Properties

Label 867.2.d.f.577.4
Level $867$
Weight $2$
Character 867.577
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(577,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.4
Root \(-2.63640i\) of defining polynomial
Character \(\chi\) \(=\) 867.577
Dual form 867.2.d.f.577.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.222191 q^{2} +1.00000i q^{3} -1.95063 q^{4} -0.636405i q^{5} -0.222191i q^{6} +1.72844i q^{7} +0.877796 q^{8} -1.00000 q^{9} +0.141404i q^{10} -4.95063i q^{11} -1.95063i q^{12} +2.50625 q^{13} -0.384044i q^{14} +0.636405 q^{15} +3.70622 q^{16} +0.222191 q^{18} +0.950631 q^{19} +1.24139i q^{20} -1.72844 q^{21} +1.09999i q^{22} +2.12220i q^{23} +0.877796i q^{24} +4.59499 q^{25} -0.556867 q^{26} -1.00000i q^{27} -3.37155i q^{28} +9.58704i q^{29} -0.141404 q^{30} +5.27281i q^{31} -2.57908 q^{32} +4.95063 q^{33} +1.09999 q^{35} +1.95063 q^{36} +8.48705i q^{37} -0.211222 q^{38} +2.50625i q^{39} -0.558634i q^{40} -6.92171i q^{41} +0.384044 q^{42} -7.15061 q^{43} +9.65685i q^{44} +0.636405i q^{45} -0.471535i q^{46} +8.10124 q^{47} +3.70622i q^{48} +4.01250 q^{49} -1.02097 q^{50} -4.88877 q^{52} +6.44438 q^{53} +0.222191i q^{54} -3.15061 q^{55} +1.51722i q^{56} +0.950631i q^{57} -2.13016i q^{58} +10.1125 q^{59} -1.24139 q^{60} -2.96983i q^{61} -1.17157i q^{62} -1.72844i q^{63} -6.83940 q^{64} -1.59499i q^{65} -1.09999 q^{66} +7.70129 q^{67} -2.12220 q^{69} -0.244408 q^{70} -0.384044i q^{71} -0.877796 q^{72} +6.51420i q^{73} -1.88575i q^{74} +4.59499i q^{75} -1.85433 q^{76} +8.55687 q^{77} -0.556867i q^{78} +2.37280i q^{79} -2.35866i q^{80} +1.00000 q^{81} +1.53794i q^{82} +13.3581 q^{83} +3.37155 q^{84} +1.58880 q^{86} -9.58704 q^{87} -4.34564i q^{88} -1.98875 q^{89} -0.141404i q^{90} +4.33190i q^{91} -4.13964i q^{92} -5.27281 q^{93} -1.80002 q^{94} -0.604986i q^{95} -2.57908i q^{96} +3.04142i q^{97} -0.891542 q^{98} +4.95063i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 12 q^{4} + 12 q^{8} - 8 q^{9} + 4 q^{13} - 12 q^{15} + 12 q^{16} - 4 q^{18} - 20 q^{19} + 8 q^{21} - 4 q^{25} + 40 q^{26} - 24 q^{30} + 28 q^{32} + 12 q^{33} + 8 q^{35} - 12 q^{36} - 24 q^{38}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.222191 −0.157113 −0.0785565 0.996910i \(-0.525031\pi\)
−0.0785565 + 0.996910i \(0.525031\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −1.95063 −0.975315
\(5\) − 0.636405i − 0.284609i −0.989823 0.142304i \(-0.954549\pi\)
0.989823 0.142304i \(-0.0454512\pi\)
\(6\) − 0.222191i − 0.0907092i
\(7\) 1.72844i 0.653289i 0.945147 + 0.326644i \(0.105918\pi\)
−0.945147 + 0.326644i \(0.894082\pi\)
\(8\) 0.877796 0.310348
\(9\) −1.00000 −0.333333
\(10\) 0.141404i 0.0447158i
\(11\) − 4.95063i − 1.49267i −0.665570 0.746336i \(-0.731811\pi\)
0.665570 0.746336i \(-0.268189\pi\)
\(12\) − 1.95063i − 0.563099i
\(13\) 2.50625 0.695108 0.347554 0.937660i \(-0.387012\pi\)
0.347554 + 0.937660i \(0.387012\pi\)
\(14\) − 0.384044i − 0.102640i
\(15\) 0.636405 0.164319
\(16\) 3.70622 0.926556
\(17\) 0 0
\(18\) 0.222191 0.0523710
\(19\) 0.950631 0.218090 0.109045 0.994037i \(-0.465221\pi\)
0.109045 + 0.994037i \(0.465221\pi\)
\(20\) 1.24139i 0.277584i
\(21\) −1.72844 −0.377176
\(22\) 1.09999i 0.234518i
\(23\) 2.12220i 0.442510i 0.975216 + 0.221255i \(0.0710153\pi\)
−0.975216 + 0.221255i \(0.928985\pi\)
\(24\) 0.877796i 0.179179i
\(25\) 4.59499 0.918998
\(26\) −0.556867 −0.109211
\(27\) − 1.00000i − 0.192450i
\(28\) − 3.37155i − 0.637163i
\(29\) 9.58704i 1.78027i 0.455699 + 0.890134i \(0.349389\pi\)
−0.455699 + 0.890134i \(0.650611\pi\)
\(30\) −0.141404 −0.0258167
\(31\) 5.27281i 0.947025i 0.880787 + 0.473512i \(0.157014\pi\)
−0.880787 + 0.473512i \(0.842986\pi\)
\(32\) −2.57908 −0.455922
\(33\) 4.95063 0.861794
\(34\) 0 0
\(35\) 1.09999 0.185932
\(36\) 1.95063 0.325105
\(37\) 8.48705i 1.39526i 0.716457 + 0.697631i \(0.245763\pi\)
−0.716457 + 0.697631i \(0.754237\pi\)
\(38\) −0.211222 −0.0342647
\(39\) 2.50625i 0.401321i
\(40\) − 0.558634i − 0.0883278i
\(41\) − 6.92171i − 1.08099i −0.841347 0.540495i \(-0.818237\pi\)
0.841347 0.540495i \(-0.181763\pi\)
\(42\) 0.384044 0.0592593
\(43\) −7.15061 −1.09046 −0.545229 0.838287i \(-0.683557\pi\)
−0.545229 + 0.838287i \(0.683557\pi\)
\(44\) 9.65685i 1.45583i
\(45\) 0.636405i 0.0948696i
\(46\) − 0.471535i − 0.0695241i
\(47\) 8.10124 1.18169 0.590843 0.806786i \(-0.298795\pi\)
0.590843 + 0.806786i \(0.298795\pi\)
\(48\) 3.70622i 0.534947i
\(49\) 4.01250 0.573214
\(50\) −1.02097 −0.144387
\(51\) 0 0
\(52\) −4.88877 −0.677950
\(53\) 6.44438 0.885204 0.442602 0.896718i \(-0.354055\pi\)
0.442602 + 0.896718i \(0.354055\pi\)
\(54\) 0.222191i 0.0302364i
\(55\) −3.15061 −0.424828
\(56\) 1.51722i 0.202747i
\(57\) 0.950631i 0.125914i
\(58\) − 2.13016i − 0.279703i
\(59\) 10.1125 1.31653 0.658267 0.752785i \(-0.271290\pi\)
0.658267 + 0.752785i \(0.271290\pi\)
\(60\) −1.24139 −0.160263
\(61\) − 2.96983i − 0.380248i −0.981760 0.190124i \(-0.939111\pi\)
0.981760 0.190124i \(-0.0608890\pi\)
\(62\) − 1.17157i − 0.148790i
\(63\) − 1.72844i − 0.217763i
\(64\) −6.83940 −0.854925
\(65\) − 1.59499i − 0.197834i
\(66\) −1.09999 −0.135399
\(67\) 7.70129 0.940862 0.470431 0.882437i \(-0.344098\pi\)
0.470431 + 0.882437i \(0.344098\pi\)
\(68\) 0 0
\(69\) −2.12220 −0.255483
\(70\) −0.244408 −0.0292123
\(71\) − 0.384044i − 0.0455777i −0.999740 0.0227888i \(-0.992745\pi\)
0.999740 0.0227888i \(-0.00725454\pi\)
\(72\) −0.877796 −0.103449
\(73\) 6.51420i 0.762430i 0.924487 + 0.381215i \(0.124494\pi\)
−0.924487 + 0.381215i \(0.875506\pi\)
\(74\) − 1.88575i − 0.219214i
\(75\) 4.59499i 0.530584i
\(76\) −1.85433 −0.212706
\(77\) 8.55687 0.975145
\(78\) − 0.556867i − 0.0630527i
\(79\) 2.37280i 0.266961i 0.991051 + 0.133480i \(0.0426153\pi\)
−0.991051 + 0.133480i \(0.957385\pi\)
\(80\) − 2.35866i − 0.263706i
\(81\) 1.00000 0.111111
\(82\) 1.53794i 0.169838i
\(83\) 13.3581 1.46625 0.733123 0.680096i \(-0.238062\pi\)
0.733123 + 0.680096i \(0.238062\pi\)
\(84\) 3.37155 0.367866
\(85\) 0 0
\(86\) 1.58880 0.171325
\(87\) −9.58704 −1.02784
\(88\) − 4.34564i − 0.463247i
\(89\) −1.98875 −0.210807 −0.105404 0.994430i \(-0.533613\pi\)
−0.105404 + 0.994430i \(0.533613\pi\)
\(90\) − 0.141404i − 0.0149053i
\(91\) 4.33190i 0.454106i
\(92\) − 4.13964i − 0.431587i
\(93\) −5.27281 −0.546765
\(94\) −1.80002 −0.185658
\(95\) − 0.604986i − 0.0620703i
\(96\) − 2.57908i − 0.263227i
\(97\) 3.04142i 0.308809i 0.988008 + 0.154405i \(0.0493459\pi\)
−0.988008 + 0.154405i \(0.950654\pi\)
\(98\) −0.891542 −0.0900594
\(99\) 4.95063i 0.497557i
\(100\) −8.96313 −0.896313
\(101\) −18.5456 −1.84536 −0.922679 0.385569i \(-0.874005\pi\)
−0.922679 + 0.385569i \(0.874005\pi\)
\(102\) 0 0
\(103\) 3.39501 0.334521 0.167260 0.985913i \(-0.446508\pi\)
0.167260 + 0.985913i \(0.446508\pi\)
\(104\) 2.19998 0.215725
\(105\) 1.09999i 0.107348i
\(106\) −1.43189 −0.139077
\(107\) − 13.1531i − 1.27156i −0.771871 0.635779i \(-0.780679\pi\)
0.771871 0.635779i \(-0.219321\pi\)
\(108\) 1.95063i 0.187700i
\(109\) 17.3896i 1.66562i 0.553561 + 0.832809i \(0.313269\pi\)
−0.553561 + 0.832809i \(0.686731\pi\)
\(110\) 0.700037 0.0667460
\(111\) −8.48705 −0.805555
\(112\) 6.40598i 0.605309i
\(113\) − 0.776042i − 0.0730039i −0.999334 0.0365019i \(-0.988378\pi\)
0.999334 0.0365019i \(-0.0116215\pi\)
\(114\) − 0.211222i − 0.0197828i
\(115\) 1.35058 0.125942
\(116\) − 18.7008i − 1.73632i
\(117\) −2.50625 −0.231703
\(118\) −2.24691 −0.206845
\(119\) 0 0
\(120\) 0.558634 0.0509961
\(121\) −13.5087 −1.22807
\(122\) 0.659871i 0.0597419i
\(123\) 6.92171 0.624110
\(124\) − 10.2853i − 0.923648i
\(125\) − 6.10630i − 0.546164i
\(126\) 0.384044i 0.0342134i
\(127\) −10.8519 −0.962950 −0.481475 0.876460i \(-0.659899\pi\)
−0.481475 + 0.876460i \(0.659899\pi\)
\(128\) 6.67782 0.590242
\(129\) − 7.15061i − 0.629576i
\(130\) 0.354393i 0.0310823i
\(131\) 0.706223i 0.0617030i 0.999524 + 0.0308515i \(0.00982190\pi\)
−0.999524 + 0.0308515i \(0.990178\pi\)
\(132\) −9.65685 −0.840521
\(133\) 1.64311i 0.142476i
\(134\) −1.71116 −0.147822
\(135\) −0.636405 −0.0547730
\(136\) 0 0
\(137\) 12.3125 1.05192 0.525962 0.850508i \(-0.323705\pi\)
0.525962 + 0.850508i \(0.323705\pi\)
\(138\) 0.471535 0.0401398
\(139\) − 13.3444i − 1.13186i −0.824454 0.565928i \(-0.808518\pi\)
0.824454 0.565928i \(-0.191482\pi\)
\(140\) −2.14567 −0.181342
\(141\) 8.10124i 0.682247i
\(142\) 0.0853313i 0.00716085i
\(143\) − 12.4075i − 1.03757i
\(144\) −3.70622 −0.308852
\(145\) 6.10124 0.506680
\(146\) − 1.44740i − 0.119788i
\(147\) 4.01250i 0.330945i
\(148\) − 16.5551i − 1.36082i
\(149\) 0.356892 0.0292377 0.0146189 0.999893i \(-0.495347\pi\)
0.0146189 + 0.999893i \(0.495347\pi\)
\(150\) − 1.02097i − 0.0833616i
\(151\) −9.13317 −0.743247 −0.371624 0.928384i \(-0.621199\pi\)
−0.371624 + 0.928384i \(0.621199\pi\)
\(152\) 0.834460 0.0676837
\(153\) 0 0
\(154\) −1.90126 −0.153208
\(155\) 3.35564 0.269532
\(156\) − 4.88877i − 0.391414i
\(157\) 17.5975 1.40443 0.702216 0.711964i \(-0.252194\pi\)
0.702216 + 0.711964i \(0.252194\pi\)
\(158\) − 0.527215i − 0.0419430i
\(159\) 6.44438i 0.511073i
\(160\) 1.64134i 0.129759i
\(161\) −3.66810 −0.289087
\(162\) −0.222191 −0.0174570
\(163\) − 16.5901i − 1.29943i −0.760177 0.649717i \(-0.774888\pi\)
0.760177 0.649717i \(-0.225112\pi\)
\(164\) 13.5017i 1.05431i
\(165\) − 3.15061i − 0.245274i
\(166\) −2.96806 −0.230366
\(167\) − 14.2234i − 1.10064i −0.834953 0.550321i \(-0.814505\pi\)
0.834953 0.550321i \(-0.185495\pi\)
\(168\) −1.51722 −0.117056
\(169\) −6.71872 −0.516825
\(170\) 0 0
\(171\) −0.950631 −0.0726966
\(172\) 13.9482 1.06354
\(173\) − 1.89331i − 0.143946i −0.997407 0.0719728i \(-0.977071\pi\)
0.997407 0.0719728i \(-0.0229295\pi\)
\(174\) 2.13016 0.161487
\(175\) 7.94216i 0.600371i
\(176\) − 18.3481i − 1.38304i
\(177\) 10.1125i 0.760101i
\(178\) 0.441884 0.0331206
\(179\) 22.2469 1.66281 0.831406 0.555666i \(-0.187536\pi\)
0.831406 + 0.555666i \(0.187536\pi\)
\(180\) − 1.24139i − 0.0925278i
\(181\) 11.6142i 0.863276i 0.902047 + 0.431638i \(0.142064\pi\)
−0.902047 + 0.431638i \(0.857936\pi\)
\(182\) − 0.962511i − 0.0713460i
\(183\) 2.96983 0.219536
\(184\) 1.86286i 0.137332i
\(185\) 5.40120 0.397104
\(186\) 1.17157 0.0859039
\(187\) 0 0
\(188\) −15.8025 −1.15252
\(189\) 1.72844 0.125725
\(190\) 0.134423i 0.00975205i
\(191\) 6.63311 0.479955 0.239978 0.970778i \(-0.422860\pi\)
0.239978 + 0.970778i \(0.422860\pi\)
\(192\) − 6.83940i − 0.493591i
\(193\) − 2.91769i − 0.210020i −0.994471 0.105010i \(-0.966513\pi\)
0.994471 0.105010i \(-0.0334874\pi\)
\(194\) − 0.675776i − 0.0485179i
\(195\) 1.59499 0.114220
\(196\) −7.82690 −0.559064
\(197\) − 4.53517i − 0.323117i −0.986863 0.161559i \(-0.948348\pi\)
0.986863 0.161559i \(-0.0516521\pi\)
\(198\) − 1.09999i − 0.0781727i
\(199\) 2.46029i 0.174405i 0.996191 + 0.0872026i \(0.0277928\pi\)
−0.996191 + 0.0872026i \(0.972207\pi\)
\(200\) 4.03346 0.285209
\(201\) 7.70129i 0.543207i
\(202\) 4.12068 0.289930
\(203\) −16.5706 −1.16303
\(204\) 0 0
\(205\) −4.40501 −0.307659
\(206\) −0.754343 −0.0525576
\(207\) − 2.12220i − 0.147503i
\(208\) 9.28872 0.644057
\(209\) − 4.70622i − 0.325536i
\(210\) − 0.244408i − 0.0168657i
\(211\) − 19.9038i − 1.37023i −0.728434 0.685116i \(-0.759752\pi\)
0.728434 0.685116i \(-0.240248\pi\)
\(212\) −12.5706 −0.863353
\(213\) 0.384044 0.0263143
\(214\) 2.92251i 0.199778i
\(215\) 4.55068i 0.310354i
\(216\) − 0.877796i − 0.0597265i
\(217\) −9.11373 −0.618681
\(218\) − 3.86381i − 0.261690i
\(219\) −6.51420 −0.440189
\(220\) 6.14567 0.414341
\(221\) 0 0
\(222\) 1.88575 0.126563
\(223\) −14.3631 −0.961823 −0.480911 0.876769i \(-0.659694\pi\)
−0.480911 + 0.876769i \(0.659694\pi\)
\(224\) − 4.45779i − 0.297849i
\(225\) −4.59499 −0.306333
\(226\) 0.172430i 0.0114699i
\(227\) 10.8744i 0.721758i 0.932613 + 0.360879i \(0.117523\pi\)
−0.932613 + 0.360879i \(0.882477\pi\)
\(228\) − 1.85433i − 0.122806i
\(229\) −18.9900 −1.25489 −0.627447 0.778659i \(-0.715900\pi\)
−0.627447 + 0.778659i \(0.715900\pi\)
\(230\) −0.300087 −0.0197872
\(231\) 8.55687i 0.563000i
\(232\) 8.41546i 0.552502i
\(233\) 7.08079i 0.463878i 0.972730 + 0.231939i \(0.0745069\pi\)
−0.972730 + 0.231939i \(0.925493\pi\)
\(234\) 0.556867 0.0364035
\(235\) − 5.15567i − 0.336319i
\(236\) −19.7257 −1.28404
\(237\) −2.37280 −0.154130
\(238\) 0 0
\(239\) −5.28872 −0.342099 −0.171049 0.985262i \(-0.554716\pi\)
−0.171049 + 0.985262i \(0.554716\pi\)
\(240\) 2.35866 0.152251
\(241\) 5.79826i 0.373499i 0.982408 + 0.186749i \(0.0597952\pi\)
−0.982408 + 0.186749i \(0.940205\pi\)
\(242\) 3.00153 0.192945
\(243\) 1.00000i 0.0641500i
\(244\) 5.79304i 0.370862i
\(245\) − 2.55357i − 0.163142i
\(246\) −1.53794 −0.0980558
\(247\) 2.38252 0.151596
\(248\) 4.62845i 0.293907i
\(249\) 13.3581i 0.846538i
\(250\) 1.35677i 0.0858095i
\(251\) −8.33190 −0.525905 −0.262952 0.964809i \(-0.584696\pi\)
−0.262952 + 0.964809i \(0.584696\pi\)
\(252\) 3.37155i 0.212388i
\(253\) 10.5062 0.660522
\(254\) 2.41120 0.151292
\(255\) 0 0
\(256\) 12.1950 0.762190
\(257\) 4.25565 0.265460 0.132730 0.991152i \(-0.457626\pi\)
0.132730 + 0.991152i \(0.457626\pi\)
\(258\) 1.58880i 0.0989146i
\(259\) −14.6694 −0.911509
\(260\) 3.11123i 0.192951i
\(261\) − 9.58704i − 0.593423i
\(262\) − 0.156917i − 0.00969435i
\(263\) 9.09999 0.561129 0.280565 0.959835i \(-0.409478\pi\)
0.280565 + 0.959835i \(0.409478\pi\)
\(264\) 4.34564 0.267456
\(265\) − 4.10124i − 0.251937i
\(266\) − 0.365084i − 0.0223848i
\(267\) − 1.98875i − 0.121710i
\(268\) −15.0224 −0.917637
\(269\) 21.3820i 1.30368i 0.758355 + 0.651842i \(0.226003\pi\)
−0.758355 + 0.651842i \(0.773997\pi\)
\(270\) 0.141404 0.00860555
\(271\) −19.3213 −1.17368 −0.586842 0.809702i \(-0.699629\pi\)
−0.586842 + 0.809702i \(0.699629\pi\)
\(272\) 0 0
\(273\) −4.33190 −0.262178
\(274\) −2.73572 −0.165271
\(275\) − 22.7481i − 1.37176i
\(276\) 4.13964 0.249177
\(277\) 3.34013i 0.200689i 0.994953 + 0.100344i \(0.0319945\pi\)
−0.994953 + 0.100344i \(0.968006\pi\)
\(278\) 2.96501i 0.177829i
\(279\) − 5.27281i − 0.315675i
\(280\) 0.965565 0.0577035
\(281\) −4.67754 −0.279039 −0.139519 0.990219i \(-0.544556\pi\)
−0.139519 + 0.990219i \(0.544556\pi\)
\(282\) − 1.80002i − 0.107190i
\(283\) − 10.0582i − 0.597897i −0.954269 0.298948i \(-0.903364\pi\)
0.954269 0.298948i \(-0.0966358\pi\)
\(284\) 0.749129i 0.0444526i
\(285\) 0.604986 0.0358363
\(286\) 2.75684i 0.163015i
\(287\) 11.9638 0.706198
\(288\) 2.57908 0.151974
\(289\) 0 0
\(290\) −1.35564 −0.0796061
\(291\) −3.04142 −0.178291
\(292\) − 12.7068i − 0.743609i
\(293\) 5.76934 0.337048 0.168524 0.985698i \(-0.446100\pi\)
0.168524 + 0.985698i \(0.446100\pi\)
\(294\) − 0.891542i − 0.0519958i
\(295\) − 6.43563i − 0.374697i
\(296\) 7.44990i 0.433017i
\(297\) −4.95063 −0.287265
\(298\) −0.0792983 −0.00459363
\(299\) 5.31877i 0.307592i
\(300\) − 8.96313i − 0.517486i
\(301\) − 12.3594i − 0.712383i
\(302\) 2.02931 0.116774
\(303\) − 18.5456i − 1.06542i
\(304\) 3.52325 0.202072
\(305\) −1.89001 −0.108222
\(306\) 0 0
\(307\) −13.2375 −0.755502 −0.377751 0.925907i \(-0.623302\pi\)
−0.377751 + 0.925907i \(0.623302\pi\)
\(308\) −16.6913 −0.951074
\(309\) 3.39501i 0.193136i
\(310\) −0.745595 −0.0423469
\(311\) − 1.29530i − 0.0734499i −0.999325 0.0367250i \(-0.988307\pi\)
0.999325 0.0367250i \(-0.0116926\pi\)
\(312\) 2.19998i 0.124549i
\(313\) 19.1007i 1.07964i 0.841782 + 0.539818i \(0.181507\pi\)
−0.841782 + 0.539818i \(0.818493\pi\)
\(314\) −3.91001 −0.220655
\(315\) −1.09999 −0.0619773
\(316\) − 4.62845i − 0.260371i
\(317\) − 15.1043i − 0.848339i −0.905583 0.424170i \(-0.860566\pi\)
0.905583 0.424170i \(-0.139434\pi\)
\(318\) − 1.43189i − 0.0802962i
\(319\) 47.4619 2.65735
\(320\) 4.35263i 0.243319i
\(321\) 13.1531 0.734135
\(322\) 0.815020 0.0454193
\(323\) 0 0
\(324\) −1.95063 −0.108368
\(325\) 11.5162 0.638803
\(326\) 3.68617i 0.204158i
\(327\) −17.3896 −0.961645
\(328\) − 6.07585i − 0.335483i
\(329\) 14.0025i 0.771983i
\(330\) 0.700037i 0.0385358i
\(331\) 22.6769 1.24644 0.623218 0.782048i \(-0.285825\pi\)
0.623218 + 0.782048i \(0.285825\pi\)
\(332\) −26.0568 −1.43005
\(333\) − 8.48705i − 0.465087i
\(334\) 3.16033i 0.172925i
\(335\) − 4.90114i − 0.267778i
\(336\) −6.40598 −0.349475
\(337\) − 1.61669i − 0.0880666i −0.999030 0.0440333i \(-0.985979\pi\)
0.999030 0.0440333i \(-0.0140208\pi\)
\(338\) 1.49284 0.0811999
\(339\) 0.776042 0.0421488
\(340\) 0 0
\(341\) 26.1037 1.41360
\(342\) 0.211222 0.0114216
\(343\) 19.0344i 1.02776i
\(344\) −6.27677 −0.338421
\(345\) 1.35058i 0.0727128i
\(346\) 0.420677i 0.0226157i
\(347\) 15.3606i 0.824602i 0.911048 + 0.412301i \(0.135275\pi\)
−0.911048 + 0.412301i \(0.864725\pi\)
\(348\) 18.7008 1.00247
\(349\) 15.1087 0.808749 0.404374 0.914594i \(-0.367489\pi\)
0.404374 + 0.914594i \(0.367489\pi\)
\(350\) − 1.76468i − 0.0943261i
\(351\) − 2.50625i − 0.133774i
\(352\) 12.7681i 0.680541i
\(353\) −31.2482 −1.66317 −0.831586 0.555396i \(-0.812567\pi\)
−0.831586 + 0.555396i \(0.812567\pi\)
\(354\) − 2.24691i − 0.119422i
\(355\) −0.244408 −0.0129718
\(356\) 3.87932 0.205604
\(357\) 0 0
\(358\) −4.94307 −0.261249
\(359\) −2.72503 −0.143822 −0.0719108 0.997411i \(-0.522910\pi\)
−0.0719108 + 0.997411i \(0.522910\pi\)
\(360\) 0.558634i 0.0294426i
\(361\) −18.0963 −0.952437
\(362\) − 2.58057i − 0.135632i
\(363\) − 13.5087i − 0.709025i
\(364\) − 8.44994i − 0.442897i
\(365\) 4.14567 0.216994
\(366\) −0.659871 −0.0344920
\(367\) 18.4515i 0.963163i 0.876401 + 0.481581i \(0.159937\pi\)
−0.876401 + 0.481581i \(0.840063\pi\)
\(368\) 7.86536i 0.410010i
\(369\) 6.92171i 0.360330i
\(370\) −1.20010 −0.0623902
\(371\) 11.1387i 0.578294i
\(372\) 10.2853 0.533268
\(373\) 24.4049 1.26364 0.631820 0.775115i \(-0.282308\pi\)
0.631820 + 0.775115i \(0.282308\pi\)
\(374\) 0 0
\(375\) 6.10630 0.315328
\(376\) 7.11123 0.366734
\(377\) 24.0275i 1.23748i
\(378\) −0.384044 −0.0197531
\(379\) − 5.89057i − 0.302578i −0.988490 0.151289i \(-0.951658\pi\)
0.988490 0.151289i \(-0.0483425\pi\)
\(380\) 1.18010i 0.0605381i
\(381\) − 10.8519i − 0.555959i
\(382\) −1.47382 −0.0754072
\(383\) −30.7756 −1.57256 −0.786279 0.617871i \(-0.787995\pi\)
−0.786279 + 0.617871i \(0.787995\pi\)
\(384\) 6.67782i 0.340776i
\(385\) − 5.44563i − 0.277535i
\(386\) 0.648284i 0.0329968i
\(387\) 7.15061 0.363486
\(388\) − 5.93268i − 0.301186i
\(389\) −19.5244 −0.989925 −0.494963 0.868914i \(-0.664818\pi\)
−0.494963 + 0.868914i \(0.664818\pi\)
\(390\) −0.354393 −0.0179454
\(391\) 0 0
\(392\) 3.52215 0.177896
\(393\) −0.706223 −0.0356243
\(394\) 1.00768i 0.0507659i
\(395\) 1.51006 0.0759794
\(396\) − 9.65685i − 0.485275i
\(397\) 0.904279i 0.0453844i 0.999742 + 0.0226922i \(0.00722378\pi\)
−0.999742 + 0.0226922i \(0.992776\pi\)
\(398\) − 0.546655i − 0.0274013i
\(399\) −1.64311 −0.0822583
\(400\) 17.0301 0.851503
\(401\) − 1.26486i − 0.0631639i −0.999501 0.0315820i \(-0.989945\pi\)
0.999501 0.0315820i \(-0.0100545\pi\)
\(402\) − 1.71116i − 0.0853449i
\(403\) 13.2150i 0.658285i
\(404\) 36.1757 1.79981
\(405\) − 0.636405i − 0.0316232i
\(406\) 3.68185 0.182727
\(407\) 42.0162 2.08267
\(408\) 0 0
\(409\) 28.6350 1.41591 0.707954 0.706258i \(-0.249618\pi\)
0.707954 + 0.706258i \(0.249618\pi\)
\(410\) 0.978756 0.0483373
\(411\) 12.3125i 0.607329i
\(412\) −6.62242 −0.326263
\(413\) 17.4788i 0.860076i
\(414\) 0.471535i 0.0231747i
\(415\) − 8.50119i − 0.417307i
\(416\) −6.46382 −0.316915
\(417\) 13.3444 0.653478
\(418\) 1.04568i 0.0511460i
\(419\) − 23.9581i − 1.17043i −0.810879 0.585214i \(-0.801010\pi\)
0.810879 0.585214i \(-0.198990\pi\)
\(420\) − 2.14567i − 0.104698i
\(421\) −12.5312 −0.610735 −0.305368 0.952235i \(-0.598779\pi\)
−0.305368 + 0.952235i \(0.598779\pi\)
\(422\) 4.42244i 0.215281i
\(423\) −8.10124 −0.393896
\(424\) 5.65685 0.274721
\(425\) 0 0
\(426\) −0.0853313 −0.00413432
\(427\) 5.13317 0.248412
\(428\) 25.6569i 1.24017i
\(429\) 12.4075 0.599040
\(430\) − 1.01112i − 0.0487606i
\(431\) 17.6728i 0.851267i 0.904896 + 0.425633i \(0.139949\pi\)
−0.904896 + 0.425633i \(0.860051\pi\)
\(432\) − 3.70622i − 0.178316i
\(433\) 14.0076 0.673160 0.336580 0.941655i \(-0.390730\pi\)
0.336580 + 0.941655i \(0.390730\pi\)
\(434\) 2.02499 0.0972028
\(435\) 6.10124i 0.292532i
\(436\) − 33.9206i − 1.62450i
\(437\) 2.01743i 0.0965069i
\(438\) 1.44740 0.0691594
\(439\) − 11.5740i − 0.552398i −0.961100 0.276199i \(-0.910925\pi\)
0.961100 0.276199i \(-0.0890749\pi\)
\(440\) −2.76559 −0.131844
\(441\) −4.01250 −0.191071
\(442\) 0 0
\(443\) −35.6174 −1.69223 −0.846117 0.532997i \(-0.821066\pi\)
−0.846117 + 0.532997i \(0.821066\pi\)
\(444\) 16.5551 0.785670
\(445\) 1.26565i 0.0599977i
\(446\) 3.19135 0.151115
\(447\) 0.356892i 0.0168804i
\(448\) − 11.8215i − 0.558513i
\(449\) 22.1461i 1.04514i 0.852597 + 0.522569i \(0.175026\pi\)
−0.852597 + 0.522569i \(0.824974\pi\)
\(450\) 1.02097 0.0481288
\(451\) −34.2668 −1.61356
\(452\) 1.51377i 0.0712018i
\(453\) − 9.13317i − 0.429114i
\(454\) − 2.41619i − 0.113398i
\(455\) 2.75684 0.129243
\(456\) 0.834460i 0.0390772i
\(457\) −9.90632 −0.463398 −0.231699 0.972787i \(-0.574428\pi\)
−0.231699 + 0.972787i \(0.574428\pi\)
\(458\) 4.21941 0.197160
\(459\) 0 0
\(460\) −2.63449 −0.122834
\(461\) 9.62367 0.448219 0.224109 0.974564i \(-0.428053\pi\)
0.224109 + 0.974564i \(0.428053\pi\)
\(462\) − 1.90126i − 0.0884547i
\(463\) 15.3013 0.711113 0.355557 0.934655i \(-0.384291\pi\)
0.355557 + 0.934655i \(0.384291\pi\)
\(464\) 35.5317i 1.64952i
\(465\) 3.35564i 0.155614i
\(466\) − 1.57329i − 0.0728812i
\(467\) 22.3150 1.03261 0.516307 0.856404i \(-0.327307\pi\)
0.516307 + 0.856404i \(0.327307\pi\)
\(468\) 4.88877 0.225983
\(469\) 13.3112i 0.614655i
\(470\) 1.14554i 0.0528400i
\(471\) 17.5975i 0.810849i
\(472\) 8.87670 0.408583
\(473\) 35.4000i 1.62769i
\(474\) 0.527215 0.0242158
\(475\) 4.36814 0.200424
\(476\) 0 0
\(477\) −6.44438 −0.295068
\(478\) 1.17511 0.0537481
\(479\) − 15.5571i − 0.710824i −0.934710 0.355412i \(-0.884341\pi\)
0.934710 0.355412i \(-0.115659\pi\)
\(480\) −1.64134 −0.0749166
\(481\) 21.2707i 0.969858i
\(482\) − 1.28832i − 0.0586815i
\(483\) − 3.66810i − 0.166904i
\(484\) 26.3506 1.19775
\(485\) 1.93557 0.0878898
\(486\) − 0.222191i − 0.0100788i
\(487\) 0.0296516i 0.00134364i 1.00000 0.000671822i \(0.000213848\pi\)
−1.00000 0.000671822i \(0.999786\pi\)
\(488\) − 2.60691i − 0.118009i
\(489\) 16.5901 0.750228
\(490\) 0.567382i 0.0256317i
\(491\) −6.66935 −0.300984 −0.150492 0.988611i \(-0.548086\pi\)
−0.150492 + 0.988611i \(0.548086\pi\)
\(492\) −13.5017 −0.608704
\(493\) 0 0
\(494\) −0.529375 −0.0238177
\(495\) 3.15061 0.141609
\(496\) 19.5422i 0.877471i
\(497\) 0.663798 0.0297754
\(498\) − 2.96806i − 0.133002i
\(499\) 18.6469i 0.834748i 0.908735 + 0.417374i \(0.137049\pi\)
−0.908735 + 0.417374i \(0.862951\pi\)
\(500\) 11.9111i 0.532682i
\(501\) 14.2234 0.635456
\(502\) 1.85128 0.0826265
\(503\) − 25.7396i − 1.14767i −0.818970 0.573837i \(-0.805454\pi\)
0.818970 0.573837i \(-0.194546\pi\)
\(504\) − 1.51722i − 0.0675822i
\(505\) 11.8025i 0.525205i
\(506\) −2.33440 −0.103777
\(507\) − 6.71872i − 0.298389i
\(508\) 21.1680 0.939180
\(509\) 41.1950 1.82594 0.912968 0.408032i \(-0.133785\pi\)
0.912968 + 0.408032i \(0.133785\pi\)
\(510\) 0 0
\(511\) −11.2594 −0.498087
\(512\) −16.0653 −0.709992
\(513\) − 0.950631i − 0.0419714i
\(514\) −0.945570 −0.0417073
\(515\) − 2.16060i − 0.0952076i
\(516\) 13.9482i 0.614035i
\(517\) − 40.1062i − 1.76387i
\(518\) 3.25940 0.143210
\(519\) 1.89331 0.0831070
\(520\) − 1.40007i − 0.0613973i
\(521\) − 8.98205i − 0.393511i −0.980453 0.196755i \(-0.936960\pi\)
0.980453 0.196755i \(-0.0630405\pi\)
\(522\) 2.13016i 0.0932344i
\(523\) −5.38995 −0.235686 −0.117843 0.993032i \(-0.537598\pi\)
−0.117843 + 0.993032i \(0.537598\pi\)
\(524\) − 1.37758i − 0.0601799i
\(525\) −7.94216 −0.346624
\(526\) −2.02194 −0.0881607
\(527\) 0 0
\(528\) 18.3481 0.798500
\(529\) 18.4963 0.804185
\(530\) 0.911259i 0.0395826i
\(531\) −10.1125 −0.438844
\(532\) − 3.20510i − 0.138959i
\(533\) − 17.3475i − 0.751405i
\(534\) 0.441884i 0.0191222i
\(535\) −8.37070 −0.361897
\(536\) 6.76016 0.291994
\(537\) 22.2469i 0.960025i
\(538\) − 4.75090i − 0.204826i
\(539\) − 19.8644i − 0.855620i
\(540\) 1.24139 0.0534210
\(541\) 1.22765i 0.0527806i 0.999652 + 0.0263903i \(0.00840127\pi\)
−0.999652 + 0.0263903i \(0.991599\pi\)
\(542\) 4.29302 0.184401
\(543\) −11.6142 −0.498413
\(544\) 0 0
\(545\) 11.0668 0.474050
\(546\) 0.962511 0.0411916
\(547\) 13.5274i 0.578391i 0.957270 + 0.289196i \(0.0933878\pi\)
−0.957270 + 0.289196i \(0.906612\pi\)
\(548\) −24.0171 −1.02596
\(549\) 2.96983i 0.126749i
\(550\) 5.05443i 0.215522i
\(551\) 9.11373i 0.388258i
\(552\) −1.86286 −0.0792887
\(553\) −4.10124 −0.174402
\(554\) − 0.742148i − 0.0315308i
\(555\) 5.40120i 0.229268i
\(556\) 26.0300i 1.10392i
\(557\) −18.3599 −0.777936 −0.388968 0.921251i \(-0.627168\pi\)
−0.388968 + 0.921251i \(0.627168\pi\)
\(558\) 1.17157i 0.0495966i
\(559\) −17.9212 −0.757986
\(560\) 4.07680 0.172276
\(561\) 0 0
\(562\) 1.03931 0.0438406
\(563\) −3.33315 −0.140475 −0.0702377 0.997530i \(-0.522376\pi\)
−0.0702377 + 0.997530i \(0.522376\pi\)
\(564\) − 15.8025i − 0.665406i
\(565\) −0.493877 −0.0207775
\(566\) 2.23484i 0.0939374i
\(567\) 1.72844i 0.0725876i
\(568\) − 0.337113i − 0.0141449i
\(569\) −29.4369 −1.23406 −0.617029 0.786940i \(-0.711664\pi\)
−0.617029 + 0.786940i \(0.711664\pi\)
\(570\) −0.134423 −0.00563035
\(571\) 25.8275i 1.08085i 0.841393 + 0.540424i \(0.181736\pi\)
−0.841393 + 0.540424i \(0.818264\pi\)
\(572\) 24.2025i 1.01196i
\(573\) 6.63311i 0.277102i
\(574\) −2.65824 −0.110953
\(575\) 9.75150i 0.406666i
\(576\) 6.83940 0.284975
\(577\) −22.1850 −0.923575 −0.461788 0.886990i \(-0.652792\pi\)
−0.461788 + 0.886990i \(0.652792\pi\)
\(578\) 0 0
\(579\) 2.91769 0.121255
\(580\) −11.9013 −0.494173
\(581\) 23.0887i 0.957882i
\(582\) 0.675776 0.0280118
\(583\) − 31.9038i − 1.32132i
\(584\) 5.71814i 0.236618i
\(585\) 1.59499i 0.0659447i
\(586\) −1.28190 −0.0529547
\(587\) −32.1482 −1.32690 −0.663448 0.748222i \(-0.730908\pi\)
−0.663448 + 0.748222i \(0.730908\pi\)
\(588\) − 7.82690i − 0.322776i
\(589\) 5.01250i 0.206536i
\(590\) 1.42994i 0.0588698i
\(591\) 4.53517 0.186552
\(592\) 31.4549i 1.29279i
\(593\) 29.3406 1.20488 0.602438 0.798166i \(-0.294196\pi\)
0.602438 + 0.798166i \(0.294196\pi\)
\(594\) 1.09999 0.0451330
\(595\) 0 0
\(596\) −0.696164 −0.0285160
\(597\) −2.46029 −0.100693
\(598\) − 1.18178i − 0.0483268i
\(599\) −36.2632 −1.48167 −0.740836 0.671686i \(-0.765570\pi\)
−0.740836 + 0.671686i \(0.765570\pi\)
\(600\) 4.03346i 0.164665i
\(601\) − 45.7383i − 1.86570i −0.360262 0.932851i \(-0.617313\pi\)
0.360262 0.932851i \(-0.382687\pi\)
\(602\) 2.74615i 0.111925i
\(603\) −7.70129 −0.313621
\(604\) 17.8155 0.724900
\(605\) 8.59703i 0.349519i
\(606\) 4.12068i 0.167391i
\(607\) − 33.6640i − 1.36638i −0.730241 0.683190i \(-0.760592\pi\)
0.730241 0.683190i \(-0.239408\pi\)
\(608\) −2.45176 −0.0994318
\(609\) − 16.5706i − 0.671475i
\(610\) 0.419945 0.0170031
\(611\) 20.3037 0.821400
\(612\) 0 0
\(613\) −5.89120 −0.237943 −0.118972 0.992898i \(-0.537960\pi\)
−0.118972 + 0.992898i \(0.537960\pi\)
\(614\) 2.94125 0.118699
\(615\) − 4.40501i − 0.177627i
\(616\) 7.51118 0.302634
\(617\) − 35.2179i − 1.41782i −0.705300 0.708909i \(-0.749188\pi\)
0.705300 0.708909i \(-0.250812\pi\)
\(618\) − 0.754343i − 0.0303441i
\(619\) 32.8288i 1.31950i 0.751485 + 0.659750i \(0.229338\pi\)
−0.751485 + 0.659750i \(0.770662\pi\)
\(620\) −6.54562 −0.262878
\(621\) 2.12220 0.0851611
\(622\) 0.287805i 0.0115399i
\(623\) − 3.43744i − 0.137718i
\(624\) 9.28872i 0.371846i
\(625\) 19.0889 0.763555
\(626\) − 4.24402i − 0.169625i
\(627\) 4.70622 0.187948
\(628\) −34.3262 −1.36976
\(629\) 0 0
\(630\) 0.244408 0.00973744
\(631\) −10.7057 −0.426186 −0.213093 0.977032i \(-0.568354\pi\)
−0.213093 + 0.977032i \(0.568354\pi\)
\(632\) 2.08283i 0.0828506i
\(633\) 19.9038 0.791103
\(634\) 3.35603i 0.133285i
\(635\) 6.90620i 0.274064i
\(636\) − 12.5706i − 0.498457i
\(637\) 10.0563 0.398446
\(638\) −10.5456 −0.417505
\(639\) 0.384044i 0.0151926i
\(640\) − 4.24980i − 0.167988i
\(641\) − 36.9437i − 1.45919i −0.683881 0.729593i \(-0.739709\pi\)
0.683881 0.729593i \(-0.260291\pi\)
\(642\) −2.92251 −0.115342
\(643\) − 39.3137i − 1.55038i −0.631727 0.775191i \(-0.717654\pi\)
0.631727 0.775191i \(-0.282346\pi\)
\(644\) 7.15511 0.281951
\(645\) −4.55068 −0.179183
\(646\) 0 0
\(647\) −14.8806 −0.585016 −0.292508 0.956263i \(-0.594490\pi\)
−0.292508 + 0.956263i \(0.594490\pi\)
\(648\) 0.877796 0.0344831
\(649\) − 50.0632i − 1.96515i
\(650\) −2.55880 −0.100364
\(651\) − 9.11373i − 0.357195i
\(652\) 32.3611i 1.26736i
\(653\) − 24.2908i − 0.950571i −0.879832 0.475285i \(-0.842345\pi\)
0.879832 0.475285i \(-0.157655\pi\)
\(654\) 3.86381 0.151087
\(655\) 0.449444 0.0175612
\(656\) − 25.6534i − 1.00160i
\(657\) − 6.51420i − 0.254143i
\(658\) − 3.11123i − 0.121289i
\(659\) −9.14192 −0.356119 −0.178059 0.984020i \(-0.556982\pi\)
−0.178059 + 0.984020i \(0.556982\pi\)
\(660\) 6.14567i 0.239220i
\(661\) 16.7951 0.653253 0.326627 0.945153i \(-0.394088\pi\)
0.326627 + 0.945153i \(0.394088\pi\)
\(662\) −5.03861 −0.195831
\(663\) 0 0
\(664\) 11.7257 0.455046
\(665\) 1.04568 0.0405498
\(666\) 1.88575i 0.0730713i
\(667\) −20.3456 −0.787787
\(668\) 27.7447i 1.07347i
\(669\) − 14.3631i − 0.555309i
\(670\) 1.08899i 0.0420714i
\(671\) −14.7025 −0.567585
\(672\) 4.45779 0.171963
\(673\) − 18.6313i − 0.718186i −0.933302 0.359093i \(-0.883086\pi\)
0.933302 0.359093i \(-0.116914\pi\)
\(674\) 0.359214i 0.0138364i
\(675\) − 4.59499i − 0.176861i
\(676\) 13.1057 0.504067
\(677\) 10.8010i 0.415117i 0.978223 + 0.207559i \(0.0665518\pi\)
−0.978223 + 0.207559i \(0.933448\pi\)
\(678\) −0.172430 −0.00662212
\(679\) −5.25690 −0.201741
\(680\) 0 0
\(681\) −10.8744 −0.416707
\(682\) −5.80002 −0.222094
\(683\) − 22.2199i − 0.850221i −0.905141 0.425111i \(-0.860235\pi\)
0.905141 0.425111i \(-0.139765\pi\)
\(684\) 1.85433 0.0709021
\(685\) − 7.83571i − 0.299387i
\(686\) − 4.22929i − 0.161475i
\(687\) − 18.9900i − 0.724514i
\(688\) −26.5017 −1.01037
\(689\) 16.1512 0.615313
\(690\) − 0.300087i − 0.0114241i
\(691\) 38.5413i 1.46618i 0.680132 + 0.733090i \(0.261923\pi\)
−0.680132 + 0.733090i \(0.738077\pi\)
\(692\) 3.69315i 0.140392i
\(693\) −8.55687 −0.325048
\(694\) − 3.41300i − 0.129556i
\(695\) −8.49244 −0.322137
\(696\) −8.41546 −0.318987
\(697\) 0 0
\(698\) −3.35702 −0.127065
\(699\) −7.08079 −0.267820
\(700\) − 15.4922i − 0.585551i
\(701\) 18.0843 0.683034 0.341517 0.939876i \(-0.389059\pi\)
0.341517 + 0.939876i \(0.389059\pi\)
\(702\) 0.556867i 0.0210176i
\(703\) 8.06805i 0.304292i
\(704\) 33.8593i 1.27612i
\(705\) 5.15567 0.194174
\(706\) 6.94307 0.261306
\(707\) − 32.0550i − 1.20555i
\(708\) − 19.7257i − 0.741338i
\(709\) 52.2614i 1.96272i 0.192185 + 0.981359i \(0.438443\pi\)
−0.192185 + 0.981359i \(0.561557\pi\)
\(710\) 0.0543053 0.00203804
\(711\) − 2.37280i − 0.0889869i
\(712\) −1.74572 −0.0654236
\(713\) −11.1900 −0.419068
\(714\) 0 0
\(715\) −7.89620 −0.295301
\(716\) −43.3955 −1.62177
\(717\) − 5.28872i − 0.197511i
\(718\) 0.605478 0.0225962
\(719\) 2.25831i 0.0842206i 0.999113 + 0.0421103i \(0.0134081\pi\)
−0.999113 + 0.0421103i \(0.986592\pi\)
\(720\) 2.35866i 0.0879020i
\(721\) 5.86808i 0.218539i
\(722\) 4.02084 0.149640
\(723\) −5.79826 −0.215640
\(724\) − 22.6550i − 0.841966i
\(725\) 44.0523i 1.63606i
\(726\) 3.00153i 0.111397i
\(727\) −39.5601 −1.46720 −0.733601 0.679581i \(-0.762162\pi\)
−0.733601 + 0.679581i \(0.762162\pi\)
\(728\) 3.80252i 0.140931i
\(729\) −1.00000 −0.0370370
\(730\) −0.921132 −0.0340926
\(731\) 0 0
\(732\) −5.79304 −0.214117
\(733\) 13.5137 0.499139 0.249570 0.968357i \(-0.419711\pi\)
0.249570 + 0.968357i \(0.419711\pi\)
\(734\) − 4.09977i − 0.151325i
\(735\) 2.55357 0.0941899
\(736\) − 5.47334i − 0.201750i
\(737\) − 38.1262i − 1.40440i
\(738\) − 1.53794i − 0.0566125i
\(739\) 10.7282 0.394642 0.197321 0.980339i \(-0.436776\pi\)
0.197321 + 0.980339i \(0.436776\pi\)
\(740\) −10.5357 −0.387302
\(741\) 2.38252i 0.0875240i
\(742\) − 2.47493i − 0.0908575i
\(743\) − 43.9921i − 1.61392i −0.590609 0.806958i \(-0.701113\pi\)
0.590609 0.806958i \(-0.298887\pi\)
\(744\) −4.62845 −0.169687
\(745\) − 0.227128i − 0.00832131i
\(746\) −5.42257 −0.198534
\(747\) −13.3581 −0.488749
\(748\) 0 0
\(749\) 22.7343 0.830695
\(750\) −1.35677 −0.0495421
\(751\) − 12.5047i − 0.456304i −0.973626 0.228152i \(-0.926732\pi\)
0.973626 0.228152i \(-0.0732683\pi\)
\(752\) 30.0250 1.09490
\(753\) − 8.33190i − 0.303631i
\(754\) − 5.33870i − 0.194424i
\(755\) 5.81240i 0.211535i
\(756\) −3.37155 −0.122622
\(757\) 35.8474 1.30290 0.651449 0.758693i \(-0.274162\pi\)
0.651449 + 0.758693i \(0.274162\pi\)
\(758\) 1.30883i 0.0475390i
\(759\) 10.5062i 0.381353i
\(760\) − 0.531055i − 0.0192634i
\(761\) −23.4468 −0.849944 −0.424972 0.905206i \(-0.639716\pi\)
−0.424972 + 0.905206i \(0.639716\pi\)
\(762\) 2.41120i 0.0873485i
\(763\) −30.0568 −1.08813
\(764\) −12.9388 −0.468108
\(765\) 0 0
\(766\) 6.83807 0.247070
\(767\) 25.3444 0.915133
\(768\) 12.1950i 0.440051i
\(769\) 22.8938 0.825573 0.412786 0.910828i \(-0.364556\pi\)
0.412786 + 0.910828i \(0.364556\pi\)
\(770\) 1.20997i 0.0436044i
\(771\) 4.25565i 0.153264i
\(772\) 5.69133i 0.204835i
\(773\) −34.1287 −1.22753 −0.613763 0.789491i \(-0.710345\pi\)
−0.613763 + 0.789491i \(0.710345\pi\)
\(774\) −1.58880 −0.0571083
\(775\) 24.2285i 0.870313i
\(776\) 2.66974i 0.0958382i
\(777\) − 14.6694i − 0.526260i
\(778\) 4.33815 0.155530
\(779\) − 6.57999i − 0.235753i
\(780\) −3.11123 −0.111400
\(781\) −1.90126 −0.0680325
\(782\) 0 0
\(783\) 9.58704 0.342613
\(784\) 14.8712 0.531115
\(785\) − 11.1991i − 0.399714i
\(786\) 0.156917 0.00559703
\(787\) 13.1730i 0.469568i 0.972048 + 0.234784i \(0.0754383\pi\)
−0.972048 + 0.234784i \(0.924562\pi\)
\(788\) 8.84644i 0.315141i
\(789\) 9.09999i 0.323968i
\(790\) −0.335522 −0.0119373
\(791\) 1.34134 0.0476926
\(792\) 4.34564i 0.154416i
\(793\) − 7.44313i − 0.264313i
\(794\) − 0.200923i − 0.00713049i
\(795\) 4.10124 0.145456
\(796\) − 4.79911i − 0.170100i
\(797\) −36.3506 −1.28761 −0.643803 0.765191i \(-0.722644\pi\)
−0.643803 + 0.765191i \(0.722644\pi\)
\(798\) 0.365084 0.0129239
\(799\) 0 0
\(800\) −11.8509 −0.418991
\(801\) 1.98875 0.0702691
\(802\) 0.281040i 0.00992388i
\(803\) 32.2494 1.13806
\(804\) − 15.0224i − 0.529798i
\(805\) 2.33440i 0.0822767i
\(806\) − 2.93625i − 0.103425i
\(807\) −21.3820 −0.752682
\(808\) −16.2793 −0.572703
\(809\) 45.1267i 1.58657i 0.608851 + 0.793285i \(0.291631\pi\)
−0.608851 + 0.793285i \(0.708369\pi\)
\(810\) 0.141404i 0.00496842i
\(811\) − 3.32815i − 0.116867i −0.998291 0.0584336i \(-0.981389\pi\)
0.998291 0.0584336i \(-0.0186106\pi\)
\(812\) 32.3232 1.13432
\(813\) − 19.3213i − 0.677626i
\(814\) −9.33565 −0.327214
\(815\) −10.5580 −0.369830
\(816\) 0 0
\(817\) −6.79759 −0.237817
\(818\) −6.36244 −0.222458
\(819\) − 4.33190i − 0.151369i
\(820\) 8.59255 0.300065
\(821\) − 7.46983i − 0.260699i −0.991468 0.130349i \(-0.958390\pi\)
0.991468 0.130349i \(-0.0416099\pi\)
\(822\) − 2.73572i − 0.0954193i
\(823\) − 54.1834i − 1.88871i −0.328923 0.944357i \(-0.606686\pi\)
0.328923 0.944357i \(-0.393314\pi\)
\(824\) 2.98013 0.103818
\(825\) 22.7481 0.791987
\(826\) − 3.88364i − 0.135129i
\(827\) 4.95063i 0.172150i 0.996289 + 0.0860752i \(0.0274325\pi\)
−0.996289 + 0.0860752i \(0.972567\pi\)
\(828\) 4.13964i 0.143862i
\(829\) −0.0762440 −0.00264806 −0.00132403 0.999999i \(-0.500421\pi\)
−0.00132403 + 0.999999i \(0.500421\pi\)
\(830\) 1.88889i 0.0655643i
\(831\) −3.34013 −0.115868
\(832\) −17.1412 −0.594265
\(833\) 0 0
\(834\) −2.96501 −0.102670
\(835\) −9.05187 −0.313253
\(836\) 9.18010i 0.317501i
\(837\) 5.27281 0.182255
\(838\) 5.32328i 0.183890i
\(839\) 36.4479i 1.25832i 0.777276 + 0.629160i \(0.216601\pi\)
−0.777276 + 0.629160i \(0.783399\pi\)
\(840\) 0.965565i 0.0333151i
\(841\) −62.9113 −2.16935
\(842\) 2.78433 0.0959545
\(843\) − 4.67754i − 0.161103i
\(844\) 38.8249i 1.33641i
\(845\) 4.27583i 0.147093i
\(846\) 1.80002 0.0618861
\(847\) − 23.3491i − 0.802283i
\(848\) 23.8843 0.820191
\(849\) 10.0582 0.345196
\(850\) 0 0
\(851\) −18.0112 −0.617418
\(852\) −0.749129 −0.0256647
\(853\) 39.9684i 1.36849i 0.729252 + 0.684245i \(0.239868\pi\)
−0.729252 + 0.684245i \(0.760132\pi\)
\(854\) −1.14055 −0.0390287
\(855\) 0.604986i 0.0206901i
\(856\) − 11.5457i − 0.394625i
\(857\) 2.95962i 0.101099i 0.998722 + 0.0505493i \(0.0160972\pi\)
−0.998722 + 0.0505493i \(0.983903\pi\)
\(858\) −2.75684 −0.0941170
\(859\) 22.4494 0.765963 0.382981 0.923756i \(-0.374897\pi\)
0.382981 + 0.923756i \(0.374897\pi\)
\(860\) − 8.87670i − 0.302693i
\(861\) 11.9638i 0.407724i
\(862\) − 3.92673i − 0.133745i
\(863\) −27.8981 −0.949661 −0.474831 0.880077i \(-0.657491\pi\)
−0.474831 + 0.880077i \(0.657491\pi\)
\(864\) 2.57908i 0.0877422i
\(865\) −1.20491 −0.0409682
\(866\) −3.11236 −0.105762
\(867\) 0 0
\(868\) 17.7775 0.603409
\(869\) 11.7468 0.398484
\(870\) − 1.35564i − 0.0459606i
\(871\) 19.3013 0.654001
\(872\) 15.2645i 0.516921i
\(873\) − 3.04142i − 0.102936i
\(874\) − 0.448256i − 0.0151625i
\(875\) 10.5544 0.356803
\(876\) 12.7068 0.429323
\(877\) − 20.6961i − 0.698858i −0.936963 0.349429i \(-0.886376\pi\)
0.936963 0.349429i \(-0.113624\pi\)
\(878\) 2.57165i 0.0867889i
\(879\) 5.76934i 0.194595i
\(880\) −11.6768 −0.393627
\(881\) − 22.2399i − 0.749282i −0.927170 0.374641i \(-0.877766\pi\)
0.927170 0.374641i \(-0.122234\pi\)
\(882\) 0.891542 0.0300198
\(883\) 4.23253 0.142436 0.0712180 0.997461i \(-0.477311\pi\)
0.0712180 + 0.997461i \(0.477311\pi\)
\(884\) 0 0
\(885\) 6.43563 0.216331
\(886\) 7.91388 0.265872
\(887\) − 36.3047i − 1.21899i −0.792789 0.609496i \(-0.791372\pi\)
0.792789 0.609496i \(-0.208628\pi\)
\(888\) −7.44990 −0.250002
\(889\) − 18.7568i − 0.629084i
\(890\) − 0.281217i − 0.00942642i
\(891\) − 4.95063i − 0.165852i
\(892\) 28.0171 0.938081
\(893\) 7.70129 0.257714
\(894\) − 0.0792983i − 0.00265213i
\(895\) − 14.1580i − 0.473251i
\(896\) 11.5422i 0.385598i
\(897\) −5.31877 −0.177589
\(898\) − 4.92066i − 0.164205i
\(899\) −50.5506 −1.68596
\(900\) 8.96313 0.298771
\(901\) 0 0
\(902\) 7.61380 0.253512
\(903\) 12.3594 0.411295
\(904\) − 0.681206i − 0.0226566i
\(905\) 7.39133 0.245696
\(906\) 2.02931i 0.0674194i
\(907\) − 24.3718i − 0.809251i −0.914482 0.404626i \(-0.867402\pi\)
0.914482 0.404626i \(-0.132598\pi\)
\(908\) − 21.2119i − 0.703942i
\(909\) 18.5456 0.615119
\(910\) −0.612546 −0.0203057
\(911\) − 26.9178i − 0.891826i −0.895076 0.445913i \(-0.852879\pi\)
0.895076 0.445913i \(-0.147121\pi\)
\(912\) 3.52325i 0.116666i
\(913\) − 66.1312i − 2.18862i
\(914\) 2.20110 0.0728059
\(915\) − 1.89001i − 0.0624820i
\(916\) 37.0425 1.22392
\(917\) −1.22066 −0.0403099
\(918\) 0 0
\(919\) −23.8000 −0.785088 −0.392544 0.919733i \(-0.628405\pi\)
−0.392544 + 0.919733i \(0.628405\pi\)
\(920\) 1.18553 0.0390859
\(921\) − 13.2375i − 0.436189i
\(922\) −2.13830 −0.0704210
\(923\) − 0.962511i − 0.0316814i
\(924\) − 16.6913i − 0.549103i
\(925\) 38.9979i 1.28224i
\(926\) −3.39983 −0.111725
\(927\) −3.39501 −0.111507
\(928\) − 24.7258i − 0.811663i
\(929\) 5.82742i 0.191191i 0.995420 + 0.0955957i \(0.0304756\pi\)
−0.995420 + 0.0955957i \(0.969524\pi\)
\(930\) − 0.745595i − 0.0244490i
\(931\) 3.81440 0.125012
\(932\) − 13.8120i − 0.452427i
\(933\) 1.29530 0.0424063
\(934\) −4.95819 −0.162237
\(935\) 0 0
\(936\) −2.19998 −0.0719084
\(937\) −55.4424 −1.81123 −0.905613 0.424106i \(-0.860589\pi\)
−0.905613 + 0.424106i \(0.860589\pi\)
\(938\) − 2.95764i − 0.0965702i
\(939\) −19.1007 −0.623328
\(940\) 10.0568i 0.328017i
\(941\) 21.1696i 0.690109i 0.938583 + 0.345054i \(0.112140\pi\)
−0.938583 + 0.345054i \(0.887860\pi\)
\(942\) − 3.91001i − 0.127395i
\(943\) 14.6893 0.478349
\(944\) 37.4791 1.21984
\(945\) − 1.09999i − 0.0357826i
\(946\) − 7.86558i − 0.255732i
\(947\) 37.5831i 1.22129i 0.791906 + 0.610643i \(0.209089\pi\)
−0.791906 + 0.610643i \(0.790911\pi\)
\(948\) 4.62845 0.150325
\(949\) 16.3262i 0.529971i
\(950\) −0.970563 −0.0314892
\(951\) 15.1043 0.489789
\(952\) 0 0
\(953\) 21.2794 0.689307 0.344654 0.938730i \(-0.387996\pi\)
0.344654 + 0.938730i \(0.387996\pi\)
\(954\) 1.43189 0.0463590
\(955\) − 4.22134i − 0.136599i
\(956\) 10.3163 0.333654
\(957\) 47.4619i 1.53422i
\(958\) 3.45666i 0.111680i
\(959\) 21.2813i 0.687210i
\(960\) −4.35263 −0.140480
\(961\) 3.19748 0.103144
\(962\) − 4.72616i − 0.152377i
\(963\) 13.1531i 0.423853i
\(964\) − 11.3103i − 0.364279i
\(965\) −1.85683 −0.0597734
\(966\) 0.815020i 0.0262229i
\(967\) 26.2320 0.843563 0.421782 0.906697i \(-0.361405\pi\)
0.421782 + 0.906697i \(0.361405\pi\)
\(968\) −11.8579 −0.381128
\(969\) 0 0
\(970\) −0.430067 −0.0138086
\(971\) 20.8243 0.668285 0.334142 0.942523i \(-0.391553\pi\)
0.334142 + 0.942523i \(0.391553\pi\)
\(972\) − 1.95063i − 0.0625665i
\(973\) 23.0650 0.739429
\(974\) − 0.00658834i 0 0.000211104i
\(975\) 11.5162i 0.368813i
\(976\) − 11.0069i − 0.352321i
\(977\) −16.2900 −0.521162 −0.260581 0.965452i \(-0.583914\pi\)
−0.260581 + 0.965452i \(0.583914\pi\)
\(978\) −3.68617 −0.117871
\(979\) 9.84558i 0.314666i
\(980\) 4.98108i 0.159115i
\(981\) − 17.3896i − 0.555206i
\(982\) 1.48187 0.0472884
\(983\) 0.931671i 0.0297157i 0.999890 + 0.0148578i \(0.00472957\pi\)
−0.999890 + 0.0148578i \(0.995270\pi\)
\(984\) 6.07585 0.193691
\(985\) −2.88620 −0.0919621
\(986\) 0 0
\(987\) −14.0025 −0.445704
\(988\) −4.64741 −0.147854
\(989\) − 15.1750i − 0.482538i
\(990\) −0.700037 −0.0222487
\(991\) − 21.6972i − 0.689234i −0.938743 0.344617i \(-0.888009\pi\)
0.938743 0.344617i \(-0.111991\pi\)
\(992\) − 13.5990i − 0.431769i
\(993\) 22.6769i 0.719630i
\(994\) −0.147490 −0.00467810
\(995\) 1.56574 0.0496373
\(996\) − 26.0568i − 0.825641i
\(997\) 3.22709i 0.102203i 0.998693 + 0.0511015i \(0.0162732\pi\)
−0.998693 + 0.0511015i \(0.983727\pi\)
\(998\) − 4.14317i − 0.131150i
\(999\) 8.48705 0.268518
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.d.f.577.4 8
17.2 even 8 867.2.e.g.829.2 8
17.3 odd 16 867.2.h.k.688.1 16
17.4 even 4 867.2.a.l.1.3 4
17.5 odd 16 867.2.h.i.757.3 16
17.6 odd 16 867.2.h.k.712.2 16
17.7 odd 16 867.2.h.i.733.4 16
17.8 even 8 867.2.e.g.616.3 8
17.9 even 8 51.2.e.a.4.3 8
17.10 odd 16 867.2.h.i.733.3 16
17.11 odd 16 867.2.h.k.712.1 16
17.12 odd 16 867.2.h.i.757.4 16
17.13 even 4 867.2.a.k.1.3 4
17.14 odd 16 867.2.h.k.688.2 16
17.15 even 8 51.2.e.a.13.2 yes 8
17.16 even 2 inner 867.2.d.f.577.3 8
51.26 odd 8 153.2.f.b.55.2 8
51.32 odd 8 153.2.f.b.64.3 8
51.38 odd 4 2601.2.a.be.1.2 4
51.47 odd 4 2601.2.a.bf.1.2 4
68.15 odd 8 816.2.bd.e.625.3 8
68.43 odd 8 816.2.bd.e.769.3 8
204.83 even 8 2448.2.be.x.1441.3 8
204.179 even 8 2448.2.be.x.1585.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.3 8 17.9 even 8
51.2.e.a.13.2 yes 8 17.15 even 8
153.2.f.b.55.2 8 51.26 odd 8
153.2.f.b.64.3 8 51.32 odd 8
816.2.bd.e.625.3 8 68.15 odd 8
816.2.bd.e.769.3 8 68.43 odd 8
867.2.a.k.1.3 4 17.13 even 4
867.2.a.l.1.3 4 17.4 even 4
867.2.d.f.577.3 8 17.16 even 2 inner
867.2.d.f.577.4 8 1.1 even 1 trivial
867.2.e.g.616.3 8 17.8 even 8
867.2.e.g.829.2 8 17.2 even 8
867.2.h.i.733.3 16 17.10 odd 16
867.2.h.i.733.4 16 17.7 odd 16
867.2.h.i.757.3 16 17.5 odd 16
867.2.h.i.757.4 16 17.12 odd 16
867.2.h.k.688.1 16 17.3 odd 16
867.2.h.k.688.2 16 17.14 odd 16
867.2.h.k.712.1 16 17.11 odd 16
867.2.h.k.712.2 16 17.6 odd 16
2448.2.be.x.1441.3 8 204.83 even 8
2448.2.be.x.1585.3 8 204.179 even 8
2601.2.a.be.1.2 4 51.38 odd 4
2601.2.a.bf.1.2 4 51.47 odd 4