Properties

Label 867.2.d.f.577.6
Level $867$
Weight $2$
Character 867.577
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(577,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.6
Root \(2.06644i\) of defining polynomial
Character \(\chi\) \(=\) 867.577
Dual form 867.2.d.f.577.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.65222 q^{2} +1.00000i q^{3} +0.729840 q^{4} +4.06644i q^{5} +1.65222i q^{6} +0.922382i q^{7} -2.09859 q^{8} -1.00000 q^{9} +6.71866i q^{10} -2.27016i q^{11} +0.729840i q^{12} +3.57461 q^{13} +1.52398i q^{14} -4.06644 q^{15} -4.92701 q^{16} -1.65222 q^{18} -1.72984 q^{19} +2.96785i q^{20} -0.922382 q^{21} -3.75081i q^{22} +5.09859i q^{23} -2.09859i q^{24} -11.5359 q^{25} +5.90604 q^{26} -1.00000i q^{27} +0.673192i q^{28} +2.20372i q^{29} -6.71866 q^{30} -4.13287i q^{31} -3.94335 q^{32} +2.27016 q^{33} -3.75081 q^{35} -0.729840 q^{36} +5.95453i q^{37} -2.85808 q^{38} +3.57461i q^{39} -8.53377i q^{40} +5.05010i q^{41} -1.52398 q^{42} +5.23146 q^{43} -1.65685i q^{44} -4.06644i q^{45} +8.42400i q^{46} -6.96130 q^{47} -4.92701i q^{48} +6.14921 q^{49} -19.0599 q^{50} +2.60889 q^{52} +2.69555 q^{53} -1.65222i q^{54} +9.23146 q^{55} -1.93570i q^{56} -1.72984i q^{57} +3.64104i q^{58} +7.39840 q^{59} -2.96785 q^{60} -3.89023i q^{61} -6.82843i q^{62} -0.922382i q^{63} +3.33873 q^{64} +14.5359i q^{65} +3.75081 q^{66} +12.0419 q^{67} -5.09859 q^{69} -6.19717 q^{70} +1.52398i q^{71} +2.09859 q^{72} -1.16502i q^{73} +9.83822i q^{74} -11.5359i q^{75} -1.26251 q^{76} +2.09396 q^{77} +5.90604i q^{78} -11.8837i q^{79} -20.0354i q^{80} +1.00000 q^{81} +8.34389i q^{82} +6.38508 q^{83} -0.673192 q^{84} +8.64354 q^{86} -2.20372 q^{87} +4.76413i q^{88} +10.3597 q^{89} -6.71866i q^{90} +3.29715i q^{91} +3.72115i q^{92} +4.13287 q^{93} -11.5016 q^{94} -7.03429i q^{95} -3.94335i q^{96} +14.4695i q^{97} +10.1599 q^{98} +2.27016i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 12 q^{4} + 12 q^{8} - 8 q^{9} + 4 q^{13} - 12 q^{15} + 12 q^{16} - 4 q^{18} - 20 q^{19} + 8 q^{21} - 4 q^{25} + 40 q^{26} - 24 q^{30} + 28 q^{32} + 12 q^{33} + 8 q^{35} - 12 q^{36} - 24 q^{38}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65222 1.16830 0.584149 0.811646i \(-0.301428\pi\)
0.584149 + 0.811646i \(0.301428\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 0.729840 0.364920
\(5\) 4.06644i 1.81857i 0.416179 + 0.909283i \(0.363369\pi\)
−0.416179 + 0.909283i \(0.636631\pi\)
\(6\) 1.65222i 0.674517i
\(7\) 0.922382i 0.348628i 0.984690 + 0.174314i \(0.0557707\pi\)
−0.984690 + 0.174314i \(0.944229\pi\)
\(8\) −2.09859 −0.741962
\(9\) −1.00000 −0.333333
\(10\) 6.71866i 2.12463i
\(11\) − 2.27016i − 0.684479i −0.939613 0.342239i \(-0.888815\pi\)
0.939613 0.342239i \(-0.111185\pi\)
\(12\) 0.729840i 0.210687i
\(13\) 3.57461 0.991417 0.495709 0.868489i \(-0.334908\pi\)
0.495709 + 0.868489i \(0.334908\pi\)
\(14\) 1.52398i 0.407301i
\(15\) −4.06644 −1.04995
\(16\) −4.92701 −1.23175
\(17\) 0 0
\(18\) −1.65222 −0.389433
\(19\) −1.72984 −0.396853 −0.198426 0.980116i \(-0.563583\pi\)
−0.198426 + 0.980116i \(0.563583\pi\)
\(20\) 2.96785i 0.663631i
\(21\) −0.922382 −0.201280
\(22\) − 3.75081i − 0.799675i
\(23\) 5.09859i 1.06313i 0.847018 + 0.531564i \(0.178396\pi\)
−0.847018 + 0.531564i \(0.821604\pi\)
\(24\) − 2.09859i − 0.428372i
\(25\) −11.5359 −2.30718
\(26\) 5.90604 1.15827
\(27\) − 1.00000i − 0.192450i
\(28\) 0.673192i 0.127221i
\(29\) 2.20372i 0.409221i 0.978843 + 0.204611i \(0.0655928\pi\)
−0.978843 + 0.204611i \(0.934407\pi\)
\(30\) −6.71866 −1.22665
\(31\) − 4.13287i − 0.742286i −0.928576 0.371143i \(-0.878966\pi\)
0.928576 0.371143i \(-0.121034\pi\)
\(32\) −3.94335 −0.697093
\(33\) 2.27016 0.395184
\(34\) 0 0
\(35\) −3.75081 −0.634003
\(36\) −0.729840 −0.121640
\(37\) 5.95453i 0.978919i 0.872026 + 0.489460i \(0.162806\pi\)
−0.872026 + 0.489460i \(0.837194\pi\)
\(38\) −2.85808 −0.463642
\(39\) 3.57461i 0.572395i
\(40\) − 8.53377i − 1.34931i
\(41\) 5.05010i 0.788693i 0.918962 + 0.394346i \(0.129029\pi\)
−0.918962 + 0.394346i \(0.870971\pi\)
\(42\) −1.52398 −0.235155
\(43\) 5.23146 0.797790 0.398895 0.916997i \(-0.369394\pi\)
0.398895 + 0.916997i \(0.369394\pi\)
\(44\) − 1.65685i − 0.249780i
\(45\) − 4.06644i − 0.606189i
\(46\) 8.42400i 1.24205i
\(47\) −6.96130 −1.01541 −0.507705 0.861531i \(-0.669506\pi\)
−0.507705 + 0.861531i \(0.669506\pi\)
\(48\) − 4.92701i − 0.711153i
\(49\) 6.14921 0.878459
\(50\) −19.0599 −2.69548
\(51\) 0 0
\(52\) 2.60889 0.361788
\(53\) 2.69555 0.370263 0.185131 0.982714i \(-0.440729\pi\)
0.185131 + 0.982714i \(0.440729\pi\)
\(54\) − 1.65222i − 0.224839i
\(55\) 9.23146 1.24477
\(56\) − 1.93570i − 0.258669i
\(57\) − 1.72984i − 0.229123i
\(58\) 3.64104i 0.478092i
\(59\) 7.39840 0.963190 0.481595 0.876394i \(-0.340058\pi\)
0.481595 + 0.876394i \(0.340058\pi\)
\(60\) −2.96785 −0.383148
\(61\) − 3.89023i − 0.498093i −0.968492 0.249047i \(-0.919883\pi\)
0.968492 0.249047i \(-0.0801172\pi\)
\(62\) − 6.82843i − 0.867211i
\(63\) − 0.922382i − 0.116209i
\(64\) 3.33873 0.417341
\(65\) 14.5359i 1.80296i
\(66\) 3.75081 0.461693
\(67\) 12.0419 1.47116 0.735578 0.677440i \(-0.236910\pi\)
0.735578 + 0.677440i \(0.236910\pi\)
\(68\) 0 0
\(69\) −5.09859 −0.613798
\(70\) −6.19717 −0.740704
\(71\) 1.52398i 0.180863i 0.995903 + 0.0904317i \(0.0288247\pi\)
−0.995903 + 0.0904317i \(0.971175\pi\)
\(72\) 2.09859 0.247321
\(73\) − 1.16502i − 0.136356i −0.997673 0.0681778i \(-0.978281\pi\)
0.997673 0.0681778i \(-0.0217185\pi\)
\(74\) 9.83822i 1.14367i
\(75\) − 11.5359i − 1.33205i
\(76\) −1.26251 −0.144820
\(77\) 2.09396 0.238628
\(78\) 5.90604i 0.668728i
\(79\) − 11.8837i − 1.33702i −0.743704 0.668509i \(-0.766933\pi\)
0.743704 0.668509i \(-0.233067\pi\)
\(80\) − 20.0354i − 2.24002i
\(81\) 1.00000 0.111111
\(82\) 8.34389i 0.921428i
\(83\) 6.38508 0.700854 0.350427 0.936590i \(-0.386036\pi\)
0.350427 + 0.936590i \(0.386036\pi\)
\(84\) −0.673192 −0.0734513
\(85\) 0 0
\(86\) 8.64354 0.932057
\(87\) −2.20372 −0.236264
\(88\) 4.76413i 0.507858i
\(89\) 10.3597 1.09813 0.549063 0.835781i \(-0.314985\pi\)
0.549063 + 0.835781i \(0.314985\pi\)
\(90\) − 6.71866i − 0.708209i
\(91\) 3.29715i 0.345636i
\(92\) 3.72115i 0.387957i
\(93\) 4.13287 0.428559
\(94\) −11.5016 −1.18630
\(95\) − 7.03429i − 0.721703i
\(96\) − 3.94335i − 0.402467i
\(97\) 14.4695i 1.46915i 0.678526 + 0.734576i \(0.262619\pi\)
−0.678526 + 0.734576i \(0.737381\pi\)
\(98\) 10.1599 1.02630
\(99\) 2.27016i 0.228160i
\(100\) −8.41937 −0.841937
\(101\) 0.265746 0.0264427 0.0132213 0.999913i \(-0.495791\pi\)
0.0132213 + 0.999913i \(0.495791\pi\)
\(102\) 0 0
\(103\) −3.03429 −0.298977 −0.149489 0.988763i \(-0.547763\pi\)
−0.149489 + 0.988763i \(0.547763\pi\)
\(104\) −7.50162 −0.735594
\(105\) − 3.75081i − 0.366042i
\(106\) 4.45366 0.432577
\(107\) 19.6524i 1.89987i 0.312443 + 0.949937i \(0.398853\pi\)
−0.312443 + 0.949937i \(0.601147\pi\)
\(108\) − 0.729840i − 0.0702289i
\(109\) − 0.715639i − 0.0685457i −0.999413 0.0342729i \(-0.989088\pi\)
0.999413 0.0342729i \(-0.0109115\pi\)
\(110\) 15.2524 1.45426
\(111\) −5.95453 −0.565179
\(112\) − 4.54459i − 0.429423i
\(113\) 11.7876i 1.10888i 0.832223 + 0.554442i \(0.187068\pi\)
−0.832223 + 0.554442i \(0.812932\pi\)
\(114\) − 2.85808i − 0.267684i
\(115\) −20.7331 −1.93337
\(116\) 1.60837i 0.149333i
\(117\) −3.57461 −0.330472
\(118\) 12.2238 1.12529
\(119\) 0 0
\(120\) 8.53377 0.779023
\(121\) 5.84638 0.531489
\(122\) − 6.42753i − 0.581921i
\(123\) −5.05010 −0.455352
\(124\) − 3.01634i − 0.270875i
\(125\) − 26.5778i − 2.37719i
\(126\) − 1.52398i − 0.135767i
\(127\) −2.81048 −0.249390 −0.124695 0.992195i \(-0.539795\pi\)
−0.124695 + 0.992195i \(0.539795\pi\)
\(128\) 13.4030 1.18467
\(129\) 5.23146i 0.460604i
\(130\) 24.0166i 2.10639i
\(131\) − 7.92701i − 0.692586i −0.938126 0.346293i \(-0.887440\pi\)
0.938126 0.346293i \(-0.112560\pi\)
\(132\) 1.65685 0.144211
\(133\) − 1.59557i − 0.138354i
\(134\) 19.8960 1.71875
\(135\) 4.06644 0.349983
\(136\) 0 0
\(137\) −0.103218 −0.00881851 −0.00440926 0.999990i \(-0.501404\pi\)
−0.00440926 + 0.999990i \(0.501404\pi\)
\(138\) −8.42400 −0.717099
\(139\) − 14.4464i − 1.22532i −0.790345 0.612662i \(-0.790099\pi\)
0.790345 0.612662i \(-0.209901\pi\)
\(140\) −2.73749 −0.231360
\(141\) − 6.96130i − 0.586247i
\(142\) 2.51796i 0.211302i
\(143\) − 8.11492i − 0.678604i
\(144\) 4.92701 0.410584
\(145\) −8.96130 −0.744195
\(146\) − 1.92488i − 0.159304i
\(147\) 6.14921i 0.507178i
\(148\) 4.34586i 0.357227i
\(149\) 3.59557 0.294561 0.147280 0.989095i \(-0.452948\pi\)
0.147280 + 0.989095i \(0.452948\pi\)
\(150\) − 19.0599i − 1.55623i
\(151\) −7.58828 −0.617526 −0.308763 0.951139i \(-0.599915\pi\)
−0.308763 + 0.951139i \(0.599915\pi\)
\(152\) 3.63022 0.294450
\(153\) 0 0
\(154\) 3.45968 0.278789
\(155\) 16.8061 1.34990
\(156\) 2.60889i 0.208878i
\(157\) −18.9569 −1.51292 −0.756462 0.654038i \(-0.773074\pi\)
−0.756462 + 0.654038i \(0.773074\pi\)
\(158\) − 19.6345i − 1.56204i
\(159\) 2.69555i 0.213771i
\(160\) − 16.0354i − 1.26771i
\(161\) −4.70285 −0.370636
\(162\) 1.65222 0.129811
\(163\) − 13.4330i − 1.05216i −0.850436 0.526079i \(-0.823662\pi\)
0.850436 0.526079i \(-0.176338\pi\)
\(164\) 3.68577i 0.287810i
\(165\) 9.23146i 0.718668i
\(166\) 10.5496 0.818806
\(167\) − 2.13729i − 0.165388i −0.996575 0.0826941i \(-0.973648\pi\)
0.996575 0.0826941i \(-0.0263524\pi\)
\(168\) 1.93570 0.149342
\(169\) −0.222197 −0.0170921
\(170\) 0 0
\(171\) 1.72984 0.132284
\(172\) 3.81813 0.291130
\(173\) − 5.27995i − 0.401427i −0.979650 0.200713i \(-0.935674\pi\)
0.979650 0.200713i \(-0.0643260\pi\)
\(174\) −3.64104 −0.276027
\(175\) − 10.6405i − 0.804347i
\(176\) 11.1851i 0.843109i
\(177\) 7.39840i 0.556098i
\(178\) 17.1165 1.28294
\(179\) 7.77619 0.581220 0.290610 0.956842i \(-0.406142\pi\)
0.290610 + 0.956842i \(0.406142\pi\)
\(180\) − 2.96785i − 0.221210i
\(181\) − 0.915833i − 0.0680733i −0.999421 0.0340367i \(-0.989164\pi\)
0.999421 0.0340367i \(-0.0108363\pi\)
\(182\) 5.44763i 0.403805i
\(183\) 3.89023 0.287574
\(184\) − 10.6998i − 0.788802i
\(185\) −24.2137 −1.78023
\(186\) 6.82843 0.500685
\(187\) 0 0
\(188\) −5.08064 −0.370544
\(189\) 0.922382 0.0670934
\(190\) − 11.6222i − 0.843164i
\(191\) −19.1658 −1.38679 −0.693393 0.720560i \(-0.743885\pi\)
−0.693393 + 0.720560i \(0.743885\pi\)
\(192\) 3.33873i 0.240952i
\(193\) − 4.71137i − 0.339132i −0.985519 0.169566i \(-0.945763\pi\)
0.985519 0.169566i \(-0.0542365\pi\)
\(194\) 23.9068i 1.71641i
\(195\) −14.5359 −1.04094
\(196\) 4.48794 0.320567
\(197\) − 14.8949i − 1.06122i −0.847618 0.530608i \(-0.821964\pi\)
0.847618 0.530608i \(-0.178036\pi\)
\(198\) 3.75081i 0.266558i
\(199\) − 18.7837i − 1.33154i −0.746156 0.665771i \(-0.768103\pi\)
0.746156 0.665771i \(-0.231897\pi\)
\(200\) 24.2091 1.71184
\(201\) 12.0419i 0.849373i
\(202\) 0.439071 0.0308929
\(203\) −2.03268 −0.142666
\(204\) 0 0
\(205\) −20.5359 −1.43429
\(206\) −5.01332 −0.349294
\(207\) − 5.09859i − 0.354376i
\(208\) −17.6121 −1.22118
\(209\) 3.92701i 0.271637i
\(210\) − 6.19717i − 0.427646i
\(211\) 5.88066i 0.404841i 0.979299 + 0.202421i \(0.0648808\pi\)
−0.979299 + 0.202421i \(0.935119\pi\)
\(212\) 1.96732 0.135116
\(213\) −1.52398 −0.104421
\(214\) 32.4702i 2.21962i
\(215\) 21.2734i 1.45083i
\(216\) 2.09859i 0.142791i
\(217\) 3.81209 0.258781
\(218\) − 1.18239i − 0.0800819i
\(219\) 1.16502 0.0787250
\(220\) 6.73749 0.454242
\(221\) 0 0
\(222\) −9.83822 −0.660298
\(223\) 5.58387 0.373923 0.186962 0.982367i \(-0.440136\pi\)
0.186962 + 0.982367i \(0.440136\pi\)
\(224\) − 3.63728i − 0.243026i
\(225\) 11.5359 0.769060
\(226\) 19.4757i 1.29551i
\(227\) 27.5299i 1.82722i 0.406589 + 0.913611i \(0.366718\pi\)
−0.406589 + 0.913611i \(0.633282\pi\)
\(228\) − 1.26251i − 0.0836116i
\(229\) 3.57019 0.235925 0.117962 0.993018i \(-0.462364\pi\)
0.117962 + 0.993018i \(0.462364\pi\)
\(230\) −34.2557 −2.25875
\(231\) 2.09396i 0.137772i
\(232\) − 4.62470i − 0.303627i
\(233\) − 1.37088i − 0.0898095i −0.998991 0.0449047i \(-0.985702\pi\)
0.998991 0.0449047i \(-0.0142984\pi\)
\(234\) −5.90604 −0.386090
\(235\) − 28.3077i − 1.84659i
\(236\) 5.39965 0.351487
\(237\) 11.8837 0.771928
\(238\) 0 0
\(239\) 21.6121 1.39797 0.698986 0.715135i \(-0.253635\pi\)
0.698986 + 0.715135i \(0.253635\pi\)
\(240\) 20.0354 1.29328
\(241\) 1.06181i 0.0683969i 0.999415 + 0.0341984i \(0.0108878\pi\)
−0.999415 + 0.0341984i \(0.989112\pi\)
\(242\) 9.65952 0.620937
\(243\) 1.00000i 0.0641500i
\(244\) − 2.83925i − 0.181764i
\(245\) 25.0054i 1.59753i
\(246\) −8.34389 −0.531987
\(247\) −6.18350 −0.393446
\(248\) 8.67319i 0.550748i
\(249\) 6.38508i 0.404638i
\(250\) − 43.9125i − 2.77727i
\(251\) −7.29715 −0.460592 −0.230296 0.973121i \(-0.573969\pi\)
−0.230296 + 0.973121i \(0.573969\pi\)
\(252\) − 0.673192i − 0.0424071i
\(253\) 11.5746 0.727689
\(254\) −4.64354 −0.291361
\(255\) 0 0
\(256\) 15.4673 0.966708
\(257\) 22.5569 1.40706 0.703530 0.710666i \(-0.251606\pi\)
0.703530 + 0.710666i \(0.251606\pi\)
\(258\) 8.64354i 0.538123i
\(259\) −5.49236 −0.341278
\(260\) 10.6089i 0.657936i
\(261\) − 2.20372i − 0.136407i
\(262\) − 13.0972i − 0.809147i
\(263\) 4.24919 0.262016 0.131008 0.991381i \(-0.458179\pi\)
0.131008 + 0.991381i \(0.458179\pi\)
\(264\) −4.76413 −0.293212
\(265\) 10.9613i 0.673347i
\(266\) − 2.63624i − 0.161639i
\(267\) 10.3597i 0.634003i
\(268\) 8.78869 0.536855
\(269\) − 11.8338i − 0.721520i −0.932659 0.360760i \(-0.882517\pi\)
0.932659 0.360760i \(-0.117483\pi\)
\(270\) 6.71866 0.408885
\(271\) −11.8045 −0.717070 −0.358535 0.933516i \(-0.616724\pi\)
−0.358535 + 0.933516i \(0.616724\pi\)
\(272\) 0 0
\(273\) −3.29715 −0.199553
\(274\) −0.170539 −0.0103027
\(275\) 26.1883i 1.57922i
\(276\) −3.72115 −0.223987
\(277\) 10.4275i 0.626530i 0.949666 + 0.313265i \(0.101423\pi\)
−0.949666 + 0.313265i \(0.898577\pi\)
\(278\) − 23.8686i − 1.43154i
\(279\) 4.13287i 0.247429i
\(280\) 7.87140 0.470406
\(281\) 5.46697 0.326132 0.163066 0.986615i \(-0.447862\pi\)
0.163066 + 0.986615i \(0.447862\pi\)
\(282\) − 11.5016i − 0.684911i
\(283\) − 17.6375i − 1.04844i −0.851582 0.524221i \(-0.824357\pi\)
0.851582 0.524221i \(-0.175643\pi\)
\(284\) 1.11226i 0.0660007i
\(285\) 7.03429 0.416675
\(286\) − 13.4077i − 0.792812i
\(287\) −4.65812 −0.274960
\(288\) 3.94335 0.232364
\(289\) 0 0
\(290\) −14.8061 −0.869442
\(291\) −14.4695 −0.848215
\(292\) − 0.850281i − 0.0497589i
\(293\) −8.25845 −0.482464 −0.241232 0.970467i \(-0.577551\pi\)
−0.241232 + 0.970467i \(0.577551\pi\)
\(294\) 10.1599i 0.592535i
\(295\) 30.0851i 1.75162i
\(296\) − 12.4961i − 0.726321i
\(297\) −2.27016 −0.131728
\(298\) 5.94069 0.344135
\(299\) 18.2254i 1.05400i
\(300\) − 8.41937i − 0.486093i
\(301\) 4.82541i 0.278132i
\(302\) −12.5375 −0.721454
\(303\) 0.265746i 0.0152667i
\(304\) 8.52295 0.488825
\(305\) 15.8194 0.905815
\(306\) 0 0
\(307\) −9.94601 −0.567649 −0.283824 0.958876i \(-0.591603\pi\)
−0.283824 + 0.958876i \(0.591603\pi\)
\(308\) 1.52825 0.0870803
\(309\) − 3.03429i − 0.172615i
\(310\) 27.7674 1.57708
\(311\) − 16.5865i − 0.940536i −0.882524 0.470268i \(-0.844157\pi\)
0.882524 0.470268i \(-0.155843\pi\)
\(312\) − 7.50162i − 0.424696i
\(313\) − 20.6116i − 1.16504i −0.812818 0.582518i \(-0.802067\pi\)
0.812818 0.582518i \(-0.197933\pi\)
\(314\) −31.3210 −1.76755
\(315\) 3.75081 0.211334
\(316\) − 8.67319i − 0.487905i
\(317\) − 4.26802i − 0.239716i −0.992791 0.119858i \(-0.961756\pi\)
0.992791 0.119858i \(-0.0382439\pi\)
\(318\) 4.45366i 0.249749i
\(319\) 5.00280 0.280103
\(320\) 13.5767i 0.758963i
\(321\) −19.6524 −1.09689
\(322\) −7.77015 −0.433014
\(323\) 0 0
\(324\) 0.729840 0.0405467
\(325\) −41.2363 −2.28738
\(326\) − 22.1944i − 1.22923i
\(327\) 0.715639 0.0395749
\(328\) − 10.5981i − 0.585181i
\(329\) − 6.42098i − 0.354000i
\(330\) 15.2524i 0.839619i
\(331\) 28.6105 1.57258 0.786288 0.617860i \(-0.212000\pi\)
0.786288 + 0.617860i \(0.212000\pi\)
\(332\) 4.66009 0.255756
\(333\) − 5.95453i − 0.326306i
\(334\) − 3.53127i − 0.193223i
\(335\) 48.9678i 2.67540i
\(336\) 4.54459 0.247928
\(337\) 31.3368i 1.70703i 0.521072 + 0.853513i \(0.325532\pi\)
−0.521072 + 0.853513i \(0.674468\pi\)
\(338\) −0.367119 −0.0199686
\(339\) −11.7876 −0.640214
\(340\) 0 0
\(341\) −9.38228 −0.508079
\(342\) 2.85808 0.154547
\(343\) 12.1286i 0.654883i
\(344\) −10.9787 −0.591930
\(345\) − 20.7331i − 1.11623i
\(346\) − 8.72365i − 0.468986i
\(347\) − 12.0359i − 0.646121i −0.946378 0.323060i \(-0.895288\pi\)
0.946378 0.323060i \(-0.104712\pi\)
\(348\) −1.60837 −0.0862175
\(349\) −33.3512 −1.78525 −0.892625 0.450799i \(-0.851139\pi\)
−0.892625 + 0.450799i \(0.851139\pi\)
\(350\) − 17.5805i − 0.939718i
\(351\) − 3.57461i − 0.190798i
\(352\) 8.95204i 0.477145i
\(353\) −6.56570 −0.349457 −0.174729 0.984617i \(-0.555905\pi\)
−0.174729 + 0.984617i \(0.555905\pi\)
\(354\) 12.2238i 0.649688i
\(355\) −6.19717 −0.328912
\(356\) 7.56093 0.400728
\(357\) 0 0
\(358\) 12.8480 0.679038
\(359\) −21.5508 −1.13741 −0.568705 0.822541i \(-0.692555\pi\)
−0.568705 + 0.822541i \(0.692555\pi\)
\(360\) 8.53377i 0.449769i
\(361\) −16.0077 −0.842508
\(362\) − 1.51316i − 0.0795299i
\(363\) 5.84638i 0.306855i
\(364\) 2.40640i 0.126129i
\(365\) 4.73749 0.247972
\(366\) 6.42753 0.335972
\(367\) − 35.5644i − 1.85645i −0.372025 0.928223i \(-0.621336\pi\)
0.372025 0.928223i \(-0.378664\pi\)
\(368\) − 25.1208i − 1.30951i
\(369\) − 5.05010i − 0.262898i
\(370\) −40.0065 −2.07984
\(371\) 2.48633i 0.129084i
\(372\) 3.01634 0.156390
\(373\) −35.8452 −1.85599 −0.927997 0.372588i \(-0.878471\pi\)
−0.927997 + 0.372588i \(0.878471\pi\)
\(374\) 0 0
\(375\) 26.5778 1.37247
\(376\) 14.6089 0.753396
\(377\) 7.87744i 0.405709i
\(378\) 1.52398 0.0783851
\(379\) − 21.9206i − 1.12599i −0.826461 0.562994i \(-0.809650\pi\)
0.826461 0.562994i \(-0.190350\pi\)
\(380\) − 5.13391i − 0.263364i
\(381\) − 2.81048i − 0.143985i
\(382\) −31.6661 −1.62018
\(383\) 34.3109 1.75321 0.876603 0.481215i \(-0.159804\pi\)
0.876603 + 0.481215i \(0.159804\pi\)
\(384\) 13.4030i 0.683971i
\(385\) 8.51494i 0.433961i
\(386\) − 7.78423i − 0.396207i
\(387\) −5.23146 −0.265930
\(388\) 10.5604i 0.536123i
\(389\) 34.1956 1.73379 0.866894 0.498493i \(-0.166113\pi\)
0.866894 + 0.498493i \(0.166113\pi\)
\(390\) −24.0166 −1.21613
\(391\) 0 0
\(392\) −12.9047 −0.651783
\(393\) 7.92701 0.399865
\(394\) − 24.6096i − 1.23982i
\(395\) 48.3242 2.43146
\(396\) 1.65685i 0.0832601i
\(397\) − 0.230357i − 0.0115613i −0.999983 0.00578065i \(-0.998160\pi\)
0.999983 0.00578065i \(-0.00184005\pi\)
\(398\) − 31.0349i − 1.55564i
\(399\) 1.59557 0.0798786
\(400\) 56.8376 2.84188
\(401\) − 0.606756i − 0.0302999i −0.999885 0.0151500i \(-0.995177\pi\)
0.999885 0.0151500i \(-0.00482257\pi\)
\(402\) 19.8960i 0.992321i
\(403\) − 14.7734i − 0.735915i
\(404\) 0.193952 0.00964947
\(405\) 4.06644i 0.202063i
\(406\) −3.35843 −0.166676
\(407\) 13.5177 0.670049
\(408\) 0 0
\(409\) −1.50925 −0.0746278 −0.0373139 0.999304i \(-0.511880\pi\)
−0.0373139 + 0.999304i \(0.511880\pi\)
\(410\) −33.9299 −1.67568
\(411\) − 0.103218i − 0.00509137i
\(412\) −2.21454 −0.109103
\(413\) 6.82416i 0.335795i
\(414\) − 8.42400i − 0.414017i
\(415\) 25.9645i 1.27455i
\(416\) −14.0959 −0.691110
\(417\) 14.4464 0.707441
\(418\) 6.48830i 0.317353i
\(419\) 12.1198i 0.592090i 0.955174 + 0.296045i \(0.0956678\pi\)
−0.955174 + 0.296045i \(0.904332\pi\)
\(420\) − 2.73749i − 0.133576i
\(421\) −17.8730 −0.871078 −0.435539 0.900170i \(-0.643442\pi\)
−0.435539 + 0.900170i \(0.643442\pi\)
\(422\) 9.71616i 0.472975i
\(423\) 6.96130 0.338470
\(424\) −5.65685 −0.274721
\(425\) 0 0
\(426\) −2.51796 −0.121995
\(427\) 3.58828 0.173649
\(428\) 14.3431i 0.693302i
\(429\) 8.11492 0.391792
\(430\) 35.1484i 1.69501i
\(431\) − 11.1361i − 0.536408i −0.963362 0.268204i \(-0.913570\pi\)
0.963362 0.268204i \(-0.0864301\pi\)
\(432\) 4.92701i 0.237051i
\(433\) 29.1182 1.39933 0.699665 0.714471i \(-0.253333\pi\)
0.699665 + 0.714471i \(0.253333\pi\)
\(434\) 6.29842 0.302334
\(435\) − 8.96130i − 0.429661i
\(436\) − 0.522302i − 0.0250137i
\(437\) − 8.81974i − 0.421905i
\(438\) 1.92488 0.0919742
\(439\) 22.5958i 1.07844i 0.842165 + 0.539219i \(0.181281\pi\)
−0.842165 + 0.539219i \(0.818719\pi\)
\(440\) −19.3730 −0.923572
\(441\) −6.14921 −0.292820
\(442\) 0 0
\(443\) 32.1976 1.52975 0.764877 0.644176i \(-0.222800\pi\)
0.764877 + 0.644176i \(0.222800\pi\)
\(444\) −4.34586 −0.206245
\(445\) 42.1271i 1.99701i
\(446\) 9.22579 0.436854
\(447\) 3.59557i 0.170065i
\(448\) 3.07959i 0.145497i
\(449\) − 1.12030i − 0.0528702i −0.999651 0.0264351i \(-0.991584\pi\)
0.999651 0.0264351i \(-0.00841553\pi\)
\(450\) 19.0599 0.898492
\(451\) 11.4645 0.539844
\(452\) 8.60306i 0.404654i
\(453\) − 7.58828i − 0.356529i
\(454\) 45.4855i 2.13474i
\(455\) −13.4077 −0.628561
\(456\) 3.63022i 0.170001i
\(457\) −40.0795 −1.87484 −0.937419 0.348203i \(-0.886792\pi\)
−0.937419 + 0.348203i \(0.886792\pi\)
\(458\) 5.89875 0.275631
\(459\) 0 0
\(460\) −15.1318 −0.705526
\(461\) −4.99595 −0.232684 −0.116342 0.993209i \(-0.537117\pi\)
−0.116342 + 0.993209i \(0.537117\pi\)
\(462\) 3.45968i 0.160959i
\(463\) 39.0452 1.81458 0.907292 0.420502i \(-0.138146\pi\)
0.907292 + 0.420502i \(0.138146\pi\)
\(464\) − 10.8578i − 0.504060i
\(465\) 16.8061i 0.779363i
\(466\) − 2.26500i − 0.104924i
\(467\) −10.5242 −0.487002 −0.243501 0.969901i \(-0.578296\pi\)
−0.243501 + 0.969901i \(0.578296\pi\)
\(468\) −2.60889 −0.120596
\(469\) 11.1073i 0.512886i
\(470\) − 46.7706i − 2.15737i
\(471\) − 18.9569i − 0.873487i
\(472\) −15.5262 −0.714651
\(473\) − 11.8762i − 0.546070i
\(474\) 19.6345 0.901842
\(475\) 19.9553 0.915611
\(476\) 0 0
\(477\) −2.69555 −0.123421
\(478\) 35.7081 1.63325
\(479\) − 25.9640i − 1.18632i −0.805083 0.593162i \(-0.797879\pi\)
0.805083 0.593162i \(-0.202121\pi\)
\(480\) 16.0354 0.731912
\(481\) 21.2851i 0.970517i
\(482\) 1.75434i 0.0799079i
\(483\) − 4.70285i − 0.213987i
\(484\) 4.26692 0.193951
\(485\) −58.8392 −2.67175
\(486\) 1.65222i 0.0749464i
\(487\) − 25.5405i − 1.15735i −0.815557 0.578676i \(-0.803570\pi\)
0.815557 0.578676i \(-0.196430\pi\)
\(488\) 8.16399i 0.369566i
\(489\) 13.4330 0.607463
\(490\) 41.3145i 1.86640i
\(491\) 2.50764 0.113168 0.0565842 0.998398i \(-0.481979\pi\)
0.0565842 + 0.998398i \(0.481979\pi\)
\(492\) −3.68577 −0.166167
\(493\) 0 0
\(494\) −10.2165 −0.459663
\(495\) −9.23146 −0.414923
\(496\) 20.3627i 0.914313i
\(497\) −1.40569 −0.0630540
\(498\) 10.5496i 0.472738i
\(499\) − 15.2270i − 0.681656i −0.940126 0.340828i \(-0.889293\pi\)
0.940126 0.340828i \(-0.110707\pi\)
\(500\) − 19.3976i − 0.867486i
\(501\) 2.13729 0.0954869
\(502\) −12.0565 −0.538109
\(503\) 39.0990i 1.74334i 0.490094 + 0.871670i \(0.336962\pi\)
−0.490094 + 0.871670i \(0.663038\pi\)
\(504\) 1.93570i 0.0862229i
\(505\) 1.08064i 0.0480878i
\(506\) 19.1238 0.850158
\(507\) − 0.222197i − 0.00986811i
\(508\) −2.05120 −0.0910073
\(509\) −31.9138 −1.41455 −0.707277 0.706937i \(-0.750076\pi\)
−0.707277 + 0.706937i \(0.750076\pi\)
\(510\) 0 0
\(511\) 1.07460 0.0475374
\(512\) −1.25058 −0.0552685
\(513\) 1.72984i 0.0763743i
\(514\) 37.2690 1.64386
\(515\) − 12.3387i − 0.543709i
\(516\) 3.81813i 0.168084i
\(517\) 15.8033i 0.695027i
\(518\) −9.07460 −0.398715
\(519\) 5.27995 0.231764
\(520\) − 30.5049i − 1.33773i
\(521\) 4.83056i 0.211631i 0.994386 + 0.105815i \(0.0337453\pi\)
−0.994386 + 0.105815i \(0.966255\pi\)
\(522\) − 3.64104i − 0.159364i
\(523\) 36.5734 1.59924 0.799622 0.600503i \(-0.205033\pi\)
0.799622 + 0.600503i \(0.205033\pi\)
\(524\) − 5.78546i − 0.252739i
\(525\) 10.6405 0.464390
\(526\) 7.02061 0.306113
\(527\) 0 0
\(528\) −11.1851 −0.486769
\(529\) −2.99559 −0.130243
\(530\) 18.1105i 0.786670i
\(531\) −7.39840 −0.321063
\(532\) − 1.16451i − 0.0504881i
\(533\) 18.0521i 0.781924i
\(534\) 17.1165i 0.740705i
\(535\) −79.9154 −3.45504
\(536\) −25.2711 −1.09154
\(537\) 7.77619i 0.335567i
\(538\) − 19.5521i − 0.842950i
\(539\) − 13.9597i − 0.601286i
\(540\) 2.96785 0.127716
\(541\) 11.0291i 0.474179i 0.971488 + 0.237090i \(0.0761935\pi\)
−0.971488 + 0.237090i \(0.923806\pi\)
\(542\) −19.5036 −0.837751
\(543\) 0.915833 0.0393021
\(544\) 0 0
\(545\) 2.91010 0.124655
\(546\) −5.44763 −0.233137
\(547\) − 26.8766i − 1.14916i −0.818448 0.574580i \(-0.805165\pi\)
0.818448 0.574580i \(-0.194835\pi\)
\(548\) −0.0753327 −0.00321805
\(549\) 3.89023i 0.166031i
\(550\) 43.2690i 1.84500i
\(551\) − 3.81209i − 0.162400i
\(552\) 10.6998 0.455415
\(553\) 10.9613 0.466122
\(554\) 17.2286i 0.731973i
\(555\) − 24.2137i − 1.02782i
\(556\) − 10.5435i − 0.447146i
\(557\) −34.9146 −1.47938 −0.739690 0.672948i \(-0.765028\pi\)
−0.739690 + 0.672948i \(0.765028\pi\)
\(558\) 6.82843i 0.289070i
\(559\) 18.7004 0.790943
\(560\) 18.4803 0.780935
\(561\) 0 0
\(562\) 9.03266 0.381020
\(563\) 7.91334 0.333507 0.166754 0.985999i \(-0.446672\pi\)
0.166754 + 0.985999i \(0.446672\pi\)
\(564\) − 5.08064i − 0.213933i
\(565\) −47.9335 −2.01658
\(566\) − 29.1411i − 1.22489i
\(567\) 0.922382i 0.0387364i
\(568\) − 3.19821i − 0.134194i
\(569\) 17.2956 0.725070 0.362535 0.931970i \(-0.381911\pi\)
0.362535 + 0.931970i \(0.381911\pi\)
\(570\) 11.6222 0.486801
\(571\) 19.3791i 0.810988i 0.914098 + 0.405494i \(0.132901\pi\)
−0.914098 + 0.405494i \(0.867099\pi\)
\(572\) − 5.92260i − 0.247636i
\(573\) − 19.1658i − 0.800661i
\(574\) −7.69626 −0.321236
\(575\) − 58.8168i − 2.45283i
\(576\) −3.33873 −0.139114
\(577\) −2.89714 −0.120610 −0.0603048 0.998180i \(-0.519207\pi\)
−0.0603048 + 0.998180i \(0.519207\pi\)
\(578\) 0 0
\(579\) 4.71137 0.195798
\(580\) −6.54032 −0.271572
\(581\) 5.88949i 0.244337i
\(582\) −23.9068 −0.990968
\(583\) − 6.11934i − 0.253437i
\(584\) 2.44490i 0.101171i
\(585\) − 14.5359i − 0.600986i
\(586\) −13.6448 −0.563662
\(587\) −12.3165 −0.508357 −0.254178 0.967157i \(-0.581805\pi\)
−0.254178 + 0.967157i \(0.581805\pi\)
\(588\) 4.48794i 0.185080i
\(589\) 7.14921i 0.294578i
\(590\) 49.7073i 2.04642i
\(591\) 14.8949 0.612693
\(592\) − 29.3381i − 1.20579i
\(593\) −43.1763 −1.77304 −0.886519 0.462693i \(-0.846883\pi\)
−0.886519 + 0.462693i \(0.846883\pi\)
\(594\) −3.75081 −0.153898
\(595\) 0 0
\(596\) 2.62420 0.107491
\(597\) 18.7837 0.768766
\(598\) 30.1125i 1.23139i
\(599\) 6.70607 0.274003 0.137001 0.990571i \(-0.456254\pi\)
0.137001 + 0.990571i \(0.456254\pi\)
\(600\) 24.2091i 0.988332i
\(601\) − 31.8393i − 1.29875i −0.760468 0.649375i \(-0.775030\pi\)
0.760468 0.649375i \(-0.224970\pi\)
\(602\) 7.97265i 0.324941i
\(603\) −12.0419 −0.490386
\(604\) −5.53823 −0.225348
\(605\) 23.7739i 0.966547i
\(606\) 0.439071i 0.0178360i
\(607\) 27.9168i 1.13311i 0.824025 + 0.566554i \(0.191724\pi\)
−0.824025 + 0.566554i \(0.808276\pi\)
\(608\) 6.82137 0.276643
\(609\) − 2.03268i − 0.0823682i
\(610\) 26.1371 1.05826
\(611\) −24.8839 −1.00669
\(612\) 0 0
\(613\) −5.84314 −0.236002 −0.118001 0.993013i \(-0.537649\pi\)
−0.118001 + 0.993013i \(0.537649\pi\)
\(614\) −16.4330 −0.663183
\(615\) − 20.5359i − 0.828088i
\(616\) −4.39435 −0.177053
\(617\) 37.0522i 1.49166i 0.666134 + 0.745832i \(0.267948\pi\)
−0.666134 + 0.745832i \(0.732052\pi\)
\(618\) − 5.01332i − 0.201665i
\(619\) 16.1686i 0.649870i 0.945736 + 0.324935i \(0.105342\pi\)
−0.945736 + 0.324935i \(0.894658\pi\)
\(620\) 12.2657 0.492604
\(621\) 5.09859 0.204599
\(622\) − 27.4046i − 1.09883i
\(623\) 9.55561i 0.382837i
\(624\) − 17.6121i − 0.705049i
\(625\) 50.3976 2.01590
\(626\) − 34.0550i − 1.36111i
\(627\) −3.92701 −0.156830
\(628\) −13.8355 −0.552097
\(629\) 0 0
\(630\) 6.19717 0.246901
\(631\) 31.6670 1.26064 0.630322 0.776334i \(-0.282923\pi\)
0.630322 + 0.776334i \(0.282923\pi\)
\(632\) 24.9389i 0.992018i
\(633\) −5.88066 −0.233735
\(634\) − 7.05173i − 0.280060i
\(635\) − 11.4286i − 0.453531i
\(636\) 1.96732i 0.0780095i
\(637\) 21.9810 0.870919
\(638\) 8.26575 0.327244
\(639\) − 1.52398i − 0.0602878i
\(640\) 54.5026i 2.15440i
\(641\) − 15.9293i − 0.629169i −0.949229 0.314585i \(-0.898135\pi\)
0.949229 0.314585i \(-0.101865\pi\)
\(642\) −32.4702 −1.28150
\(643\) − 16.6863i − 0.658043i −0.944322 0.329022i \(-0.893281\pi\)
0.944322 0.329022i \(-0.106719\pi\)
\(644\) −3.43233 −0.135253
\(645\) −21.2734 −0.837639
\(646\) 0 0
\(647\) −8.35044 −0.328290 −0.164145 0.986436i \(-0.552486\pi\)
−0.164145 + 0.986436i \(0.552486\pi\)
\(648\) −2.09859 −0.0824403
\(649\) − 16.7956i − 0.659283i
\(650\) −68.1316 −2.67234
\(651\) 3.81209i 0.149408i
\(652\) − 9.80398i − 0.383954i
\(653\) − 28.6977i − 1.12303i −0.827467 0.561514i \(-0.810219\pi\)
0.827467 0.561514i \(-0.189781\pi\)
\(654\) 1.18239 0.0462353
\(655\) 32.2347 1.25951
\(656\) − 24.8819i − 0.971475i
\(657\) 1.16502i 0.0454519i
\(658\) − 10.6089i − 0.413578i
\(659\) −40.3690 −1.57255 −0.786276 0.617876i \(-0.787993\pi\)
−0.786276 + 0.617876i \(0.787993\pi\)
\(660\) 6.73749i 0.262257i
\(661\) 39.4706 1.53523 0.767614 0.640913i \(-0.221444\pi\)
0.767614 + 0.640913i \(0.221444\pi\)
\(662\) 47.2710 1.83724
\(663\) 0 0
\(664\) −13.3997 −0.520007
\(665\) 6.48830 0.251606
\(666\) − 9.83822i − 0.381223i
\(667\) −11.2359 −0.435055
\(668\) − 1.55988i − 0.0603535i
\(669\) 5.58387i 0.215885i
\(670\) 80.9057i 3.12566i
\(671\) −8.83145 −0.340934
\(672\) 3.63728 0.140311
\(673\) 21.6056i 0.832834i 0.909174 + 0.416417i \(0.136714\pi\)
−0.909174 + 0.416417i \(0.863286\pi\)
\(674\) 51.7754i 1.99431i
\(675\) 11.5359i 0.444017i
\(676\) −0.162168 −0.00623724
\(677\) 2.51083i 0.0964990i 0.998835 + 0.0482495i \(0.0153643\pi\)
−0.998835 + 0.0482495i \(0.984636\pi\)
\(678\) −19.4757 −0.747961
\(679\) −13.3464 −0.512187
\(680\) 0 0
\(681\) −27.5299 −1.05495
\(682\) −15.5016 −0.593588
\(683\) 18.7423i 0.717156i 0.933500 + 0.358578i \(0.116738\pi\)
−0.933500 + 0.358578i \(0.883262\pi\)
\(684\) 1.26251 0.0482732
\(685\) − 0.419730i − 0.0160370i
\(686\) 20.0392i 0.765098i
\(687\) 3.57019i 0.136211i
\(688\) −25.7755 −0.982681
\(689\) 9.63554 0.367085
\(690\) − 34.2557i − 1.30409i
\(691\) 38.5702i 1.46728i 0.679538 + 0.733640i \(0.262180\pi\)
−0.679538 + 0.733640i \(0.737820\pi\)
\(692\) − 3.85352i − 0.146489i
\(693\) −2.09396 −0.0795428
\(694\) − 19.8860i − 0.754862i
\(695\) 58.7452 2.22833
\(696\) 4.62470 0.175299
\(697\) 0 0
\(698\) −55.1037 −2.08570
\(699\) 1.37088 0.0518515
\(700\) − 7.76588i − 0.293523i
\(701\) −28.7827 −1.08711 −0.543553 0.839375i \(-0.682921\pi\)
−0.543553 + 0.839375i \(0.682921\pi\)
\(702\) − 5.90604i − 0.222909i
\(703\) − 10.3004i − 0.388487i
\(704\) − 7.57945i − 0.285661i
\(705\) 28.3077 1.06613
\(706\) −10.8480 −0.408270
\(707\) 0.245119i 0.00921866i
\(708\) 5.39965i 0.202931i
\(709\) − 5.14588i − 0.193258i −0.995320 0.0966288i \(-0.969194\pi\)
0.995320 0.0966288i \(-0.0308060\pi\)
\(710\) −10.2391 −0.384267
\(711\) 11.8837i 0.445673i
\(712\) −21.7407 −0.814768
\(713\) 21.0718 0.789146
\(714\) 0 0
\(715\) 32.9988 1.23409
\(716\) 5.67538 0.212099
\(717\) 21.6121i 0.807120i
\(718\) −35.6068 −1.32883
\(719\) − 31.5022i − 1.17483i −0.809285 0.587417i \(-0.800145\pi\)
0.809285 0.587417i \(-0.199855\pi\)
\(720\) 20.0354i 0.746675i
\(721\) − 2.79877i − 0.104232i
\(722\) −26.4482 −0.984300
\(723\) −1.06181 −0.0394890
\(724\) − 0.668412i − 0.0248413i
\(725\) − 25.4219i − 0.944147i
\(726\) 9.65952i 0.358498i
\(727\) 31.2775 1.16002 0.580010 0.814610i \(-0.303049\pi\)
0.580010 + 0.814610i \(0.303049\pi\)
\(728\) − 6.91936i − 0.256449i
\(729\) −1.00000 −0.0370370
\(730\) 7.82739 0.289705
\(731\) 0 0
\(732\) 2.83925 0.104942
\(733\) −18.8153 −0.694960 −0.347480 0.937687i \(-0.612963\pi\)
−0.347480 + 0.937687i \(0.612963\pi\)
\(734\) − 58.7603i − 2.16888i
\(735\) −25.0054 −0.922337
\(736\) − 20.1055i − 0.741099i
\(737\) − 27.3371i − 1.00698i
\(738\) − 8.34389i − 0.307143i
\(739\) −6.94762 −0.255572 −0.127786 0.991802i \(-0.540787\pi\)
−0.127786 + 0.991802i \(0.540787\pi\)
\(740\) −17.6722 −0.649641
\(741\) − 6.18350i − 0.227156i
\(742\) 4.10797i 0.150808i
\(743\) − 33.9563i − 1.24574i −0.782327 0.622868i \(-0.785967\pi\)
0.782327 0.622868i \(-0.214033\pi\)
\(744\) −8.67319 −0.317975
\(745\) 14.6212i 0.535678i
\(746\) −59.2243 −2.16835
\(747\) −6.38508 −0.233618
\(748\) 0 0
\(749\) −18.1271 −0.662349
\(750\) 43.9125 1.60346
\(751\) − 6.91509i − 0.252335i −0.992009 0.126168i \(-0.959732\pi\)
0.992009 0.126168i \(-0.0402677\pi\)
\(752\) 34.2984 1.25073
\(753\) − 7.29715i − 0.265923i
\(754\) 13.0153i 0.473989i
\(755\) − 30.8573i − 1.12301i
\(756\) 0.673192 0.0244838
\(757\) −1.86166 −0.0676633 −0.0338316 0.999428i \(-0.510771\pi\)
−0.0338316 + 0.999428i \(0.510771\pi\)
\(758\) − 36.2178i − 1.31549i
\(759\) 11.5746i 0.420132i
\(760\) 14.7621i 0.535476i
\(761\) 49.2335 1.78471 0.892357 0.451330i \(-0.149050\pi\)
0.892357 + 0.451330i \(0.149050\pi\)
\(762\) − 4.64354i − 0.168218i
\(763\) 0.660093 0.0238970
\(764\) −13.9880 −0.506066
\(765\) 0 0
\(766\) 56.6893 2.04827
\(767\) 26.4464 0.954923
\(768\) 15.4673i 0.558129i
\(769\) 50.9303 1.83659 0.918296 0.395895i \(-0.129565\pi\)
0.918296 + 0.395895i \(0.129565\pi\)
\(770\) 14.0686i 0.506996i
\(771\) 22.5569i 0.812366i
\(772\) − 3.43855i − 0.123756i
\(773\) −2.91614 −0.104886 −0.0524431 0.998624i \(-0.516701\pi\)
−0.0524431 + 0.998624i \(0.516701\pi\)
\(774\) −8.64354 −0.310686
\(775\) 47.6764i 1.71259i
\(776\) − 30.3654i − 1.09006i
\(777\) − 5.49236i − 0.197037i
\(778\) 56.4988 2.02558
\(779\) − 8.73586i − 0.312995i
\(780\) −10.6089 −0.379859
\(781\) 3.45968 0.123797
\(782\) 0 0
\(783\) 2.20372 0.0787546
\(784\) −30.2972 −1.08204
\(785\) − 77.0870i − 2.75135i
\(786\) 13.0972 0.467161
\(787\) − 50.8932i − 1.81415i −0.420974 0.907073i \(-0.638312\pi\)
0.420974 0.907073i \(-0.361688\pi\)
\(788\) − 10.8709i − 0.387259i
\(789\) 4.24919i 0.151275i
\(790\) 79.8424 2.84067
\(791\) −10.8727 −0.386588
\(792\) − 4.76413i − 0.169286i
\(793\) − 13.9060i − 0.493818i
\(794\) − 0.380602i − 0.0135070i
\(795\) −10.9613 −0.388757
\(796\) − 13.7091i − 0.485906i
\(797\) 13.6061 0.481952 0.240976 0.970531i \(-0.422532\pi\)
0.240976 + 0.970531i \(0.422532\pi\)
\(798\) 2.63624 0.0933220
\(799\) 0 0
\(800\) 45.4901 1.60832
\(801\) −10.3597 −0.366042
\(802\) − 1.00250i − 0.0353993i
\(803\) −2.64479 −0.0933326
\(804\) 8.78869i 0.309953i
\(805\) − 19.1238i − 0.674026i
\(806\) − 24.4089i − 0.859768i
\(807\) 11.8338 0.416570
\(808\) −0.557691 −0.0196195
\(809\) − 17.3937i − 0.611529i −0.952107 0.305765i \(-0.901088\pi\)
0.952107 0.305765i \(-0.0989121\pi\)
\(810\) 6.71866i 0.236070i
\(811\) − 32.9286i − 1.15628i −0.815937 0.578140i \(-0.803779\pi\)
0.815937 0.578140i \(-0.196221\pi\)
\(812\) −1.48353 −0.0520617
\(813\) − 11.8045i − 0.414000i
\(814\) 22.3343 0.782817
\(815\) 54.6246 1.91342
\(816\) 0 0
\(817\) −9.04959 −0.316605
\(818\) −2.49362 −0.0871875
\(819\) − 3.29715i − 0.115212i
\(820\) −14.9879 −0.523401
\(821\) 43.7368i 1.52643i 0.646147 + 0.763213i \(0.276379\pi\)
−0.646147 + 0.763213i \(0.723621\pi\)
\(822\) − 0.170539i − 0.00594824i
\(823\) − 1.67402i − 0.0583528i −0.999574 0.0291764i \(-0.990712\pi\)
0.999574 0.0291764i \(-0.00928846\pi\)
\(824\) 6.36771 0.221830
\(825\) −26.1883 −0.911761
\(826\) 11.2750i 0.392308i
\(827\) 2.27016i 0.0789412i 0.999221 + 0.0394706i \(0.0125671\pi\)
−0.999221 + 0.0394706i \(0.987433\pi\)
\(828\) − 3.72115i − 0.129319i
\(829\) 19.2597 0.668918 0.334459 0.942410i \(-0.391446\pi\)
0.334459 + 0.942410i \(0.391446\pi\)
\(830\) 42.8992i 1.48905i
\(831\) −10.4275 −0.361727
\(832\) 11.9346 0.413760
\(833\) 0 0
\(834\) 23.8686 0.826502
\(835\) 8.69114 0.300769
\(836\) 2.86609i 0.0991259i
\(837\) −4.13287 −0.142853
\(838\) 20.0246i 0.691737i
\(839\) − 14.8059i − 0.511157i −0.966788 0.255579i \(-0.917734\pi\)
0.966788 0.255579i \(-0.0822660\pi\)
\(840\) 7.87140i 0.271589i
\(841\) 24.1436 0.832538
\(842\) −29.5302 −1.01768
\(843\) 5.46697i 0.188293i
\(844\) 4.29194i 0.147735i
\(845\) − 0.903549i − 0.0310830i
\(846\) 11.5016 0.395434
\(847\) 5.39259i 0.185292i
\(848\) −13.2810 −0.456073
\(849\) 17.6375 0.605318
\(850\) 0 0
\(851\) −30.3597 −1.04072
\(852\) −1.11226 −0.0381055
\(853\) 6.35771i 0.217684i 0.994059 + 0.108842i \(0.0347142\pi\)
−0.994059 + 0.108842i \(0.965286\pi\)
\(854\) 5.92864 0.202874
\(855\) 7.03429i 0.240568i
\(856\) − 41.2423i − 1.40963i
\(857\) 40.8311i 1.39477i 0.716699 + 0.697383i \(0.245652\pi\)
−0.716699 + 0.697383i \(0.754348\pi\)
\(858\) 13.4077 0.457730
\(859\) −22.1464 −0.755626 −0.377813 0.925882i \(-0.623324\pi\)
−0.377813 + 0.925882i \(0.623324\pi\)
\(860\) 15.5262i 0.529439i
\(861\) − 4.65812i − 0.158748i
\(862\) − 18.3993i − 0.626684i
\(863\) 17.3423 0.590339 0.295170 0.955445i \(-0.404624\pi\)
0.295170 + 0.955445i \(0.404624\pi\)
\(864\) 3.94335i 0.134156i
\(865\) 21.4706 0.730021
\(866\) 48.1097 1.63483
\(867\) 0 0
\(868\) 2.78222 0.0944346
\(869\) −26.9779 −0.915161
\(870\) − 14.8061i − 0.501973i
\(871\) 43.0452 1.45853
\(872\) 1.50183i 0.0508584i
\(873\) − 14.4695i − 0.489717i
\(874\) − 14.5722i − 0.492911i
\(875\) 24.5149 0.828756
\(876\) 0.850281 0.0287283
\(877\) − 30.2306i − 1.02081i −0.859933 0.510407i \(-0.829495\pi\)
0.859933 0.510407i \(-0.170505\pi\)
\(878\) 37.3333i 1.25994i
\(879\) − 8.25845i − 0.278551i
\(880\) −45.4835 −1.53325
\(881\) 10.5647i 0.355933i 0.984037 + 0.177966i \(0.0569519\pi\)
−0.984037 + 0.177966i \(0.943048\pi\)
\(882\) −10.1599 −0.342100
\(883\) 13.9150 0.468276 0.234138 0.972203i \(-0.424773\pi\)
0.234138 + 0.972203i \(0.424773\pi\)
\(884\) 0 0
\(885\) −30.0851 −1.01130
\(886\) 53.1976 1.78721
\(887\) 35.9644i 1.20757i 0.797149 + 0.603783i \(0.206341\pi\)
−0.797149 + 0.603783i \(0.793659\pi\)
\(888\) 12.4961 0.419342
\(889\) − 2.59234i − 0.0869442i
\(890\) 69.6033i 2.33311i
\(891\) − 2.27016i − 0.0760532i
\(892\) 4.07533 0.136452
\(893\) 12.0419 0.402968
\(894\) 5.94069i 0.198686i
\(895\) 31.6214i 1.05699i
\(896\) 12.3627i 0.413010i
\(897\) −18.2254 −0.608530
\(898\) − 1.85098i − 0.0617681i
\(899\) 9.10771 0.303759
\(900\) 8.41937 0.280646
\(901\) 0 0
\(902\) 18.9420 0.630698
\(903\) −4.82541 −0.160579
\(904\) − 24.7373i − 0.822750i
\(905\) 3.72418 0.123796
\(906\) − 12.5375i − 0.416532i
\(907\) 39.1843i 1.30109i 0.759466 + 0.650547i \(0.225460\pi\)
−0.759466 + 0.650547i \(0.774540\pi\)
\(908\) 20.0924i 0.666790i
\(909\) −0.265746 −0.00881423
\(910\) −22.1524 −0.734347
\(911\) − 9.92806i − 0.328931i −0.986383 0.164466i \(-0.947410\pi\)
0.986383 0.164466i \(-0.0525900\pi\)
\(912\) 8.52295i 0.282223i
\(913\) − 14.4952i − 0.479720i
\(914\) −66.2202 −2.19037
\(915\) 15.8194i 0.522973i
\(916\) 2.60567 0.0860938
\(917\) 7.31174 0.241455
\(918\) 0 0
\(919\) 42.8795 1.41446 0.707232 0.706982i \(-0.249944\pi\)
0.707232 + 0.706982i \(0.249944\pi\)
\(920\) 43.5102 1.43449
\(921\) − 9.94601i − 0.327732i
\(922\) −8.25442 −0.271845
\(923\) 5.44763i 0.179311i
\(924\) 1.52825i 0.0502758i
\(925\) − 68.6909i − 2.25854i
\(926\) 64.5113 2.11997
\(927\) 3.03429 0.0996590
\(928\) − 8.69006i − 0.285265i
\(929\) 18.1624i 0.595888i 0.954583 + 0.297944i \(0.0963008\pi\)
−0.954583 + 0.297944i \(0.903699\pi\)
\(930\) 27.7674i 0.910528i
\(931\) −10.6372 −0.348619
\(932\) − 1.00053i − 0.0327733i
\(933\) 16.5865 0.543019
\(934\) −17.3883 −0.568963
\(935\) 0 0
\(936\) 7.50162 0.245198
\(937\) −1.60243 −0.0523492 −0.0261746 0.999657i \(-0.508333\pi\)
−0.0261746 + 0.999657i \(0.508333\pi\)
\(938\) 18.3517i 0.599204i
\(939\) 20.6116 0.672634
\(940\) − 20.6601i − 0.673858i
\(941\) − 32.3544i − 1.05472i −0.849641 0.527362i \(-0.823181\pi\)
0.849641 0.527362i \(-0.176819\pi\)
\(942\) − 31.3210i − 1.02049i
\(943\) −25.7484 −0.838482
\(944\) −36.4520 −1.18641
\(945\) 3.75081i 0.122014i
\(946\) − 19.6222i − 0.637973i
\(947\) 25.1819i 0.818301i 0.912467 + 0.409151i \(0.134175\pi\)
−0.912467 + 0.409151i \(0.865825\pi\)
\(948\) 8.67319 0.281692
\(949\) − 4.16450i − 0.135185i
\(950\) 32.9706 1.06971
\(951\) 4.26802 0.138400
\(952\) 0 0
\(953\) 54.0658 1.75136 0.875681 0.482889i \(-0.160413\pi\)
0.875681 + 0.482889i \(0.160413\pi\)
\(954\) −4.45366 −0.144192
\(955\) − 77.9364i − 2.52196i
\(956\) 15.7734 0.510148
\(957\) 5.00280i 0.161718i
\(958\) − 42.8983i − 1.38598i
\(959\) − 0.0952065i − 0.00307438i
\(960\) −13.5767 −0.438187
\(961\) 13.9194 0.449012
\(962\) 35.1677i 1.13385i
\(963\) − 19.6524i − 0.633291i
\(964\) 0.774948i 0.0249594i
\(965\) 19.1585 0.616733
\(966\) − 7.77015i − 0.250001i
\(967\) 2.17495 0.0699418 0.0349709 0.999388i \(-0.488866\pi\)
0.0349709 + 0.999388i \(0.488866\pi\)
\(968\) −12.2691 −0.394345
\(969\) 0 0
\(970\) −97.2154 −3.12140
\(971\) −47.4481 −1.52268 −0.761340 0.648352i \(-0.775458\pi\)
−0.761340 + 0.648352i \(0.775458\pi\)
\(972\) 0.729840i 0.0234096i
\(973\) 13.3251 0.427182
\(974\) − 42.1987i − 1.35213i
\(975\) − 41.2363i − 1.32062i
\(976\) 19.1672i 0.613528i
\(977\) 20.8226 0.666175 0.333087 0.942896i \(-0.391910\pi\)
0.333087 + 0.942896i \(0.391910\pi\)
\(978\) 22.1944 0.709698
\(979\) − 23.5182i − 0.751644i
\(980\) 18.2499i 0.582973i
\(981\) 0.715639i 0.0228486i
\(982\) 4.14319 0.132214
\(983\) 2.43039i 0.0775173i 0.999249 + 0.0387586i \(0.0123403\pi\)
−0.999249 + 0.0387586i \(0.987660\pi\)
\(984\) 10.5981 0.337854
\(985\) 60.5690 1.92989
\(986\) 0 0
\(987\) 6.42098 0.204382
\(988\) −4.51297 −0.143577
\(989\) 26.6731i 0.848154i
\(990\) −15.2524 −0.484754
\(991\) 36.5777i 1.16193i 0.813929 + 0.580964i \(0.197324\pi\)
−0.813929 + 0.580964i \(0.802676\pi\)
\(992\) 16.2974i 0.517442i
\(993\) 28.6105i 0.907927i
\(994\) −2.32252 −0.0736658
\(995\) 76.3827 2.42150
\(996\) 4.66009i 0.147661i
\(997\) − 20.7109i − 0.655920i −0.944692 0.327960i \(-0.893639\pi\)
0.944692 0.327960i \(-0.106361\pi\)
\(998\) − 25.1585i − 0.796378i
\(999\) 5.95453 0.188393
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.d.f.577.6 8
17.2 even 8 51.2.e.a.13.3 yes 8
17.3 odd 16 867.2.h.i.688.3 16
17.4 even 4 867.2.a.l.1.2 4
17.5 odd 16 867.2.h.k.757.1 16
17.6 odd 16 867.2.h.i.712.4 16
17.7 odd 16 867.2.h.k.733.2 16
17.8 even 8 51.2.e.a.4.2 8
17.9 even 8 867.2.e.g.616.2 8
17.10 odd 16 867.2.h.k.733.1 16
17.11 odd 16 867.2.h.i.712.3 16
17.12 odd 16 867.2.h.k.757.2 16
17.13 even 4 867.2.a.k.1.2 4
17.14 odd 16 867.2.h.i.688.4 16
17.15 even 8 867.2.e.g.829.3 8
17.16 even 2 inner 867.2.d.f.577.5 8
51.2 odd 8 153.2.f.b.64.2 8
51.8 odd 8 153.2.f.b.55.3 8
51.38 odd 4 2601.2.a.be.1.3 4
51.47 odd 4 2601.2.a.bf.1.3 4
68.19 odd 8 816.2.bd.e.625.1 8
68.59 odd 8 816.2.bd.e.769.1 8
204.59 even 8 2448.2.be.x.1585.4 8
204.155 even 8 2448.2.be.x.1441.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.2 8 17.8 even 8
51.2.e.a.13.3 yes 8 17.2 even 8
153.2.f.b.55.3 8 51.8 odd 8
153.2.f.b.64.2 8 51.2 odd 8
816.2.bd.e.625.1 8 68.19 odd 8
816.2.bd.e.769.1 8 68.59 odd 8
867.2.a.k.1.2 4 17.13 even 4
867.2.a.l.1.2 4 17.4 even 4
867.2.d.f.577.5 8 17.16 even 2 inner
867.2.d.f.577.6 8 1.1 even 1 trivial
867.2.e.g.616.2 8 17.9 even 8
867.2.e.g.829.3 8 17.15 even 8
867.2.h.i.688.3 16 17.3 odd 16
867.2.h.i.688.4 16 17.14 odd 16
867.2.h.i.712.3 16 17.11 odd 16
867.2.h.i.712.4 16 17.6 odd 16
867.2.h.k.733.1 16 17.10 odd 16
867.2.h.k.733.2 16 17.7 odd 16
867.2.h.k.757.1 16 17.5 odd 16
867.2.h.k.757.2 16 17.12 odd 16
2448.2.be.x.1441.4 8 204.155 even 8
2448.2.be.x.1585.4 8 204.59 even 8
2601.2.a.be.1.3 4 51.38 odd 4
2601.2.a.bf.1.3 4 51.47 odd 4