Properties

Label 867.2.h.i.757.3
Level $867$
Weight $2$
Character 867.757
Analytic conductor $6.923$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(688,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.688"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-8,0,0,0,0,0,32,0,0,0,0,0,0,8,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8x^{14} + 32x^{12} + 296x^{10} + 1057x^{8} + 1184x^{6} + 512x^{4} - 512x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 757.3
Root \(0.626225 - 1.51184i\) of defining polynomial
Character \(\chi\) \(=\) 867.757
Dual form 867.2.h.i.733.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.157113 - 0.157113i) q^{2} +(-0.923880 - 0.382683i) q^{3} +1.95063i q^{4} +(-0.243542 + 0.587961i) q^{5} +(-0.205278 + 0.0850290i) q^{6} +(-0.661445 - 1.59687i) q^{7} +(0.620696 + 0.620696i) q^{8} +(0.707107 + 0.707107i) q^{9} +(0.0541128 + 0.130640i) q^{10} +(4.57379 - 1.89452i) q^{11} +(0.746474 - 1.80215i) q^{12} +2.50625i q^{13} +(-0.354811 - 0.146967i) q^{14} +(0.450006 - 0.450006i) q^{15} -3.70622 q^{16} +0.222191 q^{18} +(-0.672198 + 0.672198i) q^{19} +(-1.14690 - 0.475060i) q^{20} +1.72844i q^{21} +(0.420947 - 1.01626i) q^{22} +(1.96066 - 0.812132i) q^{23} +(-0.335918 - 0.810978i) q^{24} +(3.24915 + 3.24915i) q^{25} +(0.393764 + 0.393764i) q^{26} +(-0.382683 - 0.923880i) q^{27} +(3.11490 - 1.29024i) q^{28} +(-3.66880 + 8.85727i) q^{29} -0.141404i q^{30} +(4.87144 + 2.01782i) q^{31} +(-1.82369 + 1.82369i) q^{32} -4.95063 q^{33} +1.09999 q^{35} +(-1.37930 + 1.37930i) q^{36} +(-7.84101 - 3.24785i) q^{37} +0.211222i q^{38} +(0.959100 - 2.31547i) q^{39} +(-0.516110 + 0.213780i) q^{40} +(2.64882 + 6.39483i) q^{41} +(0.271560 + 0.271560i) q^{42} +(5.05624 + 5.05624i) q^{43} +(3.69552 + 8.92177i) q^{44} +(-0.587961 + 0.243542i) q^{45} +(0.180449 - 0.435642i) q^{46} +8.10124i q^{47} +(3.42410 + 1.41831i) q^{48} +(2.83726 - 2.83726i) q^{49} +1.02097 q^{50} -4.88877 q^{52} +(-4.55687 + 4.55687i) q^{53} +(-0.205278 - 0.0850290i) q^{54} +3.15061i q^{55} +(0.580614 - 1.40173i) q^{56} +(0.878269 - 0.363791i) q^{57} +(0.815176 + 1.96801i) q^{58} +(7.15061 + 7.15061i) q^{59} +(0.877796 + 0.877796i) q^{60} +(-1.13651 - 2.74377i) q^{61} +(1.08239 - 0.448342i) q^{62} +(0.661445 - 1.59687i) q^{63} -6.83940i q^{64} +(-1.47358 - 0.610376i) q^{65} +(-0.777809 + 0.777809i) q^{66} -7.70129 q^{67} -2.12220 q^{69} +(0.172822 - 0.172822i) q^{70} +(0.354811 + 0.146967i) q^{71} +0.877796i q^{72} +(2.49288 - 6.01834i) q^{73} +(-1.74220 + 0.721645i) q^{74} +(-1.75843 - 4.24522i) q^{75} +(-1.31121 - 1.31121i) q^{76} +(-6.05062 - 6.05062i) q^{77} +(-0.213104 - 0.514478i) q^{78} +(-2.19218 + 0.908030i) q^{79} +(0.902620 - 2.17912i) q^{80} +1.00000i q^{81} +(1.42088 + 0.588546i) q^{82} +(9.44563 - 9.44563i) q^{83} -3.37155 q^{84} +1.58880 q^{86} +(6.77906 - 6.77906i) q^{87} +(4.01485 + 1.66301i) q^{88} +1.98875i q^{89} +(-0.0541128 + 0.130640i) q^{90} +(4.00215 - 1.65775i) q^{91} +(1.58417 + 3.82453i) q^{92} +(-3.72844 - 3.72844i) q^{93} +(1.27281 + 1.27281i) q^{94} +(-0.231518 - 0.558934i) q^{95} +(2.38276 - 0.986972i) q^{96} +(-1.16390 + 2.80990i) q^{97} -0.891542i q^{98} +(4.57379 + 1.89452i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} + 32 q^{8} + 8 q^{15} - 24 q^{16} - 8 q^{18} + 32 q^{25} + 40 q^{26} + 16 q^{32} - 24 q^{33} + 16 q^{35} + 48 q^{42} + 48 q^{43} + 32 q^{49} + 120 q^{50} - 32 q^{52} + 16 q^{53} + 56 q^{59}+ \cdots - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.157113 0.157113i 0.111096 0.111096i −0.649374 0.760469i \(-0.724969\pi\)
0.760469 + 0.649374i \(0.224969\pi\)
\(3\) −0.923880 0.382683i −0.533402 0.220942i
\(4\) 1.95063i 0.975315i
\(5\) −0.243542 + 0.587961i −0.108915 + 0.262944i −0.968935 0.247317i \(-0.920451\pi\)
0.860020 + 0.510261i \(0.170451\pi\)
\(6\) −0.205278 + 0.0850290i −0.0838044 + 0.0347129i
\(7\) −0.661445 1.59687i −0.250003 0.603560i 0.748201 0.663472i \(-0.230918\pi\)
−0.998204 + 0.0599122i \(0.980918\pi\)
\(8\) 0.620696 + 0.620696i 0.219449 + 0.219449i
\(9\) 0.707107 + 0.707107i 0.235702 + 0.235702i
\(10\) 0.0541128 + 0.130640i 0.0171120 + 0.0413120i
\(11\) 4.57379 1.89452i 1.37905 0.571221i 0.434822 0.900517i \(-0.356811\pi\)
0.944227 + 0.329296i \(0.106811\pi\)
\(12\) 0.746474 1.80215i 0.215489 0.520235i
\(13\) 2.50625i 0.695108i 0.937660 + 0.347554i \(0.112988\pi\)
−0.937660 + 0.347554i \(0.887012\pi\)
\(14\) −0.354811 0.146967i −0.0948272 0.0392787i
\(15\) 0.450006 0.450006i 0.116191 0.116191i
\(16\) −3.70622 −0.926556
\(17\) 0 0
\(18\) 0.222191 0.0523710
\(19\) −0.672198 + 0.672198i −0.154213 + 0.154213i −0.779997 0.625784i \(-0.784779\pi\)
0.625784 + 0.779997i \(0.284779\pi\)
\(20\) −1.14690 0.475060i −0.256454 0.106227i
\(21\) 1.72844i 0.377176i
\(22\) 0.420947 1.01626i 0.0897462 0.216666i
\(23\) 1.96066 0.812132i 0.408826 0.169341i −0.168786 0.985653i \(-0.553985\pi\)
0.577612 + 0.816311i \(0.303985\pi\)
\(24\) −0.335918 0.810978i −0.0685690 0.165540i
\(25\) 3.24915 + 3.24915i 0.649830 + 0.649830i
\(26\) 0.393764 + 0.393764i 0.0772235 + 0.0772235i
\(27\) −0.382683 0.923880i −0.0736475 0.177801i
\(28\) 3.11490 1.29024i 0.588662 0.243832i
\(29\) −3.66880 + 8.85727i −0.681279 + 1.64475i 0.0803715 + 0.996765i \(0.474389\pi\)
−0.761650 + 0.647988i \(0.775611\pi\)
\(30\) 0.141404i 0.0258167i
\(31\) 4.87144 + 2.01782i 0.874937 + 0.362411i 0.774531 0.632536i \(-0.217986\pi\)
0.100406 + 0.994947i \(0.467986\pi\)
\(32\) −1.82369 + 1.82369i −0.322385 + 0.322385i
\(33\) −4.95063 −0.861794
\(34\) 0 0
\(35\) 1.09999 0.185932
\(36\) −1.37930 + 1.37930i −0.229884 + 0.229884i
\(37\) −7.84101 3.24785i −1.28905 0.533944i −0.370351 0.928892i \(-0.620763\pi\)
−0.918703 + 0.394948i \(0.870763\pi\)
\(38\) 0.211222i 0.0342647i
\(39\) 0.959100 2.31547i 0.153579 0.370772i
\(40\) −0.516110 + 0.213780i −0.0816042 + 0.0338016i
\(41\) 2.64882 + 6.39483i 0.413677 + 0.998704i 0.984142 + 0.177382i \(0.0567630\pi\)
−0.570465 + 0.821322i \(0.693237\pi\)
\(42\) 0.271560 + 0.271560i 0.0419027 + 0.0419027i
\(43\) 5.05624 + 5.05624i 0.771070 + 0.771070i 0.978294 0.207224i \(-0.0664429\pi\)
−0.207224 + 0.978294i \(0.566443\pi\)
\(44\) 3.69552 + 8.92177i 0.557120 + 1.34501i
\(45\) −0.587961 + 0.243542i −0.0876481 + 0.0363050i
\(46\) 0.180449 0.435642i 0.0266057 0.0642319i
\(47\) 8.10124i 1.18169i 0.806786 + 0.590843i \(0.201205\pi\)
−0.806786 + 0.590843i \(0.798795\pi\)
\(48\) 3.42410 + 1.41831i 0.494227 + 0.204715i
\(49\) 2.83726 2.83726i 0.405323 0.405323i
\(50\) 1.02097 0.144387
\(51\) 0 0
\(52\) −4.88877 −0.677950
\(53\) −4.55687 + 4.55687i −0.625934 + 0.625934i −0.947042 0.321109i \(-0.895945\pi\)
0.321109 + 0.947042i \(0.395945\pi\)
\(54\) −0.205278 0.0850290i −0.0279348 0.0115710i
\(55\) 3.15061i 0.424828i
\(56\) 0.580614 1.40173i 0.0775878 0.187314i
\(57\) 0.878269 0.363791i 0.116330 0.0481853i
\(58\) 0.815176 + 1.96801i 0.107038 + 0.258412i
\(59\) 7.15061 + 7.15061i 0.930930 + 0.930930i 0.997764 0.0668345i \(-0.0212899\pi\)
−0.0668345 + 0.997764i \(0.521290\pi\)
\(60\) 0.877796 + 0.877796i 0.113323 + 0.113323i
\(61\) −1.13651 2.74377i −0.145515 0.351303i 0.834271 0.551355i \(-0.185889\pi\)
−0.979785 + 0.200052i \(0.935889\pi\)
\(62\) 1.08239 0.448342i 0.137464 0.0569394i
\(63\) 0.661445 1.59687i 0.0833343 0.201187i
\(64\) 6.83940i 0.854925i
\(65\) −1.47358 0.610376i −0.182775 0.0757078i
\(66\) −0.777809 + 0.777809i −0.0957416 + 0.0957416i
\(67\) −7.70129 −0.940862 −0.470431 0.882437i \(-0.655902\pi\)
−0.470431 + 0.882437i \(0.655902\pi\)
\(68\) 0 0
\(69\) −2.12220 −0.255483
\(70\) 0.172822 0.172822i 0.0206562 0.0206562i
\(71\) 0.354811 + 0.146967i 0.0421083 + 0.0174418i 0.403638 0.914919i \(-0.367745\pi\)
−0.361530 + 0.932361i \(0.617745\pi\)
\(72\) 0.877796i 0.103449i
\(73\) 2.49288 6.01834i 0.291769 0.704393i −0.708230 0.705982i \(-0.750506\pi\)
0.999999 + 0.00158913i \(0.000505836\pi\)
\(74\) −1.74220 + 0.721645i −0.202527 + 0.0838895i
\(75\) −1.75843 4.24522i −0.203046 0.490195i
\(76\) −1.31121 1.31121i −0.150406 0.150406i
\(77\) −6.05062 6.05062i −0.689532 0.689532i
\(78\) −0.213104 0.514478i −0.0241292 0.0582531i
\(79\) −2.19218 + 0.908030i −0.246639 + 0.102161i −0.502579 0.864531i \(-0.667615\pi\)
0.255939 + 0.966693i \(0.417615\pi\)
\(80\) 0.902620 2.17912i 0.100916 0.243633i
\(81\) 1.00000i 0.111111i
\(82\) 1.42088 + 0.588546i 0.156909 + 0.0649940i
\(83\) 9.44563 9.44563i 1.03679 1.03679i 0.0374961 0.999297i \(-0.488062\pi\)
0.999297 0.0374961i \(-0.0119382\pi\)
\(84\) −3.37155 −0.367866
\(85\) 0 0
\(86\) 1.58880 0.171325
\(87\) 6.77906 6.77906i 0.726791 0.726791i
\(88\) 4.01485 + 1.66301i 0.427985 + 0.177277i
\(89\) 1.98875i 0.210807i 0.994430 + 0.105404i \(0.0336135\pi\)
−0.994430 + 0.105404i \(0.966387\pi\)
\(90\) −0.0541128 + 0.130640i −0.00570400 + 0.0137707i
\(91\) 4.00215 1.65775i 0.419540 0.173779i
\(92\) 1.58417 + 3.82453i 0.165161 + 0.398734i
\(93\) −3.72844 3.72844i −0.386621 0.386621i
\(94\) 1.27281 + 1.27281i 0.131280 + 0.131280i
\(95\) −0.231518 0.558934i −0.0237533 0.0573455i
\(96\) 2.38276 0.986972i 0.243190 0.100732i
\(97\) −1.16390 + 2.80990i −0.118176 + 0.285302i −0.971888 0.235443i \(-0.924346\pi\)
0.853712 + 0.520745i \(0.174346\pi\)
\(98\) 0.891542i 0.0900594i
\(99\) 4.57379 + 1.89452i 0.459683 + 0.190407i
\(100\) −6.33789 + 6.33789i −0.633789 + 0.633789i
\(101\) 18.5456 1.84536 0.922679 0.385569i \(-0.125995\pi\)
0.922679 + 0.385569i \(0.125995\pi\)
\(102\) 0 0
\(103\) 3.39501 0.334521 0.167260 0.985913i \(-0.446508\pi\)
0.167260 + 0.985913i \(0.446508\pi\)
\(104\) −1.55562 + 1.55562i −0.152541 + 0.152541i
\(105\) −1.01626 0.420947i −0.0991764 0.0410802i
\(106\) 1.43189i 0.139077i
\(107\) −5.03348 + 12.1519i −0.486604 + 1.17477i 0.469813 + 0.882766i \(0.344321\pi\)
−0.956418 + 0.292001i \(0.905679\pi\)
\(108\) 1.80215 0.746474i 0.173412 0.0718295i
\(109\) −6.65470 16.0659i −0.637404 1.53883i −0.830125 0.557577i \(-0.811731\pi\)
0.192721 0.981254i \(-0.438269\pi\)
\(110\) 0.495001 + 0.495001i 0.0471965 + 0.0471965i
\(111\) 6.00125 + 6.00125i 0.569613 + 0.569613i
\(112\) 2.45146 + 5.91836i 0.231642 + 0.559232i
\(113\) 0.716969 0.296978i 0.0674468 0.0279374i −0.348705 0.937233i \(-0.613378\pi\)
0.416152 + 0.909295i \(0.363378\pi\)
\(114\) 0.0808312 0.195144i 0.00757053 0.0182769i
\(115\) 1.35058i 0.125942i
\(116\) −17.2773 7.15647i −1.60415 0.664462i
\(117\) −1.77219 + 1.77219i −0.163839 + 0.163839i
\(118\) 2.24691 0.206845
\(119\) 0 0
\(120\) 0.558634 0.0509961
\(121\) 9.55213 9.55213i 0.868375 0.868375i
\(122\) −0.609641 0.252522i −0.0551943 0.0228622i
\(123\) 6.92171i 0.624110i
\(124\) −3.93602 + 9.50238i −0.353465 + 0.853339i
\(125\) −5.64148 + 2.33678i −0.504590 + 0.209008i
\(126\) −0.146967 0.354811i −0.0130929 0.0316091i
\(127\) −7.67345 7.67345i −0.680908 0.680908i 0.279297 0.960205i \(-0.409899\pi\)
−0.960205 + 0.279297i \(0.909899\pi\)
\(128\) −4.72193 4.72193i −0.417364 0.417364i
\(129\) −2.73642 6.60630i −0.240928 0.581652i
\(130\) −0.327416 + 0.135620i −0.0287163 + 0.0118947i
\(131\) −0.270260 + 0.652465i −0.0236127 + 0.0570062i −0.935246 0.353998i \(-0.884822\pi\)
0.911633 + 0.411004i \(0.134822\pi\)
\(132\) 9.65685i 0.840521i
\(133\) 1.51803 + 0.628790i 0.131630 + 0.0545230i
\(134\) −1.20997 + 1.20997i −0.104526 + 0.104526i
\(135\) 0.636405 0.0547730
\(136\) 0 0
\(137\) 12.3125 1.05192 0.525962 0.850508i \(-0.323705\pi\)
0.525962 + 0.850508i \(0.323705\pi\)
\(138\) −0.333426 + 0.333426i −0.0283831 + 0.0283831i
\(139\) 12.3286 + 5.10668i 1.04570 + 0.433143i 0.838355 0.545125i \(-0.183518\pi\)
0.207345 + 0.978268i \(0.433518\pi\)
\(140\) 2.14567i 0.181342i
\(141\) 3.10021 7.48457i 0.261085 0.630314i
\(142\) 0.0788359 0.0326549i 0.00661576 0.00274034i
\(143\) 4.74815 + 11.4630i 0.397060 + 0.958588i
\(144\) −2.62070 2.62070i −0.218391 0.218391i
\(145\) −4.31423 4.31423i −0.358277 0.358277i
\(146\) −0.553896 1.33722i −0.0458407 0.110669i
\(147\) −3.70706 + 1.53552i −0.305753 + 0.126647i
\(148\) 6.33536 15.2949i 0.520764 1.25723i
\(149\) 0.356892i 0.0292377i 0.999893 + 0.0146189i \(0.00465349\pi\)
−0.999893 + 0.0146189i \(0.995347\pi\)
\(150\) −0.943250 0.390707i −0.0770161 0.0319011i
\(151\) −6.45813 + 6.45813i −0.525555 + 0.525555i −0.919244 0.393689i \(-0.871199\pi\)
0.393689 + 0.919244i \(0.371199\pi\)
\(152\) −0.834460 −0.0676837
\(153\) 0 0
\(154\) −1.90126 −0.153208
\(155\) −2.37280 + 2.37280i −0.190588 + 0.190588i
\(156\) 4.51663 + 1.87085i 0.361620 + 0.149788i
\(157\) 17.5975i 1.40443i −0.711964 0.702216i \(-0.752194\pi\)
0.711964 0.702216i \(-0.247806\pi\)
\(158\) −0.201756 + 0.487083i −0.0160509 + 0.0387503i
\(159\) 5.95383 2.46616i 0.472170 0.195579i
\(160\) −0.628114 1.51640i −0.0496568 0.119882i
\(161\) −2.59374 2.59374i −0.204415 0.204415i
\(162\) 0.157113 + 0.157113i 0.0123440 + 0.0123440i
\(163\) −6.34874 15.3272i −0.497272 1.20052i −0.950947 0.309353i \(-0.899888\pi\)
0.453676 0.891167i \(-0.350112\pi\)
\(164\) −12.4739 + 5.16688i −0.974052 + 0.403465i
\(165\) 1.20568 2.91078i 0.0938624 0.226604i
\(166\) 2.96806i 0.230366i
\(167\) −13.1407 5.44308i −1.01686 0.421198i −0.188908 0.981995i \(-0.560495\pi\)
−0.827953 + 0.560797i \(0.810495\pi\)
\(168\) −1.07283 + 1.07283i −0.0827710 + 0.0827710i
\(169\) 6.71872 0.516825
\(170\) 0 0
\(171\) −0.950631 −0.0726966
\(172\) −9.86286 + 9.86286i −0.752036 + 0.752036i
\(173\) 1.74919 + 0.724538i 0.132988 + 0.0550856i 0.448185 0.893941i \(-0.352071\pi\)
−0.315197 + 0.949026i \(0.602071\pi\)
\(174\) 2.13016i 0.161487i
\(175\) 3.03933 7.33760i 0.229752 0.554670i
\(176\) −16.9515 + 7.02153i −1.27777 + 0.529268i
\(177\) −3.86988 9.34272i −0.290878 0.702242i
\(178\) 0.312459 + 0.312459i 0.0234198 + 0.0234198i
\(179\) −15.7309 15.7309i −1.17579 1.17579i −0.980808 0.194978i \(-0.937536\pi\)
−0.194978 0.980808i \(-0.562464\pi\)
\(180\) −0.475060 1.14690i −0.0354089 0.0854846i
\(181\) −10.7301 + 4.44456i −0.797563 + 0.330361i −0.743980 0.668202i \(-0.767064\pi\)
−0.0535830 + 0.998563i \(0.517064\pi\)
\(182\) 0.368337 0.889244i 0.0273029 0.0659151i
\(183\) 2.96983i 0.219536i
\(184\) 1.72106 + 0.712887i 0.126878 + 0.0525547i
\(185\) 3.81922 3.81922i 0.280795 0.280795i
\(186\) −1.17157 −0.0859039
\(187\) 0 0
\(188\) −15.8025 −1.15252
\(189\) −1.22219 + 1.22219i −0.0889013 + 0.0889013i
\(190\) −0.124190 0.0514414i −0.00900972 0.00373195i
\(191\) 6.63311i 0.479955i −0.970778 0.239978i \(-0.922860\pi\)
0.970778 0.239978i \(-0.0771401\pi\)
\(192\) −2.61732 + 6.31878i −0.188889 + 0.456019i
\(193\) −2.69559 + 1.11655i −0.194033 + 0.0803710i −0.477584 0.878586i \(-0.658487\pi\)
0.283551 + 0.958957i \(0.408487\pi\)
\(194\) 0.258608 + 0.624336i 0.0185670 + 0.0448247i
\(195\) 1.12783 + 1.12783i 0.0807654 + 0.0807654i
\(196\) 5.53445 + 5.53445i 0.395318 + 0.395318i
\(197\) −1.73553 4.18995i −0.123652 0.298521i 0.849917 0.526917i \(-0.176652\pi\)
−0.973568 + 0.228395i \(0.926652\pi\)
\(198\) 1.01626 0.420947i 0.0722222 0.0299154i
\(199\) −0.941512 + 2.27301i −0.0667420 + 0.161129i −0.953731 0.300661i \(-0.902793\pi\)
0.886989 + 0.461790i \(0.152793\pi\)
\(200\) 4.03346i 0.285209i
\(201\) 7.11506 + 2.94715i 0.501858 + 0.207876i
\(202\) 2.91376 2.91376i 0.205011 0.205011i
\(203\) 16.5706 1.16303
\(204\) 0 0
\(205\) −4.40501 −0.307659
\(206\) 0.533401 0.533401i 0.0371638 0.0371638i
\(207\) 1.96066 + 0.812132i 0.136275 + 0.0564471i
\(208\) 9.28872i 0.644057i
\(209\) −1.80099 + 4.34798i −0.124577 + 0.300756i
\(210\) −0.225803 + 0.0935308i −0.0155819 + 0.00645424i
\(211\) 7.61684 + 18.3887i 0.524365 + 1.26593i 0.935168 + 0.354205i \(0.115248\pi\)
−0.410803 + 0.911724i \(0.634752\pi\)
\(212\) −8.88877 8.88877i −0.610483 0.610483i
\(213\) −0.271560 0.271560i −0.0186070 0.0186070i
\(214\) 1.11839 + 2.70004i 0.0764519 + 0.184571i
\(215\) −4.20428 + 1.74147i −0.286730 + 0.118767i
\(216\) 0.335918 0.810978i 0.0228563 0.0551801i
\(217\) 9.11373i 0.618681i
\(218\) −3.56970 1.47862i −0.241770 0.100145i
\(219\) −4.60624 + 4.60624i −0.311261 + 0.311261i
\(220\) −6.14567 −0.414341
\(221\) 0 0
\(222\) 1.88575 0.126563
\(223\) 10.1562 10.1562i 0.680111 0.680111i −0.279914 0.960025i \(-0.590306\pi\)
0.960025 + 0.279914i \(0.0903059\pi\)
\(224\) 4.11846 + 1.70592i 0.275176 + 0.113982i
\(225\) 4.59499i 0.306333i
\(226\) 0.0659860 0.159304i 0.00438932 0.0105968i
\(227\) 10.0466 4.16145i 0.666818 0.276205i −0.0234865 0.999724i \(-0.507477\pi\)
0.690304 + 0.723519i \(0.257477\pi\)
\(228\) 0.709621 + 1.71318i 0.0469958 + 0.113458i
\(229\) −13.4280 13.4280i −0.887345 0.887345i 0.106923 0.994267i \(-0.465900\pi\)
−0.994267 + 0.106923i \(0.965900\pi\)
\(230\) 0.212194 + 0.212194i 0.0139916 + 0.0139916i
\(231\) 3.27457 + 7.90551i 0.215451 + 0.520145i
\(232\) −7.77487 + 3.22046i −0.510445 + 0.211433i
\(233\) −2.70970 + 6.54179i −0.177518 + 0.428567i −0.987445 0.157964i \(-0.949507\pi\)
0.809926 + 0.586531i \(0.199507\pi\)
\(234\) 0.556867i 0.0364035i
\(235\) −4.76322 1.97299i −0.310718 0.128704i
\(236\) −13.9482 + 13.9482i −0.907950 + 0.907950i
\(237\) 2.37280 0.154130
\(238\) 0 0
\(239\) −5.28872 −0.342099 −0.171049 0.985262i \(-0.554716\pi\)
−0.171049 + 0.985262i \(0.554716\pi\)
\(240\) −1.66782 + 1.66782i −0.107658 + 0.107658i
\(241\) −5.35689 2.21890i −0.345068 0.142932i 0.203417 0.979092i \(-0.434795\pi\)
−0.548485 + 0.836160i \(0.684795\pi\)
\(242\) 3.00153i 0.192945i
\(243\) 0.382683 0.923880i 0.0245492 0.0592669i
\(244\) 5.35207 2.21690i 0.342631 0.141923i
\(245\) 0.977210 + 2.35919i 0.0624317 + 0.150723i
\(246\) −1.08749 1.08749i −0.0693359 0.0693359i
\(247\) −1.68469 1.68469i −0.107195 0.107195i
\(248\) 1.77123 + 4.27613i 0.112473 + 0.271535i
\(249\) −12.3413 + 5.11194i −0.782099 + 0.323956i
\(250\) −0.519212 + 1.25349i −0.0328379 + 0.0792776i
\(251\) 8.33190i 0.525905i −0.964809 0.262952i \(-0.915304\pi\)
0.964809 0.262952i \(-0.0846962\pi\)
\(252\) 3.11490 + 1.29024i 0.196221 + 0.0812772i
\(253\) 7.42904 7.42904i 0.467060 0.467060i
\(254\) −2.41120 −0.151292
\(255\) 0 0
\(256\) 12.1950 0.762190
\(257\) −3.00920 + 3.00920i −0.187709 + 0.187709i −0.794705 0.606996i \(-0.792374\pi\)
0.606996 + 0.794705i \(0.292374\pi\)
\(258\) −1.46786 0.608009i −0.0913851 0.0378530i
\(259\) 14.6694i 0.911509i
\(260\) 1.19062 2.87441i 0.0738390 0.178263i
\(261\) −8.85727 + 3.66880i −0.548251 + 0.227093i
\(262\) 0.0600494 + 0.144972i 0.00370987 + 0.00895641i
\(263\) 6.43466 + 6.43466i 0.396778 + 0.396778i 0.877095 0.480317i \(-0.159478\pi\)
−0.480317 + 0.877095i \(0.659478\pi\)
\(264\) −3.07283 3.07283i −0.189120 0.189120i
\(265\) −1.56948 3.78905i −0.0964121 0.232759i
\(266\) 0.337294 0.139712i 0.0206808 0.00856628i
\(267\) 0.761063 1.83737i 0.0465763 0.112445i
\(268\) 15.0224i 0.917637i
\(269\) 19.7544 + 8.18254i 1.20445 + 0.498898i 0.892433 0.451180i \(-0.148997\pi\)
0.312013 + 0.950078i \(0.398997\pi\)
\(270\) 0.0999875 0.0999875i 0.00608505 0.00608505i
\(271\) 19.3213 1.17368 0.586842 0.809702i \(-0.300371\pi\)
0.586842 + 0.809702i \(0.300371\pi\)
\(272\) 0 0
\(273\) −4.33190 −0.262178
\(274\) 1.93445 1.93445i 0.116864 0.116864i
\(275\) 21.0165 + 8.70532i 1.26734 + 0.524950i
\(276\) 4.13964i 0.249177i
\(277\) 1.27821 3.08588i 0.0768003 0.185412i −0.880816 0.473458i \(-0.843006\pi\)
0.957617 + 0.288046i \(0.0930055\pi\)
\(278\) 2.73931 1.13466i 0.164293 0.0680524i
\(279\) 2.01782 + 4.87144i 0.120804 + 0.291646i
\(280\) 0.682757 + 0.682757i 0.0408026 + 0.0408026i
\(281\) 3.30752 + 3.30752i 0.197310 + 0.197310i 0.798846 0.601536i \(-0.205444\pi\)
−0.601536 + 0.798846i \(0.705444\pi\)
\(282\) −0.688840 1.66301i −0.0410198 0.0990306i
\(283\) 9.29255 3.84910i 0.552384 0.228805i −0.0889908 0.996032i \(-0.528364\pi\)
0.641375 + 0.767227i \(0.278364\pi\)
\(284\) −0.286679 + 0.692105i −0.0170113 + 0.0410689i
\(285\) 0.604986i 0.0358363i
\(286\) 2.54699 + 1.05500i 0.150607 + 0.0623833i
\(287\) 8.45966 8.45966i 0.499358 0.499358i
\(288\) −2.57908 −0.151974
\(289\) 0 0
\(290\) −1.35564 −0.0796061
\(291\) 2.15061 2.15061i 0.126071 0.126071i
\(292\) 11.7396 + 4.86268i 0.687005 + 0.284567i
\(293\) 5.76934i 0.337048i −0.985698 0.168524i \(-0.946100\pi\)
0.985698 0.168524i \(-0.0539001\pi\)
\(294\) −0.341178 + 0.823678i −0.0198979 + 0.0480378i
\(295\) −5.94575 + 2.46281i −0.346175 + 0.143390i
\(296\) −2.85095 6.88281i −0.165708 0.400055i
\(297\) −3.50062 3.50062i −0.203127 0.203127i
\(298\) 0.0560723 + 0.0560723i 0.00324818 + 0.00324818i
\(299\) 2.03541 + 4.91390i 0.117711 + 0.284178i
\(300\) 8.28085 3.43004i 0.478095 0.198033i
\(301\) 4.72973 11.4186i 0.272617 0.658156i
\(302\) 2.02931i 0.116774i
\(303\) −17.1339 7.09710i −0.984318 0.407718i
\(304\) 2.49131 2.49131i 0.142887 0.142887i
\(305\) 1.89001 0.108222
\(306\) 0 0
\(307\) −13.2375 −0.755502 −0.377751 0.925907i \(-0.623302\pi\)
−0.377751 + 0.925907i \(0.623302\pi\)
\(308\) 11.8025 11.8025i 0.672511 0.672511i
\(309\) −3.13658 1.29922i −0.178434 0.0739098i
\(310\) 0.745595i 0.0423469i
\(311\) −0.495691 + 1.19670i −0.0281081 + 0.0678589i −0.937310 0.348496i \(-0.886693\pi\)
0.909202 + 0.416355i \(0.136693\pi\)
\(312\) 2.03251 0.841894i 0.115068 0.0476629i
\(313\) −7.30953 17.6468i −0.413159 0.997454i −0.984284 0.176591i \(-0.943493\pi\)
0.571125 0.820863i \(-0.306507\pi\)
\(314\) −2.76479 2.76479i −0.156026 0.156026i
\(315\) 0.777809 + 0.777809i 0.0438246 + 0.0438246i
\(316\) −1.77123 4.27613i −0.0996396 0.240551i
\(317\) 13.9545 5.78015i 0.783763 0.324645i 0.0453302 0.998972i \(-0.485566\pi\)
0.738433 + 0.674327i \(0.235566\pi\)
\(318\) 0.547959 1.32289i 0.0307280 0.0741840i
\(319\) 47.4619i 2.65735i
\(320\) 4.02130 + 1.66568i 0.224798 + 0.0931142i
\(321\) 9.30065 9.30065i 0.519112 0.519112i
\(322\) −0.815020 −0.0454193
\(323\) 0 0
\(324\) −1.95063 −0.108368
\(325\) −8.14317 + 8.14317i −0.451702 + 0.451702i
\(326\) −3.40557 1.41063i −0.188617 0.0781278i
\(327\) 17.3896i 0.961645i
\(328\) −2.32513 + 5.61335i −0.128384 + 0.309946i
\(329\) 12.9366 5.35852i 0.713219 0.295425i
\(330\) −0.267893 0.646750i −0.0147470 0.0356024i
\(331\) 16.0350 + 16.0350i 0.881363 + 0.881363i 0.993673 0.112310i \(-0.0358250\pi\)
−0.112310 + 0.993673i \(0.535825\pi\)
\(332\) 18.4249 + 18.4249i 1.01120 + 1.01120i
\(333\) −3.24785 7.84101i −0.177981 0.429685i
\(334\) −2.91976 + 1.20940i −0.159762 + 0.0661757i
\(335\) 1.87558 4.52806i 0.102474 0.247394i
\(336\) 6.40598i 0.349475i
\(337\) −1.49362 0.618680i −0.0813629 0.0337016i 0.341631 0.939834i \(-0.389021\pi\)
−0.422994 + 0.906133i \(0.639021\pi\)
\(338\) 1.05560 1.05560i 0.0574170 0.0574170i
\(339\) −0.776042 −0.0421488
\(340\) 0 0
\(341\) 26.1037 1.41360
\(342\) −0.149357 + 0.149357i −0.00807628 + 0.00807628i
\(343\) −17.5855 7.28416i −0.949529 0.393308i
\(344\) 6.27677i 0.338421i
\(345\) 0.516845 1.24777i 0.0278260 0.0671779i
\(346\) 0.388655 0.160986i 0.0208942 0.00865467i
\(347\) −5.87826 14.1914i −0.315562 0.761833i −0.999479 0.0322738i \(-0.989725\pi\)
0.683917 0.729559i \(-0.260275\pi\)
\(348\) 13.2234 + 13.2234i 0.708851 + 0.708851i
\(349\) −10.6834 10.6834i −0.571872 0.571872i 0.360779 0.932651i \(-0.382511\pi\)
−0.932651 + 0.360779i \(0.882511\pi\)
\(350\) −0.675314 1.63035i −0.0360970 0.0871459i
\(351\) 2.31547 0.959100i 0.123591 0.0511930i
\(352\) −4.88614 + 11.7962i −0.260432 + 0.628738i
\(353\) 31.2482i 1.66317i −0.555396 0.831586i \(-0.687433\pi\)
0.555396 0.831586i \(-0.312567\pi\)
\(354\) −2.07587 0.859854i −0.110331 0.0457007i
\(355\) −0.172822 + 0.172822i −0.00917246 + 0.00917246i
\(356\) −3.87932 −0.205604
\(357\) 0 0
\(358\) −4.94307 −0.261249
\(359\) 1.92689 1.92689i 0.101697 0.101697i −0.654428 0.756125i \(-0.727090\pi\)
0.756125 + 0.654428i \(0.227090\pi\)
\(360\) −0.516110 0.213780i −0.0272014 0.0112672i
\(361\) 18.0963i 0.952437i
\(362\) −0.987542 + 2.38414i −0.0519041 + 0.125308i
\(363\) −12.4805 + 5.16957i −0.655054 + 0.271332i
\(364\) 3.23365 + 7.80672i 0.169489 + 0.409183i
\(365\) 2.93143 + 2.93143i 0.153438 + 0.153438i
\(366\) 0.466599 + 0.466599i 0.0243895 + 0.0243895i
\(367\) 7.06110 + 17.0470i 0.368586 + 0.889846i 0.993983 + 0.109539i \(0.0349374\pi\)
−0.625396 + 0.780307i \(0.715063\pi\)
\(368\) −7.26665 + 3.00994i −0.378800 + 0.156904i
\(369\) −2.64882 + 6.39483i −0.137892 + 0.332901i
\(370\) 1.20010i 0.0623902i
\(371\) 10.2908 + 4.26261i 0.534274 + 0.221303i
\(372\) 7.27281 7.27281i 0.377078 0.377078i
\(373\) −24.4049 −1.26364 −0.631820 0.775115i \(-0.717692\pi\)
−0.631820 + 0.775115i \(0.717692\pi\)
\(374\) 0 0
\(375\) 6.10630 0.315328
\(376\) −5.02840 + 5.02840i −0.259320 + 0.259320i
\(377\) −22.1985 9.19492i −1.14328 0.473563i
\(378\) 0.384044i 0.0197531i
\(379\) −2.25422 + 5.44218i −0.115792 + 0.279546i −0.971141 0.238506i \(-0.923342\pi\)
0.855349 + 0.518052i \(0.173342\pi\)
\(380\) 1.09027 0.451607i 0.0559299 0.0231669i
\(381\) 4.15284 + 10.0258i 0.212756 + 0.513639i
\(382\) −1.04215 1.04215i −0.0533209 0.0533209i
\(383\) 21.7616 + 21.7616i 1.11197 + 1.11197i 0.992884 + 0.119083i \(0.0379954\pi\)
0.119083 + 0.992884i \(0.462005\pi\)
\(384\) 2.55549 + 6.16950i 0.130409 + 0.314836i
\(385\) 5.03111 2.08395i 0.256409 0.106208i
\(386\) −0.248088 + 0.598937i −0.0126273 + 0.0304851i
\(387\) 7.15061i 0.363486i
\(388\) −5.48108 2.27034i −0.278260 0.115259i
\(389\) −13.8058 + 13.8058i −0.699983 + 0.699983i −0.964407 0.264424i \(-0.914818\pi\)
0.264424 + 0.964407i \(0.414818\pi\)
\(390\) 0.354393 0.0179454
\(391\) 0 0
\(392\) 3.52215 0.177896
\(393\) 0.499375 0.499375i 0.0251901 0.0251901i
\(394\) −0.930970 0.385621i −0.0469016 0.0194273i
\(395\) 1.51006i 0.0759794i
\(396\) −3.69552 + 8.92177i −0.185707 + 0.448336i
\(397\) 0.835444 0.346052i 0.0419298 0.0173679i −0.361620 0.932326i \(-0.617776\pi\)
0.403550 + 0.914958i \(0.367776\pi\)
\(398\) 0.209196 + 0.505043i 0.0104860 + 0.0253155i
\(399\) −1.16185 1.16185i −0.0581654 0.0581654i
\(400\) −12.0421 12.0421i −0.602103 0.602103i
\(401\) −0.484040 1.16858i −0.0241718 0.0583559i 0.911333 0.411670i \(-0.135055\pi\)
−0.935505 + 0.353315i \(0.885055\pi\)
\(402\) 1.58091 0.654832i 0.0788484 0.0326601i
\(403\) −5.05715 + 12.2090i −0.251915 + 0.608176i
\(404\) 36.1757i 1.79981i
\(405\) −0.587961 0.243542i −0.0292160 0.0121017i
\(406\) 2.60346 2.60346i 0.129208 0.129208i
\(407\) −42.0162 −2.08267
\(408\) 0 0
\(409\) 28.6350 1.41591 0.707954 0.706258i \(-0.249618\pi\)
0.707954 + 0.706258i \(0.249618\pi\)
\(410\) −0.692085 + 0.692085i −0.0341796 + 0.0341796i
\(411\) −11.3752 4.71177i −0.561099 0.232415i
\(412\) 6.62242i 0.326263i
\(413\) 6.68885 16.1483i 0.329137 0.794607i
\(414\) 0.435642 0.180449i 0.0214106 0.00886857i
\(415\) 3.25326 + 7.85407i 0.159696 + 0.385541i
\(416\) −4.57061 4.57061i −0.224093 0.224093i
\(417\) −9.43591 9.43591i −0.462079 0.462079i
\(418\) 0.400165 + 0.966084i 0.0195727 + 0.0472527i
\(419\) 22.1344 9.16836i 1.08133 0.447903i 0.230357 0.973106i \(-0.426010\pi\)
0.850977 + 0.525203i \(0.176010\pi\)
\(420\) 0.821112 1.98234i 0.0400662 0.0967283i
\(421\) 12.5312i 0.610735i −0.952235 0.305368i \(-0.901221\pi\)
0.952235 0.305368i \(-0.0987794\pi\)
\(422\) 4.08581 + 1.69240i 0.198894 + 0.0823846i
\(423\) −5.72844 + 5.72844i −0.278526 + 0.278526i
\(424\) −5.65685 −0.274721
\(425\) 0 0
\(426\) −0.0853313 −0.00413432
\(427\) −3.62970 + 3.62970i −0.175654 + 0.175654i
\(428\) −23.7038 9.81845i −1.14577 0.474593i
\(429\) 12.4075i 0.599040i
\(430\) −0.386940 + 0.934155i −0.0186599 + 0.0450490i
\(431\) 16.3275 6.76307i 0.786468 0.325766i 0.0469454 0.998897i \(-0.485051\pi\)
0.739523 + 0.673132i \(0.235051\pi\)
\(432\) 1.41831 + 3.42410i 0.0682385 + 0.164742i
\(433\) 9.90484 + 9.90484i 0.475996 + 0.475996i 0.903849 0.427852i \(-0.140730\pi\)
−0.427852 + 0.903849i \(0.640730\pi\)
\(434\) −1.43189 1.43189i −0.0687327 0.0687327i
\(435\) 2.33484 + 5.63681i 0.111947 + 0.270264i
\(436\) 31.3386 12.9809i 1.50084 0.621670i
\(437\) −0.772038 + 1.86386i −0.0369316 + 0.0891607i
\(438\) 1.44740i 0.0691594i
\(439\) −10.6930 4.42919i −0.510349 0.211394i 0.112623 0.993638i \(-0.464075\pi\)
−0.622972 + 0.782244i \(0.714075\pi\)
\(440\) −1.95557 + 1.95557i −0.0932280 + 0.0932280i
\(441\) 4.01250 0.191071
\(442\) 0 0
\(443\) −35.6174 −1.69223 −0.846117 0.532997i \(-0.821066\pi\)
−0.846117 + 0.532997i \(0.821066\pi\)
\(444\) −11.7062 + 11.7062i −0.555553 + 0.555553i
\(445\) −1.16931 0.484344i −0.0554306 0.0229601i
\(446\) 3.19135i 0.151115i
\(447\) 0.136577 0.329725i 0.00645985 0.0155955i
\(448\) −10.9216 + 4.52389i −0.515998 + 0.213734i
\(449\) −8.47493 20.4603i −0.399957 0.965581i −0.987675 0.156516i \(-0.949974\pi\)
0.587719 0.809065i \(-0.300026\pi\)
\(450\) 0.721933 + 0.721933i 0.0340322 + 0.0340322i
\(451\) 24.2303 + 24.2303i 1.14096 + 1.14096i
\(452\) 0.579295 + 1.39854i 0.0272477 + 0.0657819i
\(453\) 8.43795 3.49511i 0.396450 0.164215i
\(454\) 0.924638 2.23227i 0.0433954 0.104766i
\(455\) 2.75684i 0.129243i
\(456\) 0.770941 + 0.319334i 0.0361026 + 0.0149542i
\(457\) −7.00483 + 7.00483i −0.327672 + 0.327672i −0.851701 0.524029i \(-0.824428\pi\)
0.524029 + 0.851701i \(0.324428\pi\)
\(458\) −4.21941 −0.197160
\(459\) 0 0
\(460\) −2.63449 −0.122834
\(461\) −6.80496 + 6.80496i −0.316939 + 0.316939i −0.847590 0.530651i \(-0.821947\pi\)
0.530651 + 0.847590i \(0.321947\pi\)
\(462\) 1.75654 + 0.727581i 0.0817215 + 0.0338502i
\(463\) 15.3013i 0.711113i −0.934655 0.355557i \(-0.884291\pi\)
0.934655 0.355557i \(-0.115709\pi\)
\(464\) 13.5974 32.8270i 0.631243 1.52396i
\(465\) 3.10021 1.28415i 0.143769 0.0595510i
\(466\) 0.602072 + 1.45353i 0.0278904 + 0.0673335i
\(467\) 15.7791 + 15.7791i 0.730168 + 0.730168i 0.970653 0.240485i \(-0.0773065\pi\)
−0.240485 + 0.970653i \(0.577307\pi\)
\(468\) −3.45688 3.45688i −0.159794 0.159794i
\(469\) 5.09398 + 12.2980i 0.235218 + 0.567867i
\(470\) −1.05835 + 0.438381i −0.0488178 + 0.0202210i
\(471\) −6.73427 + 16.2580i −0.310299 + 0.749127i
\(472\) 8.87670i 0.408583i
\(473\) 32.7053 + 13.5470i 1.50379 + 0.622892i
\(474\) 0.372797 0.372797i 0.0171232 0.0171232i
\(475\) −4.36814 −0.200424
\(476\) 0 0
\(477\) −6.44438 −0.295068
\(478\) −0.830926 + 0.830926i −0.0380057 + 0.0380057i
\(479\) 14.3729 + 5.95346i 0.656716 + 0.272021i 0.686056 0.727549i \(-0.259341\pi\)
−0.0293400 + 0.999569i \(0.509341\pi\)
\(480\) 1.64134i 0.0749166i
\(481\) 8.13993 19.6515i 0.371149 0.896032i
\(482\) −1.19026 + 0.493020i −0.0542146 + 0.0224564i
\(483\) 1.40372 + 3.38888i 0.0638715 + 0.154200i
\(484\) 18.6327 + 18.6327i 0.846940 + 0.846940i
\(485\) −1.36866 1.36866i −0.0621475 0.0621475i
\(486\) −0.0850290 0.205278i −0.00385699 0.00931160i
\(487\) −0.0273945 + 0.0113472i −0.00124136 + 0.000514190i −0.383304 0.923622i \(-0.625214\pi\)
0.382063 + 0.924136i \(0.375214\pi\)
\(488\) 0.997620 2.40847i 0.0451601 0.109026i
\(489\) 16.5901i 0.750228i
\(490\) 0.524192 + 0.217128i 0.0236806 + 0.00980883i
\(491\) −4.71594 + 4.71594i −0.212828 + 0.212828i −0.805467 0.592640i \(-0.798086\pi\)
0.592640 + 0.805467i \(0.298086\pi\)
\(492\) 13.5017 0.608704
\(493\) 0 0
\(494\) −0.529375 −0.0238177
\(495\) −2.22781 + 2.22781i −0.100133 + 0.100133i
\(496\) −18.0546 7.47848i −0.810678 0.335794i
\(497\) 0.663798i 0.0297754i
\(498\) −1.13583 + 2.74213i −0.0508977 + 0.122878i
\(499\) 17.2274 7.13584i 0.771207 0.319444i 0.0378455 0.999284i \(-0.487951\pi\)
0.733361 + 0.679839i \(0.237951\pi\)
\(500\) −4.55819 11.0045i −0.203849 0.492134i
\(501\) 10.0575 + 10.0575i 0.449336 + 0.449336i
\(502\) −1.30905 1.30905i −0.0584258 0.0584258i
\(503\) −9.85013 23.7803i −0.439195 1.06031i −0.976227 0.216750i \(-0.930454\pi\)
0.537032 0.843562i \(-0.319546\pi\)
\(504\) 1.40173 0.580614i 0.0624379 0.0258626i
\(505\) −4.51663 + 10.9041i −0.200987 + 0.485227i
\(506\) 2.33440i 0.103777i
\(507\) −6.20729 2.57114i −0.275675 0.114188i
\(508\) 14.9681 14.9681i 0.664100 0.664100i
\(509\) −41.1950 −1.82594 −0.912968 0.408032i \(-0.866215\pi\)
−0.912968 + 0.408032i \(0.866215\pi\)
\(510\) 0 0
\(511\) −11.2594 −0.498087
\(512\) 11.3599 11.3599i 0.502040 0.502040i
\(513\) 0.878269 + 0.363791i 0.0387765 + 0.0160618i
\(514\) 0.945570i 0.0417073i
\(515\) −0.826827 + 1.99614i −0.0364344 + 0.0879603i
\(516\) 12.8865 5.33774i 0.567294 0.234981i
\(517\) 15.3480 + 37.0533i 0.675004 + 1.62960i
\(518\) 2.30475 + 2.30475i 0.101265 + 0.101265i
\(519\) −1.33877 1.33877i −0.0587656 0.0587656i
\(520\) −0.535785 1.29350i −0.0234957 0.0567238i
\(521\) 8.29833 3.43728i 0.363557 0.150590i −0.193425 0.981115i \(-0.561960\pi\)
0.556981 + 0.830525i \(0.311960\pi\)
\(522\) −0.815176 + 1.96801i −0.0356793 + 0.0861374i
\(523\) 5.38995i 0.235686i −0.993032 0.117843i \(-0.962402\pi\)
0.993032 0.117843i \(-0.0375980\pi\)
\(524\) −1.27272 0.527177i −0.0555990 0.0230299i
\(525\) −5.61596 + 5.61596i −0.245100 + 0.245100i
\(526\) 2.02194 0.0881607
\(527\) 0 0
\(528\) 18.3481 0.798500
\(529\) −13.0788 + 13.0788i −0.568645 + 0.568645i
\(530\) −0.841894 0.348724i −0.0365695 0.0151476i
\(531\) 10.1125i 0.438844i
\(532\) −1.22654 + 2.96112i −0.0531772 + 0.128381i
\(533\) −16.0270 + 6.63861i −0.694208 + 0.287550i
\(534\) −0.169102 0.408247i −0.00731774 0.0176666i
\(535\) −5.91898 5.91898i −0.255900 0.255900i
\(536\) −4.78015 4.78015i −0.206471 0.206471i
\(537\) 8.51352 + 20.5535i 0.367386 + 0.886947i
\(538\) 4.38926 1.81809i 0.189234 0.0783834i
\(539\) 7.60177 18.3523i 0.327432 0.790490i
\(540\) 1.24139i 0.0534210i
\(541\) 1.13420 + 0.469799i 0.0487629 + 0.0201983i 0.406932 0.913459i \(-0.366599\pi\)
−0.358169 + 0.933657i \(0.616599\pi\)
\(542\) 3.03562 3.03562i 0.130391 0.130391i
\(543\) 11.6142 0.498413
\(544\) 0 0
\(545\) 11.0668 0.474050
\(546\) −0.680598 + 0.680598i −0.0291269 + 0.0291269i
\(547\) −12.4977 5.17672i −0.534364 0.221341i 0.0991495 0.995073i \(-0.468388\pi\)
−0.633513 + 0.773732i \(0.718388\pi\)
\(548\) 24.0171i 1.02596i
\(549\) 1.13651 2.74377i 0.0485049 0.117101i
\(550\) 4.66968 1.93425i 0.199116 0.0824766i
\(551\) −3.48767 8.41999i −0.148580 0.358704i
\(552\) −1.31724 1.31724i −0.0560656 0.0560656i
\(553\) 2.90001 + 2.90001i 0.123321 + 0.123321i
\(554\) −0.284008 0.685655i −0.0120663 0.0291307i
\(555\) −4.99006 + 2.06695i −0.211816 + 0.0877371i
\(556\) −9.96125 + 24.0486i −0.422451 + 1.01989i
\(557\) 18.3599i 0.777936i −0.921251 0.388968i \(-0.872832\pi\)
0.921251 0.388968i \(-0.127168\pi\)
\(558\) 1.08239 + 0.448342i 0.0458213 + 0.0189798i
\(559\) −12.6722 + 12.6722i −0.535977 + 0.535977i
\(560\) −4.07680 −0.172276
\(561\) 0 0
\(562\) 1.03931 0.0438406
\(563\) 2.35689 2.35689i 0.0993311 0.0993311i −0.655695 0.755026i \(-0.727624\pi\)
0.755026 + 0.655695i \(0.227624\pi\)
\(564\) 14.5996 + 6.04736i 0.614755 + 0.254640i
\(565\) 0.493877i 0.0207775i
\(566\) 0.855236 2.06472i 0.0359483 0.0867868i
\(567\) 1.59687 0.661445i 0.0670622 0.0277781i
\(568\) 0.129007 + 0.311451i 0.00541303 + 0.0130682i
\(569\) −20.8150 20.8150i −0.872611 0.872611i 0.120145 0.992756i \(-0.461664\pi\)
−0.992756 + 0.120145i \(0.961664\pi\)
\(570\) 0.0950512 + 0.0950512i 0.00398126 + 0.00398126i
\(571\) 9.88376 + 23.8615i 0.413623 + 0.998573i 0.984157 + 0.177300i \(0.0567361\pi\)
−0.570534 + 0.821274i \(0.693264\pi\)
\(572\) −22.3602 + 9.26189i −0.934926 + 0.387259i
\(573\) −2.53838 + 6.12820i −0.106042 + 0.256009i
\(574\) 2.65824i 0.110953i
\(575\) 9.00921 + 3.73174i 0.375710 + 0.155624i
\(576\) 4.83618 4.83618i 0.201508 0.201508i
\(577\) 22.1850 0.923575 0.461788 0.886990i \(-0.347208\pi\)
0.461788 + 0.886990i \(0.347208\pi\)
\(578\) 0 0
\(579\) 2.91769 0.121255
\(580\) 8.41546 8.41546i 0.349433 0.349433i
\(581\) −21.3312 8.83568i −0.884968 0.366566i
\(582\) 0.675776i 0.0280118i
\(583\) −12.2090 + 29.4752i −0.505647 + 1.22074i
\(584\) 5.28287 2.18824i 0.218607 0.0905499i
\(585\) −0.610376 1.47358i −0.0252359 0.0609249i
\(586\) −0.906438 0.906438i −0.0374446 0.0374446i
\(587\) 22.7322 + 22.7322i 0.938258 + 0.938258i 0.998202 0.0599439i \(-0.0190922\pi\)
−0.0599439 + 0.998202i \(0.519092\pi\)
\(588\) −2.99522 7.23111i −0.123521 0.298206i
\(589\) −4.63094 + 1.91820i −0.190815 + 0.0790380i
\(590\) −0.547215 + 1.32109i −0.0225285 + 0.0543886i
\(591\) 4.53517i 0.186552i
\(592\) 29.0605 + 12.0373i 1.19438 + 0.494729i
\(593\) 20.7470 20.7470i 0.851976 0.851976i −0.138400 0.990376i \(-0.544196\pi\)
0.990376 + 0.138400i \(0.0441961\pi\)
\(594\) −1.09999 −0.0451330
\(595\) 0 0
\(596\) −0.696164 −0.0285160
\(597\) 1.73969 1.73969i 0.0712006 0.0712006i
\(598\) 1.09183 + 0.452249i 0.0446481 + 0.0184939i
\(599\) 36.2632i 1.48167i 0.671686 + 0.740836i \(0.265570\pi\)
−0.671686 + 0.740836i \(0.734430\pi\)
\(600\) 1.54354 3.72643i 0.0630147 0.152131i
\(601\) −42.2566 + 17.5033i −1.72368 + 0.713973i −0.723976 + 0.689825i \(0.757687\pi\)
−0.999708 + 0.0241482i \(0.992313\pi\)
\(602\) −1.05091 2.53711i −0.0428317 0.103405i
\(603\) −5.44563 5.44563i −0.221763 0.221763i
\(604\) −12.5974 12.5974i −0.512582 0.512582i
\(605\) 3.28994 + 7.94262i 0.133755 + 0.322914i
\(606\) −3.80701 + 1.57691i −0.154649 + 0.0640578i
\(607\) 12.8827 31.1015i 0.522891 1.26237i −0.413209 0.910636i \(-0.635592\pi\)
0.936100 0.351734i \(-0.114408\pi\)
\(608\) 2.45176i 0.0994318i
\(609\) −15.3092 6.34130i −0.620362 0.256962i
\(610\) 0.296946 0.296946i 0.0120230 0.0120230i
\(611\) −20.3037 −0.821400
\(612\) 0 0
\(613\) −5.89120 −0.237943 −0.118972 0.992898i \(-0.537960\pi\)
−0.118972 + 0.992898i \(0.537960\pi\)
\(614\) −2.07978 + 2.07978i −0.0839330 + 0.0839330i
\(615\) 4.06970 + 1.68572i 0.164106 + 0.0679750i
\(616\) 7.51118i 0.302634i
\(617\) −13.4773 + 32.5371i −0.542575 + 1.30989i 0.380325 + 0.924853i \(0.375812\pi\)
−0.922900 + 0.385040i \(0.874188\pi\)
\(618\) −0.696922 + 0.288674i −0.0280343 + 0.0116122i
\(619\) −12.5630 30.3298i −0.504951 1.21906i −0.946757 0.321948i \(-0.895662\pi\)
0.441807 0.897110i \(-0.354338\pi\)
\(620\) −4.62845 4.62845i −0.185883 0.185883i
\(621\) −1.50062 1.50062i −0.0602180 0.0602180i
\(622\) 0.110138 + 0.265897i 0.00441615 + 0.0106615i
\(623\) 3.17578 1.31545i 0.127235 0.0527024i
\(624\) −3.55464 + 8.58165i −0.142299 + 0.343541i
\(625\) 19.0889i 0.763555i
\(626\) −3.92096 1.62411i −0.156713 0.0649127i
\(627\) 3.32780 3.32780i 0.132900 0.132900i
\(628\) 34.3262 1.36976
\(629\) 0 0
\(630\) 0.244408 0.00973744
\(631\) 7.57005 7.57005i 0.301359 0.301359i −0.540186 0.841545i \(-0.681646\pi\)
0.841545 + 0.540186i \(0.181646\pi\)
\(632\) −1.92429 0.797065i −0.0765440 0.0317056i
\(633\) 19.9038i 0.791103i
\(634\) 1.28430 3.10057i 0.0510060 0.123139i
\(635\) 6.38050 2.64289i 0.253202 0.104880i
\(636\) 4.81057 + 11.6137i 0.190751 + 0.460514i
\(637\) 7.11089 + 7.11089i 0.281744 + 0.281744i
\(638\) 7.45688 + 7.45688i 0.295221 + 0.295221i
\(639\) 0.146967 + 0.354811i 0.00581394 + 0.0140361i
\(640\) 3.92630 1.62633i 0.155201 0.0642862i
\(641\) 14.1377 34.1315i 0.558406 1.34811i −0.352621 0.935766i \(-0.614709\pi\)
0.911027 0.412346i \(-0.135291\pi\)
\(642\) 2.92251i 0.115342i
\(643\) −36.3211 15.0447i −1.43237 0.593305i −0.474431 0.880293i \(-0.657346\pi\)
−0.957934 + 0.286987i \(0.907346\pi\)
\(644\) 5.05943 5.05943i 0.199369 0.199369i
\(645\) 4.55068 0.179183
\(646\) 0 0
\(647\) −14.8806 −0.585016 −0.292508 0.956263i \(-0.594490\pi\)
−0.292508 + 0.956263i \(0.594490\pi\)
\(648\) −0.620696 + 0.620696i −0.0243832 + 0.0243832i
\(649\) 46.2523 + 19.1583i 1.81556 + 0.752031i
\(650\) 2.55880i 0.100364i
\(651\) −3.48767 + 8.41999i −0.136693 + 0.330005i
\(652\) 29.8977 12.3840i 1.17089 0.484997i
\(653\) 9.29567 + 22.4417i 0.363768 + 0.878213i 0.994742 + 0.102410i \(0.0326552\pi\)
−0.630975 + 0.775803i \(0.717345\pi\)
\(654\) 2.73213 + 2.73213i 0.106835 + 0.106835i
\(655\) −0.317805 0.317805i −0.0124177 0.0124177i
\(656\) −9.81713 23.7007i −0.383295 0.925355i
\(657\) 6.01834 2.49288i 0.234798 0.0972564i
\(658\) 1.19062 2.87441i 0.0464151 0.112056i
\(659\) 9.14192i 0.356119i −0.984020 0.178059i \(-0.943018\pi\)
0.984020 0.178059i \(-0.0569819\pi\)
\(660\) 5.67786 + 2.35185i 0.221010 + 0.0915455i
\(661\) 11.8759 11.8759i 0.461920 0.461920i −0.437365 0.899284i \(-0.644088\pi\)
0.899284 + 0.437365i \(0.144088\pi\)
\(662\) 5.03861 0.195831
\(663\) 0 0
\(664\) 11.7257 0.455046
\(665\) −0.739409 + 0.739409i −0.0286731 + 0.0286731i
\(666\) −1.74220 0.721645i −0.0675091 0.0279632i
\(667\) 20.3456i 0.787787i
\(668\) 10.6174 25.6327i 0.410801 0.991761i
\(669\) −13.2698 + 5.49651i −0.513038 + 0.212507i
\(670\) −0.416739 1.00610i −0.0161000 0.0388689i
\(671\) −10.3963 10.3963i −0.401343 0.401343i
\(672\) −3.15213 3.15213i −0.121596 0.121596i
\(673\) −7.12991 17.2131i −0.274838 0.663517i 0.724840 0.688918i \(-0.241914\pi\)
−0.999677 + 0.0254007i \(0.991914\pi\)
\(674\) −0.331870 + 0.137465i −0.0127832 + 0.00529496i
\(675\) 1.75843 4.24522i 0.0676819 0.163398i
\(676\) 13.1057i 0.504067i
\(677\) 9.97885 + 4.13338i 0.383519 + 0.158859i 0.566109 0.824331i \(-0.308448\pi\)
−0.182590 + 0.983189i \(0.558448\pi\)
\(678\) −0.121926 + 0.121926i −0.00468255 + 0.00468255i
\(679\) 5.25690 0.201741
\(680\) 0 0
\(681\) −10.8744 −0.416707
\(682\) 4.10124 4.10124i 0.157044 0.157044i
\(683\) 20.5285 + 8.50319i 0.785502 + 0.325366i 0.739134 0.673559i \(-0.235235\pi\)
0.0463683 + 0.998924i \(0.485235\pi\)
\(684\) 1.85433i 0.0709021i
\(685\) −2.99860 + 7.23925i −0.114570 + 0.276598i
\(686\) −3.90735 + 1.61848i −0.149183 + 0.0617938i
\(687\) 7.26716 + 17.5445i 0.277259 + 0.669363i
\(688\) −18.7396 18.7396i −0.714439 0.714439i
\(689\) −11.4206 11.4206i −0.435092 0.435092i
\(690\) −0.114838 0.277245i −0.00437183 0.0105545i
\(691\) −35.6075 + 14.7491i −1.35457 + 0.561083i −0.937562 0.347818i \(-0.886923\pi\)
−0.417012 + 0.908901i \(0.636923\pi\)
\(692\) −1.41331 + 3.41202i −0.0537258 + 0.129706i
\(693\) 8.55687i 0.325048i
\(694\) −3.15320 1.30610i −0.119694 0.0495788i
\(695\) −6.00506 + 6.00506i −0.227785 + 0.227785i
\(696\) 8.41546 0.318987
\(697\) 0 0
\(698\) −3.35702 −0.127065
\(699\) 5.00687 5.00687i 0.189377 0.189377i
\(700\) 14.3129 + 5.92862i 0.540979 + 0.224081i
\(701\) 18.0843i 0.683034i −0.939876 0.341517i \(-0.889059\pi\)
0.939876 0.341517i \(-0.110941\pi\)
\(702\) 0.213104 0.514478i 0.00804308 0.0194177i
\(703\) 7.45391 3.08751i 0.281129 0.116448i
\(704\) −12.9574 31.2819i −0.488351 1.17898i
\(705\) 3.64561 + 3.64561i 0.137302 + 0.137302i
\(706\) −4.90949 4.90949i −0.184771 0.184771i
\(707\) −12.2669 29.6149i −0.461345 1.11378i
\(708\) 18.2242 7.54871i 0.684907 0.283698i
\(709\) −19.9996 + 48.2832i −0.751099 + 1.81331i −0.197994 + 0.980203i \(0.563443\pi\)
−0.553105 + 0.833111i \(0.686557\pi\)
\(710\) 0.0543053i 0.00203804i
\(711\) −2.19218 0.908030i −0.0822131 0.0340538i
\(712\) −1.23441 + 1.23441i −0.0462615 + 0.0462615i
\(713\) 11.1900 0.419068
\(714\) 0 0
\(715\) −7.89620 −0.295301
\(716\) 30.6853 30.6853i 1.14676 1.14676i
\(717\) 4.88614 + 2.02390i 0.182476 + 0.0755841i
\(718\) 0.605478i 0.0225962i
\(719\) 0.864216 2.08640i 0.0322298 0.0778097i −0.906945 0.421249i \(-0.861592\pi\)
0.939175 + 0.343439i \(0.111592\pi\)
\(720\) 2.17912 0.902620i 0.0812109 0.0336386i
\(721\) −2.24562 5.42140i −0.0836311 0.201903i
\(722\) 2.84316 + 2.84316i 0.105812 + 0.105812i
\(723\) 4.09999 + 4.09999i 0.152480 + 0.152480i
\(724\) −8.66969 20.9305i −0.322207 0.777875i
\(725\) −40.6990 + 16.8581i −1.51152 + 0.626094i
\(726\) −1.14863 + 2.77305i −0.0426298 + 0.102918i
\(727\) 39.5601i 1.46720i −0.679581 0.733601i \(-0.737838\pi\)
0.679581 0.733601i \(-0.262162\pi\)
\(728\) 3.51307 + 1.45516i 0.130203 + 0.0539319i
\(729\) −0.707107 + 0.707107i −0.0261891 + 0.0261891i
\(730\) 0.921132 0.0340926
\(731\) 0 0
\(732\) −5.79304 −0.214117
\(733\) −9.55562 + 9.55562i −0.352945 + 0.352945i −0.861204 0.508259i \(-0.830289\pi\)
0.508259 + 0.861204i \(0.330289\pi\)
\(734\) 3.78770 + 1.56892i 0.139806 + 0.0579097i
\(735\) 2.55357i 0.0941899i
\(736\) −2.09456 + 5.05671i −0.0772064 + 0.186393i
\(737\) −35.2240 + 14.5903i −1.29749 + 0.537440i
\(738\) 0.588546 + 1.42088i 0.0216647 + 0.0523031i
\(739\) 7.58596 + 7.58596i 0.279054 + 0.279054i 0.832731 0.553677i \(-0.186776\pi\)
−0.553677 + 0.832731i \(0.686776\pi\)
\(740\) 7.44990 + 7.44990i 0.273864 + 0.273864i
\(741\) 0.911750 + 2.20116i 0.0334940 + 0.0808616i
\(742\) 2.28654 0.947114i 0.0839414 0.0347697i
\(743\) 16.8351 40.6434i 0.617619 1.49106i −0.236843 0.971548i \(-0.576113\pi\)
0.854461 0.519515i \(-0.173887\pi\)
\(744\) 4.62845i 0.169687i
\(745\) −0.209839 0.0869180i −0.00768789 0.00318443i
\(746\) −3.83434 + 3.83434i −0.140385 + 0.140385i
\(747\) 13.3581 0.488749
\(748\) 0 0
\(749\) 22.7343 0.830695
\(750\) 0.959379 0.959379i 0.0350316 0.0350316i
\(751\) 11.5529 + 4.78535i 0.421570 + 0.174620i 0.583375 0.812203i \(-0.301732\pi\)
−0.161806 + 0.986823i \(0.551732\pi\)
\(752\) 30.0250i 1.09490i
\(753\) −3.18848 + 7.69767i −0.116195 + 0.280519i
\(754\) −4.93232 + 2.04303i −0.179624 + 0.0744029i
\(755\) −2.22431 5.36995i −0.0809509 0.195433i
\(756\) −2.38404 2.38404i −0.0867069 0.0867069i
\(757\) −25.3480 25.3480i −0.921288 0.921288i 0.0758328 0.997121i \(-0.475838\pi\)
−0.997121 + 0.0758328i \(0.975838\pi\)
\(758\) 0.500869 + 1.20920i 0.0181924 + 0.0439203i
\(759\) −9.70651 + 4.02057i −0.352324 + 0.145937i
\(760\) 0.203226 0.490630i 0.00737177 0.0177970i
\(761\) 23.4468i 0.849944i −0.905206 0.424972i \(-0.860284\pi\)
0.905206 0.424972i \(-0.139716\pi\)
\(762\) 2.22766 + 0.922725i 0.0806994 + 0.0334268i
\(763\) −21.2534 + 21.2534i −0.769424 + 0.769424i
\(764\) 12.9388 0.468108
\(765\) 0 0
\(766\) 6.83807 0.247070
\(767\) −17.9212 + 17.9212i −0.647097 + 0.647097i
\(768\) −11.2667 4.66684i −0.406554 0.168400i
\(769\) 22.8938i 0.825573i −0.910828 0.412786i \(-0.864556\pi\)
0.910828 0.412786i \(-0.135444\pi\)
\(770\) 0.463036 1.11787i 0.0166867 0.0402852i
\(771\) 3.93171 1.62857i 0.141597 0.0586515i
\(772\) −2.17798 5.25810i −0.0783871 0.189243i
\(773\) −24.1327 24.1327i −0.867991 0.867991i 0.124259 0.992250i \(-0.460345\pi\)
−0.992250 + 0.124259i \(0.960345\pi\)
\(774\) 1.12345 + 1.12345i 0.0403817 + 0.0403817i
\(775\) 9.27185 + 22.3842i 0.333055 + 0.804065i
\(776\) −2.46652 + 1.02167i −0.0885430 + 0.0366757i
\(777\) 5.61372 13.5527i 0.201391 0.486201i
\(778\) 4.33815i 0.155530i
\(779\) −6.07912 2.51805i −0.217807 0.0902187i
\(780\) −2.19998 + 2.19998i −0.0787717 + 0.0787717i
\(781\) 1.90126 0.0680325
\(782\) 0 0
\(783\) 9.58704 0.342613
\(784\) −10.5155 + 10.5155i −0.375555 + 0.375555i
\(785\) 10.3466 + 4.28572i 0.369288 + 0.152964i
\(786\) 0.156917i 0.00559703i
\(787\) 5.04110 12.1703i 0.179696 0.433824i −0.808207 0.588899i \(-0.799562\pi\)
0.987903 + 0.155074i \(0.0495617\pi\)
\(788\) 8.17304 3.38539i 0.291153 0.120599i
\(789\) −3.48241 8.40729i −0.123977 0.299308i
\(790\) −0.237250 0.237250i −0.00844098 0.00844098i
\(791\) −0.948471 0.948471i −0.0337238 0.0337238i
\(792\) 1.66301 + 4.01485i 0.0590924 + 0.142662i
\(793\) 6.87656 2.84836i 0.244194 0.101148i
\(794\) 0.0768899 0.185629i 0.00272872 0.00658771i
\(795\) 4.10124i 0.145456i
\(796\) −4.43380 1.83654i −0.157152 0.0650945i
\(797\) −25.7038 + 25.7038i −0.910475 + 0.910475i −0.996309 0.0858346i \(-0.972644\pi\)
0.0858346 + 0.996309i \(0.472644\pi\)
\(798\) −0.365084 −0.0129239
\(799\) 0 0
\(800\) −11.8509 −0.418991
\(801\) −1.40626 + 1.40626i −0.0496878 + 0.0496878i
\(802\) −0.259647 0.107549i −0.00916847 0.00379770i
\(803\) 32.2494i 1.13806i
\(804\) −5.74881 + 13.8789i −0.202745 + 0.489470i
\(805\) 2.15670 0.893335i 0.0760138 0.0314859i
\(806\) 1.12366 + 2.71274i 0.0395791 + 0.0955523i
\(807\) −15.1194 15.1194i −0.532227 0.532227i
\(808\) 11.5112 + 11.5112i 0.404962 + 0.404962i
\(809\) 17.2692 + 41.6916i 0.607154 + 1.46580i 0.866082 + 0.499903i \(0.166631\pi\)
−0.258928 + 0.965897i \(0.583369\pi\)
\(810\) −0.130640 + 0.0541128i −0.00459022 + 0.00190133i
\(811\) 1.27363 3.07481i 0.0447231 0.107971i −0.899939 0.436015i \(-0.856389\pi\)
0.944662 + 0.328044i \(0.106389\pi\)
\(812\) 32.3232i 1.13432i
\(813\) −17.8505 7.39393i −0.626045 0.259316i
\(814\) −6.60130 + 6.60130i −0.231375 + 0.231375i
\(815\) 10.5580 0.369830
\(816\) 0 0
\(817\) −6.79759 −0.237817
\(818\) 4.49893 4.49893i 0.157301 0.157301i
\(819\) 4.00215 + 1.65775i 0.139847 + 0.0579263i
\(820\) 8.59255i 0.300065i
\(821\) −2.85858 + 6.90122i −0.0997651 + 0.240854i −0.965880 0.258991i \(-0.916610\pi\)
0.866115 + 0.499846i \(0.166610\pi\)
\(822\) −2.52748 + 1.04692i −0.0881559 + 0.0365154i
\(823\) 20.7351 + 50.0589i 0.722779 + 1.74494i 0.665275 + 0.746599i \(0.268314\pi\)
0.0575047 + 0.998345i \(0.481686\pi\)
\(824\) 2.10727 + 2.10727i 0.0734102 + 0.0734102i
\(825\) −16.0853 16.0853i −0.560019 0.560019i
\(826\) −1.48621 3.58802i −0.0517117 0.124843i
\(827\) −4.57379 + 1.89452i −0.159046 + 0.0658791i −0.460786 0.887511i \(-0.652433\pi\)
0.301740 + 0.953390i \(0.402433\pi\)
\(828\) −1.58417 + 3.82453i −0.0550537 + 0.132911i
\(829\) 0.0762440i 0.00264806i −0.999999 0.00132403i \(-0.999579\pi\)
0.999999 0.00132403i \(-0.000421453\pi\)
\(830\) 1.74511 + 0.722847i 0.0605736 + 0.0250904i
\(831\) −2.36183 + 2.36183i −0.0819309 + 0.0819309i
\(832\) 17.1412 0.594265
\(833\) 0 0
\(834\) −2.96501 −0.102670
\(835\) 6.40064 6.40064i 0.221503 0.221503i
\(836\) −8.48131 3.51307i −0.293332 0.121502i
\(837\) 5.27281i 0.182255i
\(838\) 2.03713 4.91807i 0.0703715 0.169892i
\(839\) 33.6734 13.9480i 1.16254 0.481538i 0.283817 0.958878i \(-0.408399\pi\)
0.878719 + 0.477340i \(0.158399\pi\)
\(840\) −0.369506 0.892066i −0.0127492 0.0307792i
\(841\) −44.4850 44.4850i −1.53396 1.53396i
\(842\) −1.96882 1.96882i −0.0678501 0.0678501i
\(843\) −1.79002 4.32149i −0.0616515 0.148840i
\(844\) −35.8695 + 14.8576i −1.23468 + 0.511421i
\(845\) −1.63629 + 3.95035i −0.0562900 + 0.135896i
\(846\) 1.80002i 0.0618861i
\(847\) −21.5717 8.93530i −0.741213 0.307020i
\(848\) 16.8888 16.8888i 0.579963 0.579963i
\(849\) −10.0582 −0.345196
\(850\) 0 0
\(851\) −18.0112 −0.617418
\(852\) 0.529714 0.529714i 0.0181477 0.0181477i
\(853\) −36.9260 15.2952i −1.26432 0.523699i −0.353088 0.935590i \(-0.614868\pi\)
−0.911233 + 0.411891i \(0.864868\pi\)
\(854\) 1.14055i 0.0390287i
\(855\) 0.231518 0.558934i 0.00791776 0.0191152i
\(856\) −10.6669 + 4.41837i −0.364586 + 0.151017i
\(857\) −1.13260 2.73433i −0.0386888 0.0934030i 0.903354 0.428896i \(-0.141097\pi\)
−0.942043 + 0.335493i \(0.891097\pi\)
\(858\) −1.94938 1.94938i −0.0665508 0.0665508i
\(859\) −15.8741 15.8741i −0.541618 0.541618i 0.382385 0.924003i \(-0.375103\pi\)
−0.924003 + 0.382385i \(0.875103\pi\)
\(860\) −3.39697 8.20100i −0.115836 0.279652i
\(861\) −11.0531 + 4.57833i −0.376688 + 0.156029i
\(862\) 1.50270 3.62783i 0.0511820 0.123564i
\(863\) 27.8981i 0.949661i −0.880077 0.474831i \(-0.842509\pi\)
0.880077 0.474831i \(-0.157491\pi\)
\(864\) 2.38276 + 0.986972i 0.0810632 + 0.0335775i
\(865\) −0.852001 + 0.852001i −0.0289689 + 0.0289689i
\(866\) 3.11236 0.105762
\(867\) 0 0
\(868\) 17.7775 0.603409
\(869\) −8.30627 + 8.30627i −0.281771 + 0.281771i
\(870\) 1.25245 + 0.518782i 0.0424620 + 0.0175884i
\(871\) 19.3013i 0.654001i
\(872\) 5.84147 14.1025i 0.197817 0.477573i
\(873\) −2.80990 + 1.16390i −0.0951008 + 0.0393920i
\(874\) 0.171540 + 0.414135i 0.00580243 + 0.0140083i
\(875\) 7.46307 + 7.46307i 0.252298 + 0.252298i
\(876\) −8.98507 8.98507i −0.303577 0.303577i
\(877\) −7.92006 19.1207i −0.267441 0.645661i 0.731920 0.681390i \(-0.238624\pi\)
−0.999361 + 0.0357299i \(0.988624\pi\)
\(878\) −2.37589 + 0.984127i −0.0801825 + 0.0332127i
\(879\) −2.20783 + 5.33017i −0.0744683 + 0.179782i
\(880\) 11.6768i 0.393627i
\(881\) −20.5470 8.51085i −0.692246 0.286738i 0.00868935 0.999962i \(-0.497234\pi\)
−0.700936 + 0.713224i \(0.747234\pi\)
\(882\) 0.630415 0.630415i 0.0212272 0.0212272i
\(883\) −4.23253 −0.142436 −0.0712180 0.997461i \(-0.522689\pi\)
−0.0712180 + 0.997461i \(0.522689\pi\)
\(884\) 0 0
\(885\) 6.43563 0.216331
\(886\) −5.59596 + 5.59596i −0.188000 + 0.188000i
\(887\) 33.5412 + 13.8932i 1.12620 + 0.466488i 0.866488 0.499198i \(-0.166372\pi\)
0.259714 + 0.965686i \(0.416372\pi\)
\(888\) 7.44990i 0.250002i
\(889\) −7.17793 + 17.3291i −0.240740 + 0.581198i
\(890\) −0.259811 + 0.107617i −0.00870887 + 0.00360733i
\(891\) 1.89452 + 4.57379i 0.0634690 + 0.153228i
\(892\) 19.8111 + 19.8111i 0.663323 + 0.663323i
\(893\) −5.44563 5.44563i −0.182231 0.182231i
\(894\) −0.0303461 0.0732620i −0.00101493 0.00245025i
\(895\) 13.0803 5.41805i 0.437227 0.181105i
\(896\) −4.41701 + 10.6636i −0.147562 + 0.356246i
\(897\) 5.31877i 0.177589i
\(898\) −4.54610 1.88306i −0.151705 0.0628384i
\(899\) −35.7447 + 35.7447i −1.19215 + 1.19215i
\(900\) −8.96313 −0.298771
\(901\) 0 0
\(902\) 7.61380 0.253512
\(903\) −8.73941 + 8.73941i −0.290829 + 0.290829i
\(904\) 0.629353 + 0.260686i 0.0209320 + 0.00867030i
\(905\) 7.39133i 0.245696i
\(906\) 0.776584 1.87484i 0.0258003 0.0622874i
\(907\) −22.5166 + 9.32667i −0.747651 + 0.309687i −0.723783 0.690028i \(-0.757598\pi\)
−0.0238680 + 0.999715i \(0.507598\pi\)
\(908\) 8.11745 + 19.5973i 0.269387 + 0.650358i
\(909\) 13.1137 + 13.1137i 0.434955 + 0.434955i
\(910\) 0.433136 + 0.433136i 0.0143583 + 0.0143583i
\(911\) −10.3010 24.8688i −0.341287 0.823940i −0.997586 0.0694390i \(-0.977879\pi\)
0.656299 0.754501i \(-0.272121\pi\)
\(912\) −3.25506 + 1.34829i −0.107786 + 0.0446463i
\(913\) 25.3073 61.0973i 0.837550 2.02203i
\(914\) 2.20110i 0.0728059i
\(915\) −1.74615 0.723277i −0.0577258 0.0239108i
\(916\) 26.1930 26.1930i 0.865441 0.865441i
\(917\) 1.22066 0.0403099
\(918\) 0 0
\(919\) −23.8000 −0.785088 −0.392544 0.919733i \(-0.628405\pi\)
−0.392544 + 0.919733i \(0.628405\pi\)
\(920\) −0.838300 + 0.838300i −0.0276379 + 0.0276379i
\(921\) 12.2298 + 5.06576i 0.402986 + 0.166922i
\(922\) 2.13830i 0.0704210i
\(923\) −0.368337 + 0.889244i −0.0121240 + 0.0292698i
\(924\) −15.4207 + 6.38748i −0.507305 + 0.210133i
\(925\) −14.9238 36.0294i −0.490693 1.18464i
\(926\) −2.40404 2.40404i −0.0790016 0.0790016i
\(927\) 2.40064 + 2.40064i 0.0788473 + 0.0788473i
\(928\) −9.46214 22.8436i −0.310610 0.749879i
\(929\) −5.38383 + 2.23006i −0.176638 + 0.0731658i −0.469250 0.883066i \(-0.655476\pi\)
0.292612 + 0.956231i \(0.405476\pi\)
\(930\) 0.285327 0.688840i 0.00935623 0.0225879i
\(931\) 3.81440i 0.125012i
\(932\) −12.7606 5.28563i −0.417988 0.173136i
\(933\) 0.915918 0.915918i 0.0299858 0.0299858i
\(934\) 4.95819 0.162237
\(935\) 0 0
\(936\) −2.19998 −0.0719084
\(937\) 39.2037 39.2037i 1.28073 1.28073i 0.340477 0.940253i \(-0.389411\pi\)
0.940253 0.340477i \(-0.110589\pi\)
\(938\) 2.73250 + 1.13184i 0.0892193 + 0.0369558i
\(939\) 19.1007i 0.623328i
\(940\) 3.84857 9.29128i 0.125527 0.303048i
\(941\) 19.5582 8.10125i 0.637577 0.264093i −0.0403913 0.999184i \(-0.512860\pi\)
0.677969 + 0.735091i \(0.262860\pi\)
\(942\) 1.49630 + 3.61238i 0.0487520 + 0.117698i
\(943\) 10.3869 + 10.3869i 0.338244 + 0.338244i
\(944\) −26.5017 26.5017i −0.862558 0.862558i
\(945\) −0.420947 1.01626i −0.0136934 0.0330588i
\(946\) 7.26685 3.01003i 0.236266 0.0978644i
\(947\) −14.3824 + 34.7223i −0.467366 + 1.12832i 0.497942 + 0.867210i \(0.334089\pi\)
−0.965309 + 0.261112i \(0.915911\pi\)
\(948\) 4.62845i 0.150325i
\(949\) 15.0834 + 6.24777i 0.489629 + 0.202811i
\(950\) −0.686292 + 0.686292i −0.0222662 + 0.0222662i
\(951\) −15.1043 −0.489789
\(952\) 0 0
\(953\) 21.2794 0.689307 0.344654 0.938730i \(-0.387996\pi\)
0.344654 + 0.938730i \(0.387996\pi\)
\(954\) −1.01250 + 1.01250i −0.0327808 + 0.0327808i
\(955\) 3.90001 + 1.61544i 0.126201 + 0.0522744i
\(956\) 10.3163i 0.333654i
\(957\) 18.1629 43.8491i 0.587122 1.41744i
\(958\) 3.19354 1.32281i 0.103179 0.0427380i
\(959\) −8.14402 19.6614i −0.262984 0.634900i
\(960\) −3.07777 3.07777i −0.0993346 0.0993346i
\(961\) −2.26096 2.26096i −0.0729341 0.0729341i
\(962\) −1.80862 4.36640i −0.0583123 0.140778i
\(963\) −12.1519 + 5.03348i −0.391589 + 0.162201i
\(964\) 4.32825 10.4493i 0.139404 0.336550i
\(965\) 1.85683i 0.0597734i
\(966\) 0.752981 + 0.311895i 0.0242268 + 0.0100351i
\(967\) 18.5488 18.5488i 0.596489 0.596489i −0.342887 0.939377i \(-0.611405\pi\)
0.939377 + 0.342887i \(0.111405\pi\)
\(968\) 11.8579 0.381128
\(969\) 0 0
\(970\) −0.430067 −0.0138086
\(971\) −14.7250 + 14.7250i −0.472549 + 0.472549i −0.902738 0.430190i \(-0.858447\pi\)
0.430190 + 0.902738i \(0.358447\pi\)
\(972\) 1.80215 + 0.746474i 0.0578039 + 0.0239432i
\(973\) 23.0650i 0.739429i
\(974\) −0.00252125 + 0.00608683i −8.07860e−5 + 0.000195035i
\(975\) 10.6396 4.40705i 0.340739 0.141139i
\(976\) 4.21214 + 10.1690i 0.134827 + 0.325502i
\(977\) −11.5187 11.5187i −0.368517 0.368517i 0.498419 0.866936i \(-0.333914\pi\)
−0.866936 + 0.498419i \(0.833914\pi\)
\(978\) 2.60651 + 2.60651i 0.0833471 + 0.0833471i
\(979\) 3.76774 + 9.09613i 0.120418 + 0.290714i
\(980\) −4.60192 + 1.90618i −0.147003 + 0.0608906i
\(981\) 6.65470 16.0659i 0.212468 0.512943i
\(982\) 1.48187i 0.0472884i
\(983\) 0.860752 + 0.356535i 0.0274537 + 0.0113717i 0.396368 0.918092i \(-0.370270\pi\)
−0.368914 + 0.929463i \(0.620270\pi\)
\(984\) 4.29628 4.29628i 0.136960 0.136960i
\(985\) 2.88620 0.0919621
\(986\) 0 0
\(987\) −14.0025 −0.445704
\(988\) 3.28622 3.28622i 0.104548 0.104548i
\(989\) 14.0199 + 5.80724i 0.445807 + 0.184659i
\(990\) 0.700037i 0.0222487i
\(991\) −8.30316 + 20.0456i −0.263759 + 0.636769i −0.999165 0.0408568i \(-0.986991\pi\)
0.735407 + 0.677626i \(0.236991\pi\)
\(992\) −12.5639 + 5.20412i −0.398903 + 0.165231i
\(993\) −8.67808 20.9507i −0.275390 0.664851i
\(994\) −0.104291 0.104291i −0.00330792 0.00330792i
\(995\) −1.10715 1.10715i −0.0350989 0.0350989i
\(996\) −9.97151 24.0733i −0.315959 0.762793i
\(997\) −2.98144 + 1.23495i −0.0944232 + 0.0391114i −0.429395 0.903117i \(-0.641273\pi\)
0.334972 + 0.942228i \(0.391273\pi\)
\(998\) 1.58552 3.82779i 0.0501888 0.121167i
\(999\) 8.48705i 0.268518i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.i.757.3 16
17.2 even 8 inner 867.2.h.i.733.3 16
17.3 odd 16 51.2.e.a.13.2 yes 8
17.4 even 4 867.2.h.k.688.1 16
17.5 odd 16 867.2.e.g.616.3 8
17.6 odd 16 867.2.a.k.1.3 4
17.7 odd 16 867.2.d.f.577.4 8
17.8 even 8 867.2.h.k.712.2 16
17.9 even 8 867.2.h.k.712.1 16
17.10 odd 16 867.2.d.f.577.3 8
17.11 odd 16 867.2.a.l.1.3 4
17.12 odd 16 51.2.e.a.4.3 8
17.13 even 4 867.2.h.k.688.2 16
17.14 odd 16 867.2.e.g.829.2 8
17.15 even 8 inner 867.2.h.i.733.4 16
17.16 even 2 inner 867.2.h.i.757.4 16
51.11 even 16 2601.2.a.be.1.2 4
51.20 even 16 153.2.f.b.64.3 8
51.23 even 16 2601.2.a.bf.1.2 4
51.29 even 16 153.2.f.b.55.2 8
68.3 even 16 816.2.bd.e.625.3 8
68.63 even 16 816.2.bd.e.769.3 8
204.71 odd 16 2448.2.be.x.1441.3 8
204.131 odd 16 2448.2.be.x.1585.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.3 8 17.12 odd 16
51.2.e.a.13.2 yes 8 17.3 odd 16
153.2.f.b.55.2 8 51.29 even 16
153.2.f.b.64.3 8 51.20 even 16
816.2.bd.e.625.3 8 68.3 even 16
816.2.bd.e.769.3 8 68.63 even 16
867.2.a.k.1.3 4 17.6 odd 16
867.2.a.l.1.3 4 17.11 odd 16
867.2.d.f.577.3 8 17.10 odd 16
867.2.d.f.577.4 8 17.7 odd 16
867.2.e.g.616.3 8 17.5 odd 16
867.2.e.g.829.2 8 17.14 odd 16
867.2.h.i.733.3 16 17.2 even 8 inner
867.2.h.i.733.4 16 17.15 even 8 inner
867.2.h.i.757.3 16 1.1 even 1 trivial
867.2.h.i.757.4 16 17.16 even 2 inner
867.2.h.k.688.1 16 17.4 even 4
867.2.h.k.688.2 16 17.13 even 4
867.2.h.k.712.1 16 17.9 even 8
867.2.h.k.712.2 16 17.8 even 8
2448.2.be.x.1441.3 8 204.71 odd 16
2448.2.be.x.1585.3 8 204.131 odd 16
2601.2.a.be.1.2 4 51.11 even 16
2601.2.a.bf.1.2 4 51.23 even 16