Properties

Label 867.2.h.k.712.1
Level $867$
Weight $2$
Character 867.712
Analytic conductor $6.923$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(688,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.688"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8,0,0,0,0,0,-32,0,0,0,0,0,0,-8,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8x^{14} + 32x^{12} + 296x^{10} + 1057x^{8} + 1184x^{6} + 512x^{4} - 512x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 712.1
Root \(-0.626225 - 1.51184i\) of defining polynomial
Character \(\chi\) \(=\) 867.712
Dual form 867.2.h.k.688.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.157113 - 0.157113i) q^{2} +(-0.382683 - 0.923880i) q^{3} -1.95063i q^{4} +(0.587961 - 0.243542i) q^{5} +(-0.0850290 + 0.205278i) q^{6} +(1.59687 + 0.661445i) q^{7} +(-0.620696 + 0.620696i) q^{8} +(-0.707107 + 0.707107i) q^{9} +(-0.130640 - 0.0541128i) q^{10} +(1.89452 - 4.57379i) q^{11} +(-1.80215 + 0.746474i) q^{12} -2.50625i q^{13} +(-0.146967 - 0.354811i) q^{14} +(-0.450006 - 0.450006i) q^{15} -3.70622 q^{16} +0.222191 q^{18} +(0.672198 + 0.672198i) q^{19} +(-0.475060 - 1.14690i) q^{20} -1.72844i q^{21} +(-1.01626 + 0.420947i) q^{22} +(0.812132 - 1.96066i) q^{23} +(0.810978 + 0.335918i) q^{24} +(-3.24915 + 3.24915i) q^{25} +(-0.393764 + 0.393764i) q^{26} +(0.923880 + 0.382683i) q^{27} +(1.29024 - 3.11490i) q^{28} +(8.85727 - 3.66880i) q^{29} +0.141404i q^{30} +(2.01782 + 4.87144i) q^{31} +(1.82369 + 1.82369i) q^{32} -4.95063 q^{33} +1.09999 q^{35} +(1.37930 + 1.37930i) q^{36} +(-3.24785 - 7.84101i) q^{37} -0.211222i q^{38} +(-2.31547 + 0.959100i) q^{39} +(-0.213780 + 0.516110i) q^{40} +(-6.39483 - 2.64882i) q^{41} +(-0.271560 + 0.271560i) q^{42} +(-5.05624 + 5.05624i) q^{43} +(-8.92177 - 3.69552i) q^{44} +(-0.243542 + 0.587961i) q^{45} +(-0.435642 + 0.180449i) q^{46} -8.10124i q^{47} +(1.41831 + 3.42410i) q^{48} +(-2.83726 - 2.83726i) q^{49} +1.02097 q^{50} -4.88877 q^{52} +(4.55687 + 4.55687i) q^{53} +(-0.0850290 - 0.205278i) q^{54} -3.15061i q^{55} +(-1.40173 + 0.580614i) q^{56} +(0.363791 - 0.878269i) q^{57} +(-1.96801 - 0.815176i) q^{58} +(-7.15061 + 7.15061i) q^{59} +(-0.877796 + 0.877796i) q^{60} +(2.74377 + 1.13651i) q^{61} +(0.448342 - 1.08239i) q^{62} +(-1.59687 + 0.661445i) q^{63} +6.83940i q^{64} +(-0.610376 - 1.47358i) q^{65} +(0.777809 + 0.777809i) q^{66} -7.70129 q^{67} -2.12220 q^{69} +(-0.172822 - 0.172822i) q^{70} +(0.146967 + 0.354811i) q^{71} -0.877796i q^{72} +(-6.01834 + 2.49288i) q^{73} +(-0.721645 + 1.74220i) q^{74} +(4.24522 + 1.75843i) q^{75} +(1.31121 - 1.31121i) q^{76} +(6.05062 - 6.05062i) q^{77} +(0.514478 + 0.213104i) q^{78} +(-0.908030 + 2.19218i) q^{79} +(-2.17912 + 0.902620i) q^{80} -1.00000i q^{81} +(0.588546 + 1.42088i) q^{82} +(-9.44563 - 9.44563i) q^{83} -3.37155 q^{84} +1.58880 q^{86} +(-6.77906 - 6.77906i) q^{87} +(1.66301 + 4.01485i) q^{88} -1.98875i q^{89} +(0.130640 - 0.0541128i) q^{90} +(1.65775 - 4.00215i) q^{91} +(-3.82453 - 1.58417i) q^{92} +(3.72844 - 3.72844i) q^{93} +(-1.27281 + 1.27281i) q^{94} +(0.558934 + 0.231518i) q^{95} +(0.986972 - 2.38276i) q^{96} +(2.80990 - 1.16390i) q^{97} +0.891542i q^{98} +(1.89452 + 4.57379i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 32 q^{8} - 8 q^{15} - 24 q^{16} - 8 q^{18} - 32 q^{25} - 40 q^{26} - 16 q^{32} - 24 q^{33} + 16 q^{35} - 48 q^{42} - 48 q^{43} - 32 q^{49} + 120 q^{50} - 32 q^{52} - 16 q^{53} - 56 q^{59}+ \cdots + 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.157113 0.157113i −0.111096 0.111096i 0.649374 0.760469i \(-0.275031\pi\)
−0.760469 + 0.649374i \(0.775031\pi\)
\(3\) −0.382683 0.923880i −0.220942 0.533402i
\(4\) 1.95063i 0.975315i
\(5\) 0.587961 0.243542i 0.262944 0.108915i −0.247317 0.968935i \(-0.579549\pi\)
0.510261 + 0.860020i \(0.329549\pi\)
\(6\) −0.0850290 + 0.205278i −0.0347129 + 0.0838044i
\(7\) 1.59687 + 0.661445i 0.603560 + 0.250003i 0.663472 0.748201i \(-0.269082\pi\)
−0.0599122 + 0.998204i \(0.519082\pi\)
\(8\) −0.620696 + 0.620696i −0.219449 + 0.219449i
\(9\) −0.707107 + 0.707107i −0.235702 + 0.235702i
\(10\) −0.130640 0.0541128i −0.0413120 0.0171120i
\(11\) 1.89452 4.57379i 0.571221 1.37905i −0.329296 0.944227i \(-0.606811\pi\)
0.900517 0.434822i \(-0.143189\pi\)
\(12\) −1.80215 + 0.746474i −0.520235 + 0.215489i
\(13\) 2.50625i 0.695108i −0.937660 0.347554i \(-0.887012\pi\)
0.937660 0.347554i \(-0.112988\pi\)
\(14\) −0.146967 0.354811i −0.0392787 0.0948272i
\(15\) −0.450006 0.450006i −0.116191 0.116191i
\(16\) −3.70622 −0.926556
\(17\) 0 0
\(18\) 0.222191 0.0523710
\(19\) 0.672198 + 0.672198i 0.154213 + 0.154213i 0.779997 0.625784i \(-0.215221\pi\)
−0.625784 + 0.779997i \(0.715221\pi\)
\(20\) −0.475060 1.14690i −0.106227 0.256454i
\(21\) 1.72844i 0.377176i
\(22\) −1.01626 + 0.420947i −0.216666 + 0.0897462i
\(23\) 0.812132 1.96066i 0.169341 0.408826i −0.816311 0.577612i \(-0.803985\pi\)
0.985653 + 0.168786i \(0.0539847\pi\)
\(24\) 0.810978 + 0.335918i 0.165540 + 0.0685690i
\(25\) −3.24915 + 3.24915i −0.649830 + 0.649830i
\(26\) −0.393764 + 0.393764i −0.0772235 + 0.0772235i
\(27\) 0.923880 + 0.382683i 0.177801 + 0.0736475i
\(28\) 1.29024 3.11490i 0.243832 0.588662i
\(29\) 8.85727 3.66880i 1.64475 0.681279i 0.647988 0.761650i \(-0.275611\pi\)
0.996765 + 0.0803715i \(0.0256107\pi\)
\(30\) 0.141404i 0.0258167i
\(31\) 2.01782 + 4.87144i 0.362411 + 0.874937i 0.994947 + 0.100406i \(0.0320141\pi\)
−0.632536 + 0.774531i \(0.717986\pi\)
\(32\) 1.82369 + 1.82369i 0.322385 + 0.322385i
\(33\) −4.95063 −0.861794
\(34\) 0 0
\(35\) 1.09999 0.185932
\(36\) 1.37930 + 1.37930i 0.229884 + 0.229884i
\(37\) −3.24785 7.84101i −0.533944 1.28905i −0.928892 0.370351i \(-0.879237\pi\)
0.394948 0.918703i \(-0.370763\pi\)
\(38\) 0.211222i 0.0342647i
\(39\) −2.31547 + 0.959100i −0.370772 + 0.153579i
\(40\) −0.213780 + 0.516110i −0.0338016 + 0.0816042i
\(41\) −6.39483 2.64882i −0.998704 0.413677i −0.177382 0.984142i \(-0.556763\pi\)
−0.821322 + 0.570465i \(0.806763\pi\)
\(42\) −0.271560 + 0.271560i −0.0419027 + 0.0419027i
\(43\) −5.05624 + 5.05624i −0.771070 + 0.771070i −0.978294 0.207224i \(-0.933557\pi\)
0.207224 + 0.978294i \(0.433557\pi\)
\(44\) −8.92177 3.69552i −1.34501 0.557120i
\(45\) −0.243542 + 0.587961i −0.0363050 + 0.0876481i
\(46\) −0.435642 + 0.180449i −0.0642319 + 0.0266057i
\(47\) 8.10124i 1.18169i −0.806786 0.590843i \(-0.798795\pi\)
0.806786 0.590843i \(-0.201205\pi\)
\(48\) 1.41831 + 3.42410i 0.204715 + 0.494227i
\(49\) −2.83726 2.83726i −0.405323 0.405323i
\(50\) 1.02097 0.144387
\(51\) 0 0
\(52\) −4.88877 −0.677950
\(53\) 4.55687 + 4.55687i 0.625934 + 0.625934i 0.947042 0.321109i \(-0.104055\pi\)
−0.321109 + 0.947042i \(0.604055\pi\)
\(54\) −0.0850290 0.205278i −0.0115710 0.0279348i
\(55\) 3.15061i 0.424828i
\(56\) −1.40173 + 0.580614i −0.187314 + 0.0775878i
\(57\) 0.363791 0.878269i 0.0481853 0.116330i
\(58\) −1.96801 0.815176i −0.258412 0.107038i
\(59\) −7.15061 + 7.15061i −0.930930 + 0.930930i −0.997764 0.0668345i \(-0.978710\pi\)
0.0668345 + 0.997764i \(0.478710\pi\)
\(60\) −0.877796 + 0.877796i −0.113323 + 0.113323i
\(61\) 2.74377 + 1.13651i 0.351303 + 0.145515i 0.551355 0.834271i \(-0.314111\pi\)
−0.200052 + 0.979785i \(0.564111\pi\)
\(62\) 0.448342 1.08239i 0.0569394 0.137464i
\(63\) −1.59687 + 0.661445i −0.201187 + 0.0833343i
\(64\) 6.83940i 0.854925i
\(65\) −0.610376 1.47358i −0.0757078 0.182775i
\(66\) 0.777809 + 0.777809i 0.0957416 + 0.0957416i
\(67\) −7.70129 −0.940862 −0.470431 0.882437i \(-0.655902\pi\)
−0.470431 + 0.882437i \(0.655902\pi\)
\(68\) 0 0
\(69\) −2.12220 −0.255483
\(70\) −0.172822 0.172822i −0.0206562 0.0206562i
\(71\) 0.146967 + 0.354811i 0.0174418 + 0.0421083i 0.932361 0.361530i \(-0.117745\pi\)
−0.914919 + 0.403638i \(0.867745\pi\)
\(72\) 0.877796i 0.103449i
\(73\) −6.01834 + 2.49288i −0.704393 + 0.291769i −0.705982 0.708230i \(-0.749494\pi\)
0.00158913 + 0.999999i \(0.499494\pi\)
\(74\) −0.721645 + 1.74220i −0.0838895 + 0.202527i
\(75\) 4.24522 + 1.75843i 0.490195 + 0.203046i
\(76\) 1.31121 1.31121i 0.150406 0.150406i
\(77\) 6.05062 6.05062i 0.689532 0.689532i
\(78\) 0.514478 + 0.213104i 0.0582531 + 0.0241292i
\(79\) −0.908030 + 2.19218i −0.102161 + 0.246639i −0.966693 0.255939i \(-0.917615\pi\)
0.864531 + 0.502579i \(0.167615\pi\)
\(80\) −2.17912 + 0.902620i −0.243633 + 0.100916i
\(81\) 1.00000i 0.111111i
\(82\) 0.588546 + 1.42088i 0.0649940 + 0.156909i
\(83\) −9.44563 9.44563i −1.03679 1.03679i −0.999297 0.0374961i \(-0.988062\pi\)
−0.0374961 0.999297i \(-0.511938\pi\)
\(84\) −3.37155 −0.367866
\(85\) 0 0
\(86\) 1.58880 0.171325
\(87\) −6.77906 6.77906i −0.726791 0.726791i
\(88\) 1.66301 + 4.01485i 0.177277 + 0.427985i
\(89\) 1.98875i 0.210807i −0.994430 0.105404i \(-0.966387\pi\)
0.994430 0.105404i \(-0.0336135\pi\)
\(90\) 0.130640 0.0541128i 0.0137707 0.00570400i
\(91\) 1.65775 4.00215i 0.173779 0.419540i
\(92\) −3.82453 1.58417i −0.398734 0.165161i
\(93\) 3.72844 3.72844i 0.386621 0.386621i
\(94\) −1.27281 + 1.27281i −0.131280 + 0.131280i
\(95\) 0.558934 + 0.231518i 0.0573455 + 0.0237533i
\(96\) 0.986972 2.38276i 0.100732 0.243190i
\(97\) 2.80990 1.16390i 0.285302 0.118176i −0.235443 0.971888i \(-0.575654\pi\)
0.520745 + 0.853712i \(0.325654\pi\)
\(98\) 0.891542i 0.0900594i
\(99\) 1.89452 + 4.57379i 0.190407 + 0.459683i
\(100\) 6.33789 + 6.33789i 0.633789 + 0.633789i
\(101\) 18.5456 1.84536 0.922679 0.385569i \(-0.125995\pi\)
0.922679 + 0.385569i \(0.125995\pi\)
\(102\) 0 0
\(103\) 3.39501 0.334521 0.167260 0.985913i \(-0.446508\pi\)
0.167260 + 0.985913i \(0.446508\pi\)
\(104\) 1.55562 + 1.55562i 0.152541 + 0.152541i
\(105\) −0.420947 1.01626i −0.0410802 0.0991764i
\(106\) 1.43189i 0.139077i
\(107\) 12.1519 5.03348i 1.17477 0.486604i 0.292001 0.956418i \(-0.405679\pi\)
0.882766 + 0.469813i \(0.155679\pi\)
\(108\) 0.746474 1.80215i 0.0718295 0.173412i
\(109\) 16.0659 + 6.65470i 1.53883 + 0.637404i 0.981254 0.192721i \(-0.0617313\pi\)
0.557577 + 0.830125i \(0.311731\pi\)
\(110\) −0.495001 + 0.495001i −0.0471965 + 0.0471965i
\(111\) −6.00125 + 6.00125i −0.569613 + 0.569613i
\(112\) −5.91836 2.45146i −0.559232 0.231642i
\(113\) 0.296978 0.716969i 0.0279374 0.0674468i −0.909295 0.416152i \(-0.863378\pi\)
0.937233 + 0.348705i \(0.113378\pi\)
\(114\) −0.195144 + 0.0808312i −0.0182769 + 0.00757053i
\(115\) 1.35058i 0.125942i
\(116\) −7.15647 17.2773i −0.664462 1.60415i
\(117\) 1.77219 + 1.77219i 0.163839 + 0.163839i
\(118\) 2.24691 0.206845
\(119\) 0 0
\(120\) 0.558634 0.0509961
\(121\) −9.55213 9.55213i −0.868375 0.868375i
\(122\) −0.252522 0.609641i −0.0228622 0.0551943i
\(123\) 6.92171i 0.624110i
\(124\) 9.50238 3.93602i 0.853339 0.353465i
\(125\) −2.33678 + 5.64148i −0.209008 + 0.504590i
\(126\) 0.354811 + 0.146967i 0.0316091 + 0.0130929i
\(127\) 7.67345 7.67345i 0.680908 0.680908i −0.279297 0.960205i \(-0.590101\pi\)
0.960205 + 0.279297i \(0.0901013\pi\)
\(128\) 4.72193 4.72193i 0.417364 0.417364i
\(129\) 6.60630 + 2.73642i 0.581652 + 0.240928i
\(130\) −0.135620 + 0.327416i −0.0118947 + 0.0287163i
\(131\) 0.652465 0.270260i 0.0570062 0.0236127i −0.353998 0.935246i \(-0.615178\pi\)
0.411004 + 0.911633i \(0.365178\pi\)
\(132\) 9.65685i 0.840521i
\(133\) 0.628790 + 1.51803i 0.0545230 + 0.131630i
\(134\) 1.20997 + 1.20997i 0.104526 + 0.104526i
\(135\) 0.636405 0.0547730
\(136\) 0 0
\(137\) 12.3125 1.05192 0.525962 0.850508i \(-0.323705\pi\)
0.525962 + 0.850508i \(0.323705\pi\)
\(138\) 0.333426 + 0.333426i 0.0283831 + 0.0283831i
\(139\) 5.10668 + 12.3286i 0.433143 + 1.04570i 0.978268 + 0.207345i \(0.0664822\pi\)
−0.545125 + 0.838355i \(0.683518\pi\)
\(140\) 2.14567i 0.181342i
\(141\) −7.48457 + 3.10021i −0.630314 + 0.261085i
\(142\) 0.0326549 0.0788359i 0.00274034 0.00661576i
\(143\) −11.4630 4.74815i −0.958588 0.397060i
\(144\) 2.62070 2.62070i 0.218391 0.218391i
\(145\) 4.31423 4.31423i 0.358277 0.358277i
\(146\) 1.33722 + 0.553896i 0.110669 + 0.0458407i
\(147\) −1.53552 + 3.70706i −0.126647 + 0.305753i
\(148\) −15.2949 + 6.33536i −1.25723 + 0.520764i
\(149\) 0.356892i 0.0292377i −0.999893 0.0146189i \(-0.995347\pi\)
0.999893 0.0146189i \(-0.00465349\pi\)
\(150\) −0.390707 0.943250i −0.0319011 0.0770161i
\(151\) 6.45813 + 6.45813i 0.525555 + 0.525555i 0.919244 0.393689i \(-0.128801\pi\)
−0.393689 + 0.919244i \(0.628801\pi\)
\(152\) −0.834460 −0.0676837
\(153\) 0 0
\(154\) −1.90126 −0.153208
\(155\) 2.37280 + 2.37280i 0.190588 + 0.190588i
\(156\) 1.87085 + 4.51663i 0.149788 + 0.361620i
\(157\) 17.5975i 1.40443i 0.711964 + 0.702216i \(0.247806\pi\)
−0.711964 + 0.702216i \(0.752194\pi\)
\(158\) 0.487083 0.201756i 0.0387503 0.0160509i
\(159\) 2.46616 5.95383i 0.195579 0.472170i
\(160\) 1.51640 + 0.628114i 0.119882 + 0.0496568i
\(161\) 2.59374 2.59374i 0.204415 0.204415i
\(162\) −0.157113 + 0.157113i −0.0123440 + 0.0123440i
\(163\) 15.3272 + 6.34874i 1.20052 + 0.497272i 0.891167 0.453676i \(-0.149888\pi\)
0.309353 + 0.950947i \(0.399888\pi\)
\(164\) −5.16688 + 12.4739i −0.403465 + 0.974052i
\(165\) −2.91078 + 1.20568i −0.226604 + 0.0938624i
\(166\) 2.96806i 0.230366i
\(167\) −5.44308 13.1407i −0.421198 1.01686i −0.981995 0.188908i \(-0.939505\pi\)
0.560797 0.827953i \(-0.310495\pi\)
\(168\) 1.07283 + 1.07283i 0.0827710 + 0.0827710i
\(169\) 6.71872 0.516825
\(170\) 0 0
\(171\) −0.950631 −0.0726966
\(172\) 9.86286 + 9.86286i 0.752036 + 0.752036i
\(173\) 0.724538 + 1.74919i 0.0550856 + 0.132988i 0.949026 0.315197i \(-0.102071\pi\)
−0.893941 + 0.448185i \(0.852071\pi\)
\(174\) 2.13016i 0.161487i
\(175\) −7.33760 + 3.03933i −0.554670 + 0.229752i
\(176\) −7.02153 + 16.9515i −0.529268 + 1.27777i
\(177\) 9.34272 + 3.86988i 0.702242 + 0.290878i
\(178\) −0.312459 + 0.312459i −0.0234198 + 0.0234198i
\(179\) 15.7309 15.7309i 1.17579 1.17579i 0.194978 0.980808i \(-0.437536\pi\)
0.980808 0.194978i \(-0.0624635\pi\)
\(180\) 1.14690 + 0.475060i 0.0854846 + 0.0354089i
\(181\) −4.44456 + 10.7301i −0.330361 + 0.797563i 0.668202 + 0.743980i \(0.267064\pi\)
−0.998563 + 0.0535830i \(0.982936\pi\)
\(182\) −0.889244 + 0.368337i −0.0659151 + 0.0273029i
\(183\) 2.96983i 0.219536i
\(184\) 0.712887 + 1.72106i 0.0525547 + 0.126878i
\(185\) −3.81922 3.81922i −0.280795 0.280795i
\(186\) −1.17157 −0.0859039
\(187\) 0 0
\(188\) −15.8025 −1.15252
\(189\) 1.22219 + 1.22219i 0.0889013 + 0.0889013i
\(190\) −0.0514414 0.124190i −0.00373195 0.00900972i
\(191\) 6.63311i 0.479955i 0.970778 + 0.239978i \(0.0771401\pi\)
−0.970778 + 0.239978i \(0.922860\pi\)
\(192\) 6.31878 2.61732i 0.456019 0.188889i
\(193\) −1.11655 + 2.69559i −0.0803710 + 0.194033i −0.958957 0.283551i \(-0.908487\pi\)
0.878586 + 0.477584i \(0.158487\pi\)
\(194\) −0.624336 0.258608i −0.0448247 0.0185670i
\(195\) −1.12783 + 1.12783i −0.0807654 + 0.0807654i
\(196\) −5.53445 + 5.53445i −0.395318 + 0.395318i
\(197\) 4.18995 + 1.73553i 0.298521 + 0.123652i 0.526917 0.849917i \(-0.323348\pi\)
−0.228395 + 0.973568i \(0.573348\pi\)
\(198\) 0.420947 1.01626i 0.0299154 0.0722222i
\(199\) 2.27301 0.941512i 0.161129 0.0667420i −0.300661 0.953731i \(-0.597207\pi\)
0.461790 + 0.886989i \(0.347207\pi\)
\(200\) 4.03346i 0.285209i
\(201\) 2.94715 + 7.11506i 0.207876 + 0.501858i
\(202\) −2.91376 2.91376i −0.205011 0.205011i
\(203\) 16.5706 1.16303
\(204\) 0 0
\(205\) −4.40501 −0.307659
\(206\) −0.533401 0.533401i −0.0371638 0.0371638i
\(207\) 0.812132 + 1.96066i 0.0564471 + 0.136275i
\(208\) 9.28872i 0.644057i
\(209\) 4.34798 1.80099i 0.300756 0.124577i
\(210\) −0.0935308 + 0.225803i −0.00645424 + 0.0155819i
\(211\) −18.3887 7.61684i −1.26593 0.524365i −0.354205 0.935168i \(-0.615248\pi\)
−0.911724 + 0.410803i \(0.865248\pi\)
\(212\) 8.88877 8.88877i 0.610483 0.610483i
\(213\) 0.271560 0.271560i 0.0186070 0.0186070i
\(214\) −2.70004 1.11839i −0.184571 0.0764519i
\(215\) −1.74147 + 4.20428i −0.118767 + 0.286730i
\(216\) −0.810978 + 0.335918i −0.0551801 + 0.0228563i
\(217\) 9.11373i 0.618681i
\(218\) −1.47862 3.56970i −0.100145 0.241770i
\(219\) 4.60624 + 4.60624i 0.311261 + 0.311261i
\(220\) −6.14567 −0.414341
\(221\) 0 0
\(222\) 1.88575 0.126563
\(223\) −10.1562 10.1562i −0.680111 0.680111i 0.279914 0.960025i \(-0.409694\pi\)
−0.960025 + 0.279914i \(0.909694\pi\)
\(224\) 1.70592 + 4.11846i 0.113982 + 0.275176i
\(225\) 4.59499i 0.306333i
\(226\) −0.159304 + 0.0659860i −0.0105968 + 0.00438932i
\(227\) 4.16145 10.0466i 0.276205 0.666818i −0.723519 0.690304i \(-0.757477\pi\)
0.999724 + 0.0234865i \(0.00747666\pi\)
\(228\) −1.71318 0.709621i −0.113458 0.0469958i
\(229\) 13.4280 13.4280i 0.887345 0.887345i −0.106923 0.994267i \(-0.534100\pi\)
0.994267 + 0.106923i \(0.0340998\pi\)
\(230\) −0.212194 + 0.212194i −0.0139916 + 0.0139916i
\(231\) −7.90551 3.27457i −0.520145 0.215451i
\(232\) −3.22046 + 7.77487i −0.211433 + 0.510445i
\(233\) 6.54179 2.70970i 0.428567 0.177518i −0.157964 0.987445i \(-0.550493\pi\)
0.586531 + 0.809926i \(0.300493\pi\)
\(234\) 0.556867i 0.0364035i
\(235\) −1.97299 4.76322i −0.128704 0.310718i
\(236\) 13.9482 + 13.9482i 0.907950 + 0.907950i
\(237\) 2.37280 0.154130
\(238\) 0 0
\(239\) −5.28872 −0.342099 −0.171049 0.985262i \(-0.554716\pi\)
−0.171049 + 0.985262i \(0.554716\pi\)
\(240\) 1.66782 + 1.66782i 0.107658 + 0.107658i
\(241\) −2.21890 5.35689i −0.142932 0.345068i 0.836160 0.548485i \(-0.184795\pi\)
−0.979092 + 0.203417i \(0.934795\pi\)
\(242\) 3.00153i 0.192945i
\(243\) −0.923880 + 0.382683i −0.0592669 + 0.0245492i
\(244\) 2.21690 5.35207i 0.141923 0.342631i
\(245\) −2.35919 0.977210i −0.150723 0.0624317i
\(246\) 1.08749 1.08749i 0.0693359 0.0693359i
\(247\) 1.68469 1.68469i 0.107195 0.107195i
\(248\) −4.27613 1.77123i −0.271535 0.112473i
\(249\) −5.11194 + 12.3413i −0.323956 + 0.782099i
\(250\) 1.25349 0.519212i 0.0792776 0.0328379i
\(251\) 8.33190i 0.525905i 0.964809 + 0.262952i \(0.0846962\pi\)
−0.964809 + 0.262952i \(0.915304\pi\)
\(252\) 1.29024 + 3.11490i 0.0812772 + 0.196221i
\(253\) −7.42904 7.42904i −0.467060 0.467060i
\(254\) −2.41120 −0.151292
\(255\) 0 0
\(256\) 12.1950 0.762190
\(257\) 3.00920 + 3.00920i 0.187709 + 0.187709i 0.794705 0.606996i \(-0.207626\pi\)
−0.606996 + 0.794705i \(0.707626\pi\)
\(258\) −0.608009 1.46786i −0.0378530 0.0913851i
\(259\) 14.6694i 0.911509i
\(260\) −2.87441 + 1.19062i −0.178263 + 0.0738390i
\(261\) −3.66880 + 8.85727i −0.227093 + 0.548251i
\(262\) −0.144972 0.0600494i −0.00895641 0.00370987i
\(263\) −6.43466 + 6.43466i −0.396778 + 0.396778i −0.877095 0.480317i \(-0.840522\pi\)
0.480317 + 0.877095i \(0.340522\pi\)
\(264\) 3.07283 3.07283i 0.189120 0.189120i
\(265\) 3.78905 + 1.56948i 0.232759 + 0.0964121i
\(266\) 0.139712 0.337294i 0.00856628 0.0206808i
\(267\) −1.83737 + 0.761063i −0.112445 + 0.0465763i
\(268\) 15.0224i 0.917637i
\(269\) 8.18254 + 19.7544i 0.498898 + 1.20445i 0.950078 + 0.312013i \(0.101003\pi\)
−0.451180 + 0.892433i \(0.648997\pi\)
\(270\) −0.0999875 0.0999875i −0.00608505 0.00608505i
\(271\) 19.3213 1.17368 0.586842 0.809702i \(-0.300371\pi\)
0.586842 + 0.809702i \(0.300371\pi\)
\(272\) 0 0
\(273\) −4.33190 −0.262178
\(274\) −1.93445 1.93445i −0.116864 0.116864i
\(275\) 8.70532 + 21.0165i 0.524950 + 1.26734i
\(276\) 4.13964i 0.249177i
\(277\) −3.08588 + 1.27821i −0.185412 + 0.0768003i −0.473458 0.880816i \(-0.656994\pi\)
0.288046 + 0.957617i \(0.406994\pi\)
\(278\) 1.13466 2.73931i 0.0680524 0.164293i
\(279\) −4.87144 2.01782i −0.291646 0.120804i
\(280\) −0.682757 + 0.682757i −0.0408026 + 0.0408026i
\(281\) −3.30752 + 3.30752i −0.197310 + 0.197310i −0.798846 0.601536i \(-0.794556\pi\)
0.601536 + 0.798846i \(0.294556\pi\)
\(282\) 1.66301 + 0.688840i 0.0990306 + 0.0410198i
\(283\) 3.84910 9.29255i 0.228805 0.552384i −0.767227 0.641375i \(-0.778364\pi\)
0.996032 + 0.0889908i \(0.0283642\pi\)
\(284\) 0.692105 0.286679i 0.0410689 0.0170113i
\(285\) 0.604986i 0.0358363i
\(286\) 1.05500 + 2.54699i 0.0623833 + 0.150607i
\(287\) −8.45966 8.45966i −0.499358 0.499358i
\(288\) −2.57908 −0.151974
\(289\) 0 0
\(290\) −1.35564 −0.0796061
\(291\) −2.15061 2.15061i −0.126071 0.126071i
\(292\) 4.86268 + 11.7396i 0.284567 + 0.687005i
\(293\) 5.76934i 0.337048i 0.985698 + 0.168524i \(0.0539001\pi\)
−0.985698 + 0.168524i \(0.946100\pi\)
\(294\) 0.823678 0.341178i 0.0480378 0.0198979i
\(295\) −2.46281 + 5.94575i −0.143390 + 0.346175i
\(296\) 6.88281 + 2.85095i 0.400055 + 0.165708i
\(297\) 3.50062 3.50062i 0.203127 0.203127i
\(298\) −0.0560723 + 0.0560723i −0.00324818 + 0.00324818i
\(299\) −4.91390 2.03541i −0.284178 0.117711i
\(300\) 3.43004 8.28085i 0.198033 0.478095i
\(301\) −11.4186 + 4.72973i −0.658156 + 0.272617i
\(302\) 2.02931i 0.116774i
\(303\) −7.09710 17.1339i −0.407718 0.984318i
\(304\) −2.49131 2.49131i −0.142887 0.142887i
\(305\) 1.89001 0.108222
\(306\) 0 0
\(307\) −13.2375 −0.755502 −0.377751 0.925907i \(-0.623302\pi\)
−0.377751 + 0.925907i \(0.623302\pi\)
\(308\) −11.8025 11.8025i −0.672511 0.672511i
\(309\) −1.29922 3.13658i −0.0739098 0.178434i
\(310\) 0.745595i 0.0423469i
\(311\) 1.19670 0.495691i 0.0678589 0.0281081i −0.348496 0.937310i \(-0.613307\pi\)
0.416355 + 0.909202i \(0.363307\pi\)
\(312\) 0.841894 2.03251i 0.0476629 0.115068i
\(313\) 17.6468 + 7.30953i 0.997454 + 0.413159i 0.820863 0.571125i \(-0.193493\pi\)
0.176591 + 0.984284i \(0.443493\pi\)
\(314\) 2.76479 2.76479i 0.156026 0.156026i
\(315\) −0.777809 + 0.777809i −0.0438246 + 0.0438246i
\(316\) 4.27613 + 1.77123i 0.240551 + 0.0996396i
\(317\) 5.78015 13.9545i 0.324645 0.783763i −0.674327 0.738433i \(-0.735566\pi\)
0.998972 0.0453302i \(-0.0144340\pi\)
\(318\) −1.32289 + 0.547959i −0.0741840 + 0.0307280i
\(319\) 47.4619i 2.65735i
\(320\) 1.66568 + 4.02130i 0.0931142 + 0.224798i
\(321\) −9.30065 9.30065i −0.519112 0.519112i
\(322\) −0.815020 −0.0454193
\(323\) 0 0
\(324\) −1.95063 −0.108368
\(325\) 8.14317 + 8.14317i 0.451702 + 0.451702i
\(326\) −1.41063 3.40557i −0.0781278 0.188617i
\(327\) 17.3896i 0.961645i
\(328\) 5.61335 2.32513i 0.309946 0.128384i
\(329\) 5.35852 12.9366i 0.295425 0.713219i
\(330\) 0.646750 + 0.267893i 0.0356024 + 0.0147470i
\(331\) −16.0350 + 16.0350i −0.881363 + 0.881363i −0.993673 0.112310i \(-0.964175\pi\)
0.112310 + 0.993673i \(0.464175\pi\)
\(332\) −18.4249 + 18.4249i −1.01120 + 1.01120i
\(333\) 7.84101 + 3.24785i 0.429685 + 0.177981i
\(334\) −1.20940 + 2.91976i −0.0661757 + 0.159762i
\(335\) −4.52806 + 1.87558i −0.247394 + 0.102474i
\(336\) 6.40598i 0.349475i
\(337\) −0.618680 1.49362i −0.0337016 0.0813629i 0.906133 0.422994i \(-0.139021\pi\)
−0.939834 + 0.341631i \(0.889021\pi\)
\(338\) −1.05560 1.05560i −0.0574170 0.0574170i
\(339\) −0.776042 −0.0421488
\(340\) 0 0
\(341\) 26.1037 1.41360
\(342\) 0.149357 + 0.149357i 0.00807628 + 0.00807628i
\(343\) −7.28416 17.5855i −0.393308 0.949529i
\(344\) 6.27677i 0.338421i
\(345\) −1.24777 + 0.516845i −0.0671779 + 0.0278260i
\(346\) 0.160986 0.388655i 0.00865467 0.0208942i
\(347\) 14.1914 + 5.87826i 0.761833 + 0.315562i 0.729559 0.683917i \(-0.239725\pi\)
0.0322738 + 0.999479i \(0.489725\pi\)
\(348\) −13.2234 + 13.2234i −0.708851 + 0.708851i
\(349\) 10.6834 10.6834i 0.571872 0.571872i −0.360779 0.932651i \(-0.617489\pi\)
0.932651 + 0.360779i \(0.117489\pi\)
\(350\) 1.63035 + 0.675314i 0.0871459 + 0.0360970i
\(351\) 0.959100 2.31547i 0.0511930 0.123591i
\(352\) 11.7962 4.88614i 0.628738 0.260432i
\(353\) 31.2482i 1.66317i 0.555396 + 0.831586i \(0.312567\pi\)
−0.555396 + 0.831586i \(0.687433\pi\)
\(354\) −0.859854 2.07587i −0.0457007 0.110331i
\(355\) 0.172822 + 0.172822i 0.00917246 + 0.00917246i
\(356\) −3.87932 −0.205604
\(357\) 0 0
\(358\) −4.94307 −0.261249
\(359\) −1.92689 1.92689i −0.101697 0.101697i 0.654428 0.756125i \(-0.272910\pi\)
−0.756125 + 0.654428i \(0.772910\pi\)
\(360\) −0.213780 0.516110i −0.0112672 0.0272014i
\(361\) 18.0963i 0.952437i
\(362\) 2.38414 0.987542i 0.125308 0.0519041i
\(363\) −5.16957 + 12.4805i −0.271332 + 0.655054i
\(364\) −7.80672 3.23365i −0.409183 0.169489i
\(365\) −2.93143 + 2.93143i −0.153438 + 0.153438i
\(366\) −0.466599 + 0.466599i −0.0243895 + 0.0243895i
\(367\) −17.0470 7.06110i −0.889846 0.368586i −0.109539 0.993983i \(-0.534937\pi\)
−0.780307 + 0.625396i \(0.784937\pi\)
\(368\) −3.00994 + 7.26665i −0.156904 + 0.378800i
\(369\) 6.39483 2.64882i 0.332901 0.137892i
\(370\) 1.20010i 0.0623902i
\(371\) 4.26261 + 10.2908i 0.221303 + 0.534274i
\(372\) −7.27281 7.27281i −0.377078 0.377078i
\(373\) −24.4049 −1.26364 −0.631820 0.775115i \(-0.717692\pi\)
−0.631820 + 0.775115i \(0.717692\pi\)
\(374\) 0 0
\(375\) 6.10630 0.315328
\(376\) 5.02840 + 5.02840i 0.259320 + 0.259320i
\(377\) −9.19492 22.1985i −0.473563 1.14328i
\(378\) 0.384044i 0.0197531i
\(379\) 5.44218 2.25422i 0.279546 0.115792i −0.238506 0.971141i \(-0.576658\pi\)
0.518052 + 0.855349i \(0.326658\pi\)
\(380\) 0.451607 1.09027i 0.0231669 0.0559299i
\(381\) −10.0258 4.15284i −0.513639 0.212756i
\(382\) 1.04215 1.04215i 0.0533209 0.0533209i
\(383\) −21.7616 + 21.7616i −1.11197 + 1.11197i −0.119083 + 0.992884i \(0.537995\pi\)
−0.992884 + 0.119083i \(0.962005\pi\)
\(384\) −6.16950 2.55549i −0.314836 0.130409i
\(385\) 2.08395 5.03111i 0.106208 0.256409i
\(386\) 0.598937 0.248088i 0.0304851 0.0126273i
\(387\) 7.15061i 0.363486i
\(388\) −2.27034 5.48108i −0.115259 0.278260i
\(389\) 13.8058 + 13.8058i 0.699983 + 0.699983i 0.964407 0.264424i \(-0.0851818\pi\)
−0.264424 + 0.964407i \(0.585182\pi\)
\(390\) 0.354393 0.0179454
\(391\) 0 0
\(392\) 3.52215 0.177896
\(393\) −0.499375 0.499375i −0.0251901 0.0251901i
\(394\) −0.385621 0.930970i −0.0194273 0.0469016i
\(395\) 1.51006i 0.0759794i
\(396\) 8.92177 3.69552i 0.448336 0.185707i
\(397\) 0.346052 0.835444i 0.0173679 0.0419298i −0.914958 0.403550i \(-0.867776\pi\)
0.932326 + 0.361620i \(0.117776\pi\)
\(398\) −0.505043 0.209196i −0.0253155 0.0104860i
\(399\) 1.16185 1.16185i 0.0581654 0.0581654i
\(400\) 12.0421 12.0421i 0.602103 0.602103i
\(401\) 1.16858 + 0.484040i 0.0583559 + 0.0241718i 0.411670 0.911333i \(-0.364945\pi\)
−0.353315 + 0.935505i \(0.614945\pi\)
\(402\) 0.654832 1.58091i 0.0326601 0.0788484i
\(403\) 12.2090 5.05715i 0.608176 0.251915i
\(404\) 36.1757i 1.79981i
\(405\) −0.243542 0.587961i −0.0121017 0.0292160i
\(406\) −2.60346 2.60346i −0.129208 0.129208i
\(407\) −42.0162 −2.08267
\(408\) 0 0
\(409\) 28.6350 1.41591 0.707954 0.706258i \(-0.249618\pi\)
0.707954 + 0.706258i \(0.249618\pi\)
\(410\) 0.692085 + 0.692085i 0.0341796 + 0.0341796i
\(411\) −4.71177 11.3752i −0.232415 0.561099i
\(412\) 6.62242i 0.326263i
\(413\) −16.1483 + 6.68885i −0.794607 + 0.329137i
\(414\) 0.180449 0.435642i 0.00886857 0.0214106i
\(415\) −7.85407 3.25326i −0.385541 0.159696i
\(416\) 4.57061 4.57061i 0.224093 0.224093i
\(417\) 9.43591 9.43591i 0.462079 0.462079i
\(418\) −0.966084 0.400165i −0.0472527 0.0195727i
\(419\) 9.16836 22.1344i 0.447903 1.08133i −0.525203 0.850977i \(-0.676010\pi\)
0.973106 0.230357i \(-0.0739895\pi\)
\(420\) −1.98234 + 0.821112i −0.0967283 + 0.0400662i
\(421\) 12.5312i 0.610735i 0.952235 + 0.305368i \(0.0987794\pi\)
−0.952235 + 0.305368i \(0.901221\pi\)
\(422\) 1.69240 + 4.08581i 0.0823846 + 0.198894i
\(423\) 5.72844 + 5.72844i 0.278526 + 0.278526i
\(424\) −5.65685 −0.274721
\(425\) 0 0
\(426\) −0.0853313 −0.00413432
\(427\) 3.62970 + 3.62970i 0.175654 + 0.175654i
\(428\) −9.81845 23.7038i −0.474593 1.14577i
\(429\) 12.4075i 0.599040i
\(430\) 0.934155 0.386940i 0.0450490 0.0186599i
\(431\) 6.76307 16.3275i 0.325766 0.786468i −0.673132 0.739523i \(-0.735051\pi\)
0.998897 0.0469454i \(-0.0149487\pi\)
\(432\) −3.42410 1.41831i −0.164742 0.0682385i
\(433\) −9.90484 + 9.90484i −0.475996 + 0.475996i −0.903849 0.427852i \(-0.859270\pi\)
0.427852 + 0.903849i \(0.359270\pi\)
\(434\) 1.43189 1.43189i 0.0687327 0.0687327i
\(435\) −5.63681 2.33484i −0.270264 0.111947i
\(436\) 12.9809 31.3386i 0.621670 1.50084i
\(437\) 1.86386 0.772038i 0.0891607 0.0369316i
\(438\) 1.44740i 0.0691594i
\(439\) −4.42919 10.6930i −0.211394 0.510349i 0.782244 0.622972i \(-0.214075\pi\)
−0.993638 + 0.112623i \(0.964075\pi\)
\(440\) 1.95557 + 1.95557i 0.0932280 + 0.0932280i
\(441\) 4.01250 0.191071
\(442\) 0 0
\(443\) −35.6174 −1.69223 −0.846117 0.532997i \(-0.821066\pi\)
−0.846117 + 0.532997i \(0.821066\pi\)
\(444\) 11.7062 + 11.7062i 0.555553 + 0.555553i
\(445\) −0.484344 1.16931i −0.0229601 0.0554306i
\(446\) 3.19135i 0.151115i
\(447\) −0.329725 + 0.136577i −0.0155955 + 0.00645985i
\(448\) −4.52389 + 10.9216i −0.213734 + 0.515998i
\(449\) 20.4603 + 8.47493i 0.965581 + 0.399957i 0.809065 0.587719i \(-0.199974\pi\)
0.156516 + 0.987675i \(0.449974\pi\)
\(450\) −0.721933 + 0.721933i −0.0340322 + 0.0340322i
\(451\) −24.2303 + 24.2303i −1.14096 + 1.14096i
\(452\) −1.39854 0.579295i −0.0657819 0.0272477i
\(453\) 3.49511 8.43795i 0.164215 0.396450i
\(454\) −2.23227 + 0.924638i −0.104766 + 0.0433954i
\(455\) 2.75684i 0.129243i
\(456\) 0.319334 + 0.770941i 0.0149542 + 0.0361026i
\(457\) 7.00483 + 7.00483i 0.327672 + 0.327672i 0.851701 0.524029i \(-0.175572\pi\)
−0.524029 + 0.851701i \(0.675572\pi\)
\(458\) −4.21941 −0.197160
\(459\) 0 0
\(460\) −2.63449 −0.122834
\(461\) 6.80496 + 6.80496i 0.316939 + 0.316939i 0.847590 0.530651i \(-0.178053\pi\)
−0.530651 + 0.847590i \(0.678053\pi\)
\(462\) 0.727581 + 1.75654i 0.0338502 + 0.0817215i
\(463\) 15.3013i 0.711113i 0.934655 + 0.355557i \(0.115709\pi\)
−0.934655 + 0.355557i \(0.884291\pi\)
\(464\) −32.8270 + 13.5974i −1.52396 + 0.631243i
\(465\) 1.28415 3.10021i 0.0595510 0.143769i
\(466\) −1.45353 0.602072i −0.0673335 0.0278904i
\(467\) −15.7791 + 15.7791i −0.730168 + 0.730168i −0.970653 0.240485i \(-0.922693\pi\)
0.240485 + 0.970653i \(0.422693\pi\)
\(468\) 3.45688 3.45688i 0.159794 0.159794i
\(469\) −12.2980 5.09398i −0.567867 0.235218i
\(470\) −0.438381 + 1.05835i −0.0202210 + 0.0488178i
\(471\) 16.2580 6.73427i 0.749127 0.310299i
\(472\) 8.87670i 0.408583i
\(473\) 13.5470 + 32.7053i 0.622892 + 1.50379i
\(474\) −0.372797 0.372797i −0.0171232 0.0171232i
\(475\) −4.36814 −0.200424
\(476\) 0 0
\(477\) −6.44438 −0.295068
\(478\) 0.830926 + 0.830926i 0.0380057 + 0.0380057i
\(479\) 5.95346 + 14.3729i 0.272021 + 0.656716i 0.999569 0.0293400i \(-0.00934056\pi\)
−0.727549 + 0.686056i \(0.759341\pi\)
\(480\) 1.64134i 0.0749166i
\(481\) −19.6515 + 8.13993i −0.896032 + 0.371149i
\(482\) −0.493020 + 1.19026i −0.0224564 + 0.0542146i
\(483\) −3.38888 1.40372i −0.154200 0.0638715i
\(484\) −18.6327 + 18.6327i −0.846940 + 0.846940i
\(485\) 1.36866 1.36866i 0.0621475 0.0621475i
\(486\) 0.205278 + 0.0850290i 0.00931160 + 0.00385699i
\(487\) −0.0113472 + 0.0273945i −0.000514190 + 0.00124136i −0.924136 0.382063i \(-0.875214\pi\)
0.923622 + 0.383304i \(0.125214\pi\)
\(488\) −2.40847 + 0.997620i −0.109026 + 0.0451601i
\(489\) 16.5901i 0.750228i
\(490\) 0.217128 + 0.524192i 0.00980883 + 0.0236806i
\(491\) 4.71594 + 4.71594i 0.212828 + 0.212828i 0.805467 0.592640i \(-0.201914\pi\)
−0.592640 + 0.805467i \(0.701914\pi\)
\(492\) 13.5017 0.608704
\(493\) 0 0
\(494\) −0.529375 −0.0238177
\(495\) 2.22781 + 2.22781i 0.100133 + 0.100133i
\(496\) −7.47848 18.0546i −0.335794 0.810678i
\(497\) 0.663798i 0.0297754i
\(498\) 2.74213 1.13583i 0.122878 0.0508977i
\(499\) 7.13584 17.2274i 0.319444 0.771207i −0.679839 0.733361i \(-0.737951\pi\)
0.999284 0.0378455i \(-0.0120495\pi\)
\(500\) 11.0045 + 4.55819i 0.492134 + 0.203849i
\(501\) −10.0575 + 10.0575i −0.449336 + 0.449336i
\(502\) 1.30905 1.30905i 0.0584258 0.0584258i
\(503\) 23.7803 + 9.85013i 1.06031 + 0.439195i 0.843562 0.537032i \(-0.180454\pi\)
0.216750 + 0.976227i \(0.430454\pi\)
\(504\) 0.580614 1.40173i 0.0258626 0.0624379i
\(505\) 10.9041 4.51663i 0.485227 0.200987i
\(506\) 2.33440i 0.103777i
\(507\) −2.57114 6.20729i −0.114188 0.275675i
\(508\) −14.9681 14.9681i −0.664100 0.664100i
\(509\) −41.1950 −1.82594 −0.912968 0.408032i \(-0.866215\pi\)
−0.912968 + 0.408032i \(0.866215\pi\)
\(510\) 0 0
\(511\) −11.2594 −0.498087
\(512\) −11.3599 11.3599i −0.502040 0.502040i
\(513\) 0.363791 + 0.878269i 0.0160618 + 0.0387765i
\(514\) 0.945570i 0.0417073i
\(515\) 1.99614 0.826827i 0.0879603 0.0364344i
\(516\) 5.33774 12.8865i 0.234981 0.567294i
\(517\) −37.0533 15.3480i −1.62960 0.675004i
\(518\) −2.30475 + 2.30475i −0.101265 + 0.101265i
\(519\) 1.33877 1.33877i 0.0587656 0.0587656i
\(520\) 1.29350 + 0.535785i 0.0567238 + 0.0234957i
\(521\) 3.43728 8.29833i 0.150590 0.363557i −0.830525 0.556981i \(-0.811960\pi\)
0.981115 + 0.193425i \(0.0619595\pi\)
\(522\) 1.96801 0.815176i 0.0861374 0.0356793i
\(523\) 5.38995i 0.235686i 0.993032 + 0.117843i \(0.0375980\pi\)
−0.993032 + 0.117843i \(0.962402\pi\)
\(524\) −0.527177 1.27272i −0.0230299 0.0555990i
\(525\) 5.61596 + 5.61596i 0.245100 + 0.245100i
\(526\) 2.02194 0.0881607
\(527\) 0 0
\(528\) 18.3481 0.798500
\(529\) 13.0788 + 13.0788i 0.568645 + 0.568645i
\(530\) −0.348724 0.841894i −0.0151476 0.0365695i
\(531\) 10.1125i 0.438844i
\(532\) 2.96112 1.22654i 0.128381 0.0531772i
\(533\) −6.63861 + 16.0270i −0.287550 + 0.694208i
\(534\) 0.408247 + 0.169102i 0.0176666 + 0.00731774i
\(535\) 5.91898 5.91898i 0.255900 0.255900i
\(536\) 4.78015 4.78015i 0.206471 0.206471i
\(537\) −20.5535 8.51352i −0.886947 0.367386i
\(538\) 1.81809 4.38926i 0.0783834 0.189234i
\(539\) −18.3523 + 7.60177i −0.790490 + 0.327432i
\(540\) 1.24139i 0.0534210i
\(541\) 0.469799 + 1.13420i 0.0201983 + 0.0487629i 0.933657 0.358169i \(-0.116599\pi\)
−0.913459 + 0.406932i \(0.866599\pi\)
\(542\) −3.03562 3.03562i −0.130391 0.130391i
\(543\) 11.6142 0.498413
\(544\) 0 0
\(545\) 11.0668 0.474050
\(546\) 0.680598 + 0.680598i 0.0291269 + 0.0291269i
\(547\) −5.17672 12.4977i −0.221341 0.534364i 0.773732 0.633513i \(-0.218388\pi\)
−0.995073 + 0.0991495i \(0.968388\pi\)
\(548\) 24.0171i 1.02596i
\(549\) −2.74377 + 1.13651i −0.117101 + 0.0485049i
\(550\) 1.93425 4.66968i 0.0824766 0.199116i
\(551\) 8.41999 + 3.48767i 0.358704 + 0.148580i
\(552\) 1.31724 1.31724i 0.0560656 0.0560656i
\(553\) −2.90001 + 2.90001i −0.123321 + 0.123321i
\(554\) 0.685655 + 0.284008i 0.0291307 + 0.0120663i
\(555\) −2.06695 + 4.99006i −0.0877371 + 0.211816i
\(556\) 24.0486 9.96125i 1.01989 0.422451i
\(557\) 18.3599i 0.777936i 0.921251 + 0.388968i \(0.127168\pi\)
−0.921251 + 0.388968i \(0.872832\pi\)
\(558\) 0.448342 + 1.08239i 0.0189798 + 0.0458213i
\(559\) 12.6722 + 12.6722i 0.535977 + 0.535977i
\(560\) −4.07680 −0.172276
\(561\) 0 0
\(562\) 1.03931 0.0438406
\(563\) −2.35689 2.35689i −0.0993311 0.0993311i 0.655695 0.755026i \(-0.272376\pi\)
−0.755026 + 0.655695i \(0.772376\pi\)
\(564\) 6.04736 + 14.5996i 0.254640 + 0.614755i
\(565\) 0.493877i 0.0207775i
\(566\) −2.06472 + 0.855236i −0.0867868 + 0.0359483i
\(567\) 0.661445 1.59687i 0.0277781 0.0670622i
\(568\) −0.311451 0.129007i −0.0130682 0.00541303i
\(569\) 20.8150 20.8150i 0.872611 0.872611i −0.120145 0.992756i \(-0.538336\pi\)
0.992756 + 0.120145i \(0.0383360\pi\)
\(570\) −0.0950512 + 0.0950512i −0.00398126 + 0.00398126i
\(571\) −23.8615 9.88376i −0.998573 0.413623i −0.177300 0.984157i \(-0.556736\pi\)
−0.821274 + 0.570534i \(0.806736\pi\)
\(572\) −9.26189 + 22.3602i −0.387259 + 0.934926i
\(573\) 6.12820 2.53838i 0.256009 0.106042i
\(574\) 2.65824i 0.110953i
\(575\) 3.73174 + 9.00921i 0.155624 + 0.375710i
\(576\) −4.83618 4.83618i −0.201508 0.201508i
\(577\) 22.1850 0.923575 0.461788 0.886990i \(-0.347208\pi\)
0.461788 + 0.886990i \(0.347208\pi\)
\(578\) 0 0
\(579\) 2.91769 0.121255
\(580\) −8.41546 8.41546i −0.349433 0.349433i
\(581\) −8.83568 21.3312i −0.366566 0.884968i
\(582\) 0.675776i 0.0280118i
\(583\) 29.4752 12.2090i 1.22074 0.505647i
\(584\) 2.18824 5.28287i 0.0905499 0.218607i
\(585\) 1.47358 + 0.610376i 0.0609249 + 0.0252359i
\(586\) 0.906438 0.906438i 0.0374446 0.0374446i
\(587\) −22.7322 + 22.7322i −0.938258 + 0.938258i −0.998202 0.0599439i \(-0.980908\pi\)
0.0599439 + 0.998202i \(0.480908\pi\)
\(588\) 7.23111 + 2.99522i 0.298206 + 0.123521i
\(589\) −1.91820 + 4.63094i −0.0790380 + 0.190815i
\(590\) 1.32109 0.547215i 0.0543886 0.0225285i
\(591\) 4.53517i 0.186552i
\(592\) 12.0373 + 29.0605i 0.494729 + 1.19438i
\(593\) −20.7470 20.7470i −0.851976 0.851976i 0.138400 0.990376i \(-0.455804\pi\)
−0.990376 + 0.138400i \(0.955804\pi\)
\(594\) −1.09999 −0.0451330
\(595\) 0 0
\(596\) −0.696164 −0.0285160
\(597\) −1.73969 1.73969i −0.0712006 0.0712006i
\(598\) 0.452249 + 1.09183i 0.0184939 + 0.0446481i
\(599\) 36.2632i 1.48167i −0.671686 0.740836i \(-0.734430\pi\)
0.671686 0.740836i \(-0.265570\pi\)
\(600\) −3.72643 + 1.54354i −0.152131 + 0.0630147i
\(601\) −17.5033 + 42.2566i −0.713973 + 1.72368i −0.0241482 + 0.999708i \(0.507687\pi\)
−0.689825 + 0.723976i \(0.742313\pi\)
\(602\) 2.53711 + 1.05091i 0.103405 + 0.0428317i
\(603\) 5.44563 5.44563i 0.221763 0.221763i
\(604\) 12.5974 12.5974i 0.512582 0.512582i
\(605\) −7.94262 3.28994i −0.322914 0.133755i
\(606\) −1.57691 + 3.80701i −0.0640578 + 0.154649i
\(607\) −31.1015 + 12.8827i −1.26237 + 0.522891i −0.910636 0.413209i \(-0.864408\pi\)
−0.351734 + 0.936100i \(0.614408\pi\)
\(608\) 2.45176i 0.0994318i
\(609\) −6.34130 15.3092i −0.256962 0.620362i
\(610\) −0.296946 0.296946i −0.0120230 0.0120230i
\(611\) −20.3037 −0.821400
\(612\) 0 0
\(613\) −5.89120 −0.237943 −0.118972 0.992898i \(-0.537960\pi\)
−0.118972 + 0.992898i \(0.537960\pi\)
\(614\) 2.07978 + 2.07978i 0.0839330 + 0.0839330i
\(615\) 1.68572 + 4.06970i 0.0679750 + 0.164106i
\(616\) 7.51118i 0.302634i
\(617\) 32.5371 13.4773i 1.30989 0.542575i 0.385040 0.922900i \(-0.374188\pi\)
0.924853 + 0.380325i \(0.124188\pi\)
\(618\) −0.288674 + 0.696922i −0.0116122 + 0.0280343i
\(619\) 30.3298 + 12.5630i 1.21906 + 0.504951i 0.897110 0.441807i \(-0.145662\pi\)
0.321948 + 0.946757i \(0.395662\pi\)
\(620\) 4.62845 4.62845i 0.185883 0.185883i
\(621\) 1.50062 1.50062i 0.0602180 0.0602180i
\(622\) −0.265897 0.110138i −0.0106615 0.00441615i
\(623\) 1.31545 3.17578i 0.0527024 0.127235i
\(624\) 8.58165 3.55464i 0.343541 0.142299i
\(625\) 19.0889i 0.763555i
\(626\) −1.62411 3.92096i −0.0649127 0.156713i
\(627\) −3.32780 3.32780i −0.132900 0.132900i
\(628\) 34.3262 1.36976
\(629\) 0 0
\(630\) 0.244408 0.00973744
\(631\) −7.57005 7.57005i −0.301359 0.301359i 0.540186 0.841545i \(-0.318354\pi\)
−0.841545 + 0.540186i \(0.818354\pi\)
\(632\) −0.797065 1.92429i −0.0317056 0.0765440i
\(633\) 19.9038i 0.791103i
\(634\) −3.10057 + 1.28430i −0.123139 + 0.0510060i
\(635\) 2.64289 6.38050i 0.104880 0.253202i
\(636\) −11.6137 4.81057i −0.460514 0.190751i
\(637\) −7.11089 + 7.11089i −0.281744 + 0.281744i
\(638\) −7.45688 + 7.45688i −0.295221 + 0.295221i
\(639\) −0.354811 0.146967i −0.0140361 0.00581394i
\(640\) 1.62633 3.92630i 0.0642862 0.155201i
\(641\) −34.1315 + 14.1377i −1.34811 + 0.558406i −0.935766 0.352621i \(-0.885291\pi\)
−0.412346 + 0.911027i \(0.635291\pi\)
\(642\) 2.92251i 0.115342i
\(643\) −15.0447 36.3211i −0.593305 1.43237i −0.880293 0.474431i \(-0.842654\pi\)
0.286987 0.957934i \(-0.407346\pi\)
\(644\) −5.05943 5.05943i −0.199369 0.199369i
\(645\) 4.55068 0.179183
\(646\) 0 0
\(647\) −14.8806 −0.585016 −0.292508 0.956263i \(-0.594490\pi\)
−0.292508 + 0.956263i \(0.594490\pi\)
\(648\) 0.620696 + 0.620696i 0.0243832 + 0.0243832i
\(649\) 19.1583 + 46.2523i 0.752031 + 1.81556i
\(650\) 2.55880i 0.100364i
\(651\) 8.41999 3.48767i 0.330005 0.136693i
\(652\) 12.3840 29.8977i 0.484997 1.17089i
\(653\) −22.4417 9.29567i −0.878213 0.363768i −0.102410 0.994742i \(-0.532655\pi\)
−0.775803 + 0.630975i \(0.782655\pi\)
\(654\) −2.73213 + 2.73213i −0.106835 + 0.106835i
\(655\) 0.317805 0.317805i 0.0124177 0.0124177i
\(656\) 23.7007 + 9.81713i 0.925355 + 0.383295i
\(657\) 2.49288 6.01834i 0.0972564 0.234798i
\(658\) −2.87441 + 1.19062i −0.112056 + 0.0464151i
\(659\) 9.14192i 0.356119i 0.984020 + 0.178059i \(0.0569819\pi\)
−0.984020 + 0.178059i \(0.943018\pi\)
\(660\) 2.35185 + 5.67786i 0.0915455 + 0.221010i
\(661\) −11.8759 11.8759i −0.461920 0.461920i 0.437365 0.899284i \(-0.355912\pi\)
−0.899284 + 0.437365i \(0.855912\pi\)
\(662\) 5.03861 0.195831
\(663\) 0 0
\(664\) 11.7257 0.455046
\(665\) 0.739409 + 0.739409i 0.0286731 + 0.0286731i
\(666\) −0.721645 1.74220i −0.0279632 0.0675091i
\(667\) 20.3456i 0.787787i
\(668\) −25.6327 + 10.6174i −0.991761 + 0.410801i
\(669\) −5.49651 + 13.2698i −0.212507 + 0.513038i
\(670\) 1.00610 + 0.416739i 0.0388689 + 0.0161000i
\(671\) 10.3963 10.3963i 0.401343 0.401343i
\(672\) 3.15213 3.15213i 0.121596 0.121596i
\(673\) 17.2131 + 7.12991i 0.663517 + 0.274838i 0.688918 0.724840i \(-0.258086\pi\)
−0.0254007 + 0.999677i \(0.508086\pi\)
\(674\) −0.137465 + 0.331870i −0.00529496 + 0.0127832i
\(675\) −4.24522 + 1.75843i −0.163398 + 0.0676819i
\(676\) 13.1057i 0.504067i
\(677\) 4.13338 + 9.97885i 0.158859 + 0.383519i 0.983189 0.182590i \(-0.0584482\pi\)
−0.824331 + 0.566109i \(0.808448\pi\)
\(678\) 0.121926 + 0.121926i 0.00468255 + 0.00468255i
\(679\) 5.25690 0.201741
\(680\) 0 0
\(681\) −10.8744 −0.416707
\(682\) −4.10124 4.10124i −0.157044 0.157044i
\(683\) 8.50319 + 20.5285i 0.325366 + 0.785502i 0.998924 + 0.0463683i \(0.0147648\pi\)
−0.673559 + 0.739134i \(0.735235\pi\)
\(684\) 1.85433i 0.0709021i
\(685\) 7.23925 2.99860i 0.276598 0.114570i
\(686\) −1.61848 + 3.90735i −0.0617938 + 0.149183i
\(687\) −17.5445 7.26716i −0.669363 0.277259i
\(688\) 18.7396 18.7396i 0.714439 0.714439i
\(689\) 11.4206 11.4206i 0.435092 0.435092i
\(690\) 0.277245 + 0.114838i 0.0105545 + 0.00437183i
\(691\) −14.7491 + 35.6075i −0.561083 + 1.35457i 0.347818 + 0.937562i \(0.386923\pi\)
−0.908901 + 0.417012i \(0.863077\pi\)
\(692\) 3.41202 1.41331i 0.129706 0.0537258i
\(693\) 8.55687i 0.325048i
\(694\) −1.30610 3.15320i −0.0495788 0.119694i
\(695\) 6.00506 + 6.00506i 0.227785 + 0.227785i
\(696\) 8.41546 0.318987
\(697\) 0 0
\(698\) −3.35702 −0.127065
\(699\) −5.00687 5.00687i −0.189377 0.189377i
\(700\) 5.92862 + 14.3129i 0.224081 + 0.540979i
\(701\) 18.0843i 0.683034i 0.939876 + 0.341517i \(0.110941\pi\)
−0.939876 + 0.341517i \(0.889059\pi\)
\(702\) −0.514478 + 0.213104i −0.0194177 + 0.00804308i
\(703\) 3.08751 7.45391i 0.116448 0.281129i
\(704\) 31.2819 + 12.9574i 1.17898 + 0.488351i
\(705\) −3.64561 + 3.64561i −0.137302 + 0.137302i
\(706\) 4.90949 4.90949i 0.184771 0.184771i
\(707\) 29.6149 + 12.2669i 1.11378 + 0.461345i
\(708\) 7.54871 18.2242i 0.283698 0.684907i
\(709\) 48.2832 19.9996i 1.81331 0.751099i 0.833111 0.553105i \(-0.186557\pi\)
0.980203 0.197994i \(-0.0634427\pi\)
\(710\) 0.0543053i 0.00203804i
\(711\) −0.908030 2.19218i −0.0340538 0.0822131i
\(712\) 1.23441 + 1.23441i 0.0462615 + 0.0462615i
\(713\) 11.1900 0.419068
\(714\) 0 0
\(715\) −7.89620 −0.295301
\(716\) −30.6853 30.6853i −1.14676 1.14676i
\(717\) 2.02390 + 4.88614i 0.0755841 + 0.182476i
\(718\) 0.605478i 0.0225962i
\(719\) −2.08640 + 0.864216i −0.0778097 + 0.0322298i −0.421249 0.906945i \(-0.638408\pi\)
0.343439 + 0.939175i \(0.388408\pi\)
\(720\) 0.902620 2.17912i 0.0336386 0.0812109i
\(721\) 5.42140 + 2.24562i 0.201903 + 0.0836311i
\(722\) −2.84316 + 2.84316i −0.105812 + 0.105812i
\(723\) −4.09999 + 4.09999i −0.152480 + 0.152480i
\(724\) 20.9305 + 8.66969i 0.777875 + 0.322207i
\(725\) −16.8581 + 40.6990i −0.626094 + 1.51152i
\(726\) 2.77305 1.14863i 0.102918 0.0426298i
\(727\) 39.5601i 1.46720i 0.679581 + 0.733601i \(0.262162\pi\)
−0.679581 + 0.733601i \(0.737838\pi\)
\(728\) 1.45516 + 3.51307i 0.0539319 + 0.130203i
\(729\) 0.707107 + 0.707107i 0.0261891 + 0.0261891i
\(730\) 0.921132 0.0340926
\(731\) 0 0
\(732\) −5.79304 −0.214117
\(733\) 9.55562 + 9.55562i 0.352945 + 0.352945i 0.861204 0.508259i \(-0.169711\pi\)
−0.508259 + 0.861204i \(0.669711\pi\)
\(734\) 1.56892 + 3.78770i 0.0579097 + 0.139806i
\(735\) 2.55357i 0.0941899i
\(736\) 5.05671 2.09456i 0.186393 0.0772064i
\(737\) −14.5903 + 35.2240i −0.537440 + 1.29749i
\(738\) −1.42088 0.588546i −0.0523031 0.0216647i
\(739\) −7.58596 + 7.58596i −0.279054 + 0.279054i −0.832731 0.553677i \(-0.813224\pi\)
0.553677 + 0.832731i \(0.313224\pi\)
\(740\) −7.44990 + 7.44990i −0.273864 + 0.273864i
\(741\) −2.20116 0.911750i −0.0808616 0.0334940i
\(742\) 0.947114 2.28654i 0.0347697 0.0839414i
\(743\) −40.6434 + 16.8351i −1.49106 + 0.617619i −0.971548 0.236843i \(-0.923887\pi\)
−0.519515 + 0.854461i \(0.673887\pi\)
\(744\) 4.62845i 0.169687i
\(745\) −0.0869180 0.209839i −0.00318443 0.00768789i
\(746\) 3.83434 + 3.83434i 0.140385 + 0.140385i
\(747\) 13.3581 0.488749
\(748\) 0 0
\(749\) 22.7343 0.830695
\(750\) −0.959379 0.959379i −0.0350316 0.0350316i
\(751\) 4.78535 + 11.5529i 0.174620 + 0.421570i 0.986823 0.161806i \(-0.0517317\pi\)
−0.812203 + 0.583375i \(0.801732\pi\)
\(752\) 30.0250i 1.09490i
\(753\) 7.69767 3.18848i 0.280519 0.116195i
\(754\) −2.04303 + 4.93232i −0.0744029 + 0.179624i
\(755\) 5.36995 + 2.22431i 0.195433 + 0.0809509i
\(756\) 2.38404 2.38404i 0.0867069 0.0867069i
\(757\) 25.3480 25.3480i 0.921288 0.921288i −0.0758328 0.997121i \(-0.524162\pi\)
0.997121 + 0.0758328i \(0.0241615\pi\)
\(758\) −1.20920 0.500869i −0.0439203 0.0181924i
\(759\) −4.02057 + 9.70651i −0.145937 + 0.352324i
\(760\) −0.490630 + 0.203226i −0.0177970 + 0.00737177i
\(761\) 23.4468i 0.849944i 0.905206 + 0.424972i \(0.139716\pi\)
−0.905206 + 0.424972i \(0.860284\pi\)
\(762\) 0.922725 + 2.22766i 0.0334268 + 0.0806994i
\(763\) 21.2534 + 21.2534i 0.769424 + 0.769424i
\(764\) 12.9388 0.468108
\(765\) 0 0
\(766\) 6.83807 0.247070
\(767\) 17.9212 + 17.9212i 0.647097 + 0.647097i
\(768\) −4.66684 11.2667i −0.168400 0.406554i
\(769\) 22.8938i 0.825573i 0.910828 + 0.412786i \(0.135444\pi\)
−0.910828 + 0.412786i \(0.864556\pi\)
\(770\) −1.11787 + 0.463036i −0.0402852 + 0.0166867i
\(771\) 1.62857 3.93171i 0.0586515 0.141597i
\(772\) 5.25810 + 2.17798i 0.189243 + 0.0783871i
\(773\) 24.1327 24.1327i 0.867991 0.867991i −0.124259 0.992250i \(-0.539655\pi\)
0.992250 + 0.124259i \(0.0396552\pi\)
\(774\) −1.12345 + 1.12345i −0.0403817 + 0.0403817i
\(775\) −22.3842 9.27185i −0.804065 0.333055i
\(776\) −1.02167 + 2.46652i −0.0366757 + 0.0885430i
\(777\) −13.5527 + 5.61372i −0.486201 + 0.201391i
\(778\) 4.33815i 0.155530i
\(779\) −2.51805 6.07912i −0.0902187 0.217807i
\(780\) 2.19998 + 2.19998i 0.0787717 + 0.0787717i
\(781\) 1.90126 0.0680325
\(782\) 0 0
\(783\) 9.58704 0.342613
\(784\) 10.5155 + 10.5155i 0.375555 + 0.375555i
\(785\) 4.28572 + 10.3466i 0.152964 + 0.369288i
\(786\) 0.156917i 0.00559703i
\(787\) −12.1703 + 5.04110i −0.433824 + 0.179696i −0.588899 0.808207i \(-0.700438\pi\)
0.155074 + 0.987903i \(0.450438\pi\)
\(788\) 3.38539 8.17304i 0.120599 0.291153i
\(789\) 8.40729 + 3.48241i 0.299308 + 0.123977i
\(790\) 0.237250 0.237250i 0.00844098 0.00844098i
\(791\) 0.948471 0.948471i 0.0337238 0.0337238i
\(792\) −4.01485 1.66301i −0.142662 0.0590924i
\(793\) 2.84836 6.87656i 0.101148 0.244194i
\(794\) −0.185629 + 0.0768899i −0.00658771 + 0.00272872i
\(795\) 4.10124i 0.145456i
\(796\) −1.83654 4.43380i −0.0650945 0.157152i
\(797\) 25.7038 + 25.7038i 0.910475 + 0.910475i 0.996309 0.0858346i \(-0.0273557\pi\)
−0.0858346 + 0.996309i \(0.527356\pi\)
\(798\) −0.365084 −0.0129239
\(799\) 0 0
\(800\) −11.8509 −0.418991
\(801\) 1.40626 + 1.40626i 0.0496878 + 0.0496878i
\(802\) −0.107549 0.259647i −0.00379770 0.00916847i
\(803\) 32.2494i 1.13806i
\(804\) 13.8789 5.74881i 0.489470 0.202745i
\(805\) 0.893335 2.15670i 0.0314859 0.0760138i
\(806\) −2.71274 1.12366i −0.0955523 0.0395791i
\(807\) 15.1194 15.1194i 0.532227 0.532227i
\(808\) −11.5112 + 11.5112i −0.404962 + 0.404962i
\(809\) −41.6916 17.2692i −1.46580 0.607154i −0.499903 0.866082i \(-0.666631\pi\)
−0.965897 + 0.258928i \(0.916631\pi\)
\(810\) −0.0541128 + 0.130640i −0.00190133 + 0.00459022i
\(811\) −3.07481 + 1.27363i −0.107971 + 0.0447231i −0.436015 0.899939i \(-0.643611\pi\)
0.328044 + 0.944662i \(0.393611\pi\)
\(812\) 32.3232i 1.13432i
\(813\) −7.39393 17.8505i −0.259316 0.626045i
\(814\) 6.60130 + 6.60130i 0.231375 + 0.231375i
\(815\) 10.5580 0.369830
\(816\) 0 0
\(817\) −6.79759 −0.237817
\(818\) −4.49893 4.49893i −0.157301 0.157301i
\(819\) 1.65775 + 4.00215i 0.0579263 + 0.139847i
\(820\) 8.59255i 0.300065i
\(821\) 6.90122 2.85858i 0.240854 0.0997651i −0.258991 0.965880i \(-0.583390\pi\)
0.499846 + 0.866115i \(0.333390\pi\)
\(822\) −1.04692 + 2.52748i −0.0365154 + 0.0881559i
\(823\) −50.0589 20.7351i −1.74494 0.722779i −0.998345 0.0575047i \(-0.981686\pi\)
−0.746599 0.665275i \(-0.768314\pi\)
\(824\) −2.10727 + 2.10727i −0.0734102 + 0.0734102i
\(825\) 16.0853 16.0853i 0.560019 0.560019i
\(826\) 3.58802 + 1.48621i 0.124843 + 0.0517117i
\(827\) −1.89452 + 4.57379i −0.0658791 + 0.159046i −0.953390 0.301740i \(-0.902433\pi\)
0.887511 + 0.460786i \(0.152433\pi\)
\(828\) 3.82453 1.58417i 0.132911 0.0550537i
\(829\) 0.0762440i 0.00264806i 0.999999 + 0.00132403i \(0.000421453\pi\)
−0.999999 + 0.00132403i \(0.999579\pi\)
\(830\) 0.722847 + 1.74511i 0.0250904 + 0.0605736i
\(831\) 2.36183 + 2.36183i 0.0819309 + 0.0819309i
\(832\) 17.1412 0.594265
\(833\) 0 0
\(834\) −2.96501 −0.102670
\(835\) −6.40064 6.40064i −0.221503 0.221503i
\(836\) −3.51307 8.48131i −0.121502 0.293332i
\(837\) 5.27281i 0.182255i
\(838\) −4.91807 + 2.03713i −0.169892 + 0.0703715i
\(839\) 13.9480 33.6734i 0.481538 1.16254i −0.477340 0.878719i \(-0.658399\pi\)
0.958878 0.283817i \(-0.0916009\pi\)
\(840\) 0.892066 + 0.369506i 0.0307792 + 0.0127492i
\(841\) 44.4850 44.4850i 1.53396 1.53396i
\(842\) 1.96882 1.96882i 0.0678501 0.0678501i
\(843\) 4.32149 + 1.79002i 0.148840 + 0.0616515i
\(844\) −14.8576 + 35.8695i −0.511421 + 1.23468i
\(845\) 3.95035 1.63629i 0.135896 0.0562900i
\(846\) 1.80002i 0.0618861i
\(847\) −8.93530 21.5717i −0.307020 0.741213i
\(848\) −16.8888 16.8888i −0.579963 0.579963i
\(849\) −10.0582 −0.345196
\(850\) 0 0
\(851\) −18.0112 −0.617418
\(852\) −0.529714 0.529714i −0.0181477 0.0181477i
\(853\) −15.2952 36.9260i −0.523699 1.26432i −0.935590 0.353088i \(-0.885132\pi\)
0.411891 0.911233i \(-0.364868\pi\)
\(854\) 1.14055i 0.0390287i
\(855\) −0.558934 + 0.231518i −0.0191152 + 0.00791776i
\(856\) −4.41837 + 10.6669i −0.151017 + 0.364586i
\(857\) 2.73433 + 1.13260i 0.0934030 + 0.0386888i 0.428896 0.903354i \(-0.358903\pi\)
−0.335493 + 0.942043i \(0.608903\pi\)
\(858\) 1.94938 1.94938i 0.0665508 0.0665508i
\(859\) 15.8741 15.8741i 0.541618 0.541618i −0.382385 0.924003i \(-0.624897\pi\)
0.924003 + 0.382385i \(0.124897\pi\)
\(860\) 8.20100 + 3.39697i 0.279652 + 0.115836i
\(861\) −4.57833 + 11.0531i −0.156029 + 0.376688i
\(862\) −3.62783 + 1.50270i −0.123564 + 0.0511820i
\(863\) 27.8981i 0.949661i 0.880077 + 0.474831i \(0.157491\pi\)
−0.880077 + 0.474831i \(0.842509\pi\)
\(864\) 0.986972 + 2.38276i 0.0335775 + 0.0810632i
\(865\) 0.852001 + 0.852001i 0.0289689 + 0.0289689i
\(866\) 3.11236 0.105762
\(867\) 0 0
\(868\) 17.7775 0.603409
\(869\) 8.30627 + 8.30627i 0.281771 + 0.281771i
\(870\) 0.518782 + 1.25245i 0.0175884 + 0.0424620i
\(871\) 19.3013i 0.654001i
\(872\) −14.1025 + 5.84147i −0.477573 + 0.197817i
\(873\) −1.16390 + 2.80990i −0.0393920 + 0.0951008i
\(874\) −0.414135 0.171540i −0.0140083 0.00580243i
\(875\) −7.46307 + 7.46307i −0.252298 + 0.252298i
\(876\) 8.98507 8.98507i 0.303577 0.303577i
\(877\) 19.1207 + 7.92006i 0.645661 + 0.267441i 0.681390 0.731920i \(-0.261376\pi\)
−0.0357299 + 0.999361i \(0.511376\pi\)
\(878\) −0.984127 + 2.37589i −0.0332127 + 0.0801825i
\(879\) 5.33017 2.20783i 0.179782 0.0744683i
\(880\) 11.6768i 0.393627i
\(881\) −8.51085 20.5470i −0.286738 0.692246i 0.713224 0.700936i \(-0.247234\pi\)
−0.999962 + 0.00868935i \(0.997234\pi\)
\(882\) −0.630415 0.630415i −0.0212272 0.0212272i
\(883\) −4.23253 −0.142436 −0.0712180 0.997461i \(-0.522689\pi\)
−0.0712180 + 0.997461i \(0.522689\pi\)
\(884\) 0 0
\(885\) 6.43563 0.216331
\(886\) 5.59596 + 5.59596i 0.188000 + 0.188000i
\(887\) 13.8932 + 33.5412i 0.466488 + 1.12620i 0.965686 + 0.259714i \(0.0836282\pi\)
−0.499198 + 0.866488i \(0.666372\pi\)
\(888\) 7.44990i 0.250002i
\(889\) 17.3291 7.17793i 0.581198 0.240740i
\(890\) −0.107617 + 0.259811i −0.00360733 + 0.00870887i
\(891\) −4.57379 1.89452i −0.153228 0.0634690i
\(892\) −19.8111 + 19.8111i −0.663323 + 0.663323i
\(893\) 5.44563 5.44563i 0.182231 0.182231i
\(894\) 0.0732620 + 0.0303461i 0.00245025 + 0.00101493i
\(895\) 5.41805 13.0803i 0.181105 0.437227i
\(896\) 10.6636 4.41701i 0.356246 0.147562i
\(897\) 5.31877i 0.177589i
\(898\) −1.88306 4.54610i −0.0628384 0.151705i
\(899\) 35.7447 + 35.7447i 1.19215 + 1.19215i
\(900\) −8.96313 −0.298771
\(901\) 0 0
\(902\) 7.61380 0.253512
\(903\) 8.73941 + 8.73941i 0.290829 + 0.290829i
\(904\) 0.260686 + 0.629353i 0.00867030 + 0.0209320i
\(905\) 7.39133i 0.245696i
\(906\) −1.87484 + 0.776584i −0.0622874 + 0.0258003i
\(907\) −9.32667 + 22.5166i −0.309687 + 0.747651i 0.690028 + 0.723783i \(0.257598\pi\)
−0.999715 + 0.0238680i \(0.992402\pi\)
\(908\) −19.5973 8.11745i −0.650358 0.269387i
\(909\) −13.1137 + 13.1137i −0.434955 + 0.434955i
\(910\) −0.433136 + 0.433136i −0.0143583 + 0.0143583i
\(911\) 24.8688 + 10.3010i 0.823940 + 0.341287i 0.754501 0.656299i \(-0.227879\pi\)
0.0694390 + 0.997586i \(0.477879\pi\)
\(912\) −1.34829 + 3.25506i −0.0446463 + 0.107786i
\(913\) −61.0973 + 25.3073i −2.02203 + 0.837550i
\(914\) 2.20110i 0.0728059i
\(915\) −0.723277 1.74615i −0.0239108 0.0577258i
\(916\) −26.1930 26.1930i −0.865441 0.865441i
\(917\) 1.22066 0.0403099
\(918\) 0 0
\(919\) −23.8000 −0.785088 −0.392544 0.919733i \(-0.628405\pi\)
−0.392544 + 0.919733i \(0.628405\pi\)
\(920\) 0.838300 + 0.838300i 0.0276379 + 0.0276379i
\(921\) 5.06576 + 12.2298i 0.166922 + 0.402986i
\(922\) 2.13830i 0.0704210i
\(923\) 0.889244 0.368337i 0.0292698 0.0121240i
\(924\) −6.38748 + 15.4207i −0.210133 + 0.507305i
\(925\) 36.0294 + 14.9238i 1.18464 + 0.490693i
\(926\) 2.40404 2.40404i 0.0790016 0.0790016i
\(927\) −2.40064 + 2.40064i −0.0788473 + 0.0788473i
\(928\) 22.8436 + 9.46214i 0.749879 + 0.310610i
\(929\) −2.23006 + 5.38383i −0.0731658 + 0.176638i −0.956231 0.292612i \(-0.905476\pi\)
0.883066 + 0.469250i \(0.155476\pi\)
\(930\) −0.688840 + 0.285327i −0.0225879 + 0.00935623i
\(931\) 3.81440i 0.125012i
\(932\) −5.28563 12.7606i −0.173136 0.417988i
\(933\) −0.915918 0.915918i −0.0299858 0.0299858i
\(934\) 4.95819 0.162237
\(935\) 0 0
\(936\) −2.19998 −0.0719084
\(937\) −39.2037 39.2037i −1.28073 1.28073i −0.940253 0.340477i \(-0.889411\pi\)
−0.340477 0.940253i \(-0.610589\pi\)
\(938\) 1.13184 + 2.73250i 0.0369558 + 0.0892193i
\(939\) 19.1007i 0.623328i
\(940\) −9.29128 + 3.84857i −0.303048 + 0.125527i
\(941\) 8.10125 19.5582i 0.264093 0.637577i −0.735091 0.677969i \(-0.762860\pi\)
0.999184 + 0.0403913i \(0.0128604\pi\)
\(942\) −3.61238 1.49630i −0.117698 0.0487520i
\(943\) −10.3869 + 10.3869i −0.338244 + 0.338244i
\(944\) 26.5017 26.5017i 0.862558 0.862558i
\(945\) 1.01626 + 0.420947i 0.0330588 + 0.0136934i
\(946\) 3.01003 7.26685i 0.0978644 0.236266i
\(947\) 34.7223 14.3824i 1.12832 0.467366i 0.261112 0.965309i \(-0.415911\pi\)
0.867210 + 0.497942i \(0.165911\pi\)
\(948\) 4.62845i 0.150325i
\(949\) 6.24777 + 15.0834i 0.202811 + 0.489629i
\(950\) 0.686292 + 0.686292i 0.0222662 + 0.0222662i
\(951\) −15.1043 −0.489789
\(952\) 0 0
\(953\) 21.2794 0.689307 0.344654 0.938730i \(-0.387996\pi\)
0.344654 + 0.938730i \(0.387996\pi\)
\(954\) 1.01250 + 1.01250i 0.0327808 + 0.0327808i
\(955\) 1.61544 + 3.90001i 0.0522744 + 0.126201i
\(956\) 10.3163i 0.333654i
\(957\) −43.8491 + 18.1629i −1.41744 + 0.587122i
\(958\) 1.32281 3.19354i 0.0427380 0.103179i
\(959\) 19.6614 + 8.14402i 0.634900 + 0.262984i
\(960\) 3.07777 3.07777i 0.0993346 0.0993346i
\(961\) 2.26096 2.26096i 0.0729341 0.0729341i
\(962\) 4.36640 + 1.80862i 0.140778 + 0.0583123i
\(963\) −5.03348 + 12.1519i −0.162201 + 0.391589i
\(964\) −10.4493 + 4.32825i −0.336550 + 0.139404i
\(965\) 1.85683i 0.0597734i
\(966\) 0.311895 + 0.752981i 0.0100351 + 0.0242268i
\(967\) −18.5488 18.5488i −0.596489 0.596489i 0.342887 0.939377i \(-0.388595\pi\)
−0.939377 + 0.342887i \(0.888595\pi\)
\(968\) 11.8579 0.381128
\(969\) 0 0
\(970\) −0.430067 −0.0138086
\(971\) 14.7250 + 14.7250i 0.472549 + 0.472549i 0.902738 0.430190i \(-0.141553\pi\)
−0.430190 + 0.902738i \(0.641553\pi\)
\(972\) 0.746474 + 1.80215i 0.0239432 + 0.0578039i
\(973\) 23.0650i 0.739429i
\(974\) 0.00608683 0.00252125i 0.000195035 8.07860e-5i
\(975\) 4.40705 10.6396i 0.141139 0.340739i
\(976\) −10.1690 4.21214i −0.325502 0.134827i
\(977\) 11.5187 11.5187i 0.368517 0.368517i −0.498419 0.866936i \(-0.666086\pi\)
0.866936 + 0.498419i \(0.166086\pi\)
\(978\) −2.60651 + 2.60651i −0.0833471 + 0.0833471i
\(979\) −9.09613 3.76774i −0.290714 0.120418i
\(980\) −1.90618 + 4.60192i −0.0608906 + 0.147003i
\(981\) −16.0659 + 6.65470i −0.512943 + 0.212468i
\(982\) 1.48187i 0.0472884i
\(983\) 0.356535 + 0.860752i 0.0113717 + 0.0274537i 0.929463 0.368914i \(-0.120270\pi\)
−0.918092 + 0.396368i \(0.870270\pi\)
\(984\) −4.29628 4.29628i −0.136960 0.136960i
\(985\) 2.88620 0.0919621
\(986\) 0 0
\(987\) −14.0025 −0.445704
\(988\) −3.28622 3.28622i −0.104548 0.104548i
\(989\) 5.80724 + 14.0199i 0.184659 + 0.445807i
\(990\) 0.700037i 0.0222487i
\(991\) 20.0456 8.30316i 0.636769 0.263759i −0.0408568 0.999165i \(-0.513009\pi\)
0.677626 + 0.735407i \(0.263009\pi\)
\(992\) −5.20412 + 12.5639i −0.165231 + 0.398903i
\(993\) 20.9507 + 8.67808i 0.664851 + 0.275390i
\(994\) 0.104291 0.104291i 0.00330792 0.00330792i
\(995\) 1.10715 1.10715i 0.0350989 0.0350989i
\(996\) 24.0733 + 9.97151i 0.762793 + 0.315959i
\(997\) −1.23495 + 2.98144i −0.0391114 + 0.0944232i −0.942228 0.334972i \(-0.891273\pi\)
0.903117 + 0.429395i \(0.141273\pi\)
\(998\) −3.82779 + 1.58552i −0.121167 + 0.0501888i
\(999\) 8.48705i 0.268518i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.k.712.1 16
17.2 even 8 867.2.h.i.757.3 16
17.3 odd 16 867.2.d.f.577.3 8
17.4 even 4 867.2.h.i.733.3 16
17.5 odd 16 867.2.a.l.1.3 4
17.6 odd 16 51.2.e.a.13.2 yes 8
17.7 odd 16 51.2.e.a.4.3 8
17.8 even 8 inner 867.2.h.k.688.1 16
17.9 even 8 inner 867.2.h.k.688.2 16
17.10 odd 16 867.2.e.g.616.3 8
17.11 odd 16 867.2.e.g.829.2 8
17.12 odd 16 867.2.a.k.1.3 4
17.13 even 4 867.2.h.i.733.4 16
17.14 odd 16 867.2.d.f.577.4 8
17.15 even 8 867.2.h.i.757.4 16
17.16 even 2 inner 867.2.h.k.712.2 16
51.5 even 16 2601.2.a.be.1.2 4
51.23 even 16 153.2.f.b.64.3 8
51.29 even 16 2601.2.a.bf.1.2 4
51.41 even 16 153.2.f.b.55.2 8
68.7 even 16 816.2.bd.e.769.3 8
68.23 even 16 816.2.bd.e.625.3 8
204.23 odd 16 2448.2.be.x.1441.3 8
204.143 odd 16 2448.2.be.x.1585.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.3 8 17.7 odd 16
51.2.e.a.13.2 yes 8 17.6 odd 16
153.2.f.b.55.2 8 51.41 even 16
153.2.f.b.64.3 8 51.23 even 16
816.2.bd.e.625.3 8 68.23 even 16
816.2.bd.e.769.3 8 68.7 even 16
867.2.a.k.1.3 4 17.12 odd 16
867.2.a.l.1.3 4 17.5 odd 16
867.2.d.f.577.3 8 17.3 odd 16
867.2.d.f.577.4 8 17.14 odd 16
867.2.e.g.616.3 8 17.10 odd 16
867.2.e.g.829.2 8 17.11 odd 16
867.2.h.i.733.3 16 17.4 even 4
867.2.h.i.733.4 16 17.13 even 4
867.2.h.i.757.3 16 17.2 even 8
867.2.h.i.757.4 16 17.15 even 8
867.2.h.k.688.1 16 17.8 even 8 inner
867.2.h.k.688.2 16 17.9 even 8 inner
867.2.h.k.712.1 16 1.1 even 1 trivial
867.2.h.k.712.2 16 17.16 even 2 inner
2448.2.be.x.1441.3 8 204.23 odd 16
2448.2.be.x.1585.3 8 204.143 odd 16
2601.2.a.be.1.2 4 51.5 even 16
2601.2.a.bf.1.2 4 51.29 even 16