Properties

Label 867.2.h.i.712.3
Level $867$
Weight $2$
Character 867.712
Analytic conductor $6.923$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(688,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.688"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-8,0,0,0,0,0,32,0,0,0,0,0,0,8,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8x^{14} + 32x^{12} + 296x^{10} + 1057x^{8} + 1184x^{6} + 512x^{4} - 512x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 712.3
Root \(2.83302 - 1.17347i\) of defining polynomial
Character \(\chi\) \(=\) 867.712
Dual form 867.2.h.i.688.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16830 + 1.16830i) q^{2} +(-0.382683 - 0.923880i) q^{3} +0.729840i q^{4} +(-3.75690 + 1.55616i) q^{5} +(0.632278 - 1.52645i) q^{6} +(0.852170 + 0.352980i) q^{7} +(1.48392 - 1.48392i) q^{8} +(-0.707107 + 0.707107i) q^{9} +(-6.20723 - 2.57112i) q^{10} +(0.868752 - 2.09735i) q^{11} +(0.674285 - 0.279298i) q^{12} -3.57461i q^{13} +(0.583202 + 1.40798i) q^{14} +(2.87540 + 2.87540i) q^{15} +4.92701 q^{16} -1.65222 q^{18} +(-1.22318 - 1.22318i) q^{19} +(-1.13575 - 2.74194i) q^{20} -0.922382i q^{21} +(3.46530 - 1.43537i) q^{22} +(1.95114 - 4.71048i) q^{23} +(-1.93884 - 0.803094i) q^{24} +(8.15712 - 8.15712i) q^{25} +(4.17620 - 4.17620i) q^{26} +(0.923880 + 0.382683i) q^{27} +(-0.257619 + 0.621948i) q^{28} +(2.03597 - 0.843328i) q^{29} +6.71866i q^{30} +(-1.58158 - 3.81828i) q^{31} +(2.78837 + 2.78837i) q^{32} -2.27016 q^{33} -3.75081 q^{35} +(-0.516075 - 0.516075i) q^{36} +(-2.27870 - 5.50127i) q^{37} -2.85808i q^{38} +(-3.30250 + 1.36794i) q^{39} +(-3.26573 + 7.88417i) q^{40} +(4.66568 + 1.93259i) q^{41} +(1.07762 - 1.07762i) q^{42} +(3.69920 - 3.69920i) q^{43} +(1.53073 + 0.634051i) q^{44} +(1.55616 - 3.75690i) q^{45} +(7.78276 - 3.22373i) q^{46} +6.96130i q^{47} +(-1.88549 - 4.55197i) q^{48} +(-4.34815 - 4.34815i) q^{49} +19.0599 q^{50} +2.60889 q^{52} +(1.90604 + 1.90604i) q^{53} +(0.632278 + 1.52645i) q^{54} +9.23146i q^{55} +(1.78835 - 0.740760i) q^{56} +(-0.661981 + 1.59816i) q^{57} +(3.36388 + 1.39337i) q^{58} +(-5.23146 + 5.23146i) q^{59} +(-2.09859 + 2.09859i) q^{60} +(3.59411 + 1.48873i) q^{61} +(2.61313 - 6.30864i) q^{62} +(-0.852170 + 0.352980i) q^{63} -3.33873i q^{64} +(5.56265 + 13.4294i) q^{65} +(-2.65222 - 2.65222i) q^{66} -12.0419 q^{67} -5.09859 q^{69} +(-4.38206 - 4.38206i) q^{70} +(-0.583202 - 1.40798i) q^{71} +2.09859i q^{72} +(1.07634 - 0.445835i) q^{73} +(3.76492 - 9.08933i) q^{74} +(-10.6578 - 4.41460i) q^{75} +(0.892728 - 0.892728i) q^{76} +(1.48065 - 1.48065i) q^{77} +(-5.45647 - 2.26015i) q^{78} +(4.54769 - 10.9791i) q^{79} +(-18.5103 + 7.66721i) q^{80} -1.00000i q^{81} +(3.19307 + 7.70875i) q^{82} +(-4.51494 - 4.51494i) q^{83} +0.673192 q^{84} +8.64354 q^{86} +(-1.55827 - 1.55827i) q^{87} +(-1.82315 - 4.40148i) q^{88} +10.3597i q^{89} +(6.20723 - 2.57112i) q^{90} +(1.26177 - 3.04617i) q^{91} +(3.43790 + 1.42402i) q^{92} +(-2.92238 + 2.92238i) q^{93} +(-8.13287 + 8.13287i) q^{94} +(6.49883 + 2.69190i) q^{95} +(1.50906 - 3.64318i) q^{96} +(13.3680 - 5.53723i) q^{97} -10.1599i q^{98} +(0.868752 + 2.09735i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} + 32 q^{8} + 8 q^{15} - 24 q^{16} - 8 q^{18} + 32 q^{25} + 40 q^{26} + 16 q^{32} - 24 q^{33} + 16 q^{35} + 48 q^{42} + 48 q^{43} + 32 q^{49} + 120 q^{50} - 32 q^{52} + 16 q^{53} + 56 q^{59}+ \cdots - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16830 + 1.16830i 0.826111 + 0.826111i 0.986976 0.160865i \(-0.0514284\pi\)
−0.160865 + 0.986976i \(0.551428\pi\)
\(3\) −0.382683 0.923880i −0.220942 0.533402i
\(4\) 0.729840i 0.364920i
\(5\) −3.75690 + 1.55616i −1.68014 + 0.695935i −0.999333 0.0365315i \(-0.988369\pi\)
−0.680803 + 0.732466i \(0.738369\pi\)
\(6\) 0.632278 1.52645i 0.258127 0.623173i
\(7\) 0.852170 + 0.352980i 0.322090 + 0.133414i 0.537870 0.843028i \(-0.319229\pi\)
−0.215780 + 0.976442i \(0.569229\pi\)
\(8\) 1.48392 1.48392i 0.524647 0.524647i
\(9\) −0.707107 + 0.707107i −0.235702 + 0.235702i
\(10\) −6.20723 2.57112i −1.96290 0.813059i
\(11\) 0.868752 2.09735i 0.261939 0.632376i −0.737120 0.675762i \(-0.763815\pi\)
0.999058 + 0.0433862i \(0.0138146\pi\)
\(12\) 0.674285 0.279298i 0.194649 0.0806263i
\(13\) 3.57461i 0.991417i −0.868489 0.495709i \(-0.834908\pi\)
0.868489 0.495709i \(-0.165092\pi\)
\(14\) 0.583202 + 1.40798i 0.155867 + 0.376297i
\(15\) 2.87540 + 2.87540i 0.742426 + 0.742426i
\(16\) 4.92701 1.23175
\(17\) 0 0
\(18\) −1.65222 −0.389433
\(19\) −1.22318 1.22318i −0.280617 0.280617i 0.552738 0.833355i \(-0.313583\pi\)
−0.833355 + 0.552738i \(0.813583\pi\)
\(20\) −1.13575 2.74194i −0.253961 0.613115i
\(21\) 0.922382i 0.201280i
\(22\) 3.46530 1.43537i 0.738804 0.306022i
\(23\) 1.95114 4.71048i 0.406842 0.982203i −0.579122 0.815241i \(-0.696604\pi\)
0.985963 0.166962i \(-0.0533956\pi\)
\(24\) −1.93884 0.803094i −0.395764 0.163931i
\(25\) 8.15712 8.15712i 1.63142 1.63142i
\(26\) 4.17620 4.17620i 0.819021 0.819021i
\(27\) 0.923880 + 0.382683i 0.177801 + 0.0736475i
\(28\) −0.257619 + 0.621948i −0.0486855 + 0.117537i
\(29\) 2.03597 0.843328i 0.378071 0.156602i −0.185552 0.982635i \(-0.559407\pi\)
0.563623 + 0.826032i \(0.309407\pi\)
\(30\) 6.71866i 1.22665i
\(31\) −1.58158 3.81828i −0.284061 0.685783i 0.715862 0.698242i \(-0.246034\pi\)
−0.999922 + 0.0124592i \(0.996034\pi\)
\(32\) 2.78837 + 2.78837i 0.492919 + 0.492919i
\(33\) −2.27016 −0.395184
\(34\) 0 0
\(35\) −3.75081 −0.634003
\(36\) −0.516075 0.516075i −0.0860125 0.0860125i
\(37\) −2.27870 5.50127i −0.374616 0.904403i −0.992955 0.118492i \(-0.962194\pi\)
0.618339 0.785912i \(-0.287806\pi\)
\(38\) 2.85808i 0.463642i
\(39\) −3.30250 + 1.36794i −0.528824 + 0.219046i
\(40\) −3.26573 + 7.88417i −0.516358 + 1.24660i
\(41\) 4.66568 + 1.93259i 0.728657 + 0.301820i 0.716000 0.698100i \(-0.245971\pi\)
0.0126571 + 0.999920i \(0.495971\pi\)
\(42\) 1.07762 1.07762i 0.166280 0.166280i
\(43\) 3.69920 3.69920i 0.564123 0.564123i −0.366353 0.930476i \(-0.619394\pi\)
0.930476 + 0.366353i \(0.119394\pi\)
\(44\) 1.53073 + 0.634051i 0.230767 + 0.0955867i
\(45\) 1.55616 3.75690i 0.231978 0.560045i
\(46\) 7.78276 3.22373i 1.14751 0.475312i
\(47\) 6.96130i 1.01541i 0.861531 + 0.507705i \(0.169506\pi\)
−0.861531 + 0.507705i \(0.830494\pi\)
\(48\) −1.88549 4.55197i −0.272147 0.657020i
\(49\) −4.34815 4.34815i −0.621164 0.621164i
\(50\) 19.0599 2.69548
\(51\) 0 0
\(52\) 2.60889 0.361788
\(53\) 1.90604 + 1.90604i 0.261815 + 0.261815i 0.825791 0.563976i \(-0.190729\pi\)
−0.563976 + 0.825791i \(0.690729\pi\)
\(54\) 0.632278 + 1.52645i 0.0860422 + 0.207724i
\(55\) 9.23146i 1.24477i
\(56\) 1.78835 0.740760i 0.238979 0.0989882i
\(57\) −0.661981 + 1.59816i −0.0876816 + 0.211682i
\(58\) 3.36388 + 1.39337i 0.441700 + 0.182958i
\(59\) −5.23146 + 5.23146i −0.681078 + 0.681078i −0.960243 0.279165i \(-0.909942\pi\)
0.279165 + 0.960243i \(0.409942\pi\)
\(60\) −2.09859 + 2.09859i −0.270926 + 0.270926i
\(61\) 3.59411 + 1.48873i 0.460178 + 0.190612i 0.600715 0.799463i \(-0.294883\pi\)
−0.140537 + 0.990075i \(0.544883\pi\)
\(62\) 2.61313 6.30864i 0.331867 0.801199i
\(63\) −0.852170 + 0.352980i −0.107363 + 0.0444714i
\(64\) 3.33873i 0.417341i
\(65\) 5.56265 + 13.4294i 0.689962 + 1.66572i
\(66\) −2.65222 2.65222i −0.326466 0.326466i
\(67\) −12.0419 −1.47116 −0.735578 0.677440i \(-0.763090\pi\)
−0.735578 + 0.677440i \(0.763090\pi\)
\(68\) 0 0
\(69\) −5.09859 −0.613798
\(70\) −4.38206 4.38206i −0.523757 0.523757i
\(71\) −0.583202 1.40798i −0.0692134 0.167096i 0.885487 0.464663i \(-0.153825\pi\)
−0.954701 + 0.297567i \(0.903825\pi\)
\(72\) 2.09859i 0.247321i
\(73\) 1.07634 0.445835i 0.125976 0.0521810i −0.318805 0.947820i \(-0.603281\pi\)
0.444781 + 0.895639i \(0.353281\pi\)
\(74\) 3.76492 9.08933i 0.437663 1.05661i
\(75\) −10.6578 4.41460i −1.23066 0.509754i
\(76\) 0.892728 0.892728i 0.102403 0.102403i
\(77\) 1.48065 1.48065i 0.168736 0.168736i
\(78\) −5.45647 2.26015i −0.617824 0.255911i
\(79\) 4.54769 10.9791i 0.511655 1.23524i −0.431265 0.902225i \(-0.641933\pi\)
0.942920 0.333019i \(-0.108067\pi\)
\(80\) −18.5103 + 7.66721i −2.06951 + 0.857220i
\(81\) 1.00000i 0.111111i
\(82\) 3.19307 + 7.70875i 0.352615 + 0.851289i
\(83\) −4.51494 4.51494i −0.495579 0.495579i 0.414480 0.910058i \(-0.363964\pi\)
−0.910058 + 0.414480i \(0.863964\pi\)
\(84\) 0.673192 0.0734513
\(85\) 0 0
\(86\) 8.64354 0.932057
\(87\) −1.55827 1.55827i −0.167064 0.167064i
\(88\) −1.82315 4.40148i −0.194349 0.469199i
\(89\) 10.3597i 1.09813i 0.835781 + 0.549063i \(0.185015\pi\)
−0.835781 + 0.549063i \(0.814985\pi\)
\(90\) 6.20723 2.57112i 0.654300 0.271020i
\(91\) 1.26177 3.04617i 0.132269 0.319326i
\(92\) 3.43790 + 1.42402i 0.358426 + 0.148465i
\(93\) −2.92238 + 2.92238i −0.303037 + 0.303037i
\(94\) −8.13287 + 8.13287i −0.838842 + 0.838842i
\(95\) 6.49883 + 2.69190i 0.666766 + 0.276184i
\(96\) 1.50906 3.64318i 0.154017 0.371831i
\(97\) 13.3680 5.53723i 1.35732 0.562220i 0.418999 0.907987i \(-0.362381\pi\)
0.938321 + 0.345767i \(0.112381\pi\)
\(98\) 10.1599i 1.02630i
\(99\) 0.868752 + 2.09735i 0.0873129 + 0.210792i
\(100\) 5.95339 + 5.95339i 0.595339 + 0.595339i
\(101\) −0.265746 −0.0264427 −0.0132213 0.999913i \(-0.504209\pi\)
−0.0132213 + 0.999913i \(0.504209\pi\)
\(102\) 0 0
\(103\) −3.03429 −0.298977 −0.149489 0.988763i \(-0.547763\pi\)
−0.149489 + 0.988763i \(0.547763\pi\)
\(104\) −5.30445 5.30445i −0.520144 0.520144i
\(105\) 1.43537 + 3.46530i 0.140078 + 0.338178i
\(106\) 4.45366i 0.432577i
\(107\) −18.1565 + 7.52066i −1.75525 + 0.727050i −0.758060 + 0.652185i \(0.773853\pi\)
−0.997194 + 0.0748654i \(0.976147\pi\)
\(108\) −0.279298 + 0.674285i −0.0268754 + 0.0648831i
\(109\) −0.661164 0.273863i −0.0633280 0.0262313i 0.350795 0.936452i \(-0.385912\pi\)
−0.414123 + 0.910221i \(0.635912\pi\)
\(110\) −10.7851 + 10.7851i −1.02832 + 1.02832i
\(111\) −4.21049 + 4.21049i −0.399642 + 0.399642i
\(112\) 4.19865 + 1.73914i 0.396736 + 0.164333i
\(113\) −4.51092 + 10.8903i −0.424351 + 1.02447i 0.556698 + 0.830715i \(0.312068\pi\)
−0.981049 + 0.193759i \(0.937932\pi\)
\(114\) −2.64052 + 1.09374i −0.247308 + 0.102438i
\(115\) 20.7331i 1.93337i
\(116\) 0.615495 + 1.48594i 0.0571473 + 0.137966i
\(117\) 2.52763 + 2.52763i 0.233679 + 0.233679i
\(118\) −12.2238 −1.12529
\(119\) 0 0
\(120\) 8.53377 0.779023
\(121\) 4.13401 + 4.13401i 0.375819 + 0.375819i
\(122\) 2.45971 + 5.93826i 0.222692 + 0.537625i
\(123\) 5.05010i 0.455352i
\(124\) 2.78673 1.15430i 0.250256 0.103659i
\(125\) −10.1709 + 24.5547i −0.909713 + 2.19624i
\(126\) −1.40798 0.583202i −0.125432 0.0519558i
\(127\) 1.98731 1.98731i 0.176345 0.176345i −0.613415 0.789760i \(-0.710205\pi\)
0.789760 + 0.613415i \(0.210205\pi\)
\(128\) 9.47738 9.47738i 0.837690 0.837690i
\(129\) −4.83324 2.00199i −0.425543 0.176266i
\(130\) −9.19074 + 22.1884i −0.806081 + 1.94605i
\(131\) −7.32361 + 3.03354i −0.639866 + 0.265041i −0.678939 0.734195i \(-0.737560\pi\)
0.0390722 + 0.999236i \(0.487560\pi\)
\(132\) 1.65685i 0.144211i
\(133\) −0.610600 1.47412i −0.0529457 0.127822i
\(134\) −14.0686 14.0686i −1.21534 1.21534i
\(135\) −4.06644 −0.349983
\(136\) 0 0
\(137\) −0.103218 −0.00881851 −0.00440926 0.999990i \(-0.501404\pi\)
−0.00440926 + 0.999990i \(0.501404\pi\)
\(138\) −5.95667 5.95667i −0.507065 0.507065i
\(139\) 5.52838 + 13.3467i 0.468911 + 1.13205i 0.964639 + 0.263574i \(0.0849014\pi\)
−0.495728 + 0.868478i \(0.665099\pi\)
\(140\) 2.73749i 0.231360i
\(141\) 6.43140 2.66397i 0.541622 0.224347i
\(142\) 0.963580 2.32629i 0.0808619 0.195218i
\(143\) −7.49721 3.10545i −0.626948 0.259691i
\(144\) −3.48392 + 3.48392i −0.290327 + 0.290327i
\(145\) −6.33660 + 6.33660i −0.526226 + 0.526226i
\(146\) 1.77836 + 0.736619i 0.147178 + 0.0609630i
\(147\) −2.35320 + 5.68113i −0.194089 + 0.468572i
\(148\) 4.01505 1.66309i 0.330035 0.136705i
\(149\) 3.59557i 0.294561i −0.989095 0.147280i \(-0.952948\pi\)
0.989095 0.147280i \(-0.0470520\pi\)
\(150\) −7.29390 17.6090i −0.595545 1.43777i
\(151\) 5.36573 + 5.36573i 0.436657 + 0.436657i 0.890885 0.454229i \(-0.150085\pi\)
−0.454229 + 0.890885i \(0.650085\pi\)
\(152\) −3.63022 −0.294450
\(153\) 0 0
\(154\) 3.45968 0.278789
\(155\) 11.8837 + 11.8837i 0.954520 + 0.954520i
\(156\) −0.998380 2.41030i −0.0799343 0.192979i
\(157\) 18.9569i 1.51292i −0.654038 0.756462i \(-0.726926\pi\)
0.654038 0.756462i \(-0.273074\pi\)
\(158\) 18.1399 7.51379i 1.44313 0.597765i
\(159\) 1.03154 2.49037i 0.0818068 0.197499i
\(160\) −14.8148 6.13648i −1.17121 0.485131i
\(161\) 3.32541 3.32541i 0.262079 0.262079i
\(162\) 1.16830 1.16830i 0.0917902 0.0917902i
\(163\) 12.4105 + 5.14060i 0.972067 + 0.402643i 0.811481 0.584379i \(-0.198662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(164\) −1.41048 + 3.40520i −0.110140 + 0.265902i
\(165\) 8.52876 3.53273i 0.663963 0.275022i
\(166\) 10.5496i 0.818806i
\(167\) −0.817904 1.97460i −0.0632913 0.152799i 0.889070 0.457772i \(-0.151352\pi\)
−0.952361 + 0.304973i \(0.901352\pi\)
\(168\) −1.36875 1.36875i −0.105601 0.105601i
\(169\) 0.222197 0.0170921
\(170\) 0 0
\(171\) 1.72984 0.132284
\(172\) 2.69983 + 2.69983i 0.205860 + 0.205860i
\(173\) 2.02055 + 4.87804i 0.153619 + 0.370870i 0.981888 0.189461i \(-0.0606740\pi\)
−0.828269 + 0.560331i \(0.810674\pi\)
\(174\) 3.64104i 0.276027i
\(175\) 9.83056 4.07195i 0.743120 0.307810i
\(176\) 4.28036 10.3337i 0.322644 0.778931i
\(177\) 6.83523 + 2.83125i 0.513767 + 0.212809i
\(178\) −12.1032 + 12.1032i −0.907175 + 0.907175i
\(179\) 5.49860 5.49860i 0.410985 0.410985i −0.471097 0.882081i \(-0.656142\pi\)
0.882081 + 0.471097i \(0.156142\pi\)
\(180\) 2.74194 + 1.13575i 0.204372 + 0.0846536i
\(181\) 0.350474 0.846119i 0.0260505 0.0628915i −0.910319 0.413907i \(-0.864164\pi\)
0.936369 + 0.351016i \(0.114164\pi\)
\(182\) 5.03296 2.08472i 0.373067 0.154530i
\(183\) 3.89023i 0.287574i
\(184\) −4.09465 9.88535i −0.301861 0.728758i
\(185\) 17.1217 + 17.1217i 1.25881 + 1.25881i
\(186\) −6.82843 −0.500685
\(187\) 0 0
\(188\) −5.08064 −0.370544
\(189\) 0.652223 + 0.652223i 0.0474422 + 0.0474422i
\(190\) 4.44763 + 10.7375i 0.322665 + 0.778982i
\(191\) 19.1658i 1.38679i −0.720560 0.693393i \(-0.756115\pi\)
0.720560 0.693393i \(-0.243885\pi\)
\(192\) −3.08459 + 1.27768i −0.222611 + 0.0922084i
\(193\) −1.80296 + 4.35274i −0.129780 + 0.313317i −0.975391 0.220483i \(-0.929237\pi\)
0.845611 + 0.533800i \(0.179237\pi\)
\(194\) 22.0870 + 9.14873i 1.58575 + 0.656841i
\(195\) 10.2784 10.2784i 0.736054 0.736054i
\(196\) 3.17345 3.17345i 0.226675 0.226675i
\(197\) 13.7611 + 5.70002i 0.980435 + 0.406109i 0.814587 0.580042i \(-0.196964\pi\)
0.165848 + 0.986151i \(0.446964\pi\)
\(198\) −1.43537 + 3.46530i −0.102007 + 0.246268i
\(199\) −17.3539 + 7.18821i −1.23018 + 0.509559i −0.900634 0.434579i \(-0.856897\pi\)
−0.329550 + 0.944138i \(0.606897\pi\)
\(200\) 24.2091i 1.71184i
\(201\) 4.60825 + 11.1253i 0.325041 + 0.784718i
\(202\) −0.310470 0.310470i −0.0218446 0.0218446i
\(203\) 2.03268 0.142666
\(204\) 0 0
\(205\) −20.5359 −1.43429
\(206\) −3.54495 3.54495i −0.246988 0.246988i
\(207\) 1.95114 + 4.71048i 0.135614 + 0.327401i
\(208\) 17.6121i 1.22118i
\(209\) −3.62809 + 1.50280i −0.250960 + 0.103951i
\(210\) −2.37156 + 5.72544i −0.163653 + 0.395093i
\(211\) 5.43302 + 2.25043i 0.374025 + 0.154926i 0.561774 0.827291i \(-0.310119\pi\)
−0.187749 + 0.982217i \(0.560119\pi\)
\(212\) −1.39111 + 1.39111i −0.0955417 + 0.0955417i
\(213\) −1.07762 + 1.07762i −0.0738371 + 0.0738371i
\(214\) −29.9986 12.4258i −2.05066 0.849411i
\(215\) −8.14098 + 19.6541i −0.555210 + 1.34040i
\(216\) 1.93884 0.803094i 0.131921 0.0546436i
\(217\) 3.81209i 0.258781i
\(218\) −0.452483 1.09239i −0.0306460 0.0739860i
\(219\) −0.823796 0.823796i −0.0556670 0.0556670i
\(220\) −6.73749 −0.454242
\(221\) 0 0
\(222\) −9.83822 −0.660298
\(223\) 3.94839 + 3.94839i 0.264404 + 0.264404i 0.826840 0.562437i \(-0.190136\pi\)
−0.562437 + 0.826840i \(0.690136\pi\)
\(224\) 1.39193 + 3.36041i 0.0930020 + 0.224527i
\(225\) 11.5359i 0.769060i
\(226\) −17.9932 + 7.45304i −1.19689 + 0.495769i
\(227\) 10.5352 25.4343i 0.699248 1.68813i −0.0260154 0.999662i \(-0.508282\pi\)
0.725263 0.688472i \(-0.241718\pi\)
\(228\) −1.16640 0.483141i −0.0772470 0.0319968i
\(229\) −2.52451 + 2.52451i −0.166824 + 0.166824i −0.785582 0.618758i \(-0.787636\pi\)
0.618758 + 0.785582i \(0.287636\pi\)
\(230\) −24.2224 + 24.2224i −1.59718 + 1.59718i
\(231\) −1.93456 0.801322i −0.127285 0.0527231i
\(232\) 1.76980 4.27267i 0.116193 0.280514i
\(233\) −1.26653 + 0.524614i −0.0829731 + 0.0343686i −0.423784 0.905763i \(-0.639298\pi\)
0.340811 + 0.940132i \(0.389298\pi\)
\(234\) 5.90604i 0.386090i
\(235\) −10.8329 26.1529i −0.706659 1.70603i
\(236\) −3.81813 3.81813i −0.248539 0.248539i
\(237\) −11.8837 −0.771928
\(238\) 0 0
\(239\) 21.6121 1.39797 0.698986 0.715135i \(-0.253635\pi\)
0.698986 + 0.715135i \(0.253635\pi\)
\(240\) 14.1672 + 14.1672i 0.914486 + 0.914486i
\(241\) −0.406335 0.980980i −0.0261744 0.0631905i 0.910252 0.414055i \(-0.135888\pi\)
−0.936426 + 0.350864i \(0.885888\pi\)
\(242\) 9.65952i 0.620937i
\(243\) −0.923880 + 0.382683i −0.0592669 + 0.0245492i
\(244\) −1.08653 + 2.62312i −0.0695582 + 0.167928i
\(245\) 23.1020 + 9.56914i 1.47593 + 0.611350i
\(246\) 5.90002 5.90002i 0.376172 0.376172i
\(247\) −4.37239 + 4.37239i −0.278209 + 0.278209i
\(248\) −8.01298 3.31909i −0.508825 0.210762i
\(249\) −2.44347 + 5.89905i −0.154848 + 0.373837i
\(250\) −40.5699 + 16.8046i −2.56586 + 1.06282i
\(251\) 7.29715i 0.460592i 0.973121 + 0.230296i \(0.0739695\pi\)
−0.973121 + 0.230296i \(0.926031\pi\)
\(252\) −0.257619 0.621948i −0.0162285 0.0391791i
\(253\) −8.18448 8.18448i −0.514554 0.514554i
\(254\) 4.64354 0.291361
\(255\) 0 0
\(256\) 15.4673 0.966708
\(257\) 15.9501 + 15.9501i 0.994941 + 0.994941i 0.999987 0.00504619i \(-0.00160626\pi\)
−0.00504619 + 0.999987i \(0.501606\pi\)
\(258\) −3.30774 7.98559i −0.205931 0.497161i
\(259\) 5.49236i 0.341278i
\(260\) −9.80134 + 4.05985i −0.607853 + 0.251781i
\(261\) −0.843328 + 2.03597i −0.0522007 + 0.126024i
\(262\) −12.1002 5.01208i −0.747555 0.309647i
\(263\) −3.00463 + 3.00463i −0.185274 + 0.185274i −0.793649 0.608376i \(-0.791821\pi\)
0.608376 + 0.793649i \(0.291821\pi\)
\(264\) −3.36875 + 3.36875i −0.207332 + 0.207332i
\(265\) −10.1269 4.19471i −0.622092 0.257679i
\(266\) 1.00885 2.43557i 0.0618564 0.149335i
\(267\) 9.57112 3.96449i 0.585743 0.242623i
\(268\) 8.78869i 0.536855i
\(269\) −4.52860 10.9330i −0.276114 0.666597i 0.723608 0.690212i \(-0.242483\pi\)
−0.999721 + 0.0236145i \(0.992483\pi\)
\(270\) −4.75081 4.75081i −0.289125 0.289125i
\(271\) 11.8045 0.717070 0.358535 0.933516i \(-0.383276\pi\)
0.358535 + 0.933516i \(0.383276\pi\)
\(272\) 0 0
\(273\) −3.29715 −0.199553
\(274\) −0.120589 0.120589i −0.00728508 0.00728508i
\(275\) −10.0218 24.1949i −0.604340 1.45901i
\(276\) 3.72115i 0.223987i
\(277\) −9.63378 + 3.99044i −0.578838 + 0.239762i −0.652840 0.757496i \(-0.726423\pi\)
0.0740024 + 0.997258i \(0.476423\pi\)
\(278\) −9.13412 + 22.0517i −0.547828 + 1.32257i
\(279\) 3.81828 + 1.58158i 0.228594 + 0.0946868i
\(280\) −5.56592 + 5.56592i −0.332627 + 0.332627i
\(281\) 3.86573 3.86573i 0.230610 0.230610i −0.582337 0.812947i \(-0.697862\pi\)
0.812947 + 0.582337i \(0.197862\pi\)
\(282\) 10.6261 + 4.40148i 0.632776 + 0.262104i
\(283\) 6.74958 16.2949i 0.401221 0.968633i −0.586149 0.810203i \(-0.699357\pi\)
0.987370 0.158430i \(-0.0506433\pi\)
\(284\) 1.02760 0.425645i 0.0609767 0.0252574i
\(285\) 7.03429i 0.416675i
\(286\) −5.13089 12.3871i −0.303396 0.732463i
\(287\) 3.29379 + 3.29379i 0.194426 + 0.194426i
\(288\) −3.94335 −0.232364
\(289\) 0 0
\(290\) −14.8061 −0.869442
\(291\) −10.2315 10.2315i −0.599779 0.599779i
\(292\) 0.325388 + 0.785557i 0.0190419 + 0.0459713i
\(293\) 8.25845i 0.482464i −0.970467 0.241232i \(-0.922449\pi\)
0.970467 0.241232i \(-0.0775515\pi\)
\(294\) −9.38649 + 3.88801i −0.547431 + 0.226753i
\(295\) 11.5131 27.7950i 0.670317 1.61829i
\(296\) −11.5449 4.78205i −0.671033 0.277951i
\(297\) 1.60525 1.60525i 0.0931458 0.0931458i
\(298\) 4.20070 4.20070i 0.243340 0.243340i
\(299\) −16.8381 6.97457i −0.973773 0.403350i
\(300\) 3.22195 7.77848i 0.186020 0.449091i
\(301\) 4.45809 1.84660i 0.256960 0.106436i
\(302\) 12.5375i 0.721454i
\(303\) 0.101697 + 0.245517i 0.00584231 + 0.0141046i
\(304\) −6.02663 6.02663i −0.345651 0.345651i
\(305\) −15.8194 −0.905815
\(306\) 0 0
\(307\) −9.94601 −0.567649 −0.283824 0.958876i \(-0.591603\pi\)
−0.283824 + 0.958876i \(0.591603\pi\)
\(308\) 1.08064 + 1.08064i 0.0615751 + 0.0615751i
\(309\) 1.16117 + 2.80331i 0.0660567 + 0.159475i
\(310\) 27.7674i 1.57708i
\(311\) 15.3240 6.34739i 0.868942 0.359927i 0.0967437 0.995309i \(-0.469157\pi\)
0.772198 + 0.635382i \(0.219157\pi\)
\(312\) −2.87075 + 6.93059i −0.162524 + 0.392368i
\(313\) −19.0426 7.88772i −1.07635 0.445840i −0.227125 0.973866i \(-0.572933\pi\)
−0.849229 + 0.528025i \(0.822933\pi\)
\(314\) 22.1473 22.1473i 1.24984 1.24984i
\(315\) 2.65222 2.65222i 0.149436 0.149436i
\(316\) 8.01298 + 3.31909i 0.450766 + 0.186713i
\(317\) 1.63330 3.94314i 0.0917354 0.221469i −0.871352 0.490659i \(-0.836756\pi\)
0.963087 + 0.269190i \(0.0867561\pi\)
\(318\) 4.11464 1.70434i 0.230738 0.0955747i
\(319\) 5.00280i 0.280103i
\(320\) 5.19559 + 12.5433i 0.290443 + 0.701190i
\(321\) 13.8964 + 13.8964i 0.775620 + 0.775620i
\(322\) 7.77015 0.433014
\(323\) 0 0
\(324\) 0.729840 0.0405467
\(325\) −29.1585 29.1585i −1.61742 1.61742i
\(326\) 8.49342 + 20.5049i 0.470407 + 1.13566i
\(327\) 0.715639i 0.0395749i
\(328\) 9.79134 4.05571i 0.540636 0.223939i
\(329\) −2.45720 + 5.93221i −0.135470 + 0.327053i
\(330\) 14.0914 + 5.83685i 0.775706 + 0.321308i
\(331\) −20.2307 + 20.2307i −1.11198 + 1.11198i −0.119097 + 0.992883i \(0.538000\pi\)
−0.992883 + 0.119097i \(0.962000\pi\)
\(332\) 3.29518 3.29518i 0.180847 0.180847i
\(333\) 5.50127 + 2.27870i 0.301468 + 0.124872i
\(334\) 1.35136 3.26247i 0.0739431 0.178515i
\(335\) 45.2403 18.7392i 2.47174 1.02383i
\(336\) 4.54459i 0.247928i
\(337\) 11.9921 + 28.9514i 0.653250 + 1.57709i 0.808033 + 0.589137i \(0.200532\pi\)
−0.154783 + 0.987948i \(0.549468\pi\)
\(338\) 0.259592 + 0.259592i 0.0141199 + 0.0141199i
\(339\) 11.7876 0.640214
\(340\) 0 0
\(341\) −9.38228 −0.508079
\(342\) 2.02097 + 2.02097i 0.109281 + 0.109281i
\(343\) −4.64141 11.2054i −0.250613 0.605033i
\(344\) 10.9787i 0.591930i
\(345\) 19.1549 7.93421i 1.03126 0.427163i
\(346\) −3.33840 + 8.05960i −0.179473 + 0.433287i
\(347\) −11.1197 4.60594i −0.596938 0.247260i 0.0636944 0.997969i \(-0.479712\pi\)
−0.660632 + 0.750710i \(0.729712\pi\)
\(348\) 1.13729 1.13729i 0.0609650 0.0609650i
\(349\) −23.5829 + 23.5829i −1.26236 + 1.26236i −0.312418 + 0.949945i \(0.601139\pi\)
−0.949945 + 0.312418i \(0.898861\pi\)
\(350\) 16.2423 + 6.72777i 0.868186 + 0.359614i
\(351\) 1.36794 3.30250i 0.0730154 0.176275i
\(352\) 8.27060 3.42580i 0.440825 0.182596i
\(353\) 6.56570i 0.349457i 0.984617 + 0.174729i \(0.0559048\pi\)
−0.984617 + 0.174729i \(0.944095\pi\)
\(354\) 4.67785 + 11.2933i 0.248625 + 0.600233i
\(355\) 4.38206 + 4.38206i 0.232576 + 0.232576i
\(356\) −7.56093 −0.400728
\(357\) 0 0
\(358\) 12.8480 0.679038
\(359\) −15.2388 15.2388i −0.804271 0.804271i 0.179489 0.983760i \(-0.442555\pi\)
−0.983760 + 0.179489i \(0.942555\pi\)
\(360\) −3.26573 7.88417i −0.172119 0.415533i
\(361\) 16.0077i 0.842508i
\(362\) 1.39798 0.579061i 0.0734761 0.0304348i
\(363\) 2.23731 5.40135i 0.117428 0.283497i
\(364\) 2.22322 + 0.920888i 0.116528 + 0.0482676i
\(365\) −3.34991 + 3.34991i −0.175342 + 0.175342i
\(366\) 4.54495 4.54495i 0.237568 0.237568i
\(367\) 32.8572 + 13.6099i 1.71513 + 0.710431i 0.999934 + 0.0115096i \(0.00366371\pi\)
0.715198 + 0.698921i \(0.246336\pi\)
\(368\) 9.61332 23.2086i 0.501129 1.20983i
\(369\) −4.66568 + 1.93259i −0.242886 + 0.100607i
\(370\) 40.0065i 2.07984i
\(371\) 0.951478 + 2.29707i 0.0493983 + 0.119258i
\(372\) −2.13287 2.13287i −0.110584 0.110584i
\(373\) 35.8452 1.85599 0.927997 0.372588i \(-0.121529\pi\)
0.927997 + 0.372588i \(0.121529\pi\)
\(374\) 0 0
\(375\) 26.5778 1.37247
\(376\) 10.3300 + 10.3300i 0.532731 + 0.532731i
\(377\) −3.01457 7.27781i −0.155258 0.374826i
\(378\) 1.52398i 0.0783851i
\(379\) 20.2520 8.38866i 1.04028 0.430897i 0.203865 0.978999i \(-0.434650\pi\)
0.836411 + 0.548102i \(0.184650\pi\)
\(380\) −1.96466 + 4.74311i −0.100785 + 0.243316i
\(381\) −2.59654 1.07552i −0.133025 0.0551007i
\(382\) 22.3913 22.3913i 1.14564 1.14564i
\(383\) 24.2615 24.2615i 1.23970 1.23970i 0.279581 0.960122i \(-0.409804\pi\)
0.960122 0.279581i \(-0.0901957\pi\)
\(384\) −12.3828 5.12912i −0.631906 0.261744i
\(385\) −3.25853 + 7.86678i −0.166070 + 0.400928i
\(386\) −7.19169 + 2.97890i −0.366047 + 0.151622i
\(387\) 5.23146i 0.265930i
\(388\) 4.04129 + 9.75654i 0.205165 + 0.495313i
\(389\) −24.1800 24.1800i −1.22597 1.22597i −0.965474 0.260499i \(-0.916113\pi\)
−0.260499 0.965474i \(-0.583887\pi\)
\(390\) 24.0166 1.21613
\(391\) 0 0
\(392\) −12.9047 −0.651783
\(393\) 5.60525 + 5.60525i 0.282747 + 0.282747i
\(394\) 9.41770 + 22.7363i 0.474457 + 1.14544i
\(395\) 48.3242i 2.43146i
\(396\) −1.53073 + 0.634051i −0.0769223 + 0.0318622i
\(397\) −0.0881539 + 0.212822i −0.00442432 + 0.0106812i −0.926076 0.377336i \(-0.876840\pi\)
0.921652 + 0.388018i \(0.126840\pi\)
\(398\) −28.6725 11.8765i −1.43722 0.595317i
\(399\) −1.12824 + 1.12824i −0.0564827 + 0.0564827i
\(400\) 40.1902 40.1902i 2.00951 2.00951i
\(401\) 0.560569 + 0.232195i 0.0279935 + 0.0115953i 0.396636 0.917976i \(-0.370177\pi\)
−0.368643 + 0.929571i \(0.620177\pi\)
\(402\) −7.61386 + 18.3815i −0.379745 + 0.916785i
\(403\) −13.6488 + 5.65353i −0.679897 + 0.281622i
\(404\) 0.193952i 0.00964947i
\(405\) 1.55616 + 3.75690i 0.0773261 + 0.186682i
\(406\) 2.37477 + 2.37477i 0.117858 + 0.117858i
\(407\) −13.5177 −0.670049
\(408\) 0 0
\(409\) −1.50925 −0.0746278 −0.0373139 0.999304i \(-0.511880\pi\)
−0.0373139 + 0.999304i \(0.511880\pi\)
\(410\) −23.9921 23.9921i −1.18488 1.18488i
\(411\) 0.0394998 + 0.0953611i 0.00194838 + 0.00470381i
\(412\) 2.21454i 0.109103i
\(413\) −6.30470 + 2.61149i −0.310234 + 0.128503i
\(414\) −3.22373 + 7.78276i −0.158437 + 0.382502i
\(415\) 23.9881 + 9.93620i 1.17753 + 0.487749i
\(416\) 9.96732 9.96732i 0.488688 0.488688i
\(417\) 10.2151 10.2151i 0.500237 0.500237i
\(418\) −5.99441 2.48297i −0.293196 0.121446i
\(419\) −4.63804 + 11.1972i −0.226583 + 0.547020i −0.995757 0.0920195i \(-0.970668\pi\)
0.769174 + 0.639039i \(0.220668\pi\)
\(420\) −2.52911 + 1.04759i −0.123408 + 0.0511173i
\(421\) 17.8730i 0.871078i 0.900170 + 0.435539i \(0.143442\pi\)
−0.900170 + 0.435539i \(0.856558\pi\)
\(422\) 3.71821 + 8.97656i 0.181000 + 0.436972i
\(423\) −4.92238 4.92238i −0.239334 0.239334i
\(424\) 5.65685 0.274721
\(425\) 0 0
\(426\) −2.51796 −0.121995
\(427\) 2.53730 + 2.53730i 0.122788 + 0.122788i
\(428\) −5.48888 13.2513i −0.265315 0.640528i
\(429\) 8.11492i 0.391792i
\(430\) −32.4729 + 13.4507i −1.56598 + 0.648651i
\(431\) −4.26161 + 10.2884i −0.205274 + 0.495576i −0.992668 0.120875i \(-0.961430\pi\)
0.787393 + 0.616451i \(0.211430\pi\)
\(432\) 4.55197 + 1.88549i 0.219007 + 0.0907155i
\(433\) −20.5897 + 20.5897i −0.989475 + 0.989475i −0.999945 0.0104697i \(-0.996667\pi\)
0.0104697 + 0.999945i \(0.496667\pi\)
\(434\) 4.45366 4.45366i 0.213782 0.213782i
\(435\) 8.27916 + 3.42934i 0.396955 + 0.164424i
\(436\) 0.199876 0.482544i 0.00957234 0.0231097i
\(437\) −8.14838 + 3.37517i −0.389790 + 0.161456i
\(438\) 1.92488i 0.0919742i
\(439\) 8.64704 + 20.8758i 0.412700 + 0.996347i 0.984410 + 0.175891i \(0.0562806\pi\)
−0.571709 + 0.820456i \(0.693719\pi\)
\(440\) 13.6988 + 13.6988i 0.653064 + 0.653064i
\(441\) 6.14921 0.292820
\(442\) 0 0
\(443\) 32.1976 1.52975 0.764877 0.644176i \(-0.222800\pi\)
0.764877 + 0.644176i \(0.222800\pi\)
\(444\) −3.07299 3.07299i −0.145837 0.145837i
\(445\) −16.1213 38.9203i −0.764224 1.84500i
\(446\) 9.22579i 0.436854i
\(447\) −3.32188 + 1.37597i −0.157119 + 0.0650810i
\(448\) 1.17851 2.84517i 0.0556792 0.134422i
\(449\) −1.03502 0.428720i −0.0488457 0.0202325i 0.358127 0.933673i \(-0.383416\pi\)
−0.406973 + 0.913440i \(0.633416\pi\)
\(450\) −13.4774 + 13.4774i −0.635330 + 0.635330i
\(451\) 8.10665 8.10665i 0.381727 0.381727i
\(452\) −7.94819 3.29225i −0.373851 0.154854i
\(453\) 2.90391 7.01066i 0.136438 0.329389i
\(454\) 42.0231 17.4065i 1.97224 0.816930i
\(455\) 13.4077i 0.628561i
\(456\) 1.38923 + 3.35389i 0.0650564 + 0.157060i
\(457\) 28.3405 + 28.3405i 1.32571 + 1.32571i 0.909072 + 0.416639i \(0.136792\pi\)
0.416639 + 0.909072i \(0.363208\pi\)
\(458\) −5.89875 −0.275631
\(459\) 0 0
\(460\) −15.1318 −0.705526
\(461\) −3.53267 3.53267i −0.164533 0.164533i 0.620039 0.784571i \(-0.287117\pi\)
−0.784571 + 0.620039i \(0.787117\pi\)
\(462\) −1.32396 3.19633i −0.0615963 0.148707i
\(463\) 39.0452i 1.81458i 0.420502 + 0.907292i \(0.361854\pi\)
−0.420502 + 0.907292i \(0.638146\pi\)
\(464\) 10.0313 4.15509i 0.465690 0.192895i
\(465\) 6.43140 15.5268i 0.298249 0.720037i
\(466\) −2.09259 0.866779i −0.0969374 0.0401528i
\(467\) 7.44173 7.44173i 0.344362 0.344362i −0.513642 0.858004i \(-0.671704\pi\)
0.858004 + 0.513642i \(0.171704\pi\)
\(468\) −1.84476 + 1.84476i −0.0852743 + 0.0852743i
\(469\) −10.2618 4.25057i −0.473845 0.196273i
\(470\) 17.8983 43.2104i 0.825589 1.99315i
\(471\) −17.5139 + 7.25449i −0.806997 + 0.334269i
\(472\) 15.5262i 0.714651i
\(473\) −4.54484 10.9722i −0.208972 0.504503i
\(474\) −13.8837 13.8837i −0.637699 0.637699i
\(475\) −19.9553 −0.915611
\(476\) 0 0
\(477\) −2.69555 −0.123421
\(478\) 25.2494 + 25.2494i 1.15488 + 1.15488i
\(479\) 9.93598 + 23.9876i 0.453986 + 1.09602i 0.970793 + 0.239918i \(0.0771206\pi\)
−0.516807 + 0.856102i \(0.672879\pi\)
\(480\) 16.0354i 0.731912i
\(481\) −19.6649 + 8.14546i −0.896641 + 0.371401i
\(482\) 0.671356 1.62080i 0.0305794 0.0738253i
\(483\) −4.34486 1.79970i −0.197698 0.0818893i
\(484\) −3.01717 + 3.01717i −0.137144 + 0.137144i
\(485\) −41.6056 + 41.6056i −1.88921 + 1.88921i
\(486\) −1.52645 0.632278i −0.0692414 0.0286807i
\(487\) 9.77394 23.5964i 0.442900 1.06925i −0.532027 0.846727i \(-0.678570\pi\)
0.974927 0.222527i \(-0.0714304\pi\)
\(488\) 7.54254 3.12422i 0.341435 0.141427i
\(489\) 13.4330i 0.607463i
\(490\) 15.8104 + 38.1696i 0.714239 + 1.72433i
\(491\) −1.77317 1.77317i −0.0800221 0.0800221i 0.665963 0.745985i \(-0.268021\pi\)
−0.745985 + 0.665963i \(0.768021\pi\)
\(492\) 3.68577 0.166167
\(493\) 0 0
\(494\) −10.2165 −0.459663
\(495\) −6.52763 6.52763i −0.293395 0.293395i
\(496\) −7.79248 18.8127i −0.349893 0.844715i
\(497\) 1.40569i 0.0630540i
\(498\) −9.74654 + 4.03715i −0.436753 + 0.180909i
\(499\) −5.82714 + 14.0680i −0.260859 + 0.629768i −0.998992 0.0448864i \(-0.985707\pi\)
0.738134 + 0.674655i \(0.235707\pi\)
\(500\) −17.9210 7.42313i −0.801453 0.331973i
\(501\) −1.51129 + 1.51129i −0.0675195 + 0.0675195i
\(502\) −8.52525 + 8.52525i −0.380501 + 0.380501i
\(503\) −36.1228 14.9625i −1.61064 0.667147i −0.617767 0.786361i \(-0.711962\pi\)
−0.992869 + 0.119214i \(0.961962\pi\)
\(504\) −0.740760 + 1.78835i −0.0329961 + 0.0796596i
\(505\) 0.998380 0.413542i 0.0444273 0.0184024i
\(506\) 19.1238i 0.850158i
\(507\) −0.0850310 0.205283i −0.00377636 0.00911694i
\(508\) 1.45042 + 1.45042i 0.0643519 + 0.0643519i
\(509\) 31.9138 1.41455 0.707277 0.706937i \(-0.249924\pi\)
0.707277 + 0.706937i \(0.249924\pi\)
\(510\) 0 0
\(511\) 1.07460 0.0475374
\(512\) −0.884296 0.884296i −0.0390807 0.0390807i
\(513\) −0.661981 1.59816i −0.0292272 0.0705607i
\(514\) 37.2690i 1.64386i
\(515\) 11.3995 4.72183i 0.502322 0.208069i
\(516\) 1.46114 3.52749i 0.0643229 0.155289i
\(517\) 14.6003 + 6.04765i 0.642121 + 0.265975i
\(518\) 6.41671 6.41671i 0.281934 0.281934i
\(519\) 3.73349 3.73349i 0.163882 0.163882i
\(520\) 28.1828 + 11.6737i 1.23590 + 0.511926i
\(521\) −1.84858 + 4.46286i −0.0809876 + 0.195521i −0.959186 0.282774i \(-0.908745\pi\)
0.878199 + 0.478296i \(0.158745\pi\)
\(522\) −3.36388 + 1.39337i −0.147233 + 0.0609860i
\(523\) 36.5734i 1.59924i −0.600503 0.799622i \(-0.705033\pi\)
0.600503 0.799622i \(-0.294967\pi\)
\(524\) −2.21400 5.34506i −0.0967189 0.233500i
\(525\) −7.52398 7.52398i −0.328373 0.328373i
\(526\) −7.02061 −0.306113
\(527\) 0 0
\(528\) −11.1851 −0.486769
\(529\) −2.11820 2.11820i −0.0920956 0.0920956i
\(530\) −6.93059 16.7319i −0.301046 0.726789i
\(531\) 7.39840i 0.321063i
\(532\) 1.07587 0.445641i 0.0466449 0.0193210i
\(533\) 6.90824 16.6780i 0.299229 0.722403i
\(534\) 15.8136 + 6.55021i 0.684322 + 0.283455i
\(535\) 56.5087 56.5087i 2.44309 2.44309i
\(536\) −17.8693 + 17.8693i −0.771838 + 0.771838i
\(537\) −7.18427 2.97582i −0.310024 0.128416i
\(538\) 7.48226 18.0638i 0.322583 0.778784i
\(539\) −12.8971 + 5.34214i −0.555516 + 0.230102i
\(540\) 2.96785i 0.127716i
\(541\) 4.22067 + 10.1896i 0.181461 + 0.438085i 0.988268 0.152730i \(-0.0488065\pi\)
−0.806807 + 0.590815i \(0.798806\pi\)
\(542\) 13.7911 + 13.7911i 0.592379 + 0.592379i
\(543\) −0.915833 −0.0393021
\(544\) 0 0
\(545\) 2.91010 0.124655
\(546\) −3.85206 3.85206i −0.164853 0.164853i
\(547\) 10.2852 + 24.8307i 0.439765 + 1.06169i 0.976030 + 0.217636i \(0.0698347\pi\)
−0.536265 + 0.844050i \(0.680165\pi\)
\(548\) 0.0753327i 0.00321805i
\(549\) −3.59411 + 1.48873i −0.153393 + 0.0635373i
\(550\) 16.5583 39.9753i 0.706049 1.70455i
\(551\) −3.52191 1.45882i −0.150038 0.0621480i
\(552\) −7.56592 + 7.56592i −0.322027 + 0.322027i
\(553\) 7.75081 7.75081i 0.329598 0.329598i
\(554\) −15.9172 6.59310i −0.676255 0.280114i
\(555\) 9.26619 22.3706i 0.393328 0.949578i
\(556\) −9.74096 + 4.03484i −0.413109 + 0.171115i
\(557\) 34.9146i 1.47938i 0.672948 + 0.739690i \(0.265028\pi\)
−0.672948 + 0.739690i \(0.734972\pi\)
\(558\) 2.61313 + 6.30864i 0.110622 + 0.267066i
\(559\) −13.2232 13.2232i −0.559281 0.559281i
\(560\) −18.4803 −0.780935
\(561\) 0 0
\(562\) 9.03266 0.381020
\(563\) 5.59557 + 5.59557i 0.235825 + 0.235825i 0.815119 0.579294i \(-0.196672\pi\)
−0.579294 + 0.815119i \(0.696672\pi\)
\(564\) 1.94428 + 4.69390i 0.0818688 + 0.197649i
\(565\) 47.9335i 2.01658i
\(566\) 26.9229 11.1518i 1.13165 0.468746i
\(567\) 0.352980 0.852170i 0.0148238 0.0357878i
\(568\) −2.95476 1.22390i −0.123979 0.0513537i
\(569\) −12.2298 + 12.2298i −0.512702 + 0.512702i −0.915353 0.402651i \(-0.868089\pi\)
0.402651 + 0.915353i \(0.368089\pi\)
\(570\) 8.21814 8.21814i 0.344220 0.344220i
\(571\) −17.9039 7.41605i −0.749256 0.310352i −0.0248178 0.999692i \(-0.507901\pi\)
−0.724438 + 0.689340i \(0.757901\pi\)
\(572\) 2.26648 5.47177i 0.0947663 0.228786i
\(573\) −17.7069 + 7.33442i −0.739715 + 0.306400i
\(574\) 7.69626i 0.321236i
\(575\) −22.5082 54.3396i −0.938658 2.26612i
\(576\) 2.36084 + 2.36084i 0.0983683 + 0.0983683i
\(577\) 2.89714 0.120610 0.0603048 0.998180i \(-0.480793\pi\)
0.0603048 + 0.998180i \(0.480793\pi\)
\(578\) 0 0
\(579\) 4.71137 0.195798
\(580\) −4.62470 4.62470i −0.192030 0.192030i
\(581\) −2.25381 5.44118i −0.0935038 0.225738i
\(582\) 23.9068i 0.990968i
\(583\) 5.65353 2.34177i 0.234145 0.0969862i
\(584\) 0.935623 2.25879i 0.0387164 0.0934696i
\(585\) −13.4294 5.56265i −0.555238 0.229987i
\(586\) 9.64833 9.64833i 0.398569 0.398569i
\(587\) −8.70909 + 8.70909i −0.359463 + 0.359463i −0.863615 0.504152i \(-0.831805\pi\)
0.504152 + 0.863615i \(0.331805\pi\)
\(588\) −4.14632 1.71746i −0.170991 0.0708269i
\(589\) −2.73588 + 6.60501i −0.112730 + 0.272155i
\(590\) 45.9236 19.0222i 1.89064 0.783131i
\(591\) 14.8949i 0.612693i
\(592\) −11.2272 27.1048i −0.461435 1.11400i
\(593\) 30.5302 + 30.5302i 1.25373 + 1.25373i 0.954037 + 0.299690i \(0.0968833\pi\)
0.299690 + 0.954037i \(0.403117\pi\)
\(594\) 3.75081 0.153898
\(595\) 0 0
\(596\) 2.62420 0.107491
\(597\) 13.2821 + 13.2821i 0.543599 + 0.543599i
\(598\) −11.5235 27.8203i −0.471233 1.13766i
\(599\) 6.70607i 0.274003i 0.990571 + 0.137001i \(0.0437464\pi\)
−0.990571 + 0.137001i \(0.956254\pi\)
\(600\) −22.3663 + 9.26442i −0.913100 + 0.378218i
\(601\) −12.1844 + 29.4156i −0.497010 + 1.19989i 0.454076 + 0.890963i \(0.349970\pi\)
−0.951086 + 0.308926i \(0.900030\pi\)
\(602\) 7.36577 + 3.05100i 0.300206 + 0.124349i
\(603\) 8.51494 8.51494i 0.346755 0.346755i
\(604\) −3.91612 + 3.91612i −0.159345 + 0.159345i
\(605\) −21.9642 9.09788i −0.892973 0.369882i
\(606\) −0.168025 + 0.405649i −0.00682556 + 0.0164784i
\(607\) 25.7918 10.6833i 1.04685 0.433622i 0.208087 0.978110i \(-0.433276\pi\)
0.838768 + 0.544489i \(0.183276\pi\)
\(608\) 6.82137i 0.276643i
\(609\) −0.777871 1.87795i −0.0315209 0.0760983i
\(610\) −18.4818 18.4818i −0.748304 0.748304i
\(611\) 24.8839 1.00669
\(612\) 0 0
\(613\) −5.84314 −0.236002 −0.118001 0.993013i \(-0.537649\pi\)
−0.118001 + 0.993013i \(0.537649\pi\)
\(614\) −11.6199 11.6199i −0.468941 0.468941i
\(615\) 7.85875 + 18.9727i 0.316895 + 0.765053i
\(616\) 4.39435i 0.177053i
\(617\) −34.2317 + 14.1792i −1.37812 + 0.570835i −0.943977 0.330010i \(-0.892948\pi\)
−0.434140 + 0.900845i \(0.642948\pi\)
\(618\) −1.91851 + 4.63170i −0.0771739 + 0.186314i
\(619\) 14.9378 + 6.18744i 0.600401 + 0.248694i 0.662118 0.749399i \(-0.269658\pi\)
−0.0617170 + 0.998094i \(0.519658\pi\)
\(620\) −8.67319 + 8.67319i −0.348324 + 0.348324i
\(621\) 3.60525 3.60525i 0.144674 0.144674i
\(622\) 25.3186 + 10.4873i 1.01518 + 0.420503i
\(623\) −3.65677 + 8.82823i −0.146505 + 0.353696i
\(624\) −16.2715 + 6.73987i −0.651381 + 0.269811i
\(625\) 50.3976i 2.01590i
\(626\) −13.0323 31.4627i −0.520874 1.25750i
\(627\) 2.77682 + 2.77682i 0.110895 + 0.110895i
\(628\) 13.8355 0.552097
\(629\) 0 0
\(630\) 6.19717 0.246901
\(631\) 22.3920 + 22.3920i 0.891410 + 0.891410i 0.994656 0.103246i \(-0.0329228\pi\)
−0.103246 + 0.994656i \(0.532923\pi\)
\(632\) −9.54372 23.0406i −0.379629 0.916505i
\(633\) 5.88066i 0.233735i
\(634\) 6.51495 2.69858i 0.258742 0.107174i
\(635\) −4.37355 + 10.5587i −0.173559 + 0.419008i
\(636\) 1.81757 + 0.752862i 0.0720714 + 0.0298529i
\(637\) −15.5429 + 15.5429i −0.615833 + 0.615833i
\(638\) 5.84476 5.84476i 0.231396 0.231396i
\(639\) 1.40798 + 0.583202i 0.0556986 + 0.0230711i
\(640\) −20.8572 + 50.3538i −0.824455 + 1.99041i
\(641\) −14.7167 + 6.09588i −0.581277 + 0.240773i −0.653893 0.756587i \(-0.726865\pi\)
0.0726161 + 0.997360i \(0.476865\pi\)
\(642\) 32.4702i 1.28150i
\(643\) −6.38557 15.4161i −0.251822 0.607953i 0.746529 0.665353i \(-0.231719\pi\)
−0.998351 + 0.0574003i \(0.981719\pi\)
\(644\) 2.42702 + 2.42702i 0.0956381 + 0.0956381i
\(645\) 21.2734 0.837639
\(646\) 0 0
\(647\) −8.35044 −0.328290 −0.164145 0.986436i \(-0.552486\pi\)
−0.164145 + 0.986436i \(0.552486\pi\)
\(648\) −1.48392 1.48392i −0.0582941 0.0582941i
\(649\) 6.42738 + 15.5171i 0.252297 + 0.609098i
\(650\) 68.1316i 2.67234i
\(651\) −3.52191 + 1.45882i −0.138035 + 0.0571758i
\(652\) −3.75182 + 9.05770i −0.146933 + 0.354727i
\(653\) −26.5132 10.9821i −1.03754 0.429764i −0.202113 0.979362i \(-0.564781\pi\)
−0.835429 + 0.549598i \(0.814781\pi\)
\(654\) −0.836079 + 0.836079i −0.0326933 + 0.0326933i
\(655\) 22.7934 22.7934i 0.890611 0.890611i
\(656\) 22.9879 + 9.52189i 0.897526 + 0.371767i
\(657\) −0.445835 + 1.07634i −0.0173937 + 0.0419921i
\(658\) −9.80134 + 4.05985i −0.382096 + 0.158269i
\(659\) 40.3690i 1.57255i 0.617876 + 0.786276i \(0.287993\pi\)
−0.617876 + 0.786276i \(0.712007\pi\)
\(660\) 2.57833 + 6.22463i 0.100361 + 0.242293i
\(661\) −27.9099 27.9099i −1.08557 1.08557i −0.995979 0.0895910i \(-0.971444\pi\)
−0.0895910 0.995979i \(-0.528556\pi\)
\(662\) −47.2710 −1.83724
\(663\) 0 0
\(664\) −13.3997 −0.520007
\(665\) 4.58792 + 4.58792i 0.177912 + 0.177912i
\(666\) 3.76492 + 9.08933i 0.145888 + 0.352204i
\(667\) 11.2359i 0.435055i
\(668\) 1.44114 0.596940i 0.0557594 0.0230963i
\(669\) 2.13685 5.15882i 0.0826155 0.199452i
\(670\) 74.7471 + 30.9613i 2.88773 + 1.19614i
\(671\) 6.24478 6.24478i 0.241077 0.241077i
\(672\) 2.57194 2.57194i 0.0992149 0.0992149i
\(673\) −19.9610 8.26810i −0.769438 0.318712i −0.0367934 0.999323i \(-0.511714\pi\)
−0.732645 + 0.680611i \(0.761714\pi\)
\(674\) −19.8136 + 47.8342i −0.763191 + 1.84251i
\(675\) 10.6578 4.41460i 0.410218 0.169918i
\(676\) 0.162168i 0.00623724i
\(677\) 0.960853 + 2.31970i 0.0369286 + 0.0891535i 0.941268 0.337661i \(-0.109636\pi\)
−0.904339 + 0.426814i \(0.859636\pi\)
\(678\) 13.7714 + 13.7714i 0.528888 + 0.528888i
\(679\) 13.3464 0.512187
\(680\) 0 0
\(681\) −27.5299 −1.05495
\(682\) −10.9613 10.9613i −0.419730 0.419730i
\(683\) −7.17238 17.3157i −0.274444 0.662566i 0.725220 0.688518i \(-0.241738\pi\)
−0.999663 + 0.0259521i \(0.991738\pi\)
\(684\) 1.26251i 0.0482732i
\(685\) 0.387780 0.160624i 0.0148163 0.00613711i
\(686\) 7.66865 18.5138i 0.292790 0.706859i
\(687\) 3.29843 + 1.36625i 0.125843 + 0.0521258i
\(688\) 18.2260 18.2260i 0.694860 0.694860i
\(689\) 6.81336 6.81336i 0.259568 0.259568i
\(690\) 31.6481 + 13.1091i 1.20482 + 0.499054i
\(691\) −14.7602 + 35.6342i −0.561504 + 1.35559i 0.347060 + 0.937843i \(0.387180\pi\)
−0.908563 + 0.417747i \(0.862820\pi\)
\(692\) −3.56019 + 1.47468i −0.135338 + 0.0560588i
\(693\) 2.09396i 0.0795428i
\(694\) −7.61004 18.3723i −0.288873 0.697401i
\(695\) −41.5391 41.5391i −1.57567 1.57567i
\(696\) −4.62470 −0.175299
\(697\) 0 0
\(698\) −55.1037 −2.08570
\(699\) 0.969360 + 0.969360i 0.0366646 + 0.0366646i
\(700\) 2.97187 + 7.17474i 0.112326 + 0.271180i
\(701\) 28.7827i 1.08711i −0.839375 0.543553i \(-0.817079\pi\)
0.839375 0.543553i \(-0.182921\pi\)
\(702\) 5.45647 2.26015i 0.205941 0.0853037i
\(703\) −3.94179 + 9.51632i −0.148667 + 0.358915i
\(704\) −7.00250 2.90053i −0.263917 0.109318i
\(705\) −20.0166 + 20.0166i −0.753867 + 0.753867i
\(706\) −7.67070 + 7.67070i −0.288690 + 0.288690i
\(707\) −0.226461 0.0938031i −0.00851693 0.00352783i
\(708\) −2.06636 + 4.98863i −0.0776585 + 0.187484i
\(709\) −4.75418 + 1.96924i −0.178547 + 0.0739565i −0.470166 0.882578i \(-0.655806\pi\)
0.291619 + 0.956534i \(0.405806\pi\)
\(710\) 10.2391i 0.384267i
\(711\) 4.54769 + 10.9791i 0.170552 + 0.411748i
\(712\) 15.3730 + 15.3730i 0.576128 + 0.576128i
\(713\) −21.0718 −0.789146
\(714\) 0 0
\(715\) 32.9988 1.23409
\(716\) 4.01310 + 4.01310i 0.149977 + 0.149977i
\(717\) −8.27060 19.9670i −0.308871 0.745681i
\(718\) 35.6068i 1.32883i
\(719\) 29.1042 12.0554i 1.08540 0.449589i 0.233003 0.972476i \(-0.425145\pi\)
0.852402 + 0.522887i \(0.175145\pi\)
\(720\) 7.66721 18.5103i 0.285740 0.689838i
\(721\) −2.58573 1.07104i −0.0962976 0.0398878i
\(722\) 18.7017 18.7017i 0.696005 0.696005i
\(723\) −0.750810 + 0.750810i −0.0279229 + 0.0279229i
\(724\) 0.617532 + 0.255790i 0.0229504 + 0.00950636i
\(725\) 9.72856 23.4868i 0.361309 0.872278i
\(726\) 8.92423 3.69654i 0.331209 0.137191i
\(727\) 31.2775i 1.16002i −0.814610 0.580010i \(-0.803049\pi\)
0.814610 0.580010i \(-0.196951\pi\)
\(728\) −2.64793 6.39266i −0.0981386 0.236928i
\(729\) 0.707107 + 0.707107i 0.0261891 + 0.0261891i
\(730\) −7.82739 −0.289705
\(731\) 0 0
\(732\) 2.83925 0.104942
\(733\) −13.3044 13.3044i −0.491411 0.491411i 0.417340 0.908751i \(-0.362963\pi\)
−0.908751 + 0.417340i \(0.862963\pi\)
\(734\) 22.4866 + 54.2874i 0.829995 + 2.00379i
\(735\) 25.0054i 0.922337i
\(736\) 18.5751 7.69405i 0.684686 0.283606i
\(737\) −10.4615 + 25.2562i −0.385353 + 0.930324i
\(738\) −7.70875 3.19307i −0.283763 0.117538i
\(739\) 4.91271 4.91271i 0.180717 0.180717i −0.610951 0.791668i \(-0.709213\pi\)
0.791668 + 0.610951i \(0.209213\pi\)
\(740\) −12.4961 + 12.4961i −0.459366 + 0.459366i
\(741\) 5.71281 + 2.36632i 0.209865 + 0.0869290i
\(742\) −1.57205 + 3.79527i −0.0577119 + 0.139329i
\(743\) −31.3716 + 12.9945i −1.15091 + 0.476723i −0.874839 0.484414i \(-0.839033\pi\)
−0.276072 + 0.961137i \(0.589033\pi\)
\(744\) 8.67319i 0.317975i
\(745\) 5.59528 + 13.5082i 0.204995 + 0.494902i
\(746\) 41.8779 + 41.8779i 1.53326 + 1.53326i
\(747\) 6.38508 0.233618
\(748\) 0 0
\(749\) −18.1271 −0.662349
\(750\) 31.0508 + 31.0508i 1.13382 + 1.13382i
\(751\) 2.64629 + 6.38871i 0.0965645 + 0.233127i 0.964779 0.263062i \(-0.0847323\pi\)
−0.868215 + 0.496189i \(0.834732\pi\)
\(752\) 34.2984i 1.25073i
\(753\) 6.74169 2.79250i 0.245681 0.101764i
\(754\) 4.98073 12.0246i 0.181388 0.437909i
\(755\) −28.5084 11.8086i −1.03753 0.429758i
\(756\) −0.476019 + 0.476019i −0.0173126 + 0.0173126i
\(757\) −1.31639 + 1.31639i −0.0478452 + 0.0478452i −0.730625 0.682779i \(-0.760771\pi\)
0.682779 + 0.730625i \(0.260771\pi\)
\(758\) 33.4609 + 13.8599i 1.21535 + 0.503416i
\(759\) −4.42941 + 10.6935i −0.160777 + 0.388151i
\(760\) 13.6384 5.64920i 0.494715 0.204918i
\(761\) 49.2335i 1.78471i −0.451330 0.892357i \(-0.649050\pi\)
0.451330 0.892357i \(-0.350950\pi\)
\(762\) −1.77700 4.29007i −0.0643741 0.155413i
\(763\) −0.466756 0.466756i −0.0168977 0.0168977i
\(764\) 13.9880 0.506066
\(765\) 0 0
\(766\) 56.6893 2.04827
\(767\) 18.7004 + 18.7004i 0.675232 + 0.675232i
\(768\) −5.91909 14.2900i −0.213587 0.515644i
\(769\) 50.9303i 1.83659i 0.395895 + 0.918296i \(0.370435\pi\)
−0.395895 + 0.918296i \(0.629565\pi\)
\(770\) −12.9977 + 5.38381i −0.468403 + 0.194019i
\(771\) 8.63214 20.8398i 0.310879 0.750528i
\(772\) −3.17680 1.31587i −0.114336 0.0473594i
\(773\) 2.06202 2.06202i 0.0741658 0.0741658i −0.669051 0.743217i \(-0.733299\pi\)
0.743217 + 0.669051i \(0.233299\pi\)
\(774\) −6.11190 + 6.11190i −0.219688 + 0.219688i
\(775\) −44.0473 18.2450i −1.58222 0.655379i
\(776\) 11.6203 28.0540i 0.417146 1.00708i
\(777\) −5.07428 + 2.10183i −0.182039 + 0.0754029i
\(778\) 56.4988i 2.02558i
\(779\) −3.34307 8.07089i −0.119778 0.289170i
\(780\) 7.50162 + 7.50162i 0.268601 + 0.268601i
\(781\) −3.45968 −0.123797
\(782\) 0 0
\(783\) 2.20372 0.0787546
\(784\) −21.4234 21.4234i −0.765121 0.765121i
\(785\) 29.4999 + 71.2191i 1.05290 + 2.54192i
\(786\) 13.0972i 0.467161i
\(787\) 47.0192 19.4760i 1.67605 0.694243i 0.676926 0.736051i \(-0.263312\pi\)
0.999126 + 0.0418077i \(0.0133117\pi\)
\(788\) −4.16010 + 10.0434i −0.148198 + 0.357781i
\(789\) 3.92574 + 1.62609i 0.139760 + 0.0578905i
\(790\) −56.4571 + 56.4571i −2.00865 + 2.00865i
\(791\) −7.68814 + 7.68814i −0.273359 + 0.273359i
\(792\) 4.40148 + 1.82315i 0.156400 + 0.0647829i
\(793\) 5.32161 12.8475i 0.188976 0.456228i
\(794\) −0.351630 + 0.145650i −0.0124789 + 0.00516892i
\(795\) 10.9613i 0.388757i
\(796\) −5.24625 12.6656i −0.185948 0.448919i
\(797\) −9.62096 9.62096i −0.340792 0.340792i 0.515873 0.856665i \(-0.327468\pi\)
−0.856665 + 0.515873i \(0.827468\pi\)
\(798\) −2.63624 −0.0933220
\(799\) 0 0
\(800\) 45.4901 1.60832
\(801\) −7.32541 7.32541i −0.258831 0.258831i
\(802\) 0.383638 + 0.926185i 0.0135467 + 0.0327047i
\(803\) 2.64479i 0.0933326i
\(804\) −8.11969 + 3.36329i −0.286360 + 0.118614i
\(805\) −7.31837 + 17.6681i −0.257939 + 0.622719i
\(806\) −22.5509 9.34089i −0.794322 0.329019i
\(807\) −8.36776 + 8.36776i −0.294559 + 0.294559i
\(808\) −0.394347 + 0.394347i −0.0138731 + 0.0138731i
\(809\) 16.0697 + 6.65627i 0.564979 + 0.234022i 0.646845 0.762621i \(-0.276088\pi\)
−0.0818660 + 0.996643i \(0.526088\pi\)
\(810\) −2.57112 + 6.20723i −0.0903399 + 0.218100i
\(811\) −30.4221 + 12.6012i −1.06826 + 0.442489i −0.846378 0.532583i \(-0.821221\pi\)
−0.221886 + 0.975073i \(0.571221\pi\)
\(812\) 1.48353i 0.0520617i
\(813\) −4.51737 10.9059i −0.158431 0.382486i
\(814\) −15.7927 15.7927i −0.553536 0.553536i
\(815\) −54.6246 −1.91342
\(816\) 0 0
\(817\) −9.04959 −0.316605
\(818\) −1.76326 1.76326i −0.0616509 0.0616509i
\(819\) 1.26177 + 3.04617i 0.0440897 + 0.106442i
\(820\) 14.9879i 0.523401i
\(821\) −40.4076 + 16.7374i −1.41023 + 0.584138i −0.952387 0.304893i \(-0.901379\pi\)
−0.457847 + 0.889031i \(0.651379\pi\)
\(822\) −0.0652625 + 0.157558i −0.00227629 + 0.00549546i
\(823\) −1.54660 0.640622i −0.0539110 0.0223307i 0.355565 0.934652i \(-0.384288\pi\)
−0.409476 + 0.912321i \(0.634288\pi\)
\(824\) −4.50265 + 4.50265i −0.156857 + 0.156857i
\(825\) −18.5180 + 18.5180i −0.644713 + 0.644713i
\(826\) −10.4168 4.31477i −0.362446 0.150130i
\(827\) −0.868752 + 2.09735i −0.0302095 + 0.0729321i −0.938264 0.345919i \(-0.887567\pi\)
0.908055 + 0.418851i \(0.137567\pi\)
\(828\) −3.43790 + 1.42402i −0.119475 + 0.0494883i
\(829\) 19.2597i 0.668918i −0.942410 0.334459i \(-0.891446\pi\)
0.942410 0.334459i \(-0.108554\pi\)
\(830\) 16.4168 + 39.6337i 0.569836 + 1.37571i
\(831\) 7.37338 + 7.37338i 0.255780 + 0.255780i
\(832\) −11.9346 −0.413760
\(833\) 0 0
\(834\) 23.8686 0.826502
\(835\) 6.14556 + 6.14556i 0.212676 + 0.212676i
\(836\) −1.09681 2.64793i −0.0379338 0.0915804i
\(837\) 4.13287i 0.142853i
\(838\) −18.5003 + 7.66307i −0.639082 + 0.264716i
\(839\) −5.66598 + 13.6789i −0.195611 + 0.472248i −0.991002 0.133850i \(-0.957266\pi\)
0.795390 + 0.606098i \(0.207266\pi\)
\(840\) 7.27222 + 3.01225i 0.250916 + 0.103933i
\(841\) −17.0721 + 17.0721i −0.588693 + 0.588693i
\(842\) −20.8810 + 20.8810i −0.719608 + 0.719608i
\(843\) −5.05082 2.09212i −0.173960 0.0720564i
\(844\) −1.64246 + 3.96524i −0.0565357 + 0.136489i
\(845\) −0.834771 + 0.345773i −0.0287170 + 0.0118950i
\(846\) 11.5016i 0.395434i
\(847\) 2.06366 + 4.98211i 0.0709081 + 0.171187i
\(848\) 9.39111 + 9.39111i 0.322492 + 0.322492i
\(849\) −17.6375 −0.605318
\(850\) 0 0
\(851\) −30.3597 −1.04072
\(852\) −0.786489 0.786489i −0.0269447 0.0269447i
\(853\) −2.43299 5.87376i −0.0833040 0.201114i 0.876739 0.480967i \(-0.159714\pi\)
−0.960043 + 0.279853i \(0.909714\pi\)
\(854\) 5.92864i 0.202874i
\(855\) −6.49883 + 2.69190i −0.222255 + 0.0920612i
\(856\) −15.7828 + 38.1030i −0.539444 + 1.30233i
\(857\) 37.7231 + 15.6254i 1.28859 + 0.533754i 0.918566 0.395267i \(-0.129348\pi\)
0.370029 + 0.929020i \(0.379348\pi\)
\(858\) −9.48065 + 9.48065i −0.323664 + 0.323664i
\(859\) −15.6599 + 15.6599i −0.534308 + 0.534308i −0.921851 0.387543i \(-0.873324\pi\)
0.387543 + 0.921851i \(0.373324\pi\)
\(860\) −14.3443 5.94161i −0.489137 0.202607i
\(861\) 1.78259 4.30354i 0.0607504 0.146664i
\(862\) −16.9988 + 7.04112i −0.578980 + 0.239822i
\(863\) 17.3423i 0.590339i −0.955445 0.295170i \(-0.904624\pi\)
0.955445 0.295170i \(-0.0953762\pi\)
\(864\) 1.50906 + 3.64318i 0.0513391 + 0.123944i
\(865\) −15.1820 15.1820i −0.516203 0.516203i
\(866\) −48.1097 −1.63483
\(867\) 0 0
\(868\) 2.78222 0.0944346
\(869\) −19.0762 19.0762i −0.647117 0.647117i
\(870\) 5.66604 + 13.6790i 0.192097 + 0.463762i
\(871\) 43.0452i 1.45853i
\(872\) −1.38751 + 0.574725i −0.0469870 + 0.0194627i
\(873\) −5.53723 + 13.3680i −0.187407 + 0.452440i
\(874\) −13.4629 5.57653i −0.455391 0.188629i
\(875\) −17.3347 + 17.3347i −0.586019 + 0.586019i
\(876\) 0.601239 0.601239i 0.0203140 0.0203140i
\(877\) 27.9294 + 11.5687i 0.943110 + 0.390649i 0.800637 0.599150i \(-0.204495\pi\)
0.142473 + 0.989799i \(0.454495\pi\)
\(878\) −14.2868 + 34.4915i −0.482157 + 1.16403i
\(879\) −7.62982 + 3.16037i −0.257347 + 0.106597i
\(880\) 45.4835i 1.53325i
\(881\) 4.04293 + 9.76049i 0.136210 + 0.328839i 0.977236 0.212155i \(-0.0680481\pi\)
−0.841026 + 0.540994i \(0.818048\pi\)
\(882\) 7.18411 + 7.18411i 0.241902 + 0.241902i
\(883\) −13.9150 −0.468276 −0.234138 0.972203i \(-0.575227\pi\)
−0.234138 + 0.972203i \(0.575227\pi\)
\(884\) 0 0
\(885\) −30.0851 −1.01130
\(886\) 37.6164 + 37.6164i 1.26375 + 1.26375i
\(887\) −13.7630 33.2268i −0.462116 1.11565i −0.967527 0.252767i \(-0.918659\pi\)
0.505412 0.862878i \(-0.331341\pi\)
\(888\) 12.4961i 0.419342i
\(889\) 2.39501 0.992044i 0.0803259 0.0332721i
\(890\) 26.6360 64.3051i 0.892842 2.15551i
\(891\) −2.09735 0.868752i −0.0702640 0.0291043i
\(892\) −2.88170 + 2.88170i −0.0964863 + 0.0964863i
\(893\) 8.51494 8.51494i 0.284941 0.284941i
\(894\) −5.48848 2.27340i −0.183562 0.0760340i
\(895\) −12.1010 + 29.2144i −0.404491 + 0.976528i
\(896\) 11.4217 4.73101i 0.381571 0.158052i
\(897\) 18.2254i 0.608530i
\(898\) −0.708341 1.71009i −0.0236376 0.0570663i
\(899\) −6.44012 6.44012i −0.214790 0.214790i
\(900\) −8.41937 −0.280646
\(901\) 0 0
\(902\) 18.9420 0.630698
\(903\) −3.41208 3.41208i −0.113547 0.113547i
\(904\) 9.46655 + 22.8543i 0.314853 + 0.760122i
\(905\) 3.72418i 0.123796i
\(906\) 11.5832 4.79791i 0.384825 0.159400i
\(907\) 14.9952 36.2016i 0.497907 1.20205i −0.452702 0.891662i \(-0.649540\pi\)
0.950609 0.310391i \(-0.100460\pi\)
\(908\) 18.5630 + 7.68904i 0.616034 + 0.255170i
\(909\) 0.187911 0.187911i 0.00623260 0.00623260i
\(910\) −15.6641 + 15.6641i −0.519261 + 0.519261i
\(911\) 9.17234 + 3.79931i 0.303893 + 0.125877i 0.529419 0.848361i \(-0.322410\pi\)
−0.225526 + 0.974237i \(0.572410\pi\)
\(912\) −3.26159 + 7.87418i −0.108002 + 0.260740i
\(913\) −13.3918 + 5.54706i −0.443203 + 0.183581i
\(914\) 66.2202i 2.19037i
\(915\) 6.05382 + 14.6152i 0.200133 + 0.483164i
\(916\) −1.84249 1.84249i −0.0608775 0.0608775i
\(917\) −7.31174 −0.241455
\(918\) 0 0
\(919\) 42.8795 1.41446 0.707232 0.706982i \(-0.249944\pi\)
0.707232 + 0.706982i \(0.249944\pi\)
\(920\) 30.7663 + 30.7663i 1.01434 + 1.01434i
\(921\) 3.80617 + 9.18892i 0.125418 + 0.302785i
\(922\) 8.25442i 0.271845i
\(923\) −5.03296 + 2.08472i −0.165662 + 0.0686193i
\(924\) 0.584837 1.41192i 0.0192397 0.0464488i
\(925\) −63.4621 26.2869i −2.08662 0.864307i
\(926\) −45.6164 + 45.6164i −1.49905 + 1.49905i
\(927\) 2.14556 2.14556i 0.0704696 0.0704696i
\(928\) 8.02856 + 3.32554i 0.263551 + 0.109166i
\(929\) −6.95043 + 16.7798i −0.228036 + 0.550529i −0.995938 0.0900390i \(-0.971301\pi\)
0.767902 + 0.640568i \(0.221301\pi\)
\(930\) 25.6537 10.6261i 0.841218 0.348444i
\(931\) 10.6372i 0.348619i
\(932\) −0.382884 0.924365i −0.0125418 0.0302786i
\(933\) −11.7284 11.7284i −0.383972 0.383972i
\(934\) 17.3883 0.568963
\(935\) 0 0
\(936\) 7.50162 0.245198
\(937\) −1.13309 1.13309i −0.0370165 0.0370165i 0.688356 0.725373i \(-0.258333\pi\)
−0.725373 + 0.688356i \(0.758333\pi\)
\(938\) −7.02289 16.9548i −0.229305 0.553592i
\(939\) 20.6116i 0.672634i
\(940\) 19.0874 7.90628i 0.622564 0.257874i
\(941\) −12.3815 + 29.8916i −0.403625 + 0.974437i 0.583153 + 0.812362i \(0.301819\pi\)
−0.986778 + 0.162075i \(0.948181\pi\)
\(942\) −28.9368 11.9860i −0.942813 0.390526i
\(943\) 18.2068 18.2068i 0.592896 0.592896i
\(944\) −25.7755 + 25.7755i −0.838920 + 0.838920i
\(945\) −3.46530 1.43537i −0.112726 0.0466927i
\(946\) 7.50909 18.1286i 0.244142 0.589410i
\(947\) 23.2650 9.63669i 0.756012 0.313150i 0.0288200 0.999585i \(-0.490825\pi\)
0.727192 + 0.686434i \(0.240825\pi\)
\(948\) 8.67319i 0.281692i
\(949\) −1.59368 3.84749i −0.0517332 0.124895i
\(950\) −23.3137 23.3137i −0.756397 0.756397i
\(951\) −4.26802 −0.138400
\(952\) 0 0
\(953\) 54.0658 1.75136 0.875681 0.482889i \(-0.160413\pi\)
0.875681 + 0.482889i \(0.160413\pi\)
\(954\) −3.14921 3.14921i −0.101959 0.101959i
\(955\) 29.8250 + 72.0038i 0.965113 + 2.32999i
\(956\) 15.7734i 0.510148i
\(957\) −4.62199 + 1.91449i −0.149408 + 0.0618867i
\(958\) −16.4164 + 39.6328i −0.530391 + 1.28048i
\(959\) −0.0879594 0.0364340i −0.00284036 0.00117651i
\(960\) 9.60021 9.60021i 0.309845 0.309845i
\(961\) 9.84248 9.84248i 0.317499 0.317499i
\(962\) −32.4908 13.4581i −1.04754 0.433907i
\(963\) 7.52066 18.1565i 0.242350 0.585085i
\(964\) 0.715959 0.296560i 0.0230595 0.00955155i
\(965\) 19.1585i 0.616733i
\(966\) −2.97351 7.17868i −0.0956711 0.230970i
\(967\) −1.53792 1.53792i −0.0494563 0.0494563i 0.681946 0.731402i \(-0.261134\pi\)
−0.731402 + 0.681946i \(0.761134\pi\)
\(968\) 12.2691 0.394345
\(969\) 0 0
\(970\) −97.2154 −3.12140
\(971\) −33.5508 33.5508i −1.07670 1.07670i −0.996803 0.0798947i \(-0.974542\pi\)
−0.0798947 0.996803i \(-0.525458\pi\)
\(972\) −0.279298 0.674285i −0.00895848 0.0216277i
\(973\) 13.3251i 0.427182i
\(974\) 38.9865 16.1487i 1.24921 0.517439i
\(975\) −15.7805 + 38.0974i −0.505379 + 1.22009i
\(976\) 17.7082 + 7.33498i 0.566826 + 0.234787i
\(977\) −14.7238 + 14.7238i −0.471057 + 0.471057i −0.902256 0.431200i \(-0.858090\pi\)
0.431200 + 0.902256i \(0.358090\pi\)
\(978\) 15.6938 15.6938i 0.501832 0.501832i
\(979\) 21.7280 + 9.00002i 0.694429 + 0.287642i
\(980\) −6.98395 + 16.8607i −0.223094 + 0.538597i
\(981\) 0.661164 0.273863i 0.0211093 0.00874377i
\(982\) 4.14319i 0.132214i
\(983\) 0.930068 + 2.24538i 0.0296646 + 0.0716166i 0.938018 0.346588i \(-0.112660\pi\)
−0.908353 + 0.418204i \(0.862660\pi\)
\(984\) −7.49397 7.49397i −0.238899 0.238899i
\(985\) −60.5690 −1.92989
\(986\) 0 0
\(987\) 6.42098 0.204382
\(988\) −3.19115 3.19115i −0.101524 0.101524i
\(989\) −10.2073 24.6427i −0.324574 0.783592i
\(990\) 15.2524i 0.484754i
\(991\) −33.7934 + 13.9977i −1.07348 + 0.444651i −0.848218 0.529647i \(-0.822324\pi\)
−0.225264 + 0.974298i \(0.572324\pi\)
\(992\) 6.23673 15.0568i 0.198016 0.478054i
\(993\) 26.4327 + 10.9488i 0.838816 + 0.347449i
\(994\) 1.64227 1.64227i 0.0520896 0.0520896i
\(995\) 54.0107 54.0107i 1.71226 1.71226i
\(996\) −4.30536 1.78334i −0.136421 0.0565073i
\(997\) 7.92571 19.1344i 0.251010 0.605991i −0.747276 0.664513i \(-0.768639\pi\)
0.998286 + 0.0585222i \(0.0186388\pi\)
\(998\) −23.2434 + 9.62773i −0.735757 + 0.304760i
\(999\) 5.95453i 0.188393i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.i.712.3 16
17.2 even 8 867.2.h.k.757.1 16
17.3 odd 16 867.2.d.f.577.5 8
17.4 even 4 867.2.h.k.733.1 16
17.5 odd 16 867.2.a.l.1.2 4
17.6 odd 16 867.2.e.g.829.3 8
17.7 odd 16 867.2.e.g.616.2 8
17.8 even 8 inner 867.2.h.i.688.3 16
17.9 even 8 inner 867.2.h.i.688.4 16
17.10 odd 16 51.2.e.a.4.2 8
17.11 odd 16 51.2.e.a.13.3 yes 8
17.12 odd 16 867.2.a.k.1.2 4
17.13 even 4 867.2.h.k.733.2 16
17.14 odd 16 867.2.d.f.577.6 8
17.15 even 8 867.2.h.k.757.2 16
17.16 even 2 inner 867.2.h.i.712.4 16
51.5 even 16 2601.2.a.be.1.3 4
51.11 even 16 153.2.f.b.64.2 8
51.29 even 16 2601.2.a.bf.1.3 4
51.44 even 16 153.2.f.b.55.3 8
68.11 even 16 816.2.bd.e.625.1 8
68.27 even 16 816.2.bd.e.769.1 8
204.11 odd 16 2448.2.be.x.1441.4 8
204.95 odd 16 2448.2.be.x.1585.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.2 8 17.10 odd 16
51.2.e.a.13.3 yes 8 17.11 odd 16
153.2.f.b.55.3 8 51.44 even 16
153.2.f.b.64.2 8 51.11 even 16
816.2.bd.e.625.1 8 68.11 even 16
816.2.bd.e.769.1 8 68.27 even 16
867.2.a.k.1.2 4 17.12 odd 16
867.2.a.l.1.2 4 17.5 odd 16
867.2.d.f.577.5 8 17.3 odd 16
867.2.d.f.577.6 8 17.14 odd 16
867.2.e.g.616.2 8 17.7 odd 16
867.2.e.g.829.3 8 17.6 odd 16
867.2.h.i.688.3 16 17.8 even 8 inner
867.2.h.i.688.4 16 17.9 even 8 inner
867.2.h.i.712.3 16 1.1 even 1 trivial
867.2.h.i.712.4 16 17.16 even 2 inner
867.2.h.k.733.1 16 17.4 even 4
867.2.h.k.733.2 16 17.13 even 4
867.2.h.k.757.1 16 17.2 even 8
867.2.h.k.757.2 16 17.15 even 8
2448.2.be.x.1441.4 8 204.11 odd 16
2448.2.be.x.1585.4 8 204.95 odd 16
2601.2.a.be.1.3 4 51.5 even 16
2601.2.a.bf.1.3 4 51.29 even 16