Properties

Label 2601.2.a.be.1.3
Level $2601$
Weight $2$
Character 2601.1
Self dual yes
Analytic conductor $20.769$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2601,2,Mod(1,2601)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2601, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2601.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,6,-6,0,4,6,0,-12,-6,0,2,-4,0,6,0,0,10,-16,0,4,6,0,2,20, 0,24,-16,0,4,14,0,0,-4,0,12,12,0,-8,14,0,14,16,0,-12,-4,0,0,30,0,-8,20, 0,2,16,0,8,24,0,12,-16,0,-2,-14,0,4,0,0,-4,-4,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.7690895657\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7232.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.06644\) of defining polynomial
Character \(\chi\) \(=\) 2601.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.65222 q^{2} +0.729840 q^{4} -4.06644 q^{5} -0.922382 q^{7} -2.09859 q^{8} -6.71866 q^{10} -2.27016 q^{11} +3.57461 q^{13} -1.52398 q^{14} -4.92701 q^{16} +1.72984 q^{19} -2.96785 q^{20} -3.75081 q^{22} +5.09859 q^{23} +11.5359 q^{25} +5.90604 q^{26} -0.673192 q^{28} -2.20372 q^{29} -4.13287 q^{31} -3.94335 q^{32} +3.75081 q^{35} +5.95453 q^{37} +2.85808 q^{38} +8.53377 q^{40} +5.05010 q^{41} -5.23146 q^{43} -1.65685 q^{44} +8.42400 q^{46} +6.96130 q^{47} -6.14921 q^{49} +19.0599 q^{50} +2.60889 q^{52} +2.69555 q^{53} +9.23146 q^{55} +1.93570 q^{56} -3.64104 q^{58} +7.39840 q^{59} +3.89023 q^{61} -6.82843 q^{62} +3.33873 q^{64} -14.5359 q^{65} +12.0419 q^{67} +6.19717 q^{70} -1.52398 q^{71} -1.16502 q^{73} +9.83822 q^{74} +1.26251 q^{76} +2.09396 q^{77} +11.8837 q^{79} +20.0354 q^{80} +8.34389 q^{82} +6.38508 q^{83} -8.64354 q^{86} +4.76413 q^{88} -10.3597 q^{89} -3.29715 q^{91} +3.72115 q^{92} +11.5016 q^{94} -7.03429 q^{95} +14.4695 q^{97} -10.1599 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 6 q^{4} - 6 q^{5} + 4 q^{7} + 6 q^{8} - 12 q^{10} - 6 q^{11} + 2 q^{13} - 4 q^{14} + 6 q^{16} + 10 q^{19} - 16 q^{20} + 4 q^{22} + 6 q^{23} + 2 q^{25} + 20 q^{26} + 24 q^{28} - 16 q^{29}+ \cdots - 38 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65222 1.16830 0.584149 0.811646i \(-0.301428\pi\)
0.584149 + 0.811646i \(0.301428\pi\)
\(3\) 0 0
\(4\) 0.729840 0.364920
\(5\) −4.06644 −1.81857 −0.909283 0.416179i \(-0.863369\pi\)
−0.909283 + 0.416179i \(0.863369\pi\)
\(6\) 0 0
\(7\) −0.922382 −0.348628 −0.174314 0.984690i \(-0.555771\pi\)
−0.174314 + 0.984690i \(0.555771\pi\)
\(8\) −2.09859 −0.741962
\(9\) 0 0
\(10\) −6.71866 −2.12463
\(11\) −2.27016 −0.684479 −0.342239 0.939613i \(-0.611185\pi\)
−0.342239 + 0.939613i \(0.611185\pi\)
\(12\) 0 0
\(13\) 3.57461 0.991417 0.495709 0.868489i \(-0.334908\pi\)
0.495709 + 0.868489i \(0.334908\pi\)
\(14\) −1.52398 −0.407301
\(15\) 0 0
\(16\) −4.92701 −1.23175
\(17\) 0 0
\(18\) 0 0
\(19\) 1.72984 0.396853 0.198426 0.980116i \(-0.436417\pi\)
0.198426 + 0.980116i \(0.436417\pi\)
\(20\) −2.96785 −0.663631
\(21\) 0 0
\(22\) −3.75081 −0.799675
\(23\) 5.09859 1.06313 0.531564 0.847018i \(-0.321604\pi\)
0.531564 + 0.847018i \(0.321604\pi\)
\(24\) 0 0
\(25\) 11.5359 2.30718
\(26\) 5.90604 1.15827
\(27\) 0 0
\(28\) −0.673192 −0.127221
\(29\) −2.20372 −0.409221 −0.204611 0.978843i \(-0.565593\pi\)
−0.204611 + 0.978843i \(0.565593\pi\)
\(30\) 0 0
\(31\) −4.13287 −0.742286 −0.371143 0.928576i \(-0.621034\pi\)
−0.371143 + 0.928576i \(0.621034\pi\)
\(32\) −3.94335 −0.697093
\(33\) 0 0
\(34\) 0 0
\(35\) 3.75081 0.634003
\(36\) 0 0
\(37\) 5.95453 0.978919 0.489460 0.872026i \(-0.337194\pi\)
0.489460 + 0.872026i \(0.337194\pi\)
\(38\) 2.85808 0.463642
\(39\) 0 0
\(40\) 8.53377 1.34931
\(41\) 5.05010 0.788693 0.394346 0.918962i \(-0.370971\pi\)
0.394346 + 0.918962i \(0.370971\pi\)
\(42\) 0 0
\(43\) −5.23146 −0.797790 −0.398895 0.916997i \(-0.630606\pi\)
−0.398895 + 0.916997i \(0.630606\pi\)
\(44\) −1.65685 −0.249780
\(45\) 0 0
\(46\) 8.42400 1.24205
\(47\) 6.96130 1.01541 0.507705 0.861531i \(-0.330494\pi\)
0.507705 + 0.861531i \(0.330494\pi\)
\(48\) 0 0
\(49\) −6.14921 −0.878459
\(50\) 19.0599 2.69548
\(51\) 0 0
\(52\) 2.60889 0.361788
\(53\) 2.69555 0.370263 0.185131 0.982714i \(-0.440729\pi\)
0.185131 + 0.982714i \(0.440729\pi\)
\(54\) 0 0
\(55\) 9.23146 1.24477
\(56\) 1.93570 0.258669
\(57\) 0 0
\(58\) −3.64104 −0.478092
\(59\) 7.39840 0.963190 0.481595 0.876394i \(-0.340058\pi\)
0.481595 + 0.876394i \(0.340058\pi\)
\(60\) 0 0
\(61\) 3.89023 0.498093 0.249047 0.968492i \(-0.419883\pi\)
0.249047 + 0.968492i \(0.419883\pi\)
\(62\) −6.82843 −0.867211
\(63\) 0 0
\(64\) 3.33873 0.417341
\(65\) −14.5359 −1.80296
\(66\) 0 0
\(67\) 12.0419 1.47116 0.735578 0.677440i \(-0.236910\pi\)
0.735578 + 0.677440i \(0.236910\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 6.19717 0.740704
\(71\) −1.52398 −0.180863 −0.0904317 0.995903i \(-0.528825\pi\)
−0.0904317 + 0.995903i \(0.528825\pi\)
\(72\) 0 0
\(73\) −1.16502 −0.136356 −0.0681778 0.997673i \(-0.521719\pi\)
−0.0681778 + 0.997673i \(0.521719\pi\)
\(74\) 9.83822 1.14367
\(75\) 0 0
\(76\) 1.26251 0.144820
\(77\) 2.09396 0.238628
\(78\) 0 0
\(79\) 11.8837 1.33702 0.668509 0.743704i \(-0.266933\pi\)
0.668509 + 0.743704i \(0.266933\pi\)
\(80\) 20.0354 2.24002
\(81\) 0 0
\(82\) 8.34389 0.921428
\(83\) 6.38508 0.700854 0.350427 0.936590i \(-0.386036\pi\)
0.350427 + 0.936590i \(0.386036\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.64354 −0.932057
\(87\) 0 0
\(88\) 4.76413 0.507858
\(89\) −10.3597 −1.09813 −0.549063 0.835781i \(-0.685015\pi\)
−0.549063 + 0.835781i \(0.685015\pi\)
\(90\) 0 0
\(91\) −3.29715 −0.345636
\(92\) 3.72115 0.387957
\(93\) 0 0
\(94\) 11.5016 1.18630
\(95\) −7.03429 −0.721703
\(96\) 0 0
\(97\) 14.4695 1.46915 0.734576 0.678526i \(-0.237381\pi\)
0.734576 + 0.678526i \(0.237381\pi\)
\(98\) −10.1599 −1.02630
\(99\) 0 0
\(100\) 8.41937 0.841937
\(101\) −0.265746 −0.0264427 −0.0132213 0.999913i \(-0.504209\pi\)
−0.0132213 + 0.999913i \(0.504209\pi\)
\(102\) 0 0
\(103\) −3.03429 −0.298977 −0.149489 0.988763i \(-0.547763\pi\)
−0.149489 + 0.988763i \(0.547763\pi\)
\(104\) −7.50162 −0.735594
\(105\) 0 0
\(106\) 4.45366 0.432577
\(107\) −19.6524 −1.89987 −0.949937 0.312443i \(-0.898853\pi\)
−0.949937 + 0.312443i \(0.898853\pi\)
\(108\) 0 0
\(109\) 0.715639 0.0685457 0.0342729 0.999413i \(-0.489088\pi\)
0.0342729 + 0.999413i \(0.489088\pi\)
\(110\) 15.2524 1.45426
\(111\) 0 0
\(112\) 4.54459 0.429423
\(113\) 11.7876 1.10888 0.554442 0.832223i \(-0.312932\pi\)
0.554442 + 0.832223i \(0.312932\pi\)
\(114\) 0 0
\(115\) −20.7331 −1.93337
\(116\) −1.60837 −0.149333
\(117\) 0 0
\(118\) 12.2238 1.12529
\(119\) 0 0
\(120\) 0 0
\(121\) −5.84638 −0.531489
\(122\) 6.42753 0.581921
\(123\) 0 0
\(124\) −3.01634 −0.270875
\(125\) −26.5778 −2.37719
\(126\) 0 0
\(127\) 2.81048 0.249390 0.124695 0.992195i \(-0.460205\pi\)
0.124695 + 0.992195i \(0.460205\pi\)
\(128\) 13.4030 1.18467
\(129\) 0 0
\(130\) −24.0166 −2.10639
\(131\) 7.92701 0.692586 0.346293 0.938126i \(-0.387440\pi\)
0.346293 + 0.938126i \(0.387440\pi\)
\(132\) 0 0
\(133\) −1.59557 −0.138354
\(134\) 19.8960 1.71875
\(135\) 0 0
\(136\) 0 0
\(137\) 0.103218 0.00881851 0.00440926 0.999990i \(-0.498596\pi\)
0.00440926 + 0.999990i \(0.498596\pi\)
\(138\) 0 0
\(139\) −14.4464 −1.22532 −0.612662 0.790345i \(-0.709901\pi\)
−0.612662 + 0.790345i \(0.709901\pi\)
\(140\) 2.73749 0.231360
\(141\) 0 0
\(142\) −2.51796 −0.211302
\(143\) −8.11492 −0.678604
\(144\) 0 0
\(145\) 8.96130 0.744195
\(146\) −1.92488 −0.159304
\(147\) 0 0
\(148\) 4.34586 0.357227
\(149\) −3.59557 −0.294561 −0.147280 0.989095i \(-0.547052\pi\)
−0.147280 + 0.989095i \(0.547052\pi\)
\(150\) 0 0
\(151\) 7.58828 0.617526 0.308763 0.951139i \(-0.400085\pi\)
0.308763 + 0.951139i \(0.400085\pi\)
\(152\) −3.63022 −0.294450
\(153\) 0 0
\(154\) 3.45968 0.278789
\(155\) 16.8061 1.34990
\(156\) 0 0
\(157\) −18.9569 −1.51292 −0.756462 0.654038i \(-0.773074\pi\)
−0.756462 + 0.654038i \(0.773074\pi\)
\(158\) 19.6345 1.56204
\(159\) 0 0
\(160\) 16.0354 1.26771
\(161\) −4.70285 −0.370636
\(162\) 0 0
\(163\) 13.4330 1.05216 0.526079 0.850436i \(-0.323662\pi\)
0.526079 + 0.850436i \(0.323662\pi\)
\(164\) 3.68577 0.287810
\(165\) 0 0
\(166\) 10.5496 0.818806
\(167\) 2.13729 0.165388 0.0826941 0.996575i \(-0.473648\pi\)
0.0826941 + 0.996575i \(0.473648\pi\)
\(168\) 0 0
\(169\) −0.222197 −0.0170921
\(170\) 0 0
\(171\) 0 0
\(172\) −3.81813 −0.291130
\(173\) 5.27995 0.401427 0.200713 0.979650i \(-0.435674\pi\)
0.200713 + 0.979650i \(0.435674\pi\)
\(174\) 0 0
\(175\) −10.6405 −0.804347
\(176\) 11.1851 0.843109
\(177\) 0 0
\(178\) −17.1165 −1.28294
\(179\) 7.77619 0.581220 0.290610 0.956842i \(-0.406142\pi\)
0.290610 + 0.956842i \(0.406142\pi\)
\(180\) 0 0
\(181\) 0.915833 0.0680733 0.0340367 0.999421i \(-0.489164\pi\)
0.0340367 + 0.999421i \(0.489164\pi\)
\(182\) −5.44763 −0.403805
\(183\) 0 0
\(184\) −10.6998 −0.788802
\(185\) −24.2137 −1.78023
\(186\) 0 0
\(187\) 0 0
\(188\) 5.08064 0.370544
\(189\) 0 0
\(190\) −11.6222 −0.843164
\(191\) 19.1658 1.38679 0.693393 0.720560i \(-0.256115\pi\)
0.693393 + 0.720560i \(0.256115\pi\)
\(192\) 0 0
\(193\) 4.71137 0.339132 0.169566 0.985519i \(-0.445763\pi\)
0.169566 + 0.985519i \(0.445763\pi\)
\(194\) 23.9068 1.71641
\(195\) 0 0
\(196\) −4.48794 −0.320567
\(197\) −14.8949 −1.06122 −0.530608 0.847618i \(-0.678036\pi\)
−0.530608 + 0.847618i \(0.678036\pi\)
\(198\) 0 0
\(199\) −18.7837 −1.33154 −0.665771 0.746156i \(-0.731897\pi\)
−0.665771 + 0.746156i \(0.731897\pi\)
\(200\) −24.2091 −1.71184
\(201\) 0 0
\(202\) −0.439071 −0.0308929
\(203\) 2.03268 0.142666
\(204\) 0 0
\(205\) −20.5359 −1.43429
\(206\) −5.01332 −0.349294
\(207\) 0 0
\(208\) −17.6121 −1.22118
\(209\) −3.92701 −0.271637
\(210\) 0 0
\(211\) −5.88066 −0.404841 −0.202421 0.979299i \(-0.564881\pi\)
−0.202421 + 0.979299i \(0.564881\pi\)
\(212\) 1.96732 0.135116
\(213\) 0 0
\(214\) −32.4702 −2.21962
\(215\) 21.2734 1.45083
\(216\) 0 0
\(217\) 3.81209 0.258781
\(218\) 1.18239 0.0800819
\(219\) 0 0
\(220\) 6.73749 0.454242
\(221\) 0 0
\(222\) 0 0
\(223\) −5.58387 −0.373923 −0.186962 0.982367i \(-0.559864\pi\)
−0.186962 + 0.982367i \(0.559864\pi\)
\(224\) 3.63728 0.243026
\(225\) 0 0
\(226\) 19.4757 1.29551
\(227\) 27.5299 1.82722 0.913611 0.406589i \(-0.133282\pi\)
0.913611 + 0.406589i \(0.133282\pi\)
\(228\) 0 0
\(229\) −3.57019 −0.235925 −0.117962 0.993018i \(-0.537636\pi\)
−0.117962 + 0.993018i \(0.537636\pi\)
\(230\) −34.2557 −2.25875
\(231\) 0 0
\(232\) 4.62470 0.303627
\(233\) 1.37088 0.0898095 0.0449047 0.998991i \(-0.485702\pi\)
0.0449047 + 0.998991i \(0.485702\pi\)
\(234\) 0 0
\(235\) −28.3077 −1.84659
\(236\) 5.39965 0.351487
\(237\) 0 0
\(238\) 0 0
\(239\) −21.6121 −1.39797 −0.698986 0.715135i \(-0.746365\pi\)
−0.698986 + 0.715135i \(0.746365\pi\)
\(240\) 0 0
\(241\) 1.06181 0.0683969 0.0341984 0.999415i \(-0.489112\pi\)
0.0341984 + 0.999415i \(0.489112\pi\)
\(242\) −9.65952 −0.620937
\(243\) 0 0
\(244\) 2.83925 0.181764
\(245\) 25.0054 1.59753
\(246\) 0 0
\(247\) 6.18350 0.393446
\(248\) 8.67319 0.550748
\(249\) 0 0
\(250\) −43.9125 −2.77727
\(251\) 7.29715 0.460592 0.230296 0.973121i \(-0.426031\pi\)
0.230296 + 0.973121i \(0.426031\pi\)
\(252\) 0 0
\(253\) −11.5746 −0.727689
\(254\) 4.64354 0.291361
\(255\) 0 0
\(256\) 15.4673 0.966708
\(257\) 22.5569 1.40706 0.703530 0.710666i \(-0.251606\pi\)
0.703530 + 0.710666i \(0.251606\pi\)
\(258\) 0 0
\(259\) −5.49236 −0.341278
\(260\) −10.6089 −0.657936
\(261\) 0 0
\(262\) 13.0972 0.809147
\(263\) 4.24919 0.262016 0.131008 0.991381i \(-0.458179\pi\)
0.131008 + 0.991381i \(0.458179\pi\)
\(264\) 0 0
\(265\) −10.9613 −0.673347
\(266\) −2.63624 −0.161639
\(267\) 0 0
\(268\) 8.78869 0.536855
\(269\) 11.8338 0.721520 0.360760 0.932659i \(-0.382517\pi\)
0.360760 + 0.932659i \(0.382517\pi\)
\(270\) 0 0
\(271\) −11.8045 −0.717070 −0.358535 0.933516i \(-0.616724\pi\)
−0.358535 + 0.933516i \(0.616724\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.170539 0.0103027
\(275\) −26.1883 −1.57922
\(276\) 0 0
\(277\) 10.4275 0.626530 0.313265 0.949666i \(-0.398577\pi\)
0.313265 + 0.949666i \(0.398577\pi\)
\(278\) −23.8686 −1.43154
\(279\) 0 0
\(280\) −7.87140 −0.470406
\(281\) 5.46697 0.326132 0.163066 0.986615i \(-0.447862\pi\)
0.163066 + 0.986615i \(0.447862\pi\)
\(282\) 0 0
\(283\) 17.6375 1.04844 0.524221 0.851582i \(-0.324357\pi\)
0.524221 + 0.851582i \(0.324357\pi\)
\(284\) −1.11226 −0.0660007
\(285\) 0 0
\(286\) −13.4077 −0.792812
\(287\) −4.65812 −0.274960
\(288\) 0 0
\(289\) 0 0
\(290\) 14.8061 0.869442
\(291\) 0 0
\(292\) −0.850281 −0.0497589
\(293\) 8.25845 0.482464 0.241232 0.970467i \(-0.422449\pi\)
0.241232 + 0.970467i \(0.422449\pi\)
\(294\) 0 0
\(295\) −30.0851 −1.75162
\(296\) −12.4961 −0.726321
\(297\) 0 0
\(298\) −5.94069 −0.344135
\(299\) 18.2254 1.05400
\(300\) 0 0
\(301\) 4.82541 0.278132
\(302\) 12.5375 0.721454
\(303\) 0 0
\(304\) −8.52295 −0.488825
\(305\) −15.8194 −0.905815
\(306\) 0 0
\(307\) −9.94601 −0.567649 −0.283824 0.958876i \(-0.591603\pi\)
−0.283824 + 0.958876i \(0.591603\pi\)
\(308\) 1.52825 0.0870803
\(309\) 0 0
\(310\) 27.7674 1.57708
\(311\) 16.5865 0.940536 0.470268 0.882524i \(-0.344157\pi\)
0.470268 + 0.882524i \(0.344157\pi\)
\(312\) 0 0
\(313\) 20.6116 1.16504 0.582518 0.812818i \(-0.302067\pi\)
0.582518 + 0.812818i \(0.302067\pi\)
\(314\) −31.3210 −1.76755
\(315\) 0 0
\(316\) 8.67319 0.487905
\(317\) −4.26802 −0.239716 −0.119858 0.992791i \(-0.538244\pi\)
−0.119858 + 0.992791i \(0.538244\pi\)
\(318\) 0 0
\(319\) 5.00280 0.280103
\(320\) −13.5767 −0.758963
\(321\) 0 0
\(322\) −7.77015 −0.433014
\(323\) 0 0
\(324\) 0 0
\(325\) 41.2363 2.28738
\(326\) 22.1944 1.22923
\(327\) 0 0
\(328\) −10.5981 −0.585181
\(329\) −6.42098 −0.354000
\(330\) 0 0
\(331\) −28.6105 −1.57258 −0.786288 0.617860i \(-0.788000\pi\)
−0.786288 + 0.617860i \(0.788000\pi\)
\(332\) 4.66009 0.255756
\(333\) 0 0
\(334\) 3.53127 0.193223
\(335\) −48.9678 −2.67540
\(336\) 0 0
\(337\) 31.3368 1.70703 0.853513 0.521072i \(-0.174468\pi\)
0.853513 + 0.521072i \(0.174468\pi\)
\(338\) −0.367119 −0.0199686
\(339\) 0 0
\(340\) 0 0
\(341\) 9.38228 0.508079
\(342\) 0 0
\(343\) 12.1286 0.654883
\(344\) 10.9787 0.591930
\(345\) 0 0
\(346\) 8.72365 0.468986
\(347\) −12.0359 −0.646121 −0.323060 0.946378i \(-0.604712\pi\)
−0.323060 + 0.946378i \(0.604712\pi\)
\(348\) 0 0
\(349\) 33.3512 1.78525 0.892625 0.450799i \(-0.148861\pi\)
0.892625 + 0.450799i \(0.148861\pi\)
\(350\) −17.5805 −0.939718
\(351\) 0 0
\(352\) 8.95204 0.477145
\(353\) 6.56570 0.349457 0.174729 0.984617i \(-0.444095\pi\)
0.174729 + 0.984617i \(0.444095\pi\)
\(354\) 0 0
\(355\) 6.19717 0.328912
\(356\) −7.56093 −0.400728
\(357\) 0 0
\(358\) 12.8480 0.679038
\(359\) −21.5508 −1.13741 −0.568705 0.822541i \(-0.692555\pi\)
−0.568705 + 0.822541i \(0.692555\pi\)
\(360\) 0 0
\(361\) −16.0077 −0.842508
\(362\) 1.51316 0.0795299
\(363\) 0 0
\(364\) −2.40640 −0.126129
\(365\) 4.73749 0.247972
\(366\) 0 0
\(367\) 35.5644 1.85645 0.928223 0.372025i \(-0.121336\pi\)
0.928223 + 0.372025i \(0.121336\pi\)
\(368\) −25.1208 −1.30951
\(369\) 0 0
\(370\) −40.0065 −2.07984
\(371\) −2.48633 −0.129084
\(372\) 0 0
\(373\) −35.8452 −1.85599 −0.927997 0.372588i \(-0.878471\pi\)
−0.927997 + 0.372588i \(0.878471\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −14.6089 −0.753396
\(377\) −7.87744 −0.405709
\(378\) 0 0
\(379\) −21.9206 −1.12599 −0.562994 0.826461i \(-0.690350\pi\)
−0.562994 + 0.826461i \(0.690350\pi\)
\(380\) −5.13391 −0.263364
\(381\) 0 0
\(382\) 31.6661 1.62018
\(383\) 34.3109 1.75321 0.876603 0.481215i \(-0.159804\pi\)
0.876603 + 0.481215i \(0.159804\pi\)
\(384\) 0 0
\(385\) −8.51494 −0.433961
\(386\) 7.78423 0.396207
\(387\) 0 0
\(388\) 10.5604 0.536123
\(389\) 34.1956 1.73379 0.866894 0.498493i \(-0.166113\pi\)
0.866894 + 0.498493i \(0.166113\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 12.9047 0.651783
\(393\) 0 0
\(394\) −24.6096 −1.23982
\(395\) −48.3242 −2.43146
\(396\) 0 0
\(397\) 0.230357 0.0115613 0.00578065 0.999983i \(-0.498160\pi\)
0.00578065 + 0.999983i \(0.498160\pi\)
\(398\) −31.0349 −1.55564
\(399\) 0 0
\(400\) −56.8376 −2.84188
\(401\) −0.606756 −0.0302999 −0.0151500 0.999885i \(-0.504823\pi\)
−0.0151500 + 0.999885i \(0.504823\pi\)
\(402\) 0 0
\(403\) −14.7734 −0.735915
\(404\) −0.193952 −0.00964947
\(405\) 0 0
\(406\) 3.35843 0.166676
\(407\) −13.5177 −0.670049
\(408\) 0 0
\(409\) −1.50925 −0.0746278 −0.0373139 0.999304i \(-0.511880\pi\)
−0.0373139 + 0.999304i \(0.511880\pi\)
\(410\) −33.9299 −1.67568
\(411\) 0 0
\(412\) −2.21454 −0.109103
\(413\) −6.82416 −0.335795
\(414\) 0 0
\(415\) −25.9645 −1.27455
\(416\) −14.0959 −0.691110
\(417\) 0 0
\(418\) −6.48830 −0.317353
\(419\) 12.1198 0.592090 0.296045 0.955174i \(-0.404332\pi\)
0.296045 + 0.955174i \(0.404332\pi\)
\(420\) 0 0
\(421\) −17.8730 −0.871078 −0.435539 0.900170i \(-0.643442\pi\)
−0.435539 + 0.900170i \(0.643442\pi\)
\(422\) −9.71616 −0.472975
\(423\) 0 0
\(424\) −5.65685 −0.274721
\(425\) 0 0
\(426\) 0 0
\(427\) −3.58828 −0.173649
\(428\) −14.3431 −0.693302
\(429\) 0 0
\(430\) 35.1484 1.69501
\(431\) −11.1361 −0.536408 −0.268204 0.963362i \(-0.586430\pi\)
−0.268204 + 0.963362i \(0.586430\pi\)
\(432\) 0 0
\(433\) −29.1182 −1.39933 −0.699665 0.714471i \(-0.746667\pi\)
−0.699665 + 0.714471i \(0.746667\pi\)
\(434\) 6.29842 0.302334
\(435\) 0 0
\(436\) 0.522302 0.0250137
\(437\) 8.81974 0.421905
\(438\) 0 0
\(439\) 22.5958 1.07844 0.539219 0.842165i \(-0.318719\pi\)
0.539219 + 0.842165i \(0.318719\pi\)
\(440\) −19.3730 −0.923572
\(441\) 0 0
\(442\) 0 0
\(443\) −32.1976 −1.52975 −0.764877 0.644176i \(-0.777200\pi\)
−0.764877 + 0.644176i \(0.777200\pi\)
\(444\) 0 0
\(445\) 42.1271 1.99701
\(446\) −9.22579 −0.436854
\(447\) 0 0
\(448\) −3.07959 −0.145497
\(449\) −1.12030 −0.0528702 −0.0264351 0.999651i \(-0.508416\pi\)
−0.0264351 + 0.999651i \(0.508416\pi\)
\(450\) 0 0
\(451\) −11.4645 −0.539844
\(452\) 8.60306 0.404654
\(453\) 0 0
\(454\) 45.4855 2.13474
\(455\) 13.4077 0.628561
\(456\) 0 0
\(457\) 40.0795 1.87484 0.937419 0.348203i \(-0.113208\pi\)
0.937419 + 0.348203i \(0.113208\pi\)
\(458\) −5.89875 −0.275631
\(459\) 0 0
\(460\) −15.1318 −0.705526
\(461\) −4.99595 −0.232684 −0.116342 0.993209i \(-0.537117\pi\)
−0.116342 + 0.993209i \(0.537117\pi\)
\(462\) 0 0
\(463\) 39.0452 1.81458 0.907292 0.420502i \(-0.138146\pi\)
0.907292 + 0.420502i \(0.138146\pi\)
\(464\) 10.8578 0.504060
\(465\) 0 0
\(466\) 2.26500 0.104924
\(467\) −10.5242 −0.487002 −0.243501 0.969901i \(-0.578296\pi\)
−0.243501 + 0.969901i \(0.578296\pi\)
\(468\) 0 0
\(469\) −11.1073 −0.512886
\(470\) −46.7706 −2.15737
\(471\) 0 0
\(472\) −15.5262 −0.714651
\(473\) 11.8762 0.546070
\(474\) 0 0
\(475\) 19.9553 0.915611
\(476\) 0 0
\(477\) 0 0
\(478\) −35.7081 −1.63325
\(479\) 25.9640 1.18632 0.593162 0.805083i \(-0.297879\pi\)
0.593162 + 0.805083i \(0.297879\pi\)
\(480\) 0 0
\(481\) 21.2851 0.970517
\(482\) 1.75434 0.0799079
\(483\) 0 0
\(484\) −4.26692 −0.193951
\(485\) −58.8392 −2.67175
\(486\) 0 0
\(487\) 25.5405 1.15735 0.578676 0.815557i \(-0.303570\pi\)
0.578676 + 0.815557i \(0.303570\pi\)
\(488\) −8.16399 −0.369566
\(489\) 0 0
\(490\) 41.3145 1.86640
\(491\) 2.50764 0.113168 0.0565842 0.998398i \(-0.481979\pi\)
0.0565842 + 0.998398i \(0.481979\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 10.2165 0.459663
\(495\) 0 0
\(496\) 20.3627 0.914313
\(497\) 1.40569 0.0630540
\(498\) 0 0
\(499\) 15.2270 0.681656 0.340828 0.940126i \(-0.389293\pi\)
0.340828 + 0.940126i \(0.389293\pi\)
\(500\) −19.3976 −0.867486
\(501\) 0 0
\(502\) 12.0565 0.538109
\(503\) 39.0990 1.74334 0.871670 0.490094i \(-0.163038\pi\)
0.871670 + 0.490094i \(0.163038\pi\)
\(504\) 0 0
\(505\) 1.08064 0.0480878
\(506\) −19.1238 −0.850158
\(507\) 0 0
\(508\) 2.05120 0.0910073
\(509\) 31.9138 1.41455 0.707277 0.706937i \(-0.249924\pi\)
0.707277 + 0.706937i \(0.249924\pi\)
\(510\) 0 0
\(511\) 1.07460 0.0475374
\(512\) −1.25058 −0.0552685
\(513\) 0 0
\(514\) 37.2690 1.64386
\(515\) 12.3387 0.543709
\(516\) 0 0
\(517\) −15.8033 −0.695027
\(518\) −9.07460 −0.398715
\(519\) 0 0
\(520\) 30.5049 1.33773
\(521\) 4.83056 0.211631 0.105815 0.994386i \(-0.466255\pi\)
0.105815 + 0.994386i \(0.466255\pi\)
\(522\) 0 0
\(523\) 36.5734 1.59924 0.799622 0.600503i \(-0.205033\pi\)
0.799622 + 0.600503i \(0.205033\pi\)
\(524\) 5.78546 0.252739
\(525\) 0 0
\(526\) 7.02061 0.306113
\(527\) 0 0
\(528\) 0 0
\(529\) 2.99559 0.130243
\(530\) −18.1105 −0.786670
\(531\) 0 0
\(532\) −1.16451 −0.0504881
\(533\) 18.0521 0.781924
\(534\) 0 0
\(535\) 79.9154 3.45504
\(536\) −25.2711 −1.09154
\(537\) 0 0
\(538\) 19.5521 0.842950
\(539\) 13.9597 0.601286
\(540\) 0 0
\(541\) 11.0291 0.474179 0.237090 0.971488i \(-0.423806\pi\)
0.237090 + 0.971488i \(0.423806\pi\)
\(542\) −19.5036 −0.837751
\(543\) 0 0
\(544\) 0 0
\(545\) −2.91010 −0.124655
\(546\) 0 0
\(547\) −26.8766 −1.14916 −0.574580 0.818448i \(-0.694835\pi\)
−0.574580 + 0.818448i \(0.694835\pi\)
\(548\) 0.0753327 0.00321805
\(549\) 0 0
\(550\) −43.2690 −1.84500
\(551\) −3.81209 −0.162400
\(552\) 0 0
\(553\) −10.9613 −0.466122
\(554\) 17.2286 0.731973
\(555\) 0 0
\(556\) −10.5435 −0.447146
\(557\) 34.9146 1.47938 0.739690 0.672948i \(-0.234972\pi\)
0.739690 + 0.672948i \(0.234972\pi\)
\(558\) 0 0
\(559\) −18.7004 −0.790943
\(560\) −18.4803 −0.780935
\(561\) 0 0
\(562\) 9.03266 0.381020
\(563\) 7.91334 0.333507 0.166754 0.985999i \(-0.446672\pi\)
0.166754 + 0.985999i \(0.446672\pi\)
\(564\) 0 0
\(565\) −47.9335 −2.01658
\(566\) 29.1411 1.22489
\(567\) 0 0
\(568\) 3.19821 0.134194
\(569\) 17.2956 0.725070 0.362535 0.931970i \(-0.381911\pi\)
0.362535 + 0.931970i \(0.381911\pi\)
\(570\) 0 0
\(571\) −19.3791 −0.810988 −0.405494 0.914098i \(-0.632901\pi\)
−0.405494 + 0.914098i \(0.632901\pi\)
\(572\) −5.92260 −0.247636
\(573\) 0 0
\(574\) −7.69626 −0.321236
\(575\) 58.8168 2.45283
\(576\) 0 0
\(577\) −2.89714 −0.120610 −0.0603048 0.998180i \(-0.519207\pi\)
−0.0603048 + 0.998180i \(0.519207\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 6.54032 0.271572
\(581\) −5.88949 −0.244337
\(582\) 0 0
\(583\) −6.11934 −0.253437
\(584\) 2.44490 0.101171
\(585\) 0 0
\(586\) 13.6448 0.563662
\(587\) −12.3165 −0.508357 −0.254178 0.967157i \(-0.581805\pi\)
−0.254178 + 0.967157i \(0.581805\pi\)
\(588\) 0 0
\(589\) −7.14921 −0.294578
\(590\) −49.7073 −2.04642
\(591\) 0 0
\(592\) −29.3381 −1.20579
\(593\) −43.1763 −1.77304 −0.886519 0.462693i \(-0.846883\pi\)
−0.886519 + 0.462693i \(0.846883\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.62420 −0.107491
\(597\) 0 0
\(598\) 30.1125 1.23139
\(599\) −6.70607 −0.274003 −0.137001 0.990571i \(-0.543746\pi\)
−0.137001 + 0.990571i \(0.543746\pi\)
\(600\) 0 0
\(601\) 31.8393 1.29875 0.649375 0.760468i \(-0.275030\pi\)
0.649375 + 0.760468i \(0.275030\pi\)
\(602\) 7.97265 0.324941
\(603\) 0 0
\(604\) 5.53823 0.225348
\(605\) 23.7739 0.966547
\(606\) 0 0
\(607\) 27.9168 1.13311 0.566554 0.824025i \(-0.308276\pi\)
0.566554 + 0.824025i \(0.308276\pi\)
\(608\) −6.82137 −0.276643
\(609\) 0 0
\(610\) −26.1371 −1.05826
\(611\) 24.8839 1.00669
\(612\) 0 0
\(613\) −5.84314 −0.236002 −0.118001 0.993013i \(-0.537649\pi\)
−0.118001 + 0.993013i \(0.537649\pi\)
\(614\) −16.4330 −0.663183
\(615\) 0 0
\(616\) −4.39435 −0.177053
\(617\) −37.0522 −1.49166 −0.745832 0.666134i \(-0.767948\pi\)
−0.745832 + 0.666134i \(0.767948\pi\)
\(618\) 0 0
\(619\) −16.1686 −0.649870 −0.324935 0.945736i \(-0.605342\pi\)
−0.324935 + 0.945736i \(0.605342\pi\)
\(620\) 12.2657 0.492604
\(621\) 0 0
\(622\) 27.4046 1.09883
\(623\) 9.55561 0.382837
\(624\) 0 0
\(625\) 50.3976 2.01590
\(626\) 34.0550 1.36111
\(627\) 0 0
\(628\) −13.8355 −0.552097
\(629\) 0 0
\(630\) 0 0
\(631\) −31.6670 −1.26064 −0.630322 0.776334i \(-0.717077\pi\)
−0.630322 + 0.776334i \(0.717077\pi\)
\(632\) −24.9389 −0.992018
\(633\) 0 0
\(634\) −7.05173 −0.280060
\(635\) −11.4286 −0.453531
\(636\) 0 0
\(637\) −21.9810 −0.870919
\(638\) 8.26575 0.327244
\(639\) 0 0
\(640\) −54.5026 −2.15440
\(641\) 15.9293 0.629169 0.314585 0.949229i \(-0.398135\pi\)
0.314585 + 0.949229i \(0.398135\pi\)
\(642\) 0 0
\(643\) −16.6863 −0.658043 −0.329022 0.944322i \(-0.606719\pi\)
−0.329022 + 0.944322i \(0.606719\pi\)
\(644\) −3.43233 −0.135253
\(645\) 0 0
\(646\) 0 0
\(647\) 8.35044 0.328290 0.164145 0.986436i \(-0.447514\pi\)
0.164145 + 0.986436i \(0.447514\pi\)
\(648\) 0 0
\(649\) −16.7956 −0.659283
\(650\) 68.1316 2.67234
\(651\) 0 0
\(652\) 9.80398 0.383954
\(653\) −28.6977 −1.12303 −0.561514 0.827467i \(-0.689781\pi\)
−0.561514 + 0.827467i \(0.689781\pi\)
\(654\) 0 0
\(655\) −32.2347 −1.25951
\(656\) −24.8819 −0.971475
\(657\) 0 0
\(658\) −10.6089 −0.413578
\(659\) 40.3690 1.57255 0.786276 0.617876i \(-0.212007\pi\)
0.786276 + 0.617876i \(0.212007\pi\)
\(660\) 0 0
\(661\) −39.4706 −1.53523 −0.767614 0.640913i \(-0.778556\pi\)
−0.767614 + 0.640913i \(0.778556\pi\)
\(662\) −47.2710 −1.83724
\(663\) 0 0
\(664\) −13.3997 −0.520007
\(665\) 6.48830 0.251606
\(666\) 0 0
\(667\) −11.2359 −0.435055
\(668\) 1.55988 0.0603535
\(669\) 0 0
\(670\) −80.9057 −3.12566
\(671\) −8.83145 −0.340934
\(672\) 0 0
\(673\) −21.6056 −0.832834 −0.416417 0.909174i \(-0.636714\pi\)
−0.416417 + 0.909174i \(0.636714\pi\)
\(674\) 51.7754 1.99431
\(675\) 0 0
\(676\) −0.162168 −0.00623724
\(677\) −2.51083 −0.0964990 −0.0482495 0.998835i \(-0.515364\pi\)
−0.0482495 + 0.998835i \(0.515364\pi\)
\(678\) 0 0
\(679\) −13.3464 −0.512187
\(680\) 0 0
\(681\) 0 0
\(682\) 15.5016 0.593588
\(683\) −18.7423 −0.717156 −0.358578 0.933500i \(-0.616738\pi\)
−0.358578 + 0.933500i \(0.616738\pi\)
\(684\) 0 0
\(685\) −0.419730 −0.0160370
\(686\) 20.0392 0.765098
\(687\) 0 0
\(688\) 25.7755 0.982681
\(689\) 9.63554 0.367085
\(690\) 0 0
\(691\) −38.5702 −1.46728 −0.733640 0.679538i \(-0.762180\pi\)
−0.733640 + 0.679538i \(0.762180\pi\)
\(692\) 3.85352 0.146489
\(693\) 0 0
\(694\) −19.8860 −0.754862
\(695\) 58.7452 2.22833
\(696\) 0 0
\(697\) 0 0
\(698\) 55.1037 2.08570
\(699\) 0 0
\(700\) −7.76588 −0.293523
\(701\) 28.7827 1.08711 0.543553 0.839375i \(-0.317079\pi\)
0.543553 + 0.839375i \(0.317079\pi\)
\(702\) 0 0
\(703\) 10.3004 0.388487
\(704\) −7.57945 −0.285661
\(705\) 0 0
\(706\) 10.8480 0.408270
\(707\) 0.245119 0.00921866
\(708\) 0 0
\(709\) −5.14588 −0.193258 −0.0966288 0.995320i \(-0.530806\pi\)
−0.0966288 + 0.995320i \(0.530806\pi\)
\(710\) 10.2391 0.384267
\(711\) 0 0
\(712\) 21.7407 0.814768
\(713\) −21.0718 −0.789146
\(714\) 0 0
\(715\) 32.9988 1.23409
\(716\) 5.67538 0.212099
\(717\) 0 0
\(718\) −35.6068 −1.32883
\(719\) 31.5022 1.17483 0.587417 0.809285i \(-0.300145\pi\)
0.587417 + 0.809285i \(0.300145\pi\)
\(720\) 0 0
\(721\) 2.79877 0.104232
\(722\) −26.4482 −0.984300
\(723\) 0 0
\(724\) 0.668412 0.0248413
\(725\) −25.4219 −0.944147
\(726\) 0 0
\(727\) 31.2775 1.16002 0.580010 0.814610i \(-0.303049\pi\)
0.580010 + 0.814610i \(0.303049\pi\)
\(728\) 6.91936 0.256449
\(729\) 0 0
\(730\) 7.82739 0.289705
\(731\) 0 0
\(732\) 0 0
\(733\) 18.8153 0.694960 0.347480 0.937687i \(-0.387037\pi\)
0.347480 + 0.937687i \(0.387037\pi\)
\(734\) 58.7603 2.16888
\(735\) 0 0
\(736\) −20.1055 −0.741099
\(737\) −27.3371 −1.00698
\(738\) 0 0
\(739\) 6.94762 0.255572 0.127786 0.991802i \(-0.459213\pi\)
0.127786 + 0.991802i \(0.459213\pi\)
\(740\) −17.6722 −0.649641
\(741\) 0 0
\(742\) −4.10797 −0.150808
\(743\) 33.9563 1.24574 0.622868 0.782327i \(-0.285967\pi\)
0.622868 + 0.782327i \(0.285967\pi\)
\(744\) 0 0
\(745\) 14.6212 0.535678
\(746\) −59.2243 −2.16835
\(747\) 0 0
\(748\) 0 0
\(749\) 18.1271 0.662349
\(750\) 0 0
\(751\) −6.91509 −0.252335 −0.126168 0.992009i \(-0.540268\pi\)
−0.126168 + 0.992009i \(0.540268\pi\)
\(752\) −34.2984 −1.25073
\(753\) 0 0
\(754\) −13.0153 −0.473989
\(755\) −30.8573 −1.12301
\(756\) 0 0
\(757\) 1.86166 0.0676633 0.0338316 0.999428i \(-0.489229\pi\)
0.0338316 + 0.999428i \(0.489229\pi\)
\(758\) −36.2178 −1.31549
\(759\) 0 0
\(760\) 14.7621 0.535476
\(761\) −49.2335 −1.78471 −0.892357 0.451330i \(-0.850950\pi\)
−0.892357 + 0.451330i \(0.850950\pi\)
\(762\) 0 0
\(763\) −0.660093 −0.0238970
\(764\) 13.9880 0.506066
\(765\) 0 0
\(766\) 56.6893 2.04827
\(767\) 26.4464 0.954923
\(768\) 0 0
\(769\) 50.9303 1.83659 0.918296 0.395895i \(-0.129565\pi\)
0.918296 + 0.395895i \(0.129565\pi\)
\(770\) −14.0686 −0.506996
\(771\) 0 0
\(772\) 3.43855 0.123756
\(773\) −2.91614 −0.104886 −0.0524431 0.998624i \(-0.516701\pi\)
−0.0524431 + 0.998624i \(0.516701\pi\)
\(774\) 0 0
\(775\) −47.6764 −1.71259
\(776\) −30.3654 −1.09006
\(777\) 0 0
\(778\) 56.4988 2.02558
\(779\) 8.73586 0.312995
\(780\) 0 0
\(781\) 3.45968 0.123797
\(782\) 0 0
\(783\) 0 0
\(784\) 30.2972 1.08204
\(785\) 77.0870 2.75135
\(786\) 0 0
\(787\) −50.8932 −1.81415 −0.907073 0.420974i \(-0.861688\pi\)
−0.907073 + 0.420974i \(0.861688\pi\)
\(788\) −10.8709 −0.387259
\(789\) 0 0
\(790\) −79.8424 −2.84067
\(791\) −10.8727 −0.386588
\(792\) 0 0
\(793\) 13.9060 0.493818
\(794\) 0.380602 0.0135070
\(795\) 0 0
\(796\) −13.7091 −0.485906
\(797\) 13.6061 0.481952 0.240976 0.970531i \(-0.422532\pi\)
0.240976 + 0.970531i \(0.422532\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −45.4901 −1.60832
\(801\) 0 0
\(802\) −1.00250 −0.0353993
\(803\) 2.64479 0.0933326
\(804\) 0 0
\(805\) 19.1238 0.674026
\(806\) −24.4089 −0.859768
\(807\) 0 0
\(808\) 0.557691 0.0196195
\(809\) −17.3937 −0.611529 −0.305765 0.952107i \(-0.598912\pi\)
−0.305765 + 0.952107i \(0.598912\pi\)
\(810\) 0 0
\(811\) −32.9286 −1.15628 −0.578140 0.815937i \(-0.696221\pi\)
−0.578140 + 0.815937i \(0.696221\pi\)
\(812\) 1.48353 0.0520617
\(813\) 0 0
\(814\) −22.3343 −0.782817
\(815\) −54.6246 −1.91342
\(816\) 0 0
\(817\) −9.04959 −0.316605
\(818\) −2.49362 −0.0871875
\(819\) 0 0
\(820\) −14.9879 −0.523401
\(821\) −43.7368 −1.52643 −0.763213 0.646147i \(-0.776379\pi\)
−0.763213 + 0.646147i \(0.776379\pi\)
\(822\) 0 0
\(823\) 1.67402 0.0583528 0.0291764 0.999574i \(-0.490712\pi\)
0.0291764 + 0.999574i \(0.490712\pi\)
\(824\) 6.36771 0.221830
\(825\) 0 0
\(826\) −11.2750 −0.392308
\(827\) 2.27016 0.0789412 0.0394706 0.999221i \(-0.487433\pi\)
0.0394706 + 0.999221i \(0.487433\pi\)
\(828\) 0 0
\(829\) 19.2597 0.668918 0.334459 0.942410i \(-0.391446\pi\)
0.334459 + 0.942410i \(0.391446\pi\)
\(830\) −42.8992 −1.48905
\(831\) 0 0
\(832\) 11.9346 0.413760
\(833\) 0 0
\(834\) 0 0
\(835\) −8.69114 −0.300769
\(836\) −2.86609 −0.0991259
\(837\) 0 0
\(838\) 20.0246 0.691737
\(839\) −14.8059 −0.511157 −0.255579 0.966788i \(-0.582266\pi\)
−0.255579 + 0.966788i \(0.582266\pi\)
\(840\) 0 0
\(841\) −24.1436 −0.832538
\(842\) −29.5302 −1.01768
\(843\) 0 0
\(844\) −4.29194 −0.147735
\(845\) 0.903549 0.0310830
\(846\) 0 0
\(847\) 5.39259 0.185292
\(848\) −13.2810 −0.456073
\(849\) 0 0
\(850\) 0 0
\(851\) 30.3597 1.04072
\(852\) 0 0
\(853\) 6.35771 0.217684 0.108842 0.994059i \(-0.465286\pi\)
0.108842 + 0.994059i \(0.465286\pi\)
\(854\) −5.92864 −0.202874
\(855\) 0 0
\(856\) 41.2423 1.40963
\(857\) 40.8311 1.39477 0.697383 0.716699i \(-0.254348\pi\)
0.697383 + 0.716699i \(0.254348\pi\)
\(858\) 0 0
\(859\) 22.1464 0.755626 0.377813 0.925882i \(-0.376676\pi\)
0.377813 + 0.925882i \(0.376676\pi\)
\(860\) 15.5262 0.529439
\(861\) 0 0
\(862\) −18.3993 −0.626684
\(863\) −17.3423 −0.590339 −0.295170 0.955445i \(-0.595376\pi\)
−0.295170 + 0.955445i \(0.595376\pi\)
\(864\) 0 0
\(865\) −21.4706 −0.730021
\(866\) −48.1097 −1.63483
\(867\) 0 0
\(868\) 2.78222 0.0944346
\(869\) −26.9779 −0.915161
\(870\) 0 0
\(871\) 43.0452 1.45853
\(872\) −1.50183 −0.0508584
\(873\) 0 0
\(874\) 14.5722 0.492911
\(875\) 24.5149 0.828756
\(876\) 0 0
\(877\) 30.2306 1.02081 0.510407 0.859933i \(-0.329495\pi\)
0.510407 + 0.859933i \(0.329495\pi\)
\(878\) 37.3333 1.25994
\(879\) 0 0
\(880\) −45.4835 −1.53325
\(881\) −10.5647 −0.355933 −0.177966 0.984037i \(-0.556952\pi\)
−0.177966 + 0.984037i \(0.556952\pi\)
\(882\) 0 0
\(883\) 13.9150 0.468276 0.234138 0.972203i \(-0.424773\pi\)
0.234138 + 0.972203i \(0.424773\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −53.1976 −1.78721
\(887\) −35.9644 −1.20757 −0.603783 0.797149i \(-0.706341\pi\)
−0.603783 + 0.797149i \(0.706341\pi\)
\(888\) 0 0
\(889\) −2.59234 −0.0869442
\(890\) 69.6033 2.33311
\(891\) 0 0
\(892\) −4.07533 −0.136452
\(893\) 12.0419 0.402968
\(894\) 0 0
\(895\) −31.6214 −1.05699
\(896\) −12.3627 −0.413010
\(897\) 0 0
\(898\) −1.85098 −0.0617681
\(899\) 9.10771 0.303759
\(900\) 0 0
\(901\) 0 0
\(902\) −18.9420 −0.630698
\(903\) 0 0
\(904\) −24.7373 −0.822750
\(905\) −3.72418 −0.123796
\(906\) 0 0
\(907\) −39.1843 −1.30109 −0.650547 0.759466i \(-0.725460\pi\)
−0.650547 + 0.759466i \(0.725460\pi\)
\(908\) 20.0924 0.666790
\(909\) 0 0
\(910\) 22.1524 0.734347
\(911\) −9.92806 −0.328931 −0.164466 0.986383i \(-0.552590\pi\)
−0.164466 + 0.986383i \(0.552590\pi\)
\(912\) 0 0
\(913\) −14.4952 −0.479720
\(914\) 66.2202 2.19037
\(915\) 0 0
\(916\) −2.60567 −0.0860938
\(917\) −7.31174 −0.241455
\(918\) 0 0
\(919\) 42.8795 1.41446 0.707232 0.706982i \(-0.249944\pi\)
0.707232 + 0.706982i \(0.249944\pi\)
\(920\) 43.5102 1.43449
\(921\) 0 0
\(922\) −8.25442 −0.271845
\(923\) −5.44763 −0.179311
\(924\) 0 0
\(925\) 68.6909 2.25854
\(926\) 64.5113 2.11997
\(927\) 0 0
\(928\) 8.69006 0.285265
\(929\) 18.1624 0.595888 0.297944 0.954583i \(-0.403699\pi\)
0.297944 + 0.954583i \(0.403699\pi\)
\(930\) 0 0
\(931\) −10.6372 −0.348619
\(932\) 1.00053 0.0327733
\(933\) 0 0
\(934\) −17.3883 −0.568963
\(935\) 0 0
\(936\) 0 0
\(937\) 1.60243 0.0523492 0.0261746 0.999657i \(-0.491667\pi\)
0.0261746 + 0.999657i \(0.491667\pi\)
\(938\) −18.3517 −0.599204
\(939\) 0 0
\(940\) −20.6601 −0.673858
\(941\) −32.3544 −1.05472 −0.527362 0.849641i \(-0.676819\pi\)
−0.527362 + 0.849641i \(0.676819\pi\)
\(942\) 0 0
\(943\) 25.7484 0.838482
\(944\) −36.4520 −1.18641
\(945\) 0 0
\(946\) 19.6222 0.637973
\(947\) −25.1819 −0.818301 −0.409151 0.912467i \(-0.634175\pi\)
−0.409151 + 0.912467i \(0.634175\pi\)
\(948\) 0 0
\(949\) −4.16450 −0.135185
\(950\) 32.9706 1.06971
\(951\) 0 0
\(952\) 0 0
\(953\) −54.0658 −1.75136 −0.875681 0.482889i \(-0.839587\pi\)
−0.875681 + 0.482889i \(0.839587\pi\)
\(954\) 0 0
\(955\) −77.9364 −2.52196
\(956\) −15.7734 −0.510148
\(957\) 0 0
\(958\) 42.8983 1.38598
\(959\) −0.0952065 −0.00307438
\(960\) 0 0
\(961\) −13.9194 −0.449012
\(962\) 35.1677 1.13385
\(963\) 0 0
\(964\) 0.774948 0.0249594
\(965\) −19.1585 −0.616733
\(966\) 0 0
\(967\) −2.17495 −0.0699418 −0.0349709 0.999388i \(-0.511134\pi\)
−0.0349709 + 0.999388i \(0.511134\pi\)
\(968\) 12.2691 0.394345
\(969\) 0 0
\(970\) −97.2154 −3.12140
\(971\) −47.4481 −1.52268 −0.761340 0.648352i \(-0.775458\pi\)
−0.761340 + 0.648352i \(0.775458\pi\)
\(972\) 0 0
\(973\) 13.3251 0.427182
\(974\) 42.1987 1.35213
\(975\) 0 0
\(976\) −19.1672 −0.613528
\(977\) 20.8226 0.666175 0.333087 0.942896i \(-0.391910\pi\)
0.333087 + 0.942896i \(0.391910\pi\)
\(978\) 0 0
\(979\) 23.5182 0.751644
\(980\) 18.2499 0.582973
\(981\) 0 0
\(982\) 4.14319 0.132214
\(983\) −2.43039 −0.0775173 −0.0387586 0.999249i \(-0.512340\pi\)
−0.0387586 + 0.999249i \(0.512340\pi\)
\(984\) 0 0
\(985\) 60.5690 1.92989
\(986\) 0 0
\(987\) 0 0
\(988\) 4.51297 0.143577
\(989\) −26.6731 −0.848154
\(990\) 0 0
\(991\) 36.5777 1.16193 0.580964 0.813929i \(-0.302676\pi\)
0.580964 + 0.813929i \(0.302676\pi\)
\(992\) 16.2974 0.517442
\(993\) 0 0
\(994\) 2.32252 0.0736658
\(995\) 76.3827 2.42150
\(996\) 0 0
\(997\) 20.7109 0.655920 0.327960 0.944692i \(-0.393639\pi\)
0.327960 + 0.944692i \(0.393639\pi\)
\(998\) 25.1585 0.796378
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2601.2.a.be.1.3 4
3.2 odd 2 867.2.a.l.1.2 4
17.2 even 8 153.2.f.b.55.3 8
17.9 even 8 153.2.f.b.64.2 8
17.16 even 2 2601.2.a.bf.1.3 4
51.2 odd 8 51.2.e.a.4.2 8
51.5 even 16 867.2.h.i.688.3 16
51.8 odd 8 867.2.e.g.829.3 8
51.11 even 16 867.2.h.k.733.1 16
51.14 even 16 867.2.h.k.757.1 16
51.20 even 16 867.2.h.k.757.2 16
51.23 even 16 867.2.h.k.733.2 16
51.26 odd 8 51.2.e.a.13.3 yes 8
51.29 even 16 867.2.h.i.688.4 16
51.32 odd 8 867.2.e.g.616.2 8
51.38 odd 4 867.2.d.f.577.5 8
51.41 even 16 867.2.h.i.712.3 16
51.44 even 16 867.2.h.i.712.4 16
51.47 odd 4 867.2.d.f.577.6 8
51.50 odd 2 867.2.a.k.1.2 4
68.19 odd 8 2448.2.be.x.1585.4 8
68.43 odd 8 2448.2.be.x.1441.4 8
204.155 even 8 816.2.bd.e.769.1 8
204.179 even 8 816.2.bd.e.625.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.2 8 51.2 odd 8
51.2.e.a.13.3 yes 8 51.26 odd 8
153.2.f.b.55.3 8 17.2 even 8
153.2.f.b.64.2 8 17.9 even 8
816.2.bd.e.625.1 8 204.179 even 8
816.2.bd.e.769.1 8 204.155 even 8
867.2.a.k.1.2 4 51.50 odd 2
867.2.a.l.1.2 4 3.2 odd 2
867.2.d.f.577.5 8 51.38 odd 4
867.2.d.f.577.6 8 51.47 odd 4
867.2.e.g.616.2 8 51.32 odd 8
867.2.e.g.829.3 8 51.8 odd 8
867.2.h.i.688.3 16 51.5 even 16
867.2.h.i.688.4 16 51.29 even 16
867.2.h.i.712.3 16 51.41 even 16
867.2.h.i.712.4 16 51.44 even 16
867.2.h.k.733.1 16 51.11 even 16
867.2.h.k.733.2 16 51.23 even 16
867.2.h.k.757.1 16 51.14 even 16
867.2.h.k.757.2 16 51.20 even 16
2448.2.be.x.1441.4 8 68.43 odd 8
2448.2.be.x.1585.4 8 68.19 odd 8
2601.2.a.be.1.3 4 1.1 even 1 trivial
2601.2.a.bf.1.3 4 17.16 even 2