0.671475
610610 −0.419945 −0.0170031
611611 20.3037 0.821400
612612 0 0
613613 −5.89120 −0.237943 −0.118972 0.992898i 0.537960π-0.537960\pi
−0.118972 + 0.992898i 0.537960π0.537960\pi
614614 −2.94125 −0.118699
615615 −4.40501 −0.177627
616616 7.51118 0.302634
617617 −35.2179 −1.41782 −0.708909 0.705300i 0.750812π-0.750812\pi
−0.708909 + 0.705300i 0.750812π0.750812\pi
618618 0.754343 0.0303441
619619 −32.8288 −1.31950 −0.659750 0.751485i 0.729338π-0.729338\pi
−0.659750 + 0.751485i 0.729338π0.729338\pi
620620 6.54562 0.262878
621621 −2.12220 −0.0851611
622622 −0.287805 −0.0115399
623623 3.43744 0.137718
624624 9.28872 0.371846
625625 19.0889 0.763555
626626 −4.24402 −0.169625
627627 −4.70622 −0.187948
628628 −34.3262 −1.36976
629629 0 0
630630 0.244408 0.00973744
631631 10.7057 0.426186 0.213093 0.977032i 0.431646π-0.431646\pi
0.213093 + 0.977032i 0.431646π0.431646\pi
632632 2.08283 0.0828506
633633 19.9038 0.791103
634634 3.35603 0.133285
635635 −6.90620 −0.274064
636636 12.5706 0.498457
637637 −10.0563 −0.398446
638638 10.5456 0.417505
639639 −0.384044 −0.0151926
640640 4.24980 0.167988
641641 −36.9437 −1.45919 −0.729593 0.683881i 0.760291π-0.760291\pi
−0.729593 + 0.683881i 0.760291π0.760291\pi
642642 −2.92251 −0.115342
643643 −39.3137 −1.55038 −0.775191 0.631727i 0.782346π-0.782346\pi
−0.775191 + 0.631727i 0.782346π0.782346\pi
644644 −7.15511 −0.281951
645645 −4.55068 −0.179183
646646 0 0
647647 −14.8806 −0.585016 −0.292508 0.956263i 0.594490π-0.594490\pi
−0.292508 + 0.956263i 0.594490π0.594490\pi
648648 −0.877796 −0.0344831
649649 −50.0632 −1.96515
650650 −2.55880 −0.100364
651651 −9.11373 −0.357195
652652 −32.3611 −1.26736
653653 24.2908 0.950571 0.475285 0.879832i 0.342345π-0.342345\pi
0.475285 + 0.879832i 0.342345π0.342345\pi
654654 −3.86381 −0.151087
655655 −0.449444 −0.0175612
656656 25.6534 1.00160
657657 6.51420 0.254143
658658 −3.11123 −0.121289
659659 −9.14192 −0.356119 −0.178059 0.984020i 0.556982π-0.556982\pi
−0.178059 + 0.984020i 0.556982π0.556982\pi
660660 6.14567 0.239220
661661 −16.7951 −0.653253 −0.326627 0.945153i 0.605912π-0.605912\pi
−0.326627 + 0.945153i 0.605912π0.605912\pi
662662 −5.03861 −0.195831
663663 0 0
664664 11.7257 0.455046
665665 −1.04568 −0.0405498
666666 1.88575 0.0730713
667667 −20.3456 −0.787787
668668 27.7447 1.07347
669669 14.3631 0.555309
670670 −1.08899 −0.0420714
671671 14.7025 0.567585
672672 −4.45779 −0.171963
673673 18.6313 0.718186 0.359093 0.933302i 0.383086π-0.383086\pi
0.359093 + 0.933302i 0.383086π0.383086\pi
674674 −0.359214 −0.0138364
675675 −4.59499 −0.176861
676676 13.1057 0.504067
677677 10.8010 0.415117 0.207559 0.978223i 0.433448π-0.433448\pi
0.207559 + 0.978223i 0.433448π0.433448\pi
678678 0.172430 0.00662212
679679 −5.25690 −0.201741
680680 0 0
681681 −10.8744 −0.416707
682682 5.80002 0.222094
683683 −22.2199 −0.850221 −0.425111 0.905141i 0.639765π-0.639765\pi
−0.425111 + 0.905141i 0.639765π0.639765\pi
684684 1.85433 0.0709021
685685 −7.83571 −0.299387
686686 4.22929 0.161475
687687 18.9900 0.724514
688688 26.5017 1.01037
689689 −16.1512 −0.615313
690690 0.300087 0.0114241
691691 −38.5413 −1.46618 −0.733090 0.680132i 0.761923π-0.761923\pi
−0.733090 + 0.680132i 0.761923π0.761923\pi
692692 3.69315 0.140392
693693 −8.55687 −0.325048
694694 −3.41300 −0.129556
695695 8.49244 0.322137
696696 −8.41546 −0.318987
697697 0 0
698698 −3.35702 −0.127065
699699 7.08079 0.267820
700700 −15.4922 −0.585551
701701 18.0843 0.683034 0.341517 0.939876i 0.389059π-0.389059\pi
0.341517 + 0.939876i 0.389059π0.389059\pi
702702 0.556867 0.0210176
703703 −8.06805 −0.304292
704704 −33.8593 −1.27612
705705 −5.15567 −0.194174
706706 −6.94307 −0.261306
707707 32.0550 1.20555
708708 19.7257 0.741338
709709 52.2614 1.96272 0.981359 0.192185i 0.0615573π-0.0615573\pi
0.981359 + 0.192185i 0.0615573π0.0615573\pi
710710 0.0543053 0.00203804
711711 −2.37280 −0.0889869
712712 1.74572 0.0654236
713713 −11.1900 −0.419068
714714 0 0
715715 −7.89620 −0.295301
716716 43.3955 1.62177
717717 −5.28872 −0.197511
718718 0.605478 0.0225962
719719 2.25831 0.0842206 0.0421103 0.999113i 0.486592π-0.486592\pi
0.0421103 + 0.999113i 0.486592π0.486592\pi
720720 −2.35866 −0.0879020
721721 −5.86808 −0.218539
722722 −4.02084 −0.149640
723723 5.79826 0.215640
724724 22.6550 0.841966
725725 −44.0523 −1.63606
726726 3.00153 0.111397
727727 −39.5601 −1.46720 −0.733601 0.679581i 0.762162π-0.762162\pi
−0.733601 + 0.679581i 0.762162π0.762162\pi
728728 3.80252 0.140931
729729 1.00000 0.0370370
730730 −0.921132 −0.0340926
731731 0 0
732732 −5.79304 −0.214117
733733 −13.5137 −0.499139 −0.249570 0.968357i 0.580289π-0.580289\pi
−0.249570 + 0.968357i 0.580289π0.580289\pi
734734 −4.09977 −0.151325
735735 2.55357 0.0941899
736736 −5.47334 −0.201750
737737 38.1262 1.40440
738738 1.53794 0.0566125
739739 −10.7282 −0.394642 −0.197321 0.980339i 0.563224π-0.563224\pi
−0.197321 + 0.980339i 0.563224π0.563224\pi
740740 10.5357 0.387302
741741 −2.38252 −0.0875240
742742 2.47493 0.0908575
743743 −43.9921 −1.61392 −0.806958 0.590609i 0.798887π-0.798887\pi
−0.806958 + 0.590609i 0.798887π0.798887\pi
744744 −4.62845 −0.169687
745745 −0.227128 −0.00832131
746746 5.42257 0.198534
747747 −13.3581 −0.488749
748748 0 0
749749 22.7343 0.830695
750750 1.35677 0.0495421
751751 −12.5047 −0.456304 −0.228152 0.973626i 0.573268π-0.573268\pi
−0.228152 + 0.973626i 0.573268π0.573268\pi
752752 30.0250 1.09490
753753 −8.33190 −0.303631
754754 5.33870 0.194424
755755 −5.81240 −0.211535
756756 3.37155 0.122622
757757 −35.8474 −1.30290 −0.651449 0.758693i 0.725838π-0.725838\pi
−0.651449 + 0.758693i 0.725838π0.725838\pi
758758 −1.30883 −0.0475390
759759 −10.5062 −0.381353
760760 −0.531055 −0.0192634
761761 −23.4468 −0.849944 −0.424972 0.905206i 0.639716π-0.639716\pi
−0.424972 + 0.905206i 0.639716π0.639716\pi
762762 2.41120 0.0873485
763763 30.0568 1.08813
764764 −12.9388 −0.468108
765765 0 0
766766 6.83807 0.247070
767767 −25.3444 −0.915133
768768 12.1950 0.440051
769769 22.8938 0.825573 0.412786 0.910828i 0.364556π-0.364556\pi
0.412786 + 0.910828i 0.364556π0.364556\pi
770770 1.20997 0.0436044
771771 −4.25565 −0.153264
772772 −5.69133 −0.204835
773773 34.1287 1.22753 0.613763 0.789491i 0.289655π-0.289655\pi
0.613763 + 0.789491i 0.289655π0.289655\pi
774774 1.58880 0.0571083
775775 −24.2285 −0.870313
776776 −2.66974 −0.0958382
777777 −14.6694 −0.526260
778778 4.33815 0.155530
779779 −6.57999 −0.235753
780780 3.11123 0.111400
781781 −1.90126 −0.0680325
782782 0 0
783783 9.58704 0.342613
784784 −14.8712 −0.531115
785785 −11.1991 −0.399714
786786 0.156917 0.00559703
787787 13.1730 0.469568 0.234784 0.972048i 0.424562π-0.424562\pi
0.234784 + 0.972048i 0.424562π0.424562\pi
788788 −8.84644 −0.315141
789789 −9.09999 −0.323968
790790 0.335522 0.0119373
791791 −1.34134 −0.0476926
792792 −4.34564 −0.154416
793793 7.44313 0.264313
794794 −0.200923 −0.00713049
795795 4.10124 0.145456
796796 −4.79911 −0.170100
797797 36.3506 1.28761 0.643803 0.765191i 0.277356π-0.277356\pi
0.643803 + 0.765191i 0.277356π0.277356\pi
798798 0.365084 0.0129239
799799 0 0
800800 −11.8509 −0.418991
801801 −1.98875 −0.0702691
802802 0.281040 0.00992388
803803 32.2494 1.13806
804804 −15.0224 −0.529798
805805 −2.33440 −0.0822767
806806 2.93625 0.103425
807807 21.3820 0.752682
808808 16.2793 0.572703
809809 −45.1267 −1.58657 −0.793285 0.608851i 0.791631π-0.791631\pi
−0.793285 + 0.608851i 0.791631π0.791631\pi
810810 −0.141404 −0.00496842
811811 −3.32815 −0.116867 −0.0584336 0.998291i 0.518611π-0.518611\pi
−0.0584336 + 0.998291i 0.518611π0.518611\pi
812812 32.3232 1.13432
813813 −19.3213 −0.677626
814814 9.33565 0.327214
815815 −10.5580 −0.369830
816816 0 0
817817 −6.79759 −0.237817
818818 6.36244 0.222458
819819 −4.33190 −0.151369
820820 8.59255 0.300065
821821 −7.46983 −0.260699 −0.130349 0.991468i 0.541610π-0.541610\pi
−0.130349 + 0.991468i 0.541610π0.541610\pi
822822 2.73572 0.0954193
823823 54.1834 1.88871 0.944357 0.328923i 0.106686π-0.106686\pi
0.944357 + 0.328923i 0.106686π0.106686\pi
824824 −2.98013 −0.103818
825825 −22.7481 −0.791987
826826 3.88364 0.135129
827827 −4.95063 −0.172150 −0.0860752 0.996289i 0.527433π-0.527433\pi
−0.0860752 + 0.996289i 0.527433π0.527433\pi
828828 4.13964 0.143862
829829 −0.0762440 −0.00264806 −0.00132403 0.999999i 0.500421π-0.500421\pi
−0.00132403 + 0.999999i 0.500421π0.500421\pi
830830 1.88889 0.0655643
831831 3.34013 0.115868
832832 −17.1412 −0.594265
833833 0 0
834834 −2.96501 −0.102670
835835 9.05187 0.313253
836836 9.18010 0.317501
837837 5.27281 0.182255
838838 5.32328 0.183890
839839 −36.4479 −1.25832 −0.629160 0.777276i 0.716601π-0.716601\pi
−0.629160 + 0.777276i 0.716601π0.716601\pi
840840 −0.965565 −0.0333151
841841 62.9113 2.16935
842842 −2.78433 −0.0959545
843843 4.67754 0.161103
844844 −38.8249 −1.33641
845845 4.27583 0.147093
846846 1.80002 0.0618861
847847 −23.3491 −0.802283
848848 −23.8843 −0.820191
849849 10.0582 0.345196
850850 0 0
851851 −18.0112 −0.617418
852852 0.749129 0.0256647
853853 39.9684 1.36849 0.684245 0.729252i 0.260132π-0.260132\pi
0.684245 + 0.729252i 0.260132π0.260132\pi
854854 −1.14055 −0.0390287
855855 0.604986 0.0206901
856856 11.5457 0.394625
857857 −2.95962 −0.101099 −0.0505493 0.998722i 0.516097π-0.516097\pi
−0.0505493 + 0.998722i 0.516097π0.516097\pi
858858 2.75684 0.0941170
859859 −22.4494 −0.765963 −0.382981 0.923756i 0.625103π-0.625103\pi
−0.382981 + 0.923756i 0.625103π0.625103\pi
860860 8.87670 0.302693
861861 −11.9638 −0.407724
862862 −3.92673 −0.133745
863863 −27.8981 −0.949661 −0.474831 0.880077i 0.657491π-0.657491\pi
−0.474831 + 0.880077i 0.657491π0.657491\pi
864864 2.57908 0.0877422
865865 1.20491 0.0409682
866866 −3.11236 −0.105762
867867 0 0
868868 17.7775 0.603409
869869 −11.7468 −0.398484
870870 −1.35564 −0.0459606
871871 19.3013 0.654001
872872 15.2645 0.516921
873873 3.04142 0.102936
874874 0.448256 0.0151625
875875 −10.5544 −0.356803
876876 −12.7068 −0.429323
877877 20.6961 0.698858 0.349429 0.936963i 0.386376π-0.386376\pi
0.349429 + 0.936963i 0.386376π0.386376\pi
878878 −2.57165 −0.0867889
879879 5.76934 0.194595
880880 −11.6768 −0.393627
881881 −22.2399 −0.749282 −0.374641 0.927170i 0.622234π-0.622234\pi
−0.374641 + 0.927170i 0.622234π0.622234\pi
882882 −0.891542 −0.0300198
883883 4.23253 0.142436 0.0712180 0.997461i 0.477311π-0.477311\pi
0.0712180 + 0.997461i 0.477311π0.477311\pi
884884 0 0
885885 6.43563 0.216331
886886 −7.91388 −0.265872
887887 −36.3047 −1.21899 −0.609496 0.792789i 0.708628π-0.708628\pi
−0.609496 + 0.792789i 0.708628π0.708628\pi
888888 −7.44990 −0.250002
889889 −18.7568 −0.629084
890890 0.281217 0.00942642
891891 4.95063 0.165852
892892 −28.0171 −0.938081
893893 −7.70129 −0.257714
894894 0.0792983 0.00265213
895895 14.1580 0.473251
896896 11.5422 0.385598
897897 −5.31877 −0.177589
898898 −4.92066 −0.164205
899899 50.5506 1.68596
900900 8.96313 0.298771
901901 0 0
902902 7.61380 0.253512
903903 −12.3594 −0.411295
904904 −0.681206 −0.0226566
905905 7.39133 0.245696
906906 2.02931 0.0674194
907907 24.3718 0.809251 0.404626 0.914482i 0.367402π-0.367402\pi
0.404626 + 0.914482i 0.367402π0.367402\pi
908908 21.2119 0.703942
909909 −18.5456 −0.615119
910910 0.612546 0.0203057
911911 26.9178 0.891826 0.445913 0.895076i 0.352879π-0.352879\pi
0.445913 + 0.895076i 0.352879π0.352879\pi
912912 −3.52325 −0.116666
913913 −66.1312 −2.18862
914914 2.20110 0.0728059
915915 −1.89001 −0.0624820
916916 −37.0425 −1.22392
917917 −1.22066 −0.0403099
918918 0 0
919919 −23.8000 −0.785088 −0.392544 0.919733i 0.628405π-0.628405\pi
−0.392544 + 0.919733i 0.628405π0.628405\pi
920920 −1.18553 −0.0390859
921921 −13.2375 −0.436189
922922 −2.13830 −0.0704210
923923 −0.962511 −0.0316814
924924 16.6913 0.549103
925925 −38.9979 −1.28224
926926 3.39983 0.111725
927927 3.39501 0.111507
928928 24.7258 0.811663
929929 −5.82742 −0.191191 −0.0955957 0.995420i 0.530476π-0.530476\pi
−0.0955957 + 0.995420i 0.530476π0.530476\pi
930930 −0.745595 −0.0244490
931931 3.81440 0.125012
932932 −13.8120 −0.452427
933933 −1.29530 −0.0424063
934934 −4.95819 −0.162237
935935 0 0
936936 −2.19998 −0.0719084
937937 55.4424 1.81123 0.905613 0.424106i 0.139411π-0.139411\pi
0.905613 + 0.424106i 0.139411π0.139411\pi
938938 −2.95764 −0.0965702
939939 −19.1007 −0.623328
940940 10.0568 0.328017
941941 −21.1696 −0.690109 −0.345054 0.938583i 0.612140π-0.612140\pi
−0.345054 + 0.938583i 0.612140π0.612140\pi
942942 3.91001 0.127395
943943 −14.6893 −0.478349
944944 −37.4791 −1.21984
945945 1.09999 0.0357826
946946 7.86558 0.255732
947947 37.5831 1.22129 0.610643 0.791906i 0.290911π-0.290911\pi
0.610643 + 0.791906i 0.290911π0.290911\pi
948948 4.62845 0.150325
949949 16.3262 0.529971
950950 0.970563 0.0314892
951951 15.1043 0.489789
952952 0 0
953953 21.2794 0.689307 0.344654 0.938730i 0.387996π-0.387996\pi
0.344654 + 0.938730i 0.387996π0.387996\pi
954954 −1.43189 −0.0463590
955955 −4.22134 −0.136599
956956 10.3163 0.333654
957957 47.4619 1.53422
958958 −3.45666 −0.111680
959959 −21.2813 −0.687210
960960 4.35263 0.140480
961961 −3.19748 −0.103144
962962 4.72616 0.152377
963963 −13.1531 −0.423853
964964 −11.3103 −0.364279
965965 −1.85683 −0.0597734
966966 0.815020 0.0262229
967967 −26.2320 −0.843563 −0.421782 0.906697i 0.638595π-0.638595\pi
−0.421782 + 0.906697i 0.638595π0.638595\pi
968968 −11.8579 −0.381128
969969 0 0
970970 −0.430067 −0.0138086
971971 −20.8243 −0.668285 −0.334142 0.942523i 0.608447π-0.608447\pi
−0.334142 + 0.942523i 0.608447π0.608447\pi
972972 −1.95063 −0.0625665
973973 23.0650 0.739429
974974 −0.00658834 −0.000211104 0
975975 −11.5162 −0.368813
976976 11.0069 0.352321
977977 16.2900 0.521162 0.260581 0.965452i 0.416086π-0.416086\pi
0.260581 + 0.965452i 0.416086π0.416086\pi
978978 3.68617 0.117871
979979 −9.84558 −0.314666
980980 −4.98108 −0.159115
981981 −17.3896 −0.555206
982982 1.48187 0.0472884
983983 0.931671 0.0297157 0.0148578 0.999890i 0.495270π-0.495270\pi
0.0148578 + 0.999890i 0.495270π0.495270\pi
984984 −6.07585 −0.193691
985985 −2.88620 −0.0919621
986986 0 0
987987 −14.0025 −0.445704
988988 4.64741 0.147854
989989 −15.1750 −0.482538
990990 −0.700037 −0.0222487
991991 −21.6972 −0.689234 −0.344617 0.938743i 0.611991π-0.611991\pi
−0.344617 + 0.938743i 0.611991π0.611991\pi
992992 13.5990 0.431769
993993 −22.6769 −0.719630
994994 0.147490 0.00467810
995995 −1.56574 −0.0496373
996996 26.0568 0.825641
997997 −3.22709 −0.102203 −0.0511015 0.998693i 0.516273π-0.516273\pi
−0.0511015 + 0.998693i 0.516273π0.516273\pi
998998 −4.14317 −0.131150
999999 8.48705 0.268518
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.a.l.1.3 4
3.2 odd 2 2601.2.a.be.1.2 4
17.2 even 8 867.2.e.g.616.3 8
17.3 odd 16 867.2.h.i.757.4 16
17.4 even 4 867.2.d.f.577.3 8
17.5 odd 16 867.2.h.k.688.1 16
17.6 odd 16 867.2.h.i.733.4 16
17.7 odd 16 867.2.h.k.712.1 16
17.8 even 8 51.2.e.a.13.2 yes 8
17.9 even 8 867.2.e.g.829.2 8
17.10 odd 16 867.2.h.k.712.2 16
17.11 odd 16 867.2.h.i.733.3 16
17.12 odd 16 867.2.h.k.688.2 16
17.13 even 4 867.2.d.f.577.4 8
17.14 odd 16 867.2.h.i.757.3 16
17.15 even 8 51.2.e.a.4.3 8
17.16 even 2 867.2.a.k.1.3 4
51.8 odd 8 153.2.f.b.64.3 8
51.32 odd 8 153.2.f.b.55.2 8
51.50 odd 2 2601.2.a.bf.1.2 4
68.15 odd 8 816.2.bd.e.769.3 8
68.59 odd 8 816.2.bd.e.625.3 8
204.59 even 8 2448.2.be.x.1441.3 8
204.83 even 8 2448.2.be.x.1585.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.3 8 17.15 even 8
51.2.e.a.13.2 yes 8 17.8 even 8
153.2.f.b.55.2 8 51.32 odd 8
153.2.f.b.64.3 8 51.8 odd 8
816.2.bd.e.625.3 8 68.59 odd 8
816.2.bd.e.769.3 8 68.15 odd 8
867.2.a.k.1.3 4 17.16 even 2
867.2.a.l.1.3 4 1.1 even 1 trivial
867.2.d.f.577.3 8 17.4 even 4
867.2.d.f.577.4 8 17.13 even 4
867.2.e.g.616.3 8 17.2 even 8
867.2.e.g.829.2 8 17.9 even 8
867.2.h.i.733.3 16 17.11 odd 16
867.2.h.i.733.4 16 17.6 odd 16
867.2.h.i.757.3 16 17.14 odd 16
867.2.h.i.757.4 16 17.3 odd 16
867.2.h.k.688.1 16 17.5 odd 16
867.2.h.k.688.2 16 17.12 odd 16
867.2.h.k.712.1 16 17.7 odd 16
867.2.h.k.712.2 16 17.10 odd 16
2448.2.be.x.1441.3 8 204.59 even 8
2448.2.be.x.1585.3 8 204.83 even 8
2601.2.a.be.1.2 4 3.2 odd 2
2601.2.a.bf.1.2 4 51.50 odd 2