Defining parameters
Level: | \( N \) | \(=\) | \( 153 = 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 153.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(153, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 16 | 28 |
Cusp forms | 28 | 12 | 16 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(153, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
153.2.f.a | $4$ | $1.222$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+(\zeta_{8}+\zeta_{8}^{3})q^{2}+\zeta_{8}q^{5}+(1-\zeta_{8}^{2}+\cdots)q^{7}+\cdots\) |
153.2.f.b | $8$ | $1.222$ | 8.0.836829184.2 | None | \(0\) | \(0\) | \(4\) | \(-4\) | \(q+\beta _{1}q^{2}+(-2-\beta _{4}+\beta _{6})q^{4}+(1-\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(153, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(153, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 2}\)