Properties

Label 153.2.f.b.55.3
Level $153$
Weight $2$
Character 153.55
Analytic conductor $1.222$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,2,Mod(55,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 153.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22171115093\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 55.3
Root \(1.65222i\) of defining polynomial
Character \(\chi\) \(=\) 153.55
Dual form 153.2.f.b.64.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.65222i q^{2} -0.729840 q^{4} +(2.87540 - 2.87540i) q^{5} +(0.652223 + 0.652223i) q^{7} +2.09859i q^{8} +(4.75081 + 4.75081i) q^{10} +(-1.60525 - 1.60525i) q^{11} -3.57461 q^{13} +(-1.07762 + 1.07762i) q^{14} -4.92701 q^{16} +(-3.79779 + 1.60525i) q^{17} +1.72984i q^{19} +(-2.09859 + 2.09859i) q^{20} +(2.65222 - 2.65222i) q^{22} +(3.60525 + 3.60525i) q^{23} -11.5359i q^{25} -5.90604i q^{26} +(-0.476019 - 0.476019i) q^{28} +(1.55827 - 1.55827i) q^{29} +(-2.92238 + 2.92238i) q^{31} -3.94335i q^{32} +(-2.65222 - 6.27479i) q^{34} +3.75081 q^{35} +(4.21049 - 4.21049i) q^{37} -2.85808 q^{38} +(6.03429 + 6.03429i) q^{40} +(-3.57096 - 3.57096i) q^{41} +5.23146i q^{43} +(1.17157 + 1.17157i) q^{44} +(-5.95667 + 5.95667i) q^{46} -6.96130 q^{47} -6.14921i q^{49} +19.0599 q^{50} +2.60889 q^{52} +2.69555i q^{53} -9.23146 q^{55} +(-1.36875 + 1.36875i) q^{56} +(2.57461 + 2.57461i) q^{58} -7.39840i q^{59} +(-2.75081 - 2.75081i) q^{61} +(-4.82843 - 4.82843i) q^{62} -3.33873 q^{64} +(-10.2784 + 10.2784i) q^{65} +12.0419 q^{67} +(2.77178 - 1.17157i) q^{68} +6.19717i q^{70} +(-1.07762 + 1.07762i) q^{71} +(0.823796 - 0.823796i) q^{73} +(6.95667 + 6.95667i) q^{74} -1.26251i q^{76} -2.09396i q^{77} +(8.40303 + 8.40303i) q^{79} +(-14.1672 + 14.1672i) q^{80} +(5.90002 - 5.90002i) q^{82} +6.38508i q^{83} +(-6.30445 + 15.5359i) q^{85} -8.64354 q^{86} +(3.36875 - 3.36875i) q^{88} +10.3597 q^{89} +(-2.33144 - 2.33144i) q^{91} +(-2.63125 - 2.63125i) q^{92} -11.5016i q^{94} +(4.97399 + 4.97399i) q^{95} +(-10.2315 + 10.2315i) q^{97} +10.1599 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} + 4 q^{5} - 4 q^{7} - 4 q^{13} - 24 q^{14} + 12 q^{16} + 4 q^{17} + 12 q^{20} + 12 q^{22} + 16 q^{23} - 8 q^{28} - 4 q^{29} - 8 q^{31} - 12 q^{34} - 8 q^{35} + 8 q^{37} - 24 q^{38} + 36 q^{40}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65222i 1.16830i 0.811646 + 0.584149i \(0.198572\pi\)
−0.811646 + 0.584149i \(0.801428\pi\)
\(3\) 0 0
\(4\) −0.729840 −0.364920
\(5\) 2.87540 2.87540i 1.28592 1.28592i 0.348677 0.937243i \(-0.386631\pi\)
0.937243 0.348677i \(-0.113369\pi\)
\(6\) 0 0
\(7\) 0.652223 + 0.652223i 0.246517 + 0.246517i 0.819540 0.573023i \(-0.194229\pi\)
−0.573023 + 0.819540i \(0.694229\pi\)
\(8\) 2.09859i 0.741962i
\(9\) 0 0
\(10\) 4.75081 + 4.75081i 1.50234 + 1.50234i
\(11\) −1.60525 1.60525i −0.484000 0.484000i 0.422407 0.906406i \(-0.361185\pi\)
−0.906406 + 0.422407i \(0.861185\pi\)
\(12\) 0 0
\(13\) −3.57461 −0.991417 −0.495709 0.868489i \(-0.665092\pi\)
−0.495709 + 0.868489i \(0.665092\pi\)
\(14\) −1.07762 + 1.07762i −0.288005 + 0.288005i
\(15\) 0 0
\(16\) −4.92701 −1.23175
\(17\) −3.79779 + 1.60525i −0.921099 + 0.389329i
\(18\) 0 0
\(19\) 1.72984i 0.396853i 0.980116 + 0.198426i \(0.0635830\pi\)
−0.980116 + 0.198426i \(0.936417\pi\)
\(20\) −2.09859 + 2.09859i −0.469258 + 0.469258i
\(21\) 0 0
\(22\) 2.65222 2.65222i 0.565456 0.565456i
\(23\) 3.60525 + 3.60525i 0.751746 + 0.751746i 0.974805 0.223059i \(-0.0716044\pi\)
−0.223059 + 0.974805i \(0.571604\pi\)
\(24\) 0 0
\(25\) 11.5359i 2.30718i
\(26\) 5.90604i 1.15827i
\(27\) 0 0
\(28\) −0.476019 0.476019i −0.0899591 0.0899591i
\(29\) 1.55827 1.55827i 0.289363 0.289363i −0.547465 0.836828i \(-0.684407\pi\)
0.836828 + 0.547465i \(0.184407\pi\)
\(30\) 0 0
\(31\) −2.92238 + 2.92238i −0.524875 + 0.524875i −0.919040 0.394165i \(-0.871034\pi\)
0.394165 + 0.919040i \(0.371034\pi\)
\(32\) 3.94335i 0.697093i
\(33\) 0 0
\(34\) −2.65222 6.27479i −0.454852 1.07612i
\(35\) 3.75081 0.634003
\(36\) 0 0
\(37\) 4.21049 4.21049i 0.692200 0.692200i −0.270515 0.962716i \(-0.587194\pi\)
0.962716 + 0.270515i \(0.0871941\pi\)
\(38\) −2.85808 −0.463642
\(39\) 0 0
\(40\) 6.03429 + 6.03429i 0.954104 + 0.954104i
\(41\) −3.57096 3.57096i −0.557690 0.557690i 0.370959 0.928649i \(-0.379029\pi\)
−0.928649 + 0.370959i \(0.879029\pi\)
\(42\) 0 0
\(43\) 5.23146i 0.797790i 0.916997 + 0.398895i \(0.130606\pi\)
−0.916997 + 0.398895i \(0.869394\pi\)
\(44\) 1.17157 + 1.17157i 0.176621 + 0.176621i
\(45\) 0 0
\(46\) −5.95667 + 5.95667i −0.878263 + 0.878263i
\(47\) −6.96130 −1.01541 −0.507705 0.861531i \(-0.669506\pi\)
−0.507705 + 0.861531i \(0.669506\pi\)
\(48\) 0 0
\(49\) 6.14921i 0.878459i
\(50\) 19.0599 2.69548
\(51\) 0 0
\(52\) 2.60889 0.361788
\(53\) 2.69555i 0.370263i 0.982714 + 0.185131i \(0.0592711\pi\)
−0.982714 + 0.185131i \(0.940729\pi\)
\(54\) 0 0
\(55\) −9.23146 −1.24477
\(56\) −1.36875 + 1.36875i −0.182906 + 0.182906i
\(57\) 0 0
\(58\) 2.57461 + 2.57461i 0.338062 + 0.338062i
\(59\) 7.39840i 0.963190i −0.876394 0.481595i \(-0.840058\pi\)
0.876394 0.481595i \(-0.159942\pi\)
\(60\) 0 0
\(61\) −2.75081 2.75081i −0.352205 0.352205i 0.508724 0.860929i \(-0.330117\pi\)
−0.860929 + 0.508724i \(0.830117\pi\)
\(62\) −4.82843 4.82843i −0.613211 0.613211i
\(63\) 0 0
\(64\) −3.33873 −0.417341
\(65\) −10.2784 + 10.2784i −1.27488 + 1.27488i
\(66\) 0 0
\(67\) 12.0419 1.47116 0.735578 0.677440i \(-0.236910\pi\)
0.735578 + 0.677440i \(0.236910\pi\)
\(68\) 2.77178 1.17157i 0.336128 0.142074i
\(69\) 0 0
\(70\) 6.19717i 0.740704i
\(71\) −1.07762 + 1.07762i −0.127890 + 0.127890i −0.768154 0.640265i \(-0.778825\pi\)
0.640265 + 0.768154i \(0.278825\pi\)
\(72\) 0 0
\(73\) 0.823796 0.823796i 0.0964180 0.0964180i −0.657252 0.753670i \(-0.728281\pi\)
0.753670 + 0.657252i \(0.228281\pi\)
\(74\) 6.95667 + 6.95667i 0.808696 + 0.808696i
\(75\) 0 0
\(76\) 1.26251i 0.144820i
\(77\) 2.09396i 0.238628i
\(78\) 0 0
\(79\) 8.40303 + 8.40303i 0.945415 + 0.945415i 0.998585 0.0531704i \(-0.0169327\pi\)
−0.0531704 + 0.998585i \(0.516933\pi\)
\(80\) −14.1672 + 14.1672i −1.58394 + 1.58394i
\(81\) 0 0
\(82\) 5.90002 5.90002i 0.651548 0.651548i
\(83\) 6.38508i 0.700854i 0.936590 + 0.350427i \(0.113964\pi\)
−0.936590 + 0.350427i \(0.886036\pi\)
\(84\) 0 0
\(85\) −6.30445 + 15.5359i −0.683813 + 1.68511i
\(86\) −8.64354 −0.932057
\(87\) 0 0
\(88\) 3.36875 3.36875i 0.359110 0.359110i
\(89\) 10.3597 1.09813 0.549063 0.835781i \(-0.314985\pi\)
0.549063 + 0.835781i \(0.314985\pi\)
\(90\) 0 0
\(91\) −2.33144 2.33144i −0.244401 0.244401i
\(92\) −2.63125 2.63125i −0.274327 0.274327i
\(93\) 0 0
\(94\) 11.5016i 1.18630i
\(95\) 4.97399 + 4.97399i 0.510321 + 0.510321i
\(96\) 0 0
\(97\) −10.2315 + 10.2315i −1.03885 + 1.03885i −0.0396330 + 0.999214i \(0.512619\pi\)
−0.999214 + 0.0396330i \(0.987381\pi\)
\(98\) 10.1599 1.02630
\(99\) 0 0
\(100\) 8.41937i 0.841937i
\(101\) −0.265746 −0.0264427 −0.0132213 0.999913i \(-0.504209\pi\)
−0.0132213 + 0.999913i \(0.504209\pi\)
\(102\) 0 0
\(103\) −3.03429 −0.298977 −0.149489 0.988763i \(-0.547763\pi\)
−0.149489 + 0.988763i \(0.547763\pi\)
\(104\) 7.50162i 0.735594i
\(105\) 0 0
\(106\) −4.45366 −0.432577
\(107\) 13.8964 13.8964i 1.34341 1.34341i 0.450776 0.892637i \(-0.351147\pi\)
0.892637 0.450776i \(-0.148853\pi\)
\(108\) 0 0
\(109\) −0.506033 0.506033i −0.0484692 0.0484692i 0.682457 0.730926i \(-0.260912\pi\)
−0.730926 + 0.682457i \(0.760912\pi\)
\(110\) 15.2524i 1.45426i
\(111\) 0 0
\(112\) −3.21351 3.21351i −0.303648 0.303648i
\(113\) 8.33509 + 8.33509i 0.784099 + 0.784099i 0.980520 0.196421i \(-0.0629319\pi\)
−0.196421 + 0.980520i \(0.562932\pi\)
\(114\) 0 0
\(115\) 20.7331 1.93337
\(116\) −1.13729 + 1.13729i −0.105594 + 0.105594i
\(117\) 0 0
\(118\) 12.2238 1.12529
\(119\) −3.52398 1.43003i −0.323043 0.131090i
\(120\) 0 0
\(121\) 5.84638i 0.531489i
\(122\) 4.54495 4.54495i 0.411480 0.411480i
\(123\) 0 0
\(124\) 2.13287 2.13287i 0.191538 0.191538i
\(125\) −18.7934 18.7934i −1.68093 1.68093i
\(126\) 0 0
\(127\) 2.81048i 0.249390i −0.992195 0.124695i \(-0.960205\pi\)
0.992195 0.124695i \(-0.0397952\pi\)
\(128\) 13.4030i 1.18467i
\(129\) 0 0
\(130\) −16.9823 16.9823i −1.48944 1.48944i
\(131\) −5.60525 + 5.60525i −0.489733 + 0.489733i −0.908222 0.418489i \(-0.862560\pi\)
0.418489 + 0.908222i \(0.362560\pi\)
\(132\) 0 0
\(133\) −1.12824 + 1.12824i −0.0978309 + 0.0978309i
\(134\) 19.8960i 1.71875i
\(135\) 0 0
\(136\) −3.36875 7.96999i −0.288868 0.683421i
\(137\) 0.103218 0.00881851 0.00440926 0.999990i \(-0.498596\pi\)
0.00440926 + 0.999990i \(0.498596\pi\)
\(138\) 0 0
\(139\) −10.2151 + 10.2151i −0.866435 + 0.866435i −0.992076 0.125641i \(-0.959901\pi\)
0.125641 + 0.992076i \(0.459901\pi\)
\(140\) −2.73749 −0.231360
\(141\) 0 0
\(142\) −1.78046 1.78046i −0.149413 0.149413i
\(143\) 5.73812 + 5.73812i 0.479846 + 0.479846i
\(144\) 0 0
\(145\) 8.96130i 0.744195i
\(146\) 1.36109 + 1.36109i 0.112645 + 0.112645i
\(147\) 0 0
\(148\) −3.07299 + 3.07299i −0.252598 + 0.252598i
\(149\) 3.59557 0.294561 0.147280 0.989095i \(-0.452948\pi\)
0.147280 + 0.989095i \(0.452948\pi\)
\(150\) 0 0
\(151\) 7.58828i 0.617526i 0.951139 + 0.308763i \(0.0999149\pi\)
−0.951139 + 0.308763i \(0.900085\pi\)
\(152\) −3.63022 −0.294450
\(153\) 0 0
\(154\) 3.45968 0.278789
\(155\) 16.8061i 1.34990i
\(156\) 0 0
\(157\) 18.9569 1.51292 0.756462 0.654038i \(-0.226926\pi\)
0.756462 + 0.654038i \(0.226926\pi\)
\(158\) −13.8837 + 13.8837i −1.10453 + 1.10453i
\(159\) 0 0
\(160\) −11.3387 11.3387i −0.896405 0.896405i
\(161\) 4.70285i 0.370636i
\(162\) 0 0
\(163\) −9.49860 9.49860i −0.743988 0.743988i 0.229355 0.973343i \(-0.426338\pi\)
−0.973343 + 0.229355i \(0.926338\pi\)
\(164\) 2.60623 + 2.60623i 0.203512 + 0.203512i
\(165\) 0 0
\(166\) −10.5496 −0.818806
\(167\) 1.51129 1.51129i 0.116947 0.116947i −0.646211 0.763158i \(-0.723648\pi\)
0.763158 + 0.646211i \(0.223648\pi\)
\(168\) 0 0
\(169\) −0.222197 −0.0170921
\(170\) −25.6688 10.4163i −1.96871 0.798898i
\(171\) 0 0
\(172\) 3.81813i 0.291130i
\(173\) 3.73349 3.73349i 0.283852 0.283852i −0.550791 0.834643i \(-0.685674\pi\)
0.834643 + 0.550791i \(0.185674\pi\)
\(174\) 0 0
\(175\) 7.52398 7.52398i 0.568760 0.568760i
\(176\) 7.90907 + 7.90907i 0.596168 + 0.596168i
\(177\) 0 0
\(178\) 17.1165i 1.28294i
\(179\) 7.77619i 0.581220i −0.956842 0.290610i \(-0.906142\pi\)
0.956842 0.290610i \(-0.0938582\pi\)
\(180\) 0 0
\(181\) 0.647592 + 0.647592i 0.0481351 + 0.0481351i 0.730765 0.682630i \(-0.239164\pi\)
−0.682630 + 0.730765i \(0.739164\pi\)
\(182\) 3.85206 3.85206i 0.285533 0.285533i
\(183\) 0 0
\(184\) −7.56592 + 7.56592i −0.557767 + 0.557767i
\(185\) 24.2137i 1.78023i
\(186\) 0 0
\(187\) 8.67319 + 3.51957i 0.634247 + 0.257376i
\(188\) 5.08064 0.370544
\(189\) 0 0
\(190\) −8.21814 + 8.21814i −0.596207 + 0.596207i
\(191\) −19.1658 −1.38679 −0.693393 0.720560i \(-0.743885\pi\)
−0.693393 + 0.720560i \(0.743885\pi\)
\(192\) 0 0
\(193\) 3.33144 + 3.33144i 0.239802 + 0.239802i 0.816768 0.576966i \(-0.195763\pi\)
−0.576966 + 0.816768i \(0.695763\pi\)
\(194\) −16.9047 16.9047i −1.21368 1.21368i
\(195\) 0 0
\(196\) 4.48794i 0.320567i
\(197\) 10.5323 + 10.5323i 0.750392 + 0.750392i 0.974552 0.224160i \(-0.0719638\pi\)
−0.224160 + 0.974552i \(0.571964\pi\)
\(198\) 0 0
\(199\) 13.2821 13.2821i 0.941542 0.941542i −0.0568413 0.998383i \(-0.518103\pi\)
0.998383 + 0.0568413i \(0.0181029\pi\)
\(200\) 24.2091 1.71184
\(201\) 0 0
\(202\) 0.439071i 0.0308929i
\(203\) 2.03268 0.142666
\(204\) 0 0
\(205\) −20.5359 −1.43429
\(206\) 5.01332i 0.349294i
\(207\) 0 0
\(208\) 17.6121 1.22118
\(209\) 2.77682 2.77682i 0.192077 0.192077i
\(210\) 0 0
\(211\) 4.15826 + 4.15826i 0.286266 + 0.286266i 0.835602 0.549336i \(-0.185119\pi\)
−0.549336 + 0.835602i \(0.685119\pi\)
\(212\) 1.96732i 0.135116i
\(213\) 0 0
\(214\) 22.9599 + 22.9599i 1.56951 + 1.56951i
\(215\) 15.0426 + 15.0426i 1.02589 + 1.02589i
\(216\) 0 0
\(217\) −3.81209 −0.258781
\(218\) 0.836079 0.836079i 0.0566264 0.0566264i
\(219\) 0 0
\(220\) 6.73749 0.454242
\(221\) 13.5756 5.73812i 0.913193 0.385988i
\(222\) 0 0
\(223\) 5.58387i 0.373923i −0.982367 0.186962i \(-0.940136\pi\)
0.982367 0.186962i \(-0.0598640\pi\)
\(224\) 2.57194 2.57194i 0.171845 0.171845i
\(225\) 0 0
\(226\) −13.7714 + 13.7714i −0.916061 + 0.916061i
\(227\) 19.4666 + 19.4666i 1.29204 + 1.29204i 0.933522 + 0.358519i \(0.116718\pi\)
0.358519 + 0.933522i \(0.383282\pi\)
\(228\) 0 0
\(229\) 3.57019i 0.235925i 0.993018 + 0.117962i \(0.0376362\pi\)
−0.993018 + 0.117962i \(0.962364\pi\)
\(230\) 34.2557i 2.25875i
\(231\) 0 0
\(232\) 3.27016 + 3.27016i 0.214696 + 0.214696i
\(233\) −0.969360 + 0.969360i −0.0635049 + 0.0635049i −0.738146 0.674641i \(-0.764298\pi\)
0.674641 + 0.738146i \(0.264298\pi\)
\(234\) 0 0
\(235\) −20.0166 + 20.0166i −1.30574 + 1.30574i
\(236\) 5.39965i 0.351487i
\(237\) 0 0
\(238\) 2.36272 5.82240i 0.153153 0.377410i
\(239\) −21.6121 −1.39797 −0.698986 0.715135i \(-0.746365\pi\)
−0.698986 + 0.715135i \(0.746365\pi\)
\(240\) 0 0
\(241\) 0.750810 0.750810i 0.0483639 0.0483639i −0.682511 0.730875i \(-0.739112\pi\)
0.730875 + 0.682511i \(0.239112\pi\)
\(242\) 9.65952 0.620937
\(243\) 0 0
\(244\) 2.00765 + 2.00765i 0.128527 + 0.128527i
\(245\) −17.6815 17.6815i −1.12963 1.12963i
\(246\) 0 0
\(247\) 6.18350i 0.393446i
\(248\) −6.13287 6.13287i −0.389438 0.389438i
\(249\) 0 0
\(250\) 31.0508 31.0508i 1.96383 1.96383i
\(251\) −7.29715 −0.460592 −0.230296 0.973121i \(-0.573969\pi\)
−0.230296 + 0.973121i \(0.573969\pi\)
\(252\) 0 0
\(253\) 11.5746i 0.727689i
\(254\) 4.64354 0.291361
\(255\) 0 0
\(256\) 15.4673 0.966708
\(257\) 22.5569i 1.40706i 0.710666 + 0.703530i \(0.248394\pi\)
−0.710666 + 0.703530i \(0.751606\pi\)
\(258\) 0 0
\(259\) 5.49236 0.341278
\(260\) 7.50162 7.50162i 0.465231 0.465231i
\(261\) 0 0
\(262\) −9.26111 9.26111i −0.572154 0.572154i
\(263\) 4.24919i 0.262016i −0.991381 0.131008i \(-0.958179\pi\)
0.991381 0.131008i \(-0.0418214\pi\)
\(264\) 0 0
\(265\) 7.75081 + 7.75081i 0.476128 + 0.476128i
\(266\) −1.86411 1.86411i −0.114296 0.114296i
\(267\) 0 0
\(268\) −8.78869 −0.536855
\(269\) 8.36776 8.36776i 0.510191 0.510191i −0.404394 0.914585i \(-0.632517\pi\)
0.914585 + 0.404394i \(0.132517\pi\)
\(270\) 0 0
\(271\) −11.8045 −0.717070 −0.358535 0.933516i \(-0.616724\pi\)
−0.358535 + 0.933516i \(0.616724\pi\)
\(272\) 18.7118 7.90907i 1.13457 0.479558i
\(273\) 0 0
\(274\) 0.170539i 0.0103027i
\(275\) −18.5180 + 18.5180i −1.11667 + 1.11667i
\(276\) 0 0
\(277\) −7.37338 + 7.37338i −0.443023 + 0.443023i −0.893027 0.450003i \(-0.851423\pi\)
0.450003 + 0.893027i \(0.351423\pi\)
\(278\) −16.8777 16.8777i −1.01225 1.01225i
\(279\) 0 0
\(280\) 7.87140i 0.470406i
\(281\) 5.46697i 0.326132i −0.986615 0.163066i \(-0.947862\pi\)
0.986615 0.163066i \(-0.0521384\pi\)
\(282\) 0 0
\(283\) 12.4716 + 12.4716i 0.741360 + 0.741360i 0.972840 0.231480i \(-0.0743567\pi\)
−0.231480 + 0.972840i \(0.574357\pi\)
\(284\) 0.786489 0.786489i 0.0466695 0.0466695i
\(285\) 0 0
\(286\) −9.48065 + 9.48065i −0.560603 + 0.560603i
\(287\) 4.65812i 0.274960i
\(288\) 0 0
\(289\) 11.8464 12.1928i 0.696846 0.717221i
\(290\) 14.8061 0.869442
\(291\) 0 0
\(292\) −0.601239 + 0.601239i −0.0351849 + 0.0351849i
\(293\) −8.25845 −0.482464 −0.241232 0.970467i \(-0.577551\pi\)
−0.241232 + 0.970467i \(0.577551\pi\)
\(294\) 0 0
\(295\) −21.2734 21.2734i −1.23859 1.23859i
\(296\) 8.83608 + 8.83608i 0.513587 + 0.513587i
\(297\) 0 0
\(298\) 5.94069i 0.344135i
\(299\) −12.8873 12.8873i −0.745293 0.745293i
\(300\) 0 0
\(301\) −3.41208 + 3.41208i −0.196669 + 0.196669i
\(302\) −12.5375 −0.721454
\(303\) 0 0
\(304\) 8.52295i 0.488825i
\(305\) −15.8194 −0.905815
\(306\) 0 0
\(307\) −9.94601 −0.567649 −0.283824 0.958876i \(-0.591603\pi\)
−0.283824 + 0.958876i \(0.591603\pi\)
\(308\) 1.52825i 0.0870803i
\(309\) 0 0
\(310\) −27.7674 −1.57708
\(311\) −11.7284 + 11.7284i −0.665059 + 0.665059i −0.956568 0.291509i \(-0.905843\pi\)
0.291509 + 0.956568i \(0.405843\pi\)
\(312\) 0 0
\(313\) −14.5746 14.5746i −0.823805 0.823805i 0.162846 0.986651i \(-0.447933\pi\)
−0.986651 + 0.162846i \(0.947933\pi\)
\(314\) 31.3210i 1.76755i
\(315\) 0 0
\(316\) −6.13287 6.13287i −0.345001 0.345001i
\(317\) −3.01795 3.01795i −0.169505 0.169505i 0.617257 0.786762i \(-0.288244\pi\)
−0.786762 + 0.617257i \(0.788244\pi\)
\(318\) 0 0
\(319\) −5.00280 −0.280103
\(320\) −9.60021 + 9.60021i −0.536668 + 0.536668i
\(321\) 0 0
\(322\) −7.77015 −0.433014
\(323\) −2.77682 6.56957i −0.154506 0.365540i
\(324\) 0 0
\(325\) 41.2363i 2.28738i
\(326\) 15.6938 15.6938i 0.869199 0.869199i
\(327\) 0 0
\(328\) 7.49397 7.49397i 0.413785 0.413785i
\(329\) −4.54032 4.54032i −0.250316 0.250316i
\(330\) 0 0
\(331\) 28.6105i 1.57258i 0.617860 + 0.786288i \(0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(332\) 4.66009i 0.255756i
\(333\) 0 0
\(334\) 2.49699 + 2.49699i 0.136629 + 0.136629i
\(335\) 34.6254 34.6254i 1.89179 1.89179i
\(336\) 0 0
\(337\) 22.1585 22.1585i 1.20705 1.20705i 0.235071 0.971978i \(-0.424468\pi\)
0.971978 0.235071i \(-0.0755322\pi\)
\(338\) 0.367119i 0.0199686i
\(339\) 0 0
\(340\) 4.60124 11.3387i 0.249537 0.614929i
\(341\) 9.38228 0.508079
\(342\) 0 0
\(343\) 8.57622 8.57622i 0.463072 0.463072i
\(344\) −10.9787 −0.591930
\(345\) 0 0
\(346\) 6.16855 + 6.16855i 0.331623 + 0.331623i
\(347\) 8.51066 + 8.51066i 0.456876 + 0.456876i 0.897629 0.440752i \(-0.145288\pi\)
−0.440752 + 0.897629i \(0.645288\pi\)
\(348\) 0 0
\(349\) 33.3512i 1.78525i −0.450799 0.892625i \(-0.648861\pi\)
0.450799 0.892625i \(-0.351139\pi\)
\(350\) 12.4313 + 12.4313i 0.664481 + 0.664481i
\(351\) 0 0
\(352\) −6.33005 + 6.33005i −0.337393 + 0.337393i
\(353\) −6.56570 −0.349457 −0.174729 0.984617i \(-0.555905\pi\)
−0.174729 + 0.984617i \(0.555905\pi\)
\(354\) 0 0
\(355\) 6.19717i 0.328912i
\(356\) −7.56093 −0.400728
\(357\) 0 0
\(358\) 12.8480 0.679038
\(359\) 21.5508i 1.13741i −0.822541 0.568705i \(-0.807445\pi\)
0.822541 0.568705i \(-0.192555\pi\)
\(360\) 0 0
\(361\) 16.0077 0.842508
\(362\) −1.06997 + 1.06997i −0.0562361 + 0.0562361i
\(363\) 0 0
\(364\) 1.70158 + 1.70158i 0.0891870 + 0.0891870i
\(365\) 4.73749i 0.247972i
\(366\) 0 0
\(367\) −25.1478 25.1478i −1.31271 1.31271i −0.919414 0.393292i \(-0.871336\pi\)
−0.393292 0.919414i \(-0.628664\pi\)
\(368\) −17.7631 17.7631i −0.925965 0.925965i
\(369\) 0 0
\(370\) 40.0065 2.07984
\(371\) −1.75810 + 1.75810i −0.0912761 + 0.0912761i
\(372\) 0 0
\(373\) −35.8452 −1.85599 −0.927997 0.372588i \(-0.878471\pi\)
−0.927997 + 0.372588i \(0.878471\pi\)
\(374\) −5.81511 + 14.3300i −0.300692 + 0.740989i
\(375\) 0 0
\(376\) 14.6089i 0.753396i
\(377\) −5.57019 + 5.57019i −0.286879 + 0.286879i
\(378\) 0 0
\(379\) 15.5002 15.5002i 0.796193 0.796193i −0.186300 0.982493i \(-0.559650\pi\)
0.982493 + 0.186300i \(0.0596496\pi\)
\(380\) −3.63022 3.63022i −0.186226 0.186226i
\(381\) 0 0
\(382\) 31.6661i 1.62018i
\(383\) 34.3109i 1.75321i −0.481215 0.876603i \(-0.659804\pi\)
0.481215 0.876603i \(-0.340196\pi\)
\(384\) 0 0
\(385\) −6.02097 6.02097i −0.306857 0.306857i
\(386\) −5.50428 + 5.50428i −0.280160 + 0.280160i
\(387\) 0 0
\(388\) 7.46733 7.46733i 0.379096 0.379096i
\(389\) 34.1956i 1.73379i 0.498493 + 0.866894i \(0.333887\pi\)
−0.498493 + 0.866894i \(0.666113\pi\)
\(390\) 0 0
\(391\) −19.4793 7.90465i −0.985108 0.399755i
\(392\) 12.9047 0.651783
\(393\) 0 0
\(394\) −17.4016 + 17.4016i −0.876682 + 0.876682i
\(395\) 48.3242 2.43146
\(396\) 0 0
\(397\) 0.162887 + 0.162887i 0.00817507 + 0.00817507i 0.711183 0.703007i \(-0.248160\pi\)
−0.703007 + 0.711183i \(0.748160\pi\)
\(398\) 21.9450 + 21.9450i 1.10000 + 1.10000i
\(399\) 0 0
\(400\) 56.8376i 2.84188i
\(401\) 0.429041 + 0.429041i 0.0214253 + 0.0214253i 0.717738 0.696313i \(-0.245177\pi\)
−0.696313 + 0.717738i \(0.745177\pi\)
\(402\) 0 0
\(403\) 10.4464 10.4464i 0.520370 0.520370i
\(404\) 0.193952 0.00964947
\(405\) 0 0
\(406\) 3.35843i 0.166676i
\(407\) −13.5177 −0.670049
\(408\) 0 0
\(409\) −1.50925 −0.0746278 −0.0373139 0.999304i \(-0.511880\pi\)
−0.0373139 + 0.999304i \(0.511880\pi\)
\(410\) 33.9299i 1.67568i
\(411\) 0 0
\(412\) 2.21454 0.109103
\(413\) 4.82541 4.82541i 0.237443 0.237443i
\(414\) 0 0
\(415\) 18.3597 + 18.3597i 0.901242 + 0.901242i
\(416\) 14.0959i 0.691110i
\(417\) 0 0
\(418\) 4.58792 + 4.58792i 0.224403 + 0.224403i
\(419\) 8.56997 + 8.56997i 0.418671 + 0.418671i 0.884745 0.466075i \(-0.154332\pi\)
−0.466075 + 0.884745i \(0.654332\pi\)
\(420\) 0 0
\(421\) 17.8730 0.871078 0.435539 0.900170i \(-0.356558\pi\)
0.435539 + 0.900170i \(0.356558\pi\)
\(422\) −6.87037 + 6.87037i −0.334444 + 0.334444i
\(423\) 0 0
\(424\) −5.65685 −0.274721
\(425\) 18.5180 + 43.8109i 0.898253 + 2.12514i
\(426\) 0 0
\(427\) 3.58828i 0.173649i
\(428\) −10.1421 + 10.1421i −0.490239 + 0.490239i
\(429\) 0 0
\(430\) −24.8537 + 24.8537i −1.19855 + 1.19855i
\(431\) −7.87442 7.87442i −0.379297 0.379297i 0.491551 0.870849i \(-0.336430\pi\)
−0.870849 + 0.491551i \(0.836430\pi\)
\(432\) 0 0
\(433\) 29.1182i 1.39933i 0.714471 + 0.699665i \(0.246667\pi\)
−0.714471 + 0.699665i \(0.753333\pi\)
\(434\) 6.29842i 0.302334i
\(435\) 0 0
\(436\) 0.369323 + 0.369323i 0.0176874 + 0.0176874i
\(437\) −6.23650 + 6.23650i −0.298332 + 0.298332i
\(438\) 0 0
\(439\) 15.9776 15.9776i 0.762571 0.762571i −0.214215 0.976786i \(-0.568719\pi\)
0.976786 + 0.214215i \(0.0687194\pi\)
\(440\) 19.3730i 0.923572i
\(441\) 0 0
\(442\) 9.48065 + 22.4299i 0.450949 + 1.06688i
\(443\) −32.1976 −1.52975 −0.764877 0.644176i \(-0.777200\pi\)
−0.764877 + 0.644176i \(0.777200\pi\)
\(444\) 0 0
\(445\) 29.7883 29.7883i 1.41210 1.41210i
\(446\) 9.22579 0.436854
\(447\) 0 0
\(448\) −2.17760 2.17760i −0.102882 0.102882i
\(449\) 0.792171 + 0.792171i 0.0373849 + 0.0373849i 0.725552 0.688167i \(-0.241584\pi\)
−0.688167 + 0.725552i \(0.741584\pi\)
\(450\) 0 0
\(451\) 11.4645i 0.539844i
\(452\) −6.08328 6.08328i −0.286134 0.286134i
\(453\) 0 0
\(454\) −32.1631 + 32.1631i −1.50949 + 1.50949i
\(455\) −13.4077 −0.628561
\(456\) 0 0
\(457\) 40.0795i 1.87484i 0.348203 + 0.937419i \(0.386792\pi\)
−0.348203 + 0.937419i \(0.613208\pi\)
\(458\) −5.89875 −0.275631
\(459\) 0 0
\(460\) −15.1318 −0.705526
\(461\) 4.99595i 0.232684i −0.993209 0.116342i \(-0.962883\pi\)
0.993209 0.116342i \(-0.0371169\pi\)
\(462\) 0 0
\(463\) −39.0452 −1.81458 −0.907292 0.420502i \(-0.861854\pi\)
−0.907292 + 0.420502i \(0.861854\pi\)
\(464\) −7.67761 + 7.67761i −0.356424 + 0.356424i
\(465\) 0 0
\(466\) −1.60160 1.60160i −0.0741926 0.0741926i
\(467\) 10.5242i 0.487002i 0.969901 + 0.243501i \(0.0782959\pi\)
−0.969901 + 0.243501i \(0.921704\pi\)
\(468\) 0 0
\(469\) 7.85403 + 7.85403i 0.362665 + 0.362665i
\(470\) −33.0718 33.0718i −1.52549 1.52549i
\(471\) 0 0
\(472\) 15.5262 0.714651
\(473\) 8.39778 8.39778i 0.386130 0.386130i
\(474\) 0 0
\(475\) 19.9553 0.915611
\(476\) 2.57194 + 1.04369i 0.117885 + 0.0478375i
\(477\) 0 0
\(478\) 35.7081i 1.63325i
\(479\) 18.3593 18.3593i 0.838858 0.838858i −0.149851 0.988709i \(-0.547879\pi\)
0.988709 + 0.149851i \(0.0478794\pi\)
\(480\) 0 0
\(481\) −15.0508 + 15.0508i −0.686259 + 0.686259i
\(482\) 1.24050 + 1.24050i 0.0565034 + 0.0565034i
\(483\) 0 0
\(484\) 4.26692i 0.193951i
\(485\) 58.8392i 2.67175i
\(486\) 0 0
\(487\) 18.0599 + 18.0599i 0.818372 + 0.818372i 0.985872 0.167500i \(-0.0535696\pi\)
−0.167500 + 0.985872i \(0.553570\pi\)
\(488\) 5.77281 5.77281i 0.261323 0.261323i
\(489\) 0 0
\(490\) 29.2137 29.2137i 1.31974 1.31974i
\(491\) 2.50764i 0.113168i 0.998398 + 0.0565842i \(0.0180209\pi\)
−0.998398 + 0.0565842i \(0.981979\pi\)
\(492\) 0 0
\(493\) −3.41657 + 8.41937i −0.153874 + 0.379189i
\(494\) 10.2165 0.459663
\(495\) 0 0
\(496\) 14.3986 14.3986i 0.646517 0.646517i
\(497\) −1.40569 −0.0630540
\(498\) 0 0
\(499\) 10.7671 + 10.7671i 0.482004 + 0.482004i 0.905771 0.423767i \(-0.139293\pi\)
−0.423767 + 0.905771i \(0.639293\pi\)
\(500\) 13.7162 + 13.7162i 0.613405 + 0.613405i
\(501\) 0 0
\(502\) 12.0565i 0.538109i
\(503\) −27.6472 27.6472i −1.23273 1.23273i −0.962912 0.269815i \(-0.913038\pi\)
−0.269815 0.962912i \(-0.586962\pi\)
\(504\) 0 0
\(505\) −0.764127 + 0.764127i −0.0340032 + 0.0340032i
\(506\) 19.1238 0.850158
\(507\) 0 0
\(508\) 2.05120i 0.0910073i
\(509\) 31.9138 1.41455 0.707277 0.706937i \(-0.249924\pi\)
0.707277 + 0.706937i \(0.249924\pi\)
\(510\) 0 0
\(511\) 1.07460 0.0475374
\(512\) 1.25058i 0.0552685i
\(513\) 0 0
\(514\) −37.2690 −1.64386
\(515\) −8.72480 + 8.72480i −0.384461 + 0.384461i
\(516\) 0 0
\(517\) 11.1746 + 11.1746i 0.491458 + 0.491458i
\(518\) 9.07460i 0.398715i
\(519\) 0 0
\(520\) −21.5702 21.5702i −0.945915 0.945915i
\(521\) 3.41572 + 3.41572i 0.149646 + 0.149646i 0.777960 0.628314i \(-0.216255\pi\)
−0.628314 + 0.777960i \(0.716255\pi\)
\(522\) 0 0
\(523\) −36.5734 −1.59924 −0.799622 0.600503i \(-0.794967\pi\)
−0.799622 + 0.600503i \(0.794967\pi\)
\(524\) 4.09093 4.09093i 0.178713 0.178713i
\(525\) 0 0
\(526\) 7.02061 0.306113
\(527\) 6.40745 15.7897i 0.279113 0.687811i
\(528\) 0 0
\(529\) 2.99559i 0.130243i
\(530\) −12.8061 + 12.8061i −0.556260 + 0.556260i
\(531\) 0 0
\(532\) 0.823436 0.823436i 0.0357005 0.0357005i
\(533\) 12.7648 + 12.7648i 0.552904 + 0.552904i
\(534\) 0 0
\(535\) 79.9154i 3.45504i
\(536\) 25.2711i 1.09154i
\(537\) 0 0
\(538\) 13.8254 + 13.8254i 0.596056 + 0.596056i
\(539\) −9.87099 + 9.87099i −0.425174 + 0.425174i
\(540\) 0 0
\(541\) 7.79877 7.79877i 0.335295 0.335295i −0.519298 0.854593i \(-0.673806\pi\)
0.854593 + 0.519298i \(0.173806\pi\)
\(542\) 19.5036i 0.837751i
\(543\) 0 0
\(544\) 6.33005 + 14.9760i 0.271398 + 0.642091i
\(545\) −2.91010 −0.124655
\(546\) 0 0
\(547\) −19.0046 + 19.0046i −0.812579 + 0.812579i −0.985020 0.172441i \(-0.944835\pi\)
0.172441 + 0.985020i \(0.444835\pi\)
\(548\) −0.0753327 −0.00321805
\(549\) 0 0
\(550\) −30.5958 30.5958i −1.30461 1.30461i
\(551\) 2.69555 + 2.69555i 0.114834 + 0.114834i
\(552\) 0 0
\(553\) 10.9613i 0.466122i
\(554\) −12.1825 12.1825i −0.517583 0.517583i
\(555\) 0 0
\(556\) 7.45541 7.45541i 0.316180 0.316180i
\(557\) −34.9146 −1.47938 −0.739690 0.672948i \(-0.765028\pi\)
−0.739690 + 0.672948i \(0.765028\pi\)
\(558\) 0 0
\(559\) 18.7004i 0.790943i
\(560\) −18.4803 −0.780935
\(561\) 0 0
\(562\) 9.03266 0.381020
\(563\) 7.91334i 0.333507i 0.985999 + 0.166754i \(0.0533285\pi\)
−0.985999 + 0.166754i \(0.946672\pi\)
\(564\) 0 0
\(565\) 47.9335 2.01658
\(566\) −20.6059 + 20.6059i −0.866129 + 0.866129i
\(567\) 0 0
\(568\) −2.26147 2.26147i −0.0948893 0.0948893i
\(569\) 17.2956i 0.725070i −0.931970 0.362535i \(-0.881911\pi\)
0.931970 0.362535i \(-0.118089\pi\)
\(570\) 0 0
\(571\) 13.7031 + 13.7031i 0.573455 + 0.573455i 0.933092 0.359637i \(-0.117099\pi\)
−0.359637 + 0.933092i \(0.617099\pi\)
\(572\) −4.18791 4.18791i −0.175105 0.175105i
\(573\) 0 0
\(574\) 7.69626 0.321236
\(575\) 41.5898 41.5898i 1.73441 1.73441i
\(576\) 0 0
\(577\) −2.89714 −0.120610 −0.0603048 0.998180i \(-0.519207\pi\)
−0.0603048 + 0.998180i \(0.519207\pi\)
\(578\) 20.1452 + 19.5729i 0.837928 + 0.814123i
\(579\) 0 0
\(580\) 6.54032i 0.271572i
\(581\) −4.16450 + 4.16450i −0.172772 + 0.172772i
\(582\) 0 0
\(583\) 4.32703 4.32703i 0.179207 0.179207i
\(584\) 1.72881 + 1.72881i 0.0715385 + 0.0715385i
\(585\) 0 0
\(586\) 13.6448i 0.563662i
\(587\) 12.3165i 0.508357i 0.967157 + 0.254178i \(0.0818050\pi\)
−0.967157 + 0.254178i \(0.918195\pi\)
\(588\) 0 0
\(589\) −5.05526 5.05526i −0.208298 0.208298i
\(590\) 35.1484 35.1484i 1.44704 1.44704i
\(591\) 0 0
\(592\) −20.7451 + 20.7451i −0.852620 + 0.852620i
\(593\) 43.1763i 1.77304i −0.462693 0.886519i \(-0.653117\pi\)
0.462693 0.886519i \(-0.346883\pi\)
\(594\) 0 0
\(595\) −14.2448 + 6.02097i −0.583979 + 0.246836i
\(596\) −2.62420 −0.107491
\(597\) 0 0
\(598\) 21.2927 21.2927i 0.870725 0.870725i
\(599\) 6.70607 0.274003 0.137001 0.990571i \(-0.456254\pi\)
0.137001 + 0.990571i \(0.456254\pi\)
\(600\) 0 0
\(601\) 22.5138 + 22.5138i 0.918355 + 0.918355i 0.996910 0.0785544i \(-0.0250304\pi\)
−0.0785544 + 0.996910i \(0.525030\pi\)
\(602\) −5.63751 5.63751i −0.229768 0.229768i
\(603\) 0 0
\(604\) 5.53823i 0.225348i
\(605\) −16.8107 16.8107i −0.683452 0.683452i
\(606\) 0 0
\(607\) −19.7402 + 19.7402i −0.801228 + 0.801228i −0.983288 0.182059i \(-0.941724\pi\)
0.182059 + 0.983288i \(0.441724\pi\)
\(608\) 6.82137 0.276643
\(609\) 0 0
\(610\) 26.1371i 1.05826i
\(611\) 24.8839 1.00669
\(612\) 0 0
\(613\) −5.84314 −0.236002 −0.118001 0.993013i \(-0.537649\pi\)
−0.118001 + 0.993013i \(0.537649\pi\)
\(614\) 16.4330i 0.663183i
\(615\) 0 0
\(616\) 4.39435 0.177053
\(617\) 26.1998 26.1998i 1.05477 1.05477i 0.0563548 0.998411i \(-0.482052\pi\)
0.998411 0.0563548i \(-0.0179478\pi\)
\(618\) 0 0
\(619\) 11.4329 + 11.4329i 0.459527 + 0.459527i 0.898500 0.438973i \(-0.144658\pi\)
−0.438973 + 0.898500i \(0.644658\pi\)
\(620\) 12.2657i 0.492604i
\(621\) 0 0
\(622\) −19.3780 19.3780i −0.776987 0.776987i
\(623\) 6.75683 + 6.75683i 0.270707 + 0.270707i
\(624\) 0 0
\(625\) −50.3976 −2.01590
\(626\) 24.0805 24.0805i 0.962450 0.962450i
\(627\) 0 0
\(628\) −13.8355 −0.552097
\(629\) −9.23168 + 22.7494i −0.368091 + 0.907079i
\(630\) 0 0
\(631\) 31.6670i 1.26064i −0.776334 0.630322i \(-0.782923\pi\)
0.776334 0.630322i \(-0.217077\pi\)
\(632\) −17.6345 + 17.6345i −0.701462 + 0.701462i
\(633\) 0 0
\(634\) 4.98632 4.98632i 0.198032 0.198032i
\(635\) −8.08126 8.08126i −0.320695 0.320695i
\(636\) 0 0
\(637\) 21.9810i 0.870919i
\(638\) 8.26575i 0.327244i
\(639\) 0 0
\(640\) −38.5391 38.5391i −1.52339 1.52339i
\(641\) −11.2637 + 11.2637i −0.444890 + 0.444890i −0.893651 0.448762i \(-0.851865\pi\)
0.448762 + 0.893651i \(0.351865\pi\)
\(642\) 0 0
\(643\) −11.7990 + 11.7990i −0.465307 + 0.465307i −0.900390 0.435083i \(-0.856719\pi\)
0.435083 + 0.900390i \(0.356719\pi\)
\(644\) 3.43233i 0.135253i
\(645\) 0 0
\(646\) 10.8544 4.58792i 0.427060 0.180509i
\(647\) 8.35044 0.328290 0.164145 0.986436i \(-0.447514\pi\)
0.164145 + 0.986436i \(0.447514\pi\)
\(648\) 0 0
\(649\) −11.8762 + 11.8762i −0.466184 + 0.466184i
\(650\) −68.1316 −2.67234
\(651\) 0 0
\(652\) 6.93246 + 6.93246i 0.271496 + 0.271496i
\(653\) 20.2923 + 20.2923i 0.794100 + 0.794100i 0.982158 0.188058i \(-0.0602192\pi\)
−0.188058 + 0.982158i \(0.560219\pi\)
\(654\) 0 0
\(655\) 32.2347i 1.25951i
\(656\) 17.5942 + 17.5942i 0.686937 + 0.686937i
\(657\) 0 0
\(658\) 7.50162 7.50162i 0.292444 0.292444i
\(659\) −40.3690 −1.57255 −0.786276 0.617876i \(-0.787993\pi\)
−0.786276 + 0.617876i \(0.787993\pi\)
\(660\) 0 0
\(661\) 39.4706i 1.53523i −0.640913 0.767614i \(-0.721444\pi\)
0.640913 0.767614i \(-0.278556\pi\)
\(662\) −47.2710 −1.83724
\(663\) 0 0
\(664\) −13.3997 −0.520007
\(665\) 6.48830i 0.251606i
\(666\) 0 0
\(667\) 11.2359 0.435055
\(668\) −1.10300 + 1.10300i −0.0426764 + 0.0426764i
\(669\) 0 0
\(670\) 57.2090 + 57.2090i 2.21017 + 2.21017i
\(671\) 8.83145i 0.340934i
\(672\) 0 0
\(673\) 15.2775 + 15.2775i 0.588903 + 0.588903i 0.937334 0.348432i \(-0.113286\pi\)
−0.348432 + 0.937334i \(0.613286\pi\)
\(674\) 36.6107 + 36.6107i 1.41019 + 1.41019i
\(675\) 0 0
\(676\) 0.162168 0.00623724
\(677\) −1.77542 + 1.77542i −0.0682351 + 0.0682351i −0.740401 0.672166i \(-0.765364\pi\)
0.672166 + 0.740401i \(0.265364\pi\)
\(678\) 0 0
\(679\) −13.3464 −0.512187
\(680\) −32.6034 13.2304i −1.25029 0.507364i
\(681\) 0 0
\(682\) 15.5016i 0.593588i
\(683\) −13.2528 + 13.2528i −0.507106 + 0.507106i −0.913637 0.406531i \(-0.866738\pi\)
0.406531 + 0.913637i \(0.366738\pi\)
\(684\) 0 0
\(685\) 0.296794 0.296794i 0.0113399 0.0113399i
\(686\) 14.1698 + 14.1698i 0.541006 + 0.541006i
\(687\) 0 0
\(688\) 25.7755i 0.982681i
\(689\) 9.63554i 0.367085i
\(690\) 0 0
\(691\) −27.2733 27.2733i −1.03752 1.03752i −0.999268 0.0382556i \(-0.987820\pi\)
−0.0382556 0.999268i \(-0.512180\pi\)
\(692\) −2.72485 + 2.72485i −0.103583 + 0.103583i
\(693\) 0 0
\(694\) −14.0615 + 14.0615i −0.533768 + 0.533768i
\(695\) 58.7452i 2.22833i
\(696\) 0 0
\(697\) 19.2940 + 7.82948i 0.730813 + 0.296563i
\(698\) 55.1037 2.08570
\(699\) 0 0
\(700\) −5.49131 + 5.49131i −0.207552 + 0.207552i
\(701\) −28.7827 −1.08711 −0.543553 0.839375i \(-0.682921\pi\)
−0.543553 + 0.839375i \(0.682921\pi\)
\(702\) 0 0
\(703\) 7.28348 + 7.28348i 0.274702 + 0.274702i
\(704\) 5.35948 + 5.35948i 0.201993 + 0.201993i
\(705\) 0 0
\(706\) 10.8480i 0.408270i
\(707\) −0.173325 0.173325i −0.00651858 0.00651858i
\(708\) 0 0
\(709\) 3.63869 3.63869i 0.136654 0.136654i −0.635471 0.772125i \(-0.719194\pi\)
0.772125 + 0.635471i \(0.219194\pi\)
\(710\) −10.2391 −0.384267
\(711\) 0 0
\(712\) 21.7407i 0.814768i
\(713\) −21.0718 −0.789146
\(714\) 0 0
\(715\) 32.9988 1.23409
\(716\) 5.67538i 0.212099i
\(717\) 0 0
\(718\) 35.6068 1.32883
\(719\) −22.2754 + 22.2754i −0.830733 + 0.830733i −0.987617 0.156884i \(-0.949855\pi\)
0.156884 + 0.987617i \(0.449855\pi\)
\(720\) 0 0
\(721\) −1.97903 1.97903i −0.0737030 0.0737030i
\(722\) 26.4482i 0.984300i
\(723\) 0 0
\(724\) −0.472638 0.472638i −0.0175655 0.0175655i
\(725\) −17.9760 17.9760i −0.667613 0.667613i
\(726\) 0 0
\(727\) −31.2775 −1.16002 −0.580010 0.814610i \(-0.696951\pi\)
−0.580010 + 0.814610i \(0.696951\pi\)
\(728\) 4.89273 4.89273i 0.181337 0.181337i
\(729\) 0 0
\(730\) 7.82739 0.289705
\(731\) −8.39778 19.8680i −0.310603 0.734843i
\(732\) 0 0
\(733\) 18.8153i 0.694960i 0.937687 + 0.347480i \(0.112963\pi\)
−0.937687 + 0.347480i \(0.887037\pi\)
\(734\) 41.5498 41.5498i 1.53363 1.53363i
\(735\) 0 0
\(736\) 14.2167 14.2167i 0.524036 0.524036i
\(737\) −19.3303 19.3303i −0.712039 0.712039i
\(738\) 0 0
\(739\) 6.94762i 0.255572i −0.991802 0.127786i \(-0.959213\pi\)
0.991802 0.127786i \(-0.0407871\pi\)
\(740\) 17.6722i 0.649641i
\(741\) 0 0
\(742\) −2.90478 2.90478i −0.106638 0.106638i
\(743\) −24.0107 + 24.0107i −0.880869 + 0.880869i −0.993623 0.112754i \(-0.964033\pi\)
0.112754 + 0.993623i \(0.464033\pi\)
\(744\) 0 0
\(745\) 10.3387 10.3387i 0.378782 0.378782i
\(746\) 59.2243i 2.16835i
\(747\) 0 0
\(748\) −6.33005 2.56872i −0.231449 0.0939218i
\(749\) 18.1271 0.662349
\(750\) 0 0
\(751\) −4.88971 + 4.88971i −0.178428 + 0.178428i −0.790670 0.612242i \(-0.790268\pi\)
0.612242 + 0.790670i \(0.290268\pi\)
\(752\) 34.2984 1.25073
\(753\) 0 0
\(754\) −9.20320 9.20320i −0.335161 0.335161i
\(755\) 21.8194 + 21.8194i 0.794089 + 0.794089i
\(756\) 0 0
\(757\) 1.86166i 0.0676633i −0.999428 0.0338316i \(-0.989229\pi\)
0.999428 0.0338316i \(-0.0107710\pi\)
\(758\) 25.6098 + 25.6098i 0.930191 + 0.930191i
\(759\) 0 0
\(760\) −10.4384 + 10.4384i −0.378639 + 0.378639i
\(761\) 49.2335 1.78471 0.892357 0.451330i \(-0.149050\pi\)
0.892357 + 0.451330i \(0.149050\pi\)
\(762\) 0 0
\(763\) 0.660093i 0.0238970i
\(764\) 13.9880 0.506066
\(765\) 0 0
\(766\) 56.6893 2.04827
\(767\) 26.4464i 0.954923i
\(768\) 0 0
\(769\) −50.9303 −1.83659 −0.918296 0.395895i \(-0.870435\pi\)
−0.918296 + 0.395895i \(0.870435\pi\)
\(770\) 9.94798 9.94798i 0.358500 0.358500i
\(771\) 0 0
\(772\) −2.43142 2.43142i −0.0875087 0.0875087i
\(773\) 2.91614i 0.104886i 0.998624 + 0.0524431i \(0.0167008\pi\)
−0.998624 + 0.0524431i \(0.983299\pi\)
\(774\) 0 0
\(775\) 33.7123 + 33.7123i 1.21098 + 1.21098i
\(776\) −21.4716 21.4716i −0.770786 0.770786i
\(777\) 0 0
\(778\) −56.4988 −2.02558
\(779\) 6.17719 6.17719i 0.221321 0.221321i
\(780\) 0 0
\(781\) 3.45968 0.123797
\(782\) 13.0602 32.1841i 0.467033 1.15090i
\(783\) 0 0
\(784\) 30.2972i 1.08204i
\(785\) 54.5087 54.5087i 1.94550 1.94550i
\(786\) 0 0
\(787\) 35.9869 35.9869i 1.28279 1.28279i 0.343724 0.939071i \(-0.388312\pi\)
0.939071 0.343724i \(-0.111688\pi\)
\(788\) −7.68687 7.68687i −0.273833 0.273833i
\(789\) 0 0
\(790\) 79.8424i 2.84067i
\(791\) 10.8727i 0.386588i
\(792\) 0 0
\(793\) 9.83306 + 9.83306i 0.349182 + 0.349182i
\(794\) −0.269126 + 0.269126i −0.00955092 + 0.00955092i
\(795\) 0 0
\(796\) −9.69380 + 9.69380i −0.343588 + 0.343588i
\(797\) 13.6061i 0.481952i 0.970531 + 0.240976i \(0.0774676\pi\)
−0.970531 + 0.240976i \(0.922532\pi\)
\(798\) 0 0
\(799\) 26.4375 11.1746i 0.935293 0.395329i
\(800\) −45.4901 −1.60832
\(801\) 0 0
\(802\) −0.708871 + 0.708871i −0.0250311 + 0.0250311i
\(803\) −2.64479 −0.0933326
\(804\) 0 0
\(805\) 13.5226 + 13.5226i 0.476609 + 0.476609i
\(806\) 17.2597 + 17.2597i 0.607948 + 0.607948i
\(807\) 0 0
\(808\) 0.557691i 0.0196195i
\(809\) 12.2992 + 12.2992i 0.432416 + 0.432416i 0.889450 0.457033i \(-0.151088\pi\)
−0.457033 + 0.889450i \(0.651088\pi\)
\(810\) 0 0
\(811\) 23.2841 23.2841i 0.817614 0.817614i −0.168148 0.985762i \(-0.553779\pi\)
0.985762 + 0.168148i \(0.0537787\pi\)
\(812\) −1.48353 −0.0520617
\(813\) 0 0
\(814\) 22.3343i 0.782817i
\(815\) −54.6246 −1.91342
\(816\) 0 0
\(817\) −9.04959 −0.316605
\(818\) 2.49362i 0.0871875i
\(819\) 0 0
\(820\) 14.9879 0.523401
\(821\) 30.9266 30.9266i 1.07935 1.07935i 0.0827780 0.996568i \(-0.473621\pi\)
0.996568 0.0827780i \(-0.0263792\pi\)
\(822\) 0 0
\(823\) −1.18371 1.18371i −0.0412617 0.0412617i 0.686175 0.727437i \(-0.259288\pi\)
−0.727437 + 0.686175i \(0.759288\pi\)
\(824\) 6.36771i 0.221830i
\(825\) 0 0
\(826\) 7.97265 + 7.97265i 0.277404 + 0.277404i
\(827\) 1.60525 + 1.60525i 0.0558198 + 0.0558198i 0.734466 0.678646i \(-0.237433\pi\)
−0.678646 + 0.734466i \(0.737433\pi\)
\(828\) 0 0
\(829\) −19.2597 −0.668918 −0.334459 0.942410i \(-0.608554\pi\)
−0.334459 + 0.942410i \(0.608554\pi\)
\(830\) −30.3343 + 30.3343i −1.05292 + 1.05292i
\(831\) 0 0
\(832\) 11.9346 0.413760
\(833\) 9.87099 + 23.3534i 0.342010 + 0.809147i
\(834\) 0 0
\(835\) 8.69114i 0.300769i
\(836\) −2.02663 + 2.02663i −0.0700926 + 0.0700926i
\(837\) 0 0
\(838\) −14.1595 + 14.1595i −0.489132 + 0.489132i
\(839\) −10.4694 10.4694i −0.361443 0.361443i 0.502901 0.864344i \(-0.332266\pi\)
−0.864344 + 0.502901i \(0.832266\pi\)
\(840\) 0 0
\(841\) 24.1436i 0.832538i
\(842\) 29.5302i 1.01768i
\(843\) 0 0
\(844\) −3.03486 3.03486i −0.104464 0.104464i
\(845\) −0.638906 + 0.638906i −0.0219790 + 0.0219790i
\(846\) 0 0
\(847\) 3.81314 3.81314i 0.131021 0.131021i
\(848\) 13.2810i 0.456073i
\(849\) 0 0
\(850\) −72.3854 + 30.5958i −2.48280 + 1.04943i
\(851\) 30.3597 1.04072
\(852\) 0 0
\(853\) 4.49558 4.49558i 0.153926 0.153926i −0.625943 0.779869i \(-0.715286\pi\)
0.779869 + 0.625943i \(0.215286\pi\)
\(854\) 5.92864 0.202874
\(855\) 0 0
\(856\) 29.1627 + 29.1627i 0.996762 + 0.996762i
\(857\) −28.8720 28.8720i −0.986248 0.986248i 0.0136588 0.999907i \(-0.495652\pi\)
−0.999907 + 0.0136588i \(0.995652\pi\)
\(858\) 0 0
\(859\) 22.1464i 0.755626i −0.925882 0.377813i \(-0.876676\pi\)
0.925882 0.377813i \(-0.123324\pi\)
\(860\) −10.9787 10.9787i −0.374370 0.374370i
\(861\) 0 0
\(862\) 13.0103 13.0103i 0.443132 0.443132i
\(863\) 17.3423 0.590339 0.295170 0.955445i \(-0.404624\pi\)
0.295170 + 0.955445i \(0.404624\pi\)
\(864\) 0 0
\(865\) 21.4706i 0.730021i
\(866\) −48.1097 −1.63483
\(867\) 0 0
\(868\) 2.78222 0.0944346
\(869\) 26.9779i 0.915161i
\(870\) 0 0
\(871\) −43.0452 −1.45853
\(872\) 1.06195 1.06195i 0.0359623 0.0359623i
\(873\) 0 0
\(874\) −10.3041 10.3041i −0.348541 0.348541i
\(875\) 24.5149i 0.828756i
\(876\) 0 0
\(877\) −21.3763 21.3763i −0.721825 0.721825i 0.247152 0.968977i \(-0.420505\pi\)
−0.968977 + 0.247152i \(0.920505\pi\)
\(878\) 26.3986 + 26.3986i 0.890910 + 0.890910i
\(879\) 0 0
\(880\) 45.4835 1.53325
\(881\) −7.47035 + 7.47035i −0.251683 + 0.251683i −0.821660 0.569978i \(-0.806952\pi\)
0.569978 + 0.821660i \(0.306952\pi\)
\(882\) 0 0
\(883\) 13.9150 0.468276 0.234138 0.972203i \(-0.424773\pi\)
0.234138 + 0.972203i \(0.424773\pi\)
\(884\) −9.90801 + 4.18791i −0.333243 + 0.140855i
\(885\) 0 0
\(886\) 53.1976i 1.78721i
\(887\) −25.4307 + 25.4307i −0.853878 + 0.853878i −0.990608 0.136730i \(-0.956341\pi\)
0.136730 + 0.990608i \(0.456341\pi\)
\(888\) 0 0
\(889\) 1.83306 1.83306i 0.0614788 0.0614788i
\(890\) 49.2170 + 49.2170i 1.64976 + 1.64976i
\(891\) 0 0
\(892\) 4.07533i 0.136452i
\(893\) 12.0419i 0.402968i
\(894\) 0 0
\(895\) −22.3597 22.3597i −0.747402 0.747402i
\(896\) 8.74176 8.74176i 0.292042 0.292042i
\(897\) 0 0
\(898\) −1.30884 + 1.30884i −0.0436766 + 0.0436766i
\(899\) 9.10771i 0.303759i
\(900\) 0 0
\(901\) −4.32703 10.2371i −0.144154 0.341049i
\(902\) −18.9420 −0.630698
\(903\) 0 0
\(904\) −17.4919 + 17.4919i −0.581772 + 0.581772i
\(905\) 3.72418 0.123796
\(906\) 0 0
\(907\) −27.7075 27.7075i −0.920012 0.920012i 0.0770180 0.997030i \(-0.475460\pi\)
−0.997030 + 0.0770180i \(0.975460\pi\)
\(908\) −14.2075 14.2075i −0.471492 0.471492i
\(909\) 0 0
\(910\) 22.1524i 0.734347i
\(911\) 7.02020 + 7.02020i 0.232590 + 0.232590i 0.813773 0.581183i \(-0.197410\pi\)
−0.581183 + 0.813773i \(0.697410\pi\)
\(912\) 0 0
\(913\) 10.2496 10.2496i 0.339213 0.339213i
\(914\) −66.2202 −2.19037
\(915\) 0 0
\(916\) 2.60567i 0.0860938i
\(917\) −7.31174 −0.241455
\(918\) 0 0
\(919\) 42.8795 1.41446 0.707232 0.706982i \(-0.249944\pi\)
0.707232 + 0.706982i \(0.249944\pi\)
\(920\) 43.5102i 1.43449i
\(921\) 0 0
\(922\) 8.25442 0.271845
\(923\) 3.85206 3.85206i 0.126792 0.126792i
\(924\) 0 0
\(925\) −48.5718 48.5718i −1.59703 1.59703i
\(926\) 64.5113i 2.11997i
\(927\) 0 0
\(928\) −6.14480 6.14480i −0.201713 0.201713i
\(929\) 12.8427 + 12.8427i 0.421356 + 0.421356i 0.885671 0.464314i \(-0.153699\pi\)
−0.464314 + 0.885671i \(0.653699\pi\)
\(930\) 0 0
\(931\) 10.6372 0.348619
\(932\) 0.707478 0.707478i 0.0231742 0.0231742i
\(933\) 0 0
\(934\) −17.3883 −0.568963
\(935\) 35.0591 14.8188i 1.14656 0.484625i
\(936\) 0 0
\(937\) 1.60243i 0.0523492i 0.999657 + 0.0261746i \(0.00833258\pi\)
−0.999657 + 0.0261746i \(0.991667\pi\)
\(938\) −12.9766 + 12.9766i −0.423701 + 0.423701i
\(939\) 0 0
\(940\) 14.6089 14.6089i 0.476490 0.476490i
\(941\) −22.8780 22.8780i −0.745802 0.745802i 0.227886 0.973688i \(-0.426819\pi\)
−0.973688 + 0.227886i \(0.926819\pi\)
\(942\) 0 0
\(943\) 25.7484i 0.838482i
\(944\) 36.4520i 1.18641i
\(945\) 0 0
\(946\) 13.8750 + 13.8750i 0.451115 + 0.451115i
\(947\) 17.8063 17.8063i 0.578626 0.578626i −0.355898 0.934525i \(-0.615825\pi\)
0.934525 + 0.355898i \(0.115825\pi\)
\(948\) 0 0
\(949\) −2.94474 + 2.94474i −0.0955905 + 0.0955905i
\(950\) 32.9706i 1.06971i
\(951\) 0 0
\(952\) 3.00103 7.39538i 0.0972641 0.239686i
\(953\) −54.0658 −1.75136 −0.875681 0.482889i \(-0.839587\pi\)
−0.875681 + 0.482889i \(0.839587\pi\)
\(954\) 0 0
\(955\) −55.1093 + 55.1093i −1.78330 + 1.78330i
\(956\) 15.7734 0.510148
\(957\) 0 0
\(958\) 30.3336 + 30.3336i 0.980036 + 0.980036i
\(959\) 0.0673212 + 0.0673212i 0.00217391 + 0.00217391i
\(960\) 0 0
\(961\) 13.9194i 0.449012i
\(962\) −24.8673 24.8673i −0.801755 0.801755i
\(963\) 0 0
\(964\) −0.547971 + 0.547971i −0.0176490 + 0.0176490i
\(965\) 19.1585 0.616733
\(966\) 0 0
\(967\) 2.17495i 0.0699418i −0.999388 0.0349709i \(-0.988866\pi\)
0.999388 0.0349709i \(-0.0111338\pi\)
\(968\) 12.2691 0.394345
\(969\) 0 0
\(970\) −97.2154 −3.12140
\(971\) 47.4481i 1.52268i −0.648352 0.761340i \(-0.724542\pi\)
0.648352 0.761340i \(-0.275458\pi\)
\(972\) 0 0
\(973\) −13.3251 −0.427182
\(974\) −29.8390 + 29.8390i −0.956102 + 0.956102i
\(975\) 0 0
\(976\) 13.5533 + 13.5533i 0.433830 + 0.433830i
\(977\) 20.8226i 0.666175i −0.942896 0.333087i \(-0.891910\pi\)
0.942896 0.333087i \(-0.108090\pi\)
\(978\) 0 0
\(979\) −16.6299 16.6299i −0.531493 0.531493i
\(980\) 12.9047 + 12.9047i 0.412224 + 0.412224i
\(981\) 0 0
\(982\) −4.14319 −0.132214
\(983\) −1.71854 + 1.71854i −0.0548130 + 0.0548130i −0.733982 0.679169i \(-0.762340\pi\)
0.679169 + 0.733982i \(0.262340\pi\)
\(984\) 0 0
\(985\) 60.5690 1.92989
\(986\) −13.9107 5.64493i −0.443006 0.179771i
\(987\) 0 0
\(988\) 4.51297i 0.143577i
\(989\) −18.8607 + 18.8607i −0.599735 + 0.599735i
\(990\) 0 0
\(991\) −25.8643 + 25.8643i −0.821608 + 0.821608i −0.986339 0.164731i \(-0.947324\pi\)
0.164731 + 0.986339i \(0.447324\pi\)
\(992\) 11.5240 + 11.5240i 0.365887 + 0.365887i
\(993\) 0 0
\(994\) 2.32252i 0.0736658i
\(995\) 76.3827i 2.42150i
\(996\) 0 0
\(997\) 14.6448 + 14.6448i 0.463806 + 0.463806i 0.899901 0.436095i \(-0.143639\pi\)
−0.436095 + 0.899901i \(0.643639\pi\)
\(998\) −17.7897 + 17.7897i −0.563124 + 0.563124i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.2.f.b.55.3 8
3.2 odd 2 51.2.e.a.4.2 8
4.3 odd 2 2448.2.be.x.1585.4 8
12.11 even 2 816.2.bd.e.769.1 8
17.8 even 8 2601.2.a.bf.1.3 4
17.9 even 8 2601.2.a.be.1.3 4
17.13 even 4 inner 153.2.f.b.64.2 8
51.2 odd 8 867.2.d.f.577.5 8
51.5 even 16 867.2.h.i.712.4 16
51.8 odd 8 867.2.a.k.1.2 4
51.11 even 16 867.2.h.i.688.3 16
51.14 even 16 867.2.h.k.733.1 16
51.20 even 16 867.2.h.k.733.2 16
51.23 even 16 867.2.h.i.688.4 16
51.26 odd 8 867.2.a.l.1.2 4
51.29 even 16 867.2.h.i.712.3 16
51.32 odd 8 867.2.d.f.577.6 8
51.38 odd 4 867.2.e.g.829.3 8
51.41 even 16 867.2.h.k.757.1 16
51.44 even 16 867.2.h.k.757.2 16
51.47 odd 4 51.2.e.a.13.3 yes 8
51.50 odd 2 867.2.e.g.616.2 8
68.47 odd 4 2448.2.be.x.1441.4 8
204.47 even 4 816.2.bd.e.625.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.2 8 3.2 odd 2
51.2.e.a.13.3 yes 8 51.47 odd 4
153.2.f.b.55.3 8 1.1 even 1 trivial
153.2.f.b.64.2 8 17.13 even 4 inner
816.2.bd.e.625.1 8 204.47 even 4
816.2.bd.e.769.1 8 12.11 even 2
867.2.a.k.1.2 4 51.8 odd 8
867.2.a.l.1.2 4 51.26 odd 8
867.2.d.f.577.5 8 51.2 odd 8
867.2.d.f.577.6 8 51.32 odd 8
867.2.e.g.616.2 8 51.50 odd 2
867.2.e.g.829.3 8 51.38 odd 4
867.2.h.i.688.3 16 51.11 even 16
867.2.h.i.688.4 16 51.23 even 16
867.2.h.i.712.3 16 51.29 even 16
867.2.h.i.712.4 16 51.5 even 16
867.2.h.k.733.1 16 51.14 even 16
867.2.h.k.733.2 16 51.20 even 16
867.2.h.k.757.1 16 51.41 even 16
867.2.h.k.757.2 16 51.44 even 16
2448.2.be.x.1441.4 8 68.47 odd 4
2448.2.be.x.1585.4 8 4.3 odd 2
2601.2.a.be.1.3 4 17.9 even 8
2601.2.a.bf.1.3 4 17.8 even 8