L(s) = 1 | + 1.65·2-s + i·3-s + 0.729·4-s + 4.06i·5-s + 1.65i·6-s + 0.922i·7-s − 2.09·8-s − 9-s + 6.71i·10-s − 2.27i·11-s + 0.729i·12-s + 3.57·13-s + 1.52i·14-s − 4.06·15-s − 4.92·16-s + ⋯ |
L(s) = 1 | + 1.16·2-s + 0.577i·3-s + 0.364·4-s + 1.81i·5-s + 0.674i·6-s + 0.348i·7-s − 0.741·8-s − 0.333·9-s + 2.12i·10-s − 0.684i·11-s + 0.210i·12-s + 0.991·13-s + 0.407i·14-s − 1.04·15-s − 1.23·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.685 - 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.685 - 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.884960 + 2.05061i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.884960 + 2.05061i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 1.65T + 2T^{2} \) |
| 5 | \( 1 - 4.06iT - 5T^{2} \) |
| 7 | \( 1 - 0.922iT - 7T^{2} \) |
| 11 | \( 1 + 2.27iT - 11T^{2} \) |
| 13 | \( 1 - 3.57T + 13T^{2} \) |
| 19 | \( 1 + 1.72T + 19T^{2} \) |
| 23 | \( 1 - 5.09iT - 23T^{2} \) |
| 29 | \( 1 - 2.20iT - 29T^{2} \) |
| 31 | \( 1 + 4.13iT - 31T^{2} \) |
| 37 | \( 1 - 5.95iT - 37T^{2} \) |
| 41 | \( 1 - 5.05iT - 41T^{2} \) |
| 43 | \( 1 - 5.23T + 43T^{2} \) |
| 47 | \( 1 + 6.96T + 47T^{2} \) |
| 53 | \( 1 - 2.69T + 53T^{2} \) |
| 59 | \( 1 - 7.39T + 59T^{2} \) |
| 61 | \( 1 + 3.89iT - 61T^{2} \) |
| 67 | \( 1 - 12.0T + 67T^{2} \) |
| 71 | \( 1 - 1.52iT - 71T^{2} \) |
| 73 | \( 1 + 1.16iT - 73T^{2} \) |
| 79 | \( 1 + 11.8iT - 79T^{2} \) |
| 83 | \( 1 - 6.38T + 83T^{2} \) |
| 89 | \( 1 - 10.3T + 89T^{2} \) |
| 97 | \( 1 - 14.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71815788996985103733533906076, −9.801545897500303119054883952058, −8.875019101495954620778048483804, −7.81888505033064674159010229696, −6.53394558205461813495748411280, −6.11657793539456641230812565600, −5.22268833442395987856027492447, −3.85657705179064941227694016503, −3.39861364670798027083155691776, −2.49222628709902457140963542041,
0.74257828528487184574472604409, 2.14418466328312579044333223926, 3.81796117598964040640773777440, 4.46069151470838341193955347477, 5.30781989566304517144563400227, 6.05801642132280353862435209807, 7.09448227748943964790034996452, 8.366220553065565247428887335591, 8.756718683151601829722448783275, 9.696455120417960840476269819055