Properties

Label 2448.2.be.x.1441.4
Level $2448$
Weight $2$
Character 2448.1441
Analytic conductor $19.547$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2448,2,Mod(1441,2448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2448.1441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2448.be (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.5473784148\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1441.4
Root \(2.06644i\) of defining polynomial
Character \(\chi\) \(=\) 2448.1441
Dual form 2448.2.be.x.1585.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.87540 + 2.87540i) q^{5} +(-0.652223 + 0.652223i) q^{7} +(1.60525 - 1.60525i) q^{11} -3.57461 q^{13} +(-3.79779 - 1.60525i) q^{17} +1.72984i q^{19} +(-3.60525 + 3.60525i) q^{23} +11.5359i q^{25} +(1.55827 + 1.55827i) q^{29} +(2.92238 + 2.92238i) q^{31} -3.75081 q^{35} +(4.21049 + 4.21049i) q^{37} +(-3.57096 + 3.57096i) q^{41} +5.23146i q^{43} +6.96130 q^{47} +6.14921i q^{49} -2.69555i q^{53} +9.23146 q^{55} -7.39840i q^{59} +(-2.75081 + 2.75081i) q^{61} +(-10.2784 - 10.2784i) q^{65} -12.0419 q^{67} +(1.07762 + 1.07762i) q^{71} +(0.823796 + 0.823796i) q^{73} +2.09396i q^{77} +(-8.40303 + 8.40303i) q^{79} +6.38508i q^{83} +(-6.30445 - 15.5359i) q^{85} +10.3597 q^{89} +(2.33144 - 2.33144i) q^{91} +(-4.97399 + 4.97399i) q^{95} +(-10.2315 - 10.2315i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + 4 q^{7} - 4 q^{13} + 4 q^{17} - 16 q^{23} - 4 q^{29} + 8 q^{31} + 8 q^{35} + 8 q^{37} - 28 q^{41} - 8 q^{47} + 4 q^{55} + 16 q^{61} - 16 q^{65} - 8 q^{67} + 24 q^{71} + 20 q^{73} - 20 q^{79}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2448\mathbb{Z}\right)^\times\).

\(n\) \(613\) \(1361\) \(1873\) \(2143\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.87540 + 2.87540i 1.28592 + 1.28592i 0.937243 + 0.348677i \(0.113369\pi\)
0.348677 + 0.937243i \(0.386631\pi\)
\(6\) 0 0
\(7\) −0.652223 + 0.652223i −0.246517 + 0.246517i −0.819540 0.573023i \(-0.805771\pi\)
0.573023 + 0.819540i \(0.305771\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.60525 1.60525i 0.484000 0.484000i −0.422407 0.906406i \(-0.638815\pi\)
0.906406 + 0.422407i \(0.138815\pi\)
\(12\) 0 0
\(13\) −3.57461 −0.991417 −0.495709 0.868489i \(-0.665092\pi\)
−0.495709 + 0.868489i \(0.665092\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.79779 1.60525i −0.921099 0.389329i
\(18\) 0 0
\(19\) 1.72984i 0.396853i 0.980116 + 0.198426i \(0.0635830\pi\)
−0.980116 + 0.198426i \(0.936417\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.60525 + 3.60525i −0.751746 + 0.751746i −0.974805 0.223059i \(-0.928396\pi\)
0.223059 + 0.974805i \(0.428396\pi\)
\(24\) 0 0
\(25\) 11.5359i 2.30718i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.55827 + 1.55827i 0.289363 + 0.289363i 0.836828 0.547465i \(-0.184407\pi\)
−0.547465 + 0.836828i \(0.684407\pi\)
\(30\) 0 0
\(31\) 2.92238 + 2.92238i 0.524875 + 0.524875i 0.919040 0.394165i \(-0.128966\pi\)
−0.394165 + 0.919040i \(0.628966\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.75081 −0.634003
\(36\) 0 0
\(37\) 4.21049 + 4.21049i 0.692200 + 0.692200i 0.962716 0.270515i \(-0.0871941\pi\)
−0.270515 + 0.962716i \(0.587194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.57096 + 3.57096i −0.557690 + 0.557690i −0.928649 0.370959i \(-0.879029\pi\)
0.370959 + 0.928649i \(0.379029\pi\)
\(42\) 0 0
\(43\) 5.23146i 0.797790i 0.916997 + 0.398895i \(0.130606\pi\)
−0.916997 + 0.398895i \(0.869394\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.96130 1.01541 0.507705 0.861531i \(-0.330494\pi\)
0.507705 + 0.861531i \(0.330494\pi\)
\(48\) 0 0
\(49\) 6.14921i 0.878459i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.69555i 0.370263i −0.982714 0.185131i \(-0.940729\pi\)
0.982714 0.185131i \(-0.0592711\pi\)
\(54\) 0 0
\(55\) 9.23146 1.24477
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.39840i 0.963190i −0.876394 0.481595i \(-0.840058\pi\)
0.876394 0.481595i \(-0.159942\pi\)
\(60\) 0 0
\(61\) −2.75081 + 2.75081i −0.352205 + 0.352205i −0.860929 0.508724i \(-0.830117\pi\)
0.508724 + 0.860929i \(0.330117\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.2784 10.2784i −1.27488 1.27488i
\(66\) 0 0
\(67\) −12.0419 −1.47116 −0.735578 0.677440i \(-0.763090\pi\)
−0.735578 + 0.677440i \(0.763090\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.07762 + 1.07762i 0.127890 + 0.127890i 0.768154 0.640265i \(-0.221175\pi\)
−0.640265 + 0.768154i \(0.721175\pi\)
\(72\) 0 0
\(73\) 0.823796 + 0.823796i 0.0964180 + 0.0964180i 0.753670 0.657252i \(-0.228281\pi\)
−0.657252 + 0.753670i \(0.728281\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.09396i 0.238628i
\(78\) 0 0
\(79\) −8.40303 + 8.40303i −0.945415 + 0.945415i −0.998585 0.0531704i \(-0.983067\pi\)
0.0531704 + 0.998585i \(0.483067\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.38508i 0.700854i 0.936590 + 0.350427i \(0.113964\pi\)
−0.936590 + 0.350427i \(0.886036\pi\)
\(84\) 0 0
\(85\) −6.30445 15.5359i −0.683813 1.68511i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.3597 1.09813 0.549063 0.835781i \(-0.314985\pi\)
0.549063 + 0.835781i \(0.314985\pi\)
\(90\) 0 0
\(91\) 2.33144 2.33144i 0.244401 0.244401i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.97399 + 4.97399i −0.510321 + 0.510321i
\(96\) 0 0
\(97\) −10.2315 10.2315i −1.03885 1.03885i −0.999214 0.0396330i \(-0.987381\pi\)
−0.0396330 0.999214i \(-0.512619\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.265746 −0.0264427 −0.0132213 0.999913i \(-0.504209\pi\)
−0.0132213 + 0.999913i \(0.504209\pi\)
\(102\) 0 0
\(103\) 3.03429 0.298977 0.149489 0.988763i \(-0.452237\pi\)
0.149489 + 0.988763i \(0.452237\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.8964 13.8964i −1.34341 1.34341i −0.892637 0.450776i \(-0.851147\pi\)
−0.450776 0.892637i \(-0.648853\pi\)
\(108\) 0 0
\(109\) −0.506033 + 0.506033i −0.0484692 + 0.0484692i −0.730926 0.682457i \(-0.760912\pi\)
0.682457 + 0.730926i \(0.260912\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.33509 8.33509i 0.784099 0.784099i −0.196421 0.980520i \(-0.562932\pi\)
0.980520 + 0.196421i \(0.0629319\pi\)
\(114\) 0 0
\(115\) −20.7331 −1.93337
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.52398 1.43003i 0.323043 0.131090i
\(120\) 0 0
\(121\) 5.84638i 0.531489i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −18.7934 + 18.7934i −1.68093 + 1.68093i
\(126\) 0 0
\(127\) 2.81048i 0.249390i −0.992195 0.124695i \(-0.960205\pi\)
0.992195 0.124695i \(-0.0397952\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.60525 + 5.60525i 0.489733 + 0.489733i 0.908222 0.418489i \(-0.137440\pi\)
−0.418489 + 0.908222i \(0.637440\pi\)
\(132\) 0 0
\(133\) −1.12824 1.12824i −0.0978309 0.0978309i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.103218 0.00881851 0.00440926 0.999990i \(-0.498596\pi\)
0.00440926 + 0.999990i \(0.498596\pi\)
\(138\) 0 0
\(139\) 10.2151 + 10.2151i 0.866435 + 0.866435i 0.992076 0.125641i \(-0.0400986\pi\)
−0.125641 + 0.992076i \(0.540099\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.73812 + 5.73812i −0.479846 + 0.479846i
\(144\) 0 0
\(145\) 8.96130i 0.744195i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.59557 0.294561 0.147280 0.989095i \(-0.452948\pi\)
0.147280 + 0.989095i \(0.452948\pi\)
\(150\) 0 0
\(151\) 7.58828i 0.617526i 0.951139 + 0.308763i \(0.0999149\pi\)
−0.951139 + 0.308763i \(0.900085\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.8061i 1.34990i
\(156\) 0 0
\(157\) 18.9569 1.51292 0.756462 0.654038i \(-0.226926\pi\)
0.756462 + 0.654038i \(0.226926\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.70285i 0.370636i
\(162\) 0 0
\(163\) 9.49860 9.49860i 0.743988 0.743988i −0.229355 0.973343i \(-0.573662\pi\)
0.973343 + 0.229355i \(0.0736617\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.51129 1.51129i −0.116947 0.116947i 0.646211 0.763158i \(-0.276352\pi\)
−0.763158 + 0.646211i \(0.776352\pi\)
\(168\) 0 0
\(169\) −0.222197 −0.0170921
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.73349 + 3.73349i 0.283852 + 0.283852i 0.834643 0.550791i \(-0.185674\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(174\) 0 0
\(175\) −7.52398 7.52398i −0.568760 0.568760i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.77619i 0.581220i −0.956842 0.290610i \(-0.906142\pi\)
0.956842 0.290610i \(-0.0938582\pi\)
\(180\) 0 0
\(181\) 0.647592 0.647592i 0.0481351 0.0481351i −0.682630 0.730765i \(-0.739164\pi\)
0.730765 + 0.682630i \(0.239164\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 24.2137i 1.78023i
\(186\) 0 0
\(187\) −8.67319 + 3.51957i −0.634247 + 0.257376i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.1658 1.38679 0.693393 0.720560i \(-0.256115\pi\)
0.693393 + 0.720560i \(0.256115\pi\)
\(192\) 0 0
\(193\) 3.33144 3.33144i 0.239802 0.239802i −0.576966 0.816768i \(-0.695763\pi\)
0.816768 + 0.576966i \(0.195763\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.5323 10.5323i 0.750392 0.750392i −0.224160 0.974552i \(-0.571964\pi\)
0.974552 + 0.224160i \(0.0719638\pi\)
\(198\) 0 0
\(199\) −13.2821 13.2821i −0.941542 0.941542i 0.0568413 0.998383i \(-0.481897\pi\)
−0.998383 + 0.0568413i \(0.981897\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.03268 −0.142666
\(204\) 0 0
\(205\) −20.5359 −1.43429
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.77682 + 2.77682i 0.192077 + 0.192077i
\(210\) 0 0
\(211\) −4.15826 + 4.15826i −0.286266 + 0.286266i −0.835602 0.549336i \(-0.814881\pi\)
0.549336 + 0.835602i \(0.314881\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.0426 + 15.0426i −1.02589 + 1.02589i
\(216\) 0 0
\(217\) −3.81209 −0.258781
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.5756 + 5.73812i 0.913193 + 0.385988i
\(222\) 0 0
\(223\) 5.58387i 0.373923i −0.982367 0.186962i \(-0.940136\pi\)
0.982367 0.186962i \(-0.0598640\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.4666 + 19.4666i −1.29204 + 1.29204i −0.358519 + 0.933522i \(0.616718\pi\)
−0.933522 + 0.358519i \(0.883282\pi\)
\(228\) 0 0
\(229\) 3.57019i 0.235925i −0.993018 0.117962i \(-0.962364\pi\)
0.993018 0.117962i \(-0.0376362\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.969360 0.969360i −0.0635049 0.0635049i 0.674641 0.738146i \(-0.264298\pi\)
−0.738146 + 0.674641i \(0.764298\pi\)
\(234\) 0 0
\(235\) 20.0166 + 20.0166i 1.30574 + 1.30574i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 21.6121 1.39797 0.698986 0.715135i \(-0.253635\pi\)
0.698986 + 0.715135i \(0.253635\pi\)
\(240\) 0 0
\(241\) 0.750810 + 0.750810i 0.0483639 + 0.0483639i 0.730875 0.682511i \(-0.239112\pi\)
−0.682511 + 0.730875i \(0.739112\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −17.6815 + 17.6815i −1.12963 + 1.12963i
\(246\) 0 0
\(247\) 6.18350i 0.393446i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.29715 0.460592 0.230296 0.973121i \(-0.426031\pi\)
0.230296 + 0.973121i \(0.426031\pi\)
\(252\) 0 0
\(253\) 11.5746i 0.727689i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.5569i 1.40706i −0.710666 0.703530i \(-0.751606\pi\)
0.710666 0.703530i \(-0.248394\pi\)
\(258\) 0 0
\(259\) −5.49236 −0.341278
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.24919i 0.262016i −0.991381 0.131008i \(-0.958179\pi\)
0.991381 0.131008i \(-0.0418214\pi\)
\(264\) 0 0
\(265\) 7.75081 7.75081i 0.476128 0.476128i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.36776 + 8.36776i 0.510191 + 0.510191i 0.914585 0.404394i \(-0.132517\pi\)
−0.404394 + 0.914585i \(0.632517\pi\)
\(270\) 0 0
\(271\) 11.8045 0.717070 0.358535 0.933516i \(-0.383276\pi\)
0.358535 + 0.933516i \(0.383276\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.5180 + 18.5180i 1.11667 + 1.11667i
\(276\) 0 0
\(277\) −7.37338 7.37338i −0.443023 0.443023i 0.450003 0.893027i \(-0.351423\pi\)
−0.893027 + 0.450003i \(0.851423\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.46697i 0.326132i 0.986615 + 0.163066i \(0.0521384\pi\)
−0.986615 + 0.163066i \(0.947862\pi\)
\(282\) 0 0
\(283\) −12.4716 + 12.4716i −0.741360 + 0.741360i −0.972840 0.231480i \(-0.925643\pi\)
0.231480 + 0.972840i \(0.425643\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.65812i 0.274960i
\(288\) 0 0
\(289\) 11.8464 + 12.1928i 0.696846 + 0.717221i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8.25845 −0.482464 −0.241232 0.970467i \(-0.577551\pi\)
−0.241232 + 0.970467i \(0.577551\pi\)
\(294\) 0 0
\(295\) 21.2734 21.2734i 1.23859 1.23859i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.8873 12.8873i 0.745293 0.745293i
\(300\) 0 0
\(301\) −3.41208 3.41208i −0.196669 0.196669i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −15.8194 −0.905815
\(306\) 0 0
\(307\) 9.94601 0.567649 0.283824 0.958876i \(-0.408397\pi\)
0.283824 + 0.958876i \(0.408397\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.7284 + 11.7284i 0.665059 + 0.665059i 0.956568 0.291509i \(-0.0941573\pi\)
−0.291509 + 0.956568i \(0.594157\pi\)
\(312\) 0 0
\(313\) −14.5746 + 14.5746i −0.823805 + 0.823805i −0.986651 0.162846i \(-0.947933\pi\)
0.162846 + 0.986651i \(0.447933\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.01795 + 3.01795i −0.169505 + 0.169505i −0.786762 0.617257i \(-0.788244\pi\)
0.617257 + 0.786762i \(0.288244\pi\)
\(318\) 0 0
\(319\) 5.00280 0.280103
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.77682 6.56957i 0.154506 0.365540i
\(324\) 0 0
\(325\) 41.2363i 2.28738i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.54032 + 4.54032i −0.250316 + 0.250316i
\(330\) 0 0
\(331\) 28.6105i 1.57258i 0.617860 + 0.786288i \(0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −34.6254 34.6254i −1.89179 1.89179i
\(336\) 0 0
\(337\) 22.1585 + 22.1585i 1.20705 + 1.20705i 0.971978 + 0.235071i \(0.0755322\pi\)
0.235071 + 0.971978i \(0.424468\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.38228 0.508079
\(342\) 0 0
\(343\) −8.57622 8.57622i −0.463072 0.463072i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.51066 + 8.51066i −0.456876 + 0.456876i −0.897629 0.440752i \(-0.854712\pi\)
0.440752 + 0.897629i \(0.354712\pi\)
\(348\) 0 0
\(349\) 33.3512i 1.78525i 0.450799 + 0.892625i \(0.351139\pi\)
−0.450799 + 0.892625i \(0.648861\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.56570 −0.349457 −0.174729 0.984617i \(-0.555905\pi\)
−0.174729 + 0.984617i \(0.555905\pi\)
\(354\) 0 0
\(355\) 6.19717i 0.328912i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.5508i 1.13741i −0.822541 0.568705i \(-0.807445\pi\)
0.822541 0.568705i \(-0.192555\pi\)
\(360\) 0 0
\(361\) 16.0077 0.842508
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.73749i 0.247972i
\(366\) 0 0
\(367\) 25.1478 25.1478i 1.31271 1.31271i 0.393292 0.919414i \(-0.371336\pi\)
0.919414 0.393292i \(-0.128664\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.75810 + 1.75810i 0.0912761 + 0.0912761i
\(372\) 0 0
\(373\) −35.8452 −1.85599 −0.927997 0.372588i \(-0.878471\pi\)
−0.927997 + 0.372588i \(0.878471\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.57019 5.57019i −0.286879 0.286879i
\(378\) 0 0
\(379\) −15.5002 15.5002i −0.796193 0.796193i 0.186300 0.982493i \(-0.440350\pi\)
−0.982493 + 0.186300i \(0.940350\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 34.3109i 1.75321i −0.481215 0.876603i \(-0.659804\pi\)
0.481215 0.876603i \(-0.340196\pi\)
\(384\) 0 0
\(385\) −6.02097 + 6.02097i −0.306857 + 0.306857i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 34.1956i 1.73379i −0.498493 0.866894i \(-0.666113\pi\)
0.498493 0.866894i \(-0.333887\pi\)
\(390\) 0 0
\(391\) 19.4793 7.90465i 0.985108 0.399755i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −48.3242 −2.43146
\(396\) 0 0
\(397\) 0.162887 0.162887i 0.00817507 0.00817507i −0.703007 0.711183i \(-0.748160\pi\)
0.711183 + 0.703007i \(0.248160\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.429041 0.429041i 0.0214253 0.0214253i −0.696313 0.717738i \(-0.745177\pi\)
0.717738 + 0.696313i \(0.245177\pi\)
\(402\) 0 0
\(403\) −10.4464 10.4464i −0.520370 0.520370i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.5177 0.670049
\(408\) 0 0
\(409\) −1.50925 −0.0746278 −0.0373139 0.999304i \(-0.511880\pi\)
−0.0373139 + 0.999304i \(0.511880\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.82541 + 4.82541i 0.237443 + 0.237443i
\(414\) 0 0
\(415\) −18.3597 + 18.3597i −0.901242 + 0.901242i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.56997 + 8.56997i −0.418671 + 0.418671i −0.884745 0.466075i \(-0.845668\pi\)
0.466075 + 0.884745i \(0.345668\pi\)
\(420\) 0 0
\(421\) 17.8730 0.871078 0.435539 0.900170i \(-0.356558\pi\)
0.435539 + 0.900170i \(0.356558\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 18.5180 43.8109i 0.898253 2.12514i
\(426\) 0 0
\(427\) 3.58828i 0.173649i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.87442 7.87442i 0.379297 0.379297i −0.491551 0.870849i \(-0.663570\pi\)
0.870849 + 0.491551i \(0.163570\pi\)
\(432\) 0 0
\(433\) 29.1182i 1.39933i −0.714471 0.699665i \(-0.753333\pi\)
0.714471 0.699665i \(-0.246667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.23650 6.23650i −0.298332 0.298332i
\(438\) 0 0
\(439\) −15.9776 15.9776i −0.762571 0.762571i 0.214215 0.976786i \(-0.431281\pi\)
−0.976786 + 0.214215i \(0.931281\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 32.1976 1.52975 0.764877 0.644176i \(-0.222800\pi\)
0.764877 + 0.644176i \(0.222800\pi\)
\(444\) 0 0
\(445\) 29.7883 + 29.7883i 1.41210 + 1.41210i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.792171 0.792171i 0.0373849 0.0373849i −0.688167 0.725552i \(-0.741584\pi\)
0.725552 + 0.688167i \(0.241584\pi\)
\(450\) 0 0
\(451\) 11.4645i 0.539844i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 13.4077 0.628561
\(456\) 0 0
\(457\) 40.0795i 1.87484i −0.348203 0.937419i \(-0.613208\pi\)
0.348203 0.937419i \(-0.386792\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.99595i 0.232684i 0.993209 + 0.116342i \(0.0371169\pi\)
−0.993209 + 0.116342i \(0.962883\pi\)
\(462\) 0 0
\(463\) 39.0452 1.81458 0.907292 0.420502i \(-0.138146\pi\)
0.907292 + 0.420502i \(0.138146\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.5242i 0.487002i 0.969901 + 0.243501i \(0.0782959\pi\)
−0.969901 + 0.243501i \(0.921704\pi\)
\(468\) 0 0
\(469\) 7.85403 7.85403i 0.362665 0.362665i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.39778 + 8.39778i 0.386130 + 0.386130i
\(474\) 0 0
\(475\) −19.9553 −0.915611
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −18.3593 18.3593i −0.838858 0.838858i 0.149851 0.988709i \(-0.452121\pi\)
−0.988709 + 0.149851i \(0.952121\pi\)
\(480\) 0 0
\(481\) −15.0508 15.0508i −0.686259 0.686259i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 58.8392i 2.67175i
\(486\) 0 0
\(487\) −18.0599 + 18.0599i −0.818372 + 0.818372i −0.985872 0.167500i \(-0.946430\pi\)
0.167500 + 0.985872i \(0.446430\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.50764i 0.113168i 0.998398 + 0.0565842i \(0.0180209\pi\)
−0.998398 + 0.0565842i \(0.981979\pi\)
\(492\) 0 0
\(493\) −3.41657 8.41937i −0.153874 0.379189i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.40569 −0.0630540
\(498\) 0 0
\(499\) −10.7671 + 10.7671i −0.482004 + 0.482004i −0.905771 0.423767i \(-0.860707\pi\)
0.423767 + 0.905771i \(0.360707\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 27.6472 27.6472i 1.23273 1.23273i 0.269815 0.962912i \(-0.413038\pi\)
0.962912 0.269815i \(-0.0869625\pi\)
\(504\) 0 0
\(505\) −0.764127 0.764127i −0.0340032 0.0340032i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 31.9138 1.41455 0.707277 0.706937i \(-0.249924\pi\)
0.707277 + 0.706937i \(0.249924\pi\)
\(510\) 0 0
\(511\) −1.07460 −0.0475374
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.72480 + 8.72480i 0.384461 + 0.384461i
\(516\) 0 0
\(517\) 11.1746 11.1746i 0.491458 0.491458i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.41572 3.41572i 0.149646 0.149646i −0.628314 0.777960i \(-0.716255\pi\)
0.777960 + 0.628314i \(0.216255\pi\)
\(522\) 0 0
\(523\) 36.5734 1.59924 0.799622 0.600503i \(-0.205033\pi\)
0.799622 + 0.600503i \(0.205033\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.40745 15.7897i −0.279113 0.687811i
\(528\) 0 0
\(529\) 2.99559i 0.130243i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.7648 12.7648i 0.552904 0.552904i
\(534\) 0 0
\(535\) 79.9154i 3.45504i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.87099 + 9.87099i 0.425174 + 0.425174i
\(540\) 0 0
\(541\) 7.79877 + 7.79877i 0.335295 + 0.335295i 0.854593 0.519298i \(-0.173806\pi\)
−0.519298 + 0.854593i \(0.673806\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.91010 −0.124655
\(546\) 0 0
\(547\) 19.0046 + 19.0046i 0.812579 + 0.812579i 0.985020 0.172441i \(-0.0551653\pi\)
−0.172441 + 0.985020i \(0.555165\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.69555 + 2.69555i −0.114834 + 0.114834i
\(552\) 0 0
\(553\) 10.9613i 0.466122i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −34.9146 −1.47938 −0.739690 0.672948i \(-0.765028\pi\)
−0.739690 + 0.672948i \(0.765028\pi\)
\(558\) 0 0
\(559\) 18.7004i 0.790943i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.91334i 0.333507i 0.985999 + 0.166754i \(0.0533285\pi\)
−0.985999 + 0.166754i \(0.946672\pi\)
\(564\) 0 0
\(565\) 47.9335 2.01658
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.2956i 0.725070i 0.931970 + 0.362535i \(0.118089\pi\)
−0.931970 + 0.362535i \(0.881911\pi\)
\(570\) 0 0
\(571\) −13.7031 + 13.7031i −0.573455 + 0.573455i −0.933092 0.359637i \(-0.882901\pi\)
0.359637 + 0.933092i \(0.382901\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −41.5898 41.5898i −1.73441 1.73441i
\(576\) 0 0
\(577\) −2.89714 −0.120610 −0.0603048 0.998180i \(-0.519207\pi\)
−0.0603048 + 0.998180i \(0.519207\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.16450 4.16450i −0.172772 0.172772i
\(582\) 0 0
\(583\) −4.32703 4.32703i −0.179207 0.179207i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.3165i 0.508357i 0.967157 + 0.254178i \(0.0818050\pi\)
−0.967157 + 0.254178i \(0.918195\pi\)
\(588\) 0 0
\(589\) −5.05526 + 5.05526i −0.208298 + 0.208298i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 43.1763i 1.77304i 0.462693 + 0.886519i \(0.346883\pi\)
−0.462693 + 0.886519i \(0.653117\pi\)
\(594\) 0 0
\(595\) 14.2448 + 6.02097i 0.583979 + 0.246836i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.70607 −0.274003 −0.137001 0.990571i \(-0.543746\pi\)
−0.137001 + 0.990571i \(0.543746\pi\)
\(600\) 0 0
\(601\) 22.5138 22.5138i 0.918355 0.918355i −0.0785544 0.996910i \(-0.525030\pi\)
0.996910 + 0.0785544i \(0.0250304\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −16.8107 + 16.8107i −0.683452 + 0.683452i
\(606\) 0 0
\(607\) 19.7402 + 19.7402i 0.801228 + 0.801228i 0.983288 0.182059i \(-0.0582763\pi\)
−0.182059 + 0.983288i \(0.558276\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.8839 −1.00669
\(612\) 0 0
\(613\) −5.84314 −0.236002 −0.118001 0.993013i \(-0.537649\pi\)
−0.118001 + 0.993013i \(0.537649\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.1998 + 26.1998i 1.05477 + 1.05477i 0.998411 + 0.0563548i \(0.0179478\pi\)
0.0563548 + 0.998411i \(0.482052\pi\)
\(618\) 0 0
\(619\) −11.4329 + 11.4329i −0.459527 + 0.459527i −0.898500 0.438973i \(-0.855342\pi\)
0.438973 + 0.898500i \(0.355342\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.75683 + 6.75683i −0.270707 + 0.270707i
\(624\) 0 0
\(625\) −50.3976 −2.01590
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.23168 22.7494i −0.368091 0.907079i
\(630\) 0 0
\(631\) 31.6670i 1.26064i −0.776334 0.630322i \(-0.782923\pi\)
0.776334 0.630322i \(-0.217077\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.08126 8.08126i 0.320695 0.320695i
\(636\) 0 0
\(637\) 21.9810i 0.870919i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −11.2637 11.2637i −0.444890 0.444890i 0.448762 0.893651i \(-0.351865\pi\)
−0.893651 + 0.448762i \(0.851865\pi\)
\(642\) 0 0
\(643\) 11.7990 + 11.7990i 0.465307 + 0.465307i 0.900390 0.435083i \(-0.143281\pi\)
−0.435083 + 0.900390i \(0.643281\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.35044 −0.328290 −0.164145 0.986436i \(-0.552486\pi\)
−0.164145 + 0.986436i \(0.552486\pi\)
\(648\) 0 0
\(649\) −11.8762 11.8762i −0.466184 0.466184i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.2923 20.2923i 0.794100 0.794100i −0.188058 0.982158i \(-0.560219\pi\)
0.982158 + 0.188058i \(0.0602192\pi\)
\(654\) 0 0
\(655\) 32.2347i 1.25951i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.3690 1.57255 0.786276 0.617876i \(-0.212007\pi\)
0.786276 + 0.617876i \(0.212007\pi\)
\(660\) 0 0
\(661\) 39.4706i 1.53523i 0.640913 + 0.767614i \(0.278556\pi\)
−0.640913 + 0.767614i \(0.721444\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.48830i 0.251606i
\(666\) 0 0
\(667\) −11.2359 −0.435055
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.83145i 0.340934i
\(672\) 0 0
\(673\) 15.2775 15.2775i 0.588903 0.588903i −0.348432 0.937334i \(-0.613286\pi\)
0.937334 + 0.348432i \(0.113286\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.77542 1.77542i −0.0682351 0.0682351i 0.672166 0.740401i \(-0.265364\pi\)
−0.740401 + 0.672166i \(0.765364\pi\)
\(678\) 0 0
\(679\) 13.3464 0.512187
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.2528 + 13.2528i 0.507106 + 0.507106i 0.913637 0.406531i \(-0.133262\pi\)
−0.406531 + 0.913637i \(0.633262\pi\)
\(684\) 0 0
\(685\) 0.296794 + 0.296794i 0.0113399 + 0.0113399i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.63554i 0.367085i
\(690\) 0 0
\(691\) 27.2733 27.2733i 1.03752 1.03752i 0.0382556 0.999268i \(-0.487820\pi\)
0.999268 0.0382556i \(-0.0121801\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 58.7452i 2.22833i
\(696\) 0 0
\(697\) 19.2940 7.82948i 0.730813 0.296563i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −28.7827 −1.08711 −0.543553 0.839375i \(-0.682921\pi\)
−0.543553 + 0.839375i \(0.682921\pi\)
\(702\) 0 0
\(703\) −7.28348 + 7.28348i −0.274702 + 0.274702i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.173325 0.173325i 0.00651858 0.00651858i
\(708\) 0 0
\(709\) 3.63869 + 3.63869i 0.136654 + 0.136654i 0.772125 0.635471i \(-0.219194\pi\)
−0.635471 + 0.772125i \(0.719194\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21.0718 −0.789146
\(714\) 0 0
\(715\) −32.9988 −1.23409
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.2754 + 22.2754i 0.830733 + 0.830733i 0.987617 0.156884i \(-0.0501449\pi\)
−0.156884 + 0.987617i \(0.550145\pi\)
\(720\) 0 0
\(721\) −1.97903 + 1.97903i −0.0737030 + 0.0737030i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −17.9760 + 17.9760i −0.667613 + 0.667613i
\(726\) 0 0
\(727\) 31.2775 1.16002 0.580010 0.814610i \(-0.303049\pi\)
0.580010 + 0.814610i \(0.303049\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.39778 19.8680i 0.310603 0.734843i
\(732\) 0 0
\(733\) 18.8153i 0.694960i −0.937687 0.347480i \(-0.887037\pi\)
0.937687 0.347480i \(-0.112963\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19.3303 + 19.3303i −0.712039 + 0.712039i
\(738\) 0 0
\(739\) 6.94762i 0.255572i −0.991802 0.127786i \(-0.959213\pi\)
0.991802 0.127786i \(-0.0407871\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0107 + 24.0107i 0.880869 + 0.880869i 0.993623 0.112754i \(-0.0359672\pi\)
−0.112754 + 0.993623i \(0.535967\pi\)
\(744\) 0 0
\(745\) 10.3387 + 10.3387i 0.378782 + 0.378782i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 18.1271 0.662349
\(750\) 0 0
\(751\) 4.88971 + 4.88971i 0.178428 + 0.178428i 0.790670 0.612242i \(-0.209732\pi\)
−0.612242 + 0.790670i \(0.709732\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −21.8194 + 21.8194i −0.794089 + 0.794089i
\(756\) 0 0
\(757\) 1.86166i 0.0676633i 0.999428 + 0.0338316i \(0.0107710\pi\)
−0.999428 + 0.0338316i \(0.989229\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 49.2335 1.78471 0.892357 0.451330i \(-0.149050\pi\)
0.892357 + 0.451330i \(0.149050\pi\)
\(762\) 0 0
\(763\) 0.660093i 0.0238970i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 26.4464i 0.954923i
\(768\) 0 0
\(769\) −50.9303 −1.83659 −0.918296 0.395895i \(-0.870435\pi\)
−0.918296 + 0.395895i \(0.870435\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.91614i 0.104886i −0.998624 0.0524431i \(-0.983299\pi\)
0.998624 0.0524431i \(-0.0167008\pi\)
\(774\) 0 0
\(775\) −33.7123 + 33.7123i −1.21098 + 1.21098i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.17719 6.17719i −0.221321 0.221321i
\(780\) 0 0
\(781\) 3.45968 0.123797
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 54.5087 + 54.5087i 1.94550 + 1.94550i
\(786\) 0 0
\(787\) −35.9869 35.9869i −1.28279 1.28279i −0.939071 0.343724i \(-0.888312\pi\)
−0.343724 0.939071i \(-0.611688\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.8727i 0.386588i
\(792\) 0 0
\(793\) 9.83306 9.83306i 0.349182 0.349182i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.6061i 0.481952i −0.970531 0.240976i \(-0.922532\pi\)
0.970531 0.240976i \(-0.0774676\pi\)
\(798\) 0 0
\(799\) −26.4375 11.1746i −0.935293 0.395329i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.64479 0.0933326
\(804\) 0 0
\(805\) 13.5226 13.5226i 0.476609 0.476609i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.2992 12.2992i 0.432416 0.432416i −0.457033 0.889450i \(-0.651088\pi\)
0.889450 + 0.457033i \(0.151088\pi\)
\(810\) 0 0
\(811\) −23.2841 23.2841i −0.817614 0.817614i 0.168148 0.985762i \(-0.446221\pi\)
−0.985762 + 0.168148i \(0.946221\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 54.6246 1.91342
\(816\) 0 0
\(817\) −9.04959 −0.316605
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 30.9266 + 30.9266i 1.07935 + 1.07935i 0.996568 + 0.0827780i \(0.0263792\pi\)
0.0827780 + 0.996568i \(0.473621\pi\)
\(822\) 0 0
\(823\) 1.18371 1.18371i 0.0412617 0.0412617i −0.686175 0.727437i \(-0.740712\pi\)
0.727437 + 0.686175i \(0.240712\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.60525 + 1.60525i −0.0558198 + 0.0558198i −0.734466 0.678646i \(-0.762567\pi\)
0.678646 + 0.734466i \(0.262567\pi\)
\(828\) 0 0
\(829\) −19.2597 −0.668918 −0.334459 0.942410i \(-0.608554\pi\)
−0.334459 + 0.942410i \(0.608554\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9.87099 23.3534i 0.342010 0.809147i
\(834\) 0 0
\(835\) 8.69114i 0.300769i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.4694 10.4694i 0.361443 0.361443i −0.502901 0.864344i \(-0.667734\pi\)
0.864344 + 0.502901i \(0.167734\pi\)
\(840\) 0 0
\(841\) 24.1436i 0.832538i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.638906 0.638906i −0.0219790 0.0219790i
\(846\) 0 0
\(847\) −3.81314 3.81314i −0.131021 0.131021i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −30.3597 −1.04072
\(852\) 0 0
\(853\) 4.49558 + 4.49558i 0.153926 + 0.153926i 0.779869 0.625943i \(-0.215286\pi\)
−0.625943 + 0.779869i \(0.715286\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −28.8720 + 28.8720i −0.986248 + 0.986248i −0.999907 0.0136588i \(-0.995652\pi\)
0.0136588 + 0.999907i \(0.495652\pi\)
\(858\) 0 0
\(859\) 22.1464i 0.755626i −0.925882 0.377813i \(-0.876676\pi\)
0.925882 0.377813i \(-0.123324\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −17.3423 −0.590339 −0.295170 0.955445i \(-0.595376\pi\)
−0.295170 + 0.955445i \(0.595376\pi\)
\(864\) 0 0
\(865\) 21.4706i 0.730021i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 26.9779i 0.915161i
\(870\) 0 0
\(871\) 43.0452 1.45853
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 24.5149i 0.828756i
\(876\) 0 0
\(877\) −21.3763 + 21.3763i −0.721825 + 0.721825i −0.968977 0.247152i \(-0.920505\pi\)
0.247152 + 0.968977i \(0.420505\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.47035 7.47035i −0.251683 0.251683i 0.569978 0.821660i \(-0.306952\pi\)
−0.821660 + 0.569978i \(0.806952\pi\)
\(882\) 0 0
\(883\) −13.9150 −0.468276 −0.234138 0.972203i \(-0.575227\pi\)
−0.234138 + 0.972203i \(0.575227\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 25.4307 + 25.4307i 0.853878 + 0.853878i 0.990608 0.136730i \(-0.0436593\pi\)
−0.136730 + 0.990608i \(0.543659\pi\)
\(888\) 0 0
\(889\) 1.83306 + 1.83306i 0.0614788 + 0.0614788i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.0419i 0.402968i
\(894\) 0 0
\(895\) 22.3597 22.3597i 0.747402 0.747402i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.10771i 0.303759i
\(900\) 0 0
\(901\) −4.32703 + 10.2371i −0.144154 + 0.341049i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.72418 0.123796
\(906\) 0 0
\(907\) 27.7075 27.7075i 0.920012 0.920012i −0.0770180 0.997030i \(-0.524540\pi\)
0.997030 + 0.0770180i \(0.0245399\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.02020 + 7.02020i −0.232590 + 0.232590i −0.813773 0.581183i \(-0.802590\pi\)
0.581183 + 0.813773i \(0.302590\pi\)
\(912\) 0 0
\(913\) 10.2496 + 10.2496i 0.339213 + 0.339213i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.31174 −0.241455
\(918\) 0 0
\(919\) −42.8795 −1.41446 −0.707232 0.706982i \(-0.750056\pi\)
−0.707232 + 0.706982i \(0.750056\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.85206 3.85206i −0.126792 0.126792i
\(924\) 0 0
\(925\) −48.5718 + 48.5718i −1.59703 + 1.59703i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.8427 12.8427i 0.421356 0.421356i −0.464314 0.885671i \(-0.653699\pi\)
0.885671 + 0.464314i \(0.153699\pi\)
\(930\) 0 0
\(931\) −10.6372 −0.348619
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −35.0591 14.8188i −1.14656 0.484625i
\(936\) 0 0
\(937\) 1.60243i 0.0523492i −0.999657 0.0261746i \(-0.991667\pi\)
0.999657 0.0261746i \(-0.00833258\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −22.8780 + 22.8780i −0.745802 + 0.745802i −0.973688 0.227886i \(-0.926819\pi\)
0.227886 + 0.973688i \(0.426819\pi\)
\(942\) 0 0
\(943\) 25.7484i 0.838482i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.8063 17.8063i −0.578626 0.578626i 0.355898 0.934525i \(-0.384175\pi\)
−0.934525 + 0.355898i \(0.884175\pi\)
\(948\) 0 0
\(949\) −2.94474 2.94474i −0.0955905 0.0955905i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −54.0658 −1.75136 −0.875681 0.482889i \(-0.839587\pi\)
−0.875681 + 0.482889i \(0.839587\pi\)
\(954\) 0 0
\(955\) 55.1093 + 55.1093i 1.78330 + 1.78330i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.0673212 + 0.0673212i −0.00217391 + 0.00217391i
\(960\) 0 0
\(961\) 13.9194i 0.449012i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.1585 0.616733
\(966\) 0 0
\(967\) 2.17495i 0.0699418i −0.999388 0.0349709i \(-0.988866\pi\)
0.999388 0.0349709i \(-0.0111338\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 47.4481i 1.52268i −0.648352 0.761340i \(-0.724542\pi\)
0.648352 0.761340i \(-0.275458\pi\)
\(972\) 0 0
\(973\) −13.3251 −0.427182
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.8226i 0.666175i 0.942896 + 0.333087i \(0.108090\pi\)
−0.942896 + 0.333087i \(0.891910\pi\)
\(978\) 0 0
\(979\) 16.6299 16.6299i 0.531493 0.531493i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.71854 + 1.71854i 0.0548130 + 0.0548130i 0.733982 0.679169i \(-0.237660\pi\)
−0.679169 + 0.733982i \(0.737660\pi\)
\(984\) 0 0
\(985\) 60.5690 1.92989
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −18.8607 18.8607i −0.599735 0.599735i
\(990\) 0 0
\(991\) 25.8643 + 25.8643i 0.821608 + 0.821608i 0.986339 0.164731i \(-0.0526755\pi\)
−0.164731 + 0.986339i \(0.552676\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 76.3827i 2.42150i
\(996\) 0 0
\(997\) 14.6448 14.6448i 0.463806 0.463806i −0.436095 0.899901i \(-0.643639\pi\)
0.899901 + 0.436095i \(0.143639\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2448.2.be.x.1441.4 8
3.2 odd 2 816.2.bd.e.625.1 8
4.3 odd 2 153.2.f.b.64.2 8
12.11 even 2 51.2.e.a.13.3 yes 8
17.4 even 4 inner 2448.2.be.x.1585.4 8
51.38 odd 4 816.2.bd.e.769.1 8
68.15 odd 8 2601.2.a.bf.1.3 4
68.19 odd 8 2601.2.a.be.1.3 4
68.55 odd 4 153.2.f.b.55.3 8
204.11 odd 16 867.2.h.k.757.1 16
204.23 odd 16 867.2.h.k.757.2 16
204.47 even 4 867.2.e.g.616.2 8
204.59 even 8 867.2.d.f.577.5 8
204.71 odd 16 867.2.h.i.712.4 16
204.83 even 8 867.2.a.k.1.2 4
204.95 odd 16 867.2.h.i.688.3 16
204.107 odd 16 867.2.h.k.733.1 16
204.131 odd 16 867.2.h.k.733.2 16
204.143 odd 16 867.2.h.i.688.4 16
204.155 even 8 867.2.a.l.1.2 4
204.167 odd 16 867.2.h.i.712.3 16
204.179 even 8 867.2.d.f.577.6 8
204.191 even 4 51.2.e.a.4.2 8
204.203 even 2 867.2.e.g.829.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.2 8 204.191 even 4
51.2.e.a.13.3 yes 8 12.11 even 2
153.2.f.b.55.3 8 68.55 odd 4
153.2.f.b.64.2 8 4.3 odd 2
816.2.bd.e.625.1 8 3.2 odd 2
816.2.bd.e.769.1 8 51.38 odd 4
867.2.a.k.1.2 4 204.83 even 8
867.2.a.l.1.2 4 204.155 even 8
867.2.d.f.577.5 8 204.59 even 8
867.2.d.f.577.6 8 204.179 even 8
867.2.e.g.616.2 8 204.47 even 4
867.2.e.g.829.3 8 204.203 even 2
867.2.h.i.688.3 16 204.95 odd 16
867.2.h.i.688.4 16 204.143 odd 16
867.2.h.i.712.3 16 204.167 odd 16
867.2.h.i.712.4 16 204.71 odd 16
867.2.h.k.733.1 16 204.107 odd 16
867.2.h.k.733.2 16 204.131 odd 16
867.2.h.k.757.1 16 204.11 odd 16
867.2.h.k.757.2 16 204.23 odd 16
2448.2.be.x.1441.4 8 1.1 even 1 trivial
2448.2.be.x.1585.4 8 17.4 even 4 inner
2601.2.a.be.1.3 4 68.19 odd 8
2601.2.a.bf.1.3 4 68.15 odd 8