Properties

Label 153.2.f
Level $153$
Weight $2$
Character orbit 153.f
Rep. character $\chi_{153}(55,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $12$
Newform subspaces $2$
Sturm bound $36$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 153.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(36\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(153, [\chi])\).

Total New Old
Modular forms 44 16 28
Cusp forms 28 12 16
Eisenstein series 16 4 12

Trace form

\( 12 q - 12 q^{4} + 4 q^{5} - 4 q^{10} - 8 q^{13} - 24 q^{14} - 4 q^{16} + 4 q^{17} + 12 q^{20} + 8 q^{22} + 16 q^{23} - 8 q^{28} - 4 q^{29} + 8 q^{31} + 8 q^{34} - 8 q^{35} + 12 q^{37} - 24 q^{38} + 28 q^{40}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(153, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
153.2.f.a 153.f 17.c $4$ $1.222$ \(\Q(\zeta_{8})\) None 153.2.f.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\zeta_{8}+\zeta_{8}^{3})q^{2}+\zeta_{8}q^{5}+(1-\zeta_{8}^{2}+\cdots)q^{7}+\cdots\)
153.2.f.b 153.f 17.c $8$ $1.222$ 8.0.836829184.2 None 51.2.e.a \(0\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+(-2-\beta _{4}+\beta _{6})q^{4}+(1-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(153, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(153, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 2}\)