Properties

Label 1512.2.cx.a.17.5
Level $1512$
Weight $2$
Character 1512.17
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.5
Character \(\chi\) \(=\) 1512.17
Dual form 1512.2.cx.a.89.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.59337 q^{5} +(-2.61256 + 0.417759i) q^{7} +3.54299i q^{11} +(2.74094 + 1.58248i) q^{13} +(0.487640 - 0.844616i) q^{17} +(2.11191 - 1.21931i) q^{19} -3.37675i q^{23} +1.72555 q^{25} +(-0.267645 + 0.154525i) q^{29} +(-4.35965 + 2.51705i) q^{31} +(6.77533 - 1.08340i) q^{35} +(-3.47324 - 6.01583i) q^{37} +(6.08175 - 10.5339i) q^{41} +(-5.47630 - 9.48523i) q^{43} +(1.43344 - 2.48279i) q^{47} +(6.65096 - 2.18284i) q^{49} +(-7.81416 - 4.51151i) q^{53} -9.18828i q^{55} +(0.219727 + 0.380579i) q^{59} +(3.41242 + 1.97016i) q^{61} +(-7.10826 - 4.10396i) q^{65} +(-1.82561 - 3.16204i) q^{67} -5.25055i q^{71} +(-14.0773 - 8.12752i) q^{73} +(-1.48012 - 9.25629i) q^{77} +(-3.49659 + 6.05628i) q^{79} +(7.23851 + 12.5375i) q^{83} +(-1.26463 + 2.19040i) q^{85} +(-2.31101 - 4.00279i) q^{89} +(-7.82197 - 2.98928i) q^{91} +(-5.47697 + 3.16213i) q^{95} +(12.4805 - 7.20560i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.59337 −1.15979 −0.579894 0.814692i \(-0.696906\pi\)
−0.579894 + 0.814692i \(0.696906\pi\)
\(6\) 0 0
\(7\) −2.61256 + 0.417759i −0.987455 + 0.157898i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.54299i 1.06825i 0.845405 + 0.534126i \(0.179359\pi\)
−0.845405 + 0.534126i \(0.820641\pi\)
\(12\) 0 0
\(13\) 2.74094 + 1.58248i 0.760200 + 0.438902i 0.829367 0.558703i \(-0.188701\pi\)
−0.0691677 + 0.997605i \(0.522034\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.487640 0.844616i 0.118270 0.204850i −0.800812 0.598916i \(-0.795599\pi\)
0.919082 + 0.394066i \(0.128932\pi\)
\(18\) 0 0
\(19\) 2.11191 1.21931i 0.484506 0.279730i −0.237786 0.971318i \(-0.576422\pi\)
0.722293 + 0.691588i \(0.243088\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.37675i 0.704102i −0.935981 0.352051i \(-0.885484\pi\)
0.935981 0.352051i \(-0.114516\pi\)
\(24\) 0 0
\(25\) 1.72555 0.345110
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.267645 + 0.154525i −0.0497004 + 0.0286946i −0.524644 0.851322i \(-0.675802\pi\)
0.474944 + 0.880016i \(0.342468\pi\)
\(30\) 0 0
\(31\) −4.35965 + 2.51705i −0.783017 + 0.452075i −0.837498 0.546440i \(-0.815983\pi\)
0.0544814 + 0.998515i \(0.482649\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.77533 1.08340i 1.14524 0.183128i
\(36\) 0 0
\(37\) −3.47324 6.01583i −0.570997 0.988996i −0.996464 0.0840218i \(-0.973223\pi\)
0.425467 0.904974i \(-0.360110\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.08175 10.5339i 0.949810 1.64512i 0.203988 0.978973i \(-0.434610\pi\)
0.745822 0.666146i \(-0.232057\pi\)
\(42\) 0 0
\(43\) −5.47630 9.48523i −0.835128 1.44648i −0.893926 0.448214i \(-0.852060\pi\)
0.0587983 0.998270i \(-0.481273\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.43344 2.48279i 0.209089 0.362152i −0.742339 0.670024i \(-0.766284\pi\)
0.951428 + 0.307872i \(0.0996170\pi\)
\(48\) 0 0
\(49\) 6.65096 2.18284i 0.950136 0.311834i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.81416 4.51151i −1.07336 0.619703i −0.144261 0.989540i \(-0.546080\pi\)
−0.929097 + 0.369836i \(0.879414\pi\)
\(54\) 0 0
\(55\) 9.18828i 1.23895i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.219727 + 0.380579i 0.0286061 + 0.0495471i 0.879974 0.475022i \(-0.157560\pi\)
−0.851368 + 0.524569i \(0.824227\pi\)
\(60\) 0 0
\(61\) 3.41242 + 1.97016i 0.436916 + 0.252254i 0.702289 0.711892i \(-0.252162\pi\)
−0.265373 + 0.964146i \(0.585495\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.10826 4.10396i −0.881671 0.509033i
\(66\) 0 0
\(67\) −1.82561 3.16204i −0.223033 0.386305i 0.732694 0.680558i \(-0.238263\pi\)
−0.955728 + 0.294253i \(0.904929\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.25055i 0.623126i −0.950226 0.311563i \(-0.899148\pi\)
0.950226 0.311563i \(-0.100852\pi\)
\(72\) 0 0
\(73\) −14.0773 8.12752i −1.64762 0.951254i −0.978014 0.208539i \(-0.933129\pi\)
−0.669607 0.742716i \(-0.733537\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.48012 9.25629i −0.168675 1.05485i
\(78\) 0 0
\(79\) −3.49659 + 6.05628i −0.393397 + 0.681384i −0.992895 0.118992i \(-0.962034\pi\)
0.599498 + 0.800376i \(0.295367\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.23851 + 12.5375i 0.794529 + 1.37616i 0.923138 + 0.384469i \(0.125616\pi\)
−0.128609 + 0.991695i \(0.541051\pi\)
\(84\) 0 0
\(85\) −1.26463 + 2.19040i −0.137168 + 0.237582i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.31101 4.00279i −0.244967 0.424295i 0.717156 0.696913i \(-0.245444\pi\)
−0.962122 + 0.272619i \(0.912110\pi\)
\(90\) 0 0
\(91\) −7.82197 2.98928i −0.819965 0.313362i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.47697 + 3.16213i −0.561925 + 0.324428i
\(96\) 0 0
\(97\) 12.4805 7.20560i 1.26720 0.731617i 0.292742 0.956192i \(-0.405432\pi\)
0.974457 + 0.224574i \(0.0720991\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.62921 0.858638 0.429319 0.903153i \(-0.358754\pi\)
0.429319 + 0.903153i \(0.358754\pi\)
\(102\) 0 0
\(103\) 6.09732i 0.600787i 0.953815 + 0.300394i \(0.0971180\pi\)
−0.953815 + 0.300394i \(0.902882\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.8841 8.01599i 1.34223 0.774935i 0.355093 0.934831i \(-0.384449\pi\)
0.987134 + 0.159896i \(0.0511160\pi\)
\(108\) 0 0
\(109\) 2.78659 4.82652i 0.266907 0.462297i −0.701154 0.713010i \(-0.747332\pi\)
0.968062 + 0.250713i \(0.0806649\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.2144 + 8.20669i 1.33718 + 0.772021i 0.986388 0.164433i \(-0.0525794\pi\)
0.350791 + 0.936454i \(0.385913\pi\)
\(114\) 0 0
\(115\) 8.75716i 0.816609i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.921142 + 2.41033i −0.0844410 + 0.220954i
\(120\) 0 0
\(121\) −1.55280 −0.141163
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.49185 0.759534
\(126\) 0 0
\(127\) −18.0255 −1.59951 −0.799754 0.600328i \(-0.795037\pi\)
−0.799754 + 0.600328i \(0.795037\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.4393 −0.912090 −0.456045 0.889957i \(-0.650734\pi\)
−0.456045 + 0.889957i \(0.650734\pi\)
\(132\) 0 0
\(133\) −5.00813 + 4.06780i −0.434260 + 0.352723i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.84991i 0.328920i −0.986384 0.164460i \(-0.947412\pi\)
0.986384 0.164460i \(-0.0525882\pi\)
\(138\) 0 0
\(139\) 18.7634 + 10.8330i 1.59149 + 0.918847i 0.993052 + 0.117677i \(0.0375447\pi\)
0.598437 + 0.801170i \(0.295789\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.60672 + 9.71113i −0.468858 + 0.812085i
\(144\) 0 0
\(145\) 0.694102 0.400740i 0.0576420 0.0332796i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.50289i 0.778507i −0.921131 0.389254i \(-0.872733\pi\)
0.921131 0.389254i \(-0.127267\pi\)
\(150\) 0 0
\(151\) −21.3380 −1.73646 −0.868232 0.496159i \(-0.834743\pi\)
−0.868232 + 0.496159i \(0.834743\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11.3062 6.52763i 0.908134 0.524312i
\(156\) 0 0
\(157\) 2.10532 1.21551i 0.168023 0.0970082i −0.413630 0.910445i \(-0.635739\pi\)
0.581653 + 0.813437i \(0.302406\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.41067 + 8.82197i 0.111176 + 0.695269i
\(162\) 0 0
\(163\) 8.31072 + 14.3946i 0.650946 + 1.12747i 0.982894 + 0.184174i \(0.0589609\pi\)
−0.331948 + 0.943298i \(0.607706\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.6037 + 18.3661i −0.820535 + 1.42121i 0.0847489 + 0.996402i \(0.472991\pi\)
−0.905284 + 0.424806i \(0.860342\pi\)
\(168\) 0 0
\(169\) −1.49150 2.58336i −0.114731 0.198720i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.09062 8.81722i 0.387033 0.670361i −0.605016 0.796213i \(-0.706833\pi\)
0.992049 + 0.125853i \(0.0401667\pi\)
\(174\) 0 0
\(175\) −4.50810 + 0.720863i −0.340781 + 0.0544922i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.589482 + 0.340338i 0.0440600 + 0.0254380i 0.521868 0.853026i \(-0.325235\pi\)
−0.477808 + 0.878464i \(0.658569\pi\)
\(180\) 0 0
\(181\) 19.1298i 1.42191i −0.703239 0.710954i \(-0.748263\pi\)
0.703239 0.710954i \(-0.251737\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.00738 + 15.6012i 0.662236 + 1.14703i
\(186\) 0 0
\(187\) 2.99247 + 1.72770i 0.218831 + 0.126342i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.3174 10.5756i −1.32540 0.765221i −0.340817 0.940130i \(-0.610704\pi\)
−0.984585 + 0.174909i \(0.944037\pi\)
\(192\) 0 0
\(193\) −6.41421 11.1097i −0.461705 0.799697i 0.537341 0.843365i \(-0.319429\pi\)
−0.999046 + 0.0436683i \(0.986096\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.2854i 1.58777i −0.608069 0.793884i \(-0.708056\pi\)
0.608069 0.793884i \(-0.291944\pi\)
\(198\) 0 0
\(199\) 6.65637 + 3.84306i 0.471858 + 0.272427i 0.717017 0.697056i \(-0.245507\pi\)
−0.245159 + 0.969483i \(0.578840\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.634685 0.515517i 0.0445461 0.0361822i
\(204\) 0 0
\(205\) −15.7722 + 27.3183i −1.10158 + 1.90799i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.32002 + 7.48250i 0.298822 + 0.517575i
\(210\) 0 0
\(211\) 8.33679 14.4397i 0.573928 0.994073i −0.422229 0.906489i \(-0.638752\pi\)
0.996157 0.0875838i \(-0.0279146\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14.2021 + 24.5987i 0.968572 + 1.67762i
\(216\) 0 0
\(217\) 10.3383 8.39722i 0.701813 0.570041i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.67318 1.54336i 0.179818 0.103818i
\(222\) 0 0
\(223\) −4.45390 + 2.57146i −0.298255 + 0.172198i −0.641659 0.766990i \(-0.721753\pi\)
0.343404 + 0.939188i \(0.388420\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.9854 −0.795500 −0.397750 0.917494i \(-0.630209\pi\)
−0.397750 + 0.917494i \(0.630209\pi\)
\(228\) 0 0
\(229\) 2.60911i 0.172415i 0.996277 + 0.0862074i \(0.0274748\pi\)
−0.996277 + 0.0862074i \(0.972525\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.13306 + 1.80887i −0.205253 + 0.118503i −0.599103 0.800672i \(-0.704476\pi\)
0.393850 + 0.919175i \(0.371143\pi\)
\(234\) 0 0
\(235\) −3.71743 + 6.43878i −0.242499 + 0.420020i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.8069 7.39409i −0.828412 0.478284i 0.0248967 0.999690i \(-0.492074\pi\)
−0.853309 + 0.521406i \(0.825408\pi\)
\(240\) 0 0
\(241\) 6.44196i 0.414963i −0.978239 0.207481i \(-0.933473\pi\)
0.978239 0.207481i \(-0.0665267\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −17.2484 + 5.66091i −1.10196 + 0.361662i
\(246\) 0 0
\(247\) 7.71817 0.491095
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.21012 −0.391979 −0.195990 0.980606i \(-0.562792\pi\)
−0.195990 + 0.980606i \(0.562792\pi\)
\(252\) 0 0
\(253\) 11.9638 0.752158
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21.1767 −1.32096 −0.660482 0.750842i \(-0.729648\pi\)
−0.660482 + 0.750842i \(0.729648\pi\)
\(258\) 0 0
\(259\) 11.5872 + 14.2657i 0.719995 + 0.886430i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.1579i 1.05800i −0.848621 0.529002i \(-0.822566\pi\)
0.848621 0.529002i \(-0.177434\pi\)
\(264\) 0 0
\(265\) 20.2650 + 11.7000i 1.24487 + 0.718725i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.8061 + 18.7166i −0.658857 + 1.14117i 0.322055 + 0.946721i \(0.395627\pi\)
−0.980912 + 0.194453i \(0.937707\pi\)
\(270\) 0 0
\(271\) 21.8475 12.6137i 1.32714 0.766227i 0.342287 0.939595i \(-0.388798\pi\)
0.984857 + 0.173368i \(0.0554652\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.11361i 0.368665i
\(276\) 0 0
\(277\) 22.4512 1.34896 0.674482 0.738291i \(-0.264367\pi\)
0.674482 + 0.738291i \(0.264367\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.3691 + 5.98662i −0.618571 + 0.357132i −0.776312 0.630349i \(-0.782912\pi\)
0.157742 + 0.987480i \(0.449579\pi\)
\(282\) 0 0
\(283\) 18.8187 10.8650i 1.11865 0.645855i 0.177596 0.984103i \(-0.443168\pi\)
0.941057 + 0.338249i \(0.109835\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.4883 + 30.0612i −0.678134 + 1.77445i
\(288\) 0 0
\(289\) 8.02442 + 13.8987i 0.472024 + 0.817570i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.38110 9.32035i 0.314367 0.544500i −0.664935 0.746901i \(-0.731541\pi\)
0.979303 + 0.202400i \(0.0648743\pi\)
\(294\) 0 0
\(295\) −0.569833 0.986980i −0.0331770 0.0574642i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.34365 9.25547i 0.309031 0.535258i
\(300\) 0 0
\(301\) 18.2697 + 22.4930i 1.05305 + 1.29647i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.84966 5.10935i −0.506730 0.292561i
\(306\) 0 0
\(307\) 4.22117i 0.240915i −0.992719 0.120457i \(-0.961564\pi\)
0.992719 0.120457i \(-0.0384361\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.09266 + 3.62459i 0.118664 + 0.205532i 0.919238 0.393702i \(-0.128806\pi\)
−0.800575 + 0.599233i \(0.795472\pi\)
\(312\) 0 0
\(313\) −19.0867 11.0197i −1.07885 0.622872i −0.148261 0.988948i \(-0.547368\pi\)
−0.930585 + 0.366076i \(0.880701\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.41440 4.85806i −0.472600 0.272856i 0.244727 0.969592i \(-0.421302\pi\)
−0.717327 + 0.696736i \(0.754635\pi\)
\(318\) 0 0
\(319\) −0.547481 0.948264i −0.0306530 0.0530926i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.37834i 0.132335i
\(324\) 0 0
\(325\) 4.72963 + 2.73065i 0.262353 + 0.151469i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.70774 + 7.08527i −0.149283 + 0.390624i
\(330\) 0 0
\(331\) −13.8588 + 24.0042i −0.761749 + 1.31939i 0.180200 + 0.983630i \(0.442326\pi\)
−0.941948 + 0.335758i \(0.891008\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.73447 + 8.20034i 0.258672 + 0.448032i
\(336\) 0 0
\(337\) 6.29141 10.8970i 0.342715 0.593600i −0.642221 0.766520i \(-0.721987\pi\)
0.984936 + 0.172920i \(0.0553201\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8.91788 15.4462i −0.482930 0.836460i
\(342\) 0 0
\(343\) −16.4641 + 8.48130i −0.888979 + 0.457947i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.4819 8.36115i 0.777431 0.448850i −0.0580881 0.998311i \(-0.518500\pi\)
0.835519 + 0.549462i \(0.185167\pi\)
\(348\) 0 0
\(349\) −13.9900 + 8.07714i −0.748869 + 0.432359i −0.825285 0.564717i \(-0.808985\pi\)
0.0764164 + 0.997076i \(0.475652\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.6566 −0.833318 −0.416659 0.909063i \(-0.636799\pi\)
−0.416659 + 0.909063i \(0.636799\pi\)
\(354\) 0 0
\(355\) 13.6166i 0.722694i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −19.1396 + 11.0502i −1.01015 + 0.583209i −0.911235 0.411887i \(-0.864870\pi\)
−0.0989127 + 0.995096i \(0.531536\pi\)
\(360\) 0 0
\(361\) −6.52655 + 11.3043i −0.343502 + 0.594964i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 36.5075 + 21.0776i 1.91089 + 1.10325i
\(366\) 0 0
\(367\) 13.1513i 0.686492i −0.939246 0.343246i \(-0.888474\pi\)
0.939246 0.343246i \(-0.111526\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 22.2997 + 8.52216i 1.15774 + 0.442448i
\(372\) 0 0
\(373\) −4.43829 −0.229806 −0.114903 0.993377i \(-0.536656\pi\)
−0.114903 + 0.993377i \(0.536656\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.978132 −0.0503763
\(378\) 0 0
\(379\) 14.8875 0.764718 0.382359 0.924014i \(-0.375112\pi\)
0.382359 + 0.924014i \(0.375112\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.63802 −0.288089 −0.144045 0.989571i \(-0.546011\pi\)
−0.144045 + 0.989571i \(0.546011\pi\)
\(384\) 0 0
\(385\) 3.83848 + 24.0049i 0.195627 + 1.22341i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 38.5120i 1.95263i 0.216346 + 0.976317i \(0.430586\pi\)
−0.216346 + 0.976317i \(0.569414\pi\)
\(390\) 0 0
\(391\) −2.85206 1.64664i −0.144235 0.0832741i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.06795 15.7061i 0.456258 0.790262i
\(396\) 0 0
\(397\) 2.50780 1.44788i 0.125863 0.0726669i −0.435747 0.900069i \(-0.643516\pi\)
0.561609 + 0.827402i \(0.310182\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.7333i 1.28506i 0.766261 + 0.642530i \(0.222115\pi\)
−0.766261 + 0.642530i \(0.777885\pi\)
\(402\) 0 0
\(403\) −15.9327 −0.793666
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21.3140 12.3057i 1.05650 0.609969i
\(408\) 0 0
\(409\) −24.9914 + 14.4288i −1.23574 + 0.713457i −0.968221 0.250095i \(-0.919538\pi\)
−0.267522 + 0.963552i \(0.586205\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.733041 0.902492i −0.0360706 0.0444088i
\(414\) 0 0
\(415\) −18.7721 32.5142i −0.921486 1.59606i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.07870 + 10.5286i −0.296964 + 0.514357i −0.975440 0.220266i \(-0.929308\pi\)
0.678476 + 0.734623i \(0.262641\pi\)
\(420\) 0 0
\(421\) −13.9914 24.2338i −0.681898 1.18108i −0.974401 0.224817i \(-0.927821\pi\)
0.292503 0.956265i \(-0.405512\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.841446 1.45743i 0.0408161 0.0706956i
\(426\) 0 0
\(427\) −9.73822 3.72160i −0.471265 0.180101i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.9975 8.08147i −0.674236 0.389271i 0.123444 0.992352i \(-0.460606\pi\)
−0.797680 + 0.603081i \(0.793940\pi\)
\(432\) 0 0
\(433\) 5.27197i 0.253355i 0.991944 + 0.126677i \(0.0404313\pi\)
−0.991944 + 0.126677i \(0.959569\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.11732 7.13141i −0.196958 0.341142i
\(438\) 0 0
\(439\) 9.10263 + 5.25541i 0.434445 + 0.250827i 0.701238 0.712927i \(-0.252631\pi\)
−0.266794 + 0.963754i \(0.585964\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.15805 2.97800i −0.245066 0.141489i 0.372437 0.928058i \(-0.378522\pi\)
−0.617503 + 0.786568i \(0.711856\pi\)
\(444\) 0 0
\(445\) 5.99330 + 10.3807i 0.284109 + 0.492092i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.85897i 0.0877304i −0.999037 0.0438652i \(-0.986033\pi\)
0.999037 0.0438652i \(-0.0139672\pi\)
\(450\) 0 0
\(451\) 37.3215 + 21.5476i 1.75740 + 1.01464i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20.2852 + 7.75230i 0.950986 + 0.363433i
\(456\) 0 0
\(457\) −14.8747 + 25.7637i −0.695808 + 1.20517i 0.274100 + 0.961701i \(0.411620\pi\)
−0.969908 + 0.243473i \(0.921713\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.9738 + 25.9353i 0.697398 + 1.20793i 0.969366 + 0.245622i \(0.0789921\pi\)
−0.271968 + 0.962306i \(0.587675\pi\)
\(462\) 0 0
\(463\) 7.57406 13.1187i 0.351997 0.609676i −0.634603 0.772839i \(-0.718836\pi\)
0.986599 + 0.163163i \(0.0521695\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.85158 10.1352i −0.270779 0.469002i 0.698283 0.715822i \(-0.253948\pi\)
−0.969061 + 0.246820i \(0.920614\pi\)
\(468\) 0 0
\(469\) 6.09048 + 7.49837i 0.281232 + 0.346243i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 33.6061 19.4025i 1.54521 0.892127i
\(474\) 0 0
\(475\) 3.64421 2.10399i 0.167208 0.0965375i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.1418 −0.554771 −0.277385 0.960759i \(-0.589468\pi\)
−0.277385 + 0.960759i \(0.589468\pi\)
\(480\) 0 0
\(481\) 21.9854i 1.00245i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −32.3664 + 18.6868i −1.46968 + 0.848522i
\(486\) 0 0
\(487\) −5.22070 + 9.04251i −0.236572 + 0.409755i −0.959728 0.280929i \(-0.909357\pi\)
0.723156 + 0.690685i \(0.242691\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20.9972 12.1227i −0.947589 0.547091i −0.0552576 0.998472i \(-0.517598\pi\)
−0.892331 + 0.451382i \(0.850931\pi\)
\(492\) 0 0
\(493\) 0.301410i 0.0135748i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.19346 + 13.7174i 0.0983903 + 0.615309i
\(498\) 0 0
\(499\) −0.348239 −0.0155893 −0.00779466 0.999970i \(-0.502481\pi\)
−0.00779466 + 0.999970i \(0.502481\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 32.3099 1.44063 0.720314 0.693648i \(-0.243998\pi\)
0.720314 + 0.693648i \(0.243998\pi\)
\(504\) 0 0
\(505\) −22.3787 −0.995839
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.7046 0.607448 0.303724 0.952760i \(-0.401770\pi\)
0.303724 + 0.952760i \(0.401770\pi\)
\(510\) 0 0
\(511\) 40.1731 + 15.3527i 1.77715 + 0.679165i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.8126i 0.696786i
\(516\) 0 0
\(517\) 8.79650 + 5.07866i 0.386870 + 0.223359i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.73516 15.1297i 0.382694 0.662846i −0.608752 0.793361i \(-0.708330\pi\)
0.991446 + 0.130514i \(0.0416629\pi\)
\(522\) 0 0
\(523\) −23.3238 + 13.4660i −1.01988 + 0.588827i −0.914069 0.405559i \(-0.867077\pi\)
−0.105810 + 0.994386i \(0.533743\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.90965i 0.213868i
\(528\) 0 0
\(529\) 11.5975 0.504241
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 33.3394 19.2485i 1.44409 0.833746i
\(534\) 0 0
\(535\) −36.0066 + 20.7884i −1.55670 + 0.898761i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7.73379 + 23.5643i 0.333118 + 1.01499i
\(540\) 0 0
\(541\) −7.43375 12.8756i −0.319602 0.553567i 0.660803 0.750559i \(-0.270216\pi\)
−0.980405 + 0.196993i \(0.936882\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.22666 + 12.5169i −0.309556 + 0.536167i
\(546\) 0 0
\(547\) −4.17953 7.23915i −0.178704 0.309524i 0.762733 0.646713i \(-0.223857\pi\)
−0.941437 + 0.337190i \(0.890524\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.376829 + 0.652687i −0.0160534 + 0.0278054i
\(552\) 0 0
\(553\) 6.60500 17.2831i 0.280873 0.734953i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.617917 + 0.356754i 0.0261820 + 0.0151162i 0.513034 0.858368i \(-0.328522\pi\)
−0.486852 + 0.873485i \(0.661855\pi\)
\(558\) 0 0
\(559\) 34.6646i 1.46616i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13.5939 23.5452i −0.572912 0.992314i −0.996265 0.0863485i \(-0.972480\pi\)
0.423352 0.905965i \(-0.360853\pi\)
\(564\) 0 0
\(565\) −36.8632 21.2830i −1.55085 0.895381i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.51833 0.876606i −0.0636515 0.0367492i 0.467836 0.883815i \(-0.345034\pi\)
−0.531488 + 0.847066i \(0.678367\pi\)
\(570\) 0 0
\(571\) −0.228817 0.396323i −0.00957570 0.0165856i 0.861198 0.508270i \(-0.169715\pi\)
−0.870774 + 0.491684i \(0.836381\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.82675i 0.242992i
\(576\) 0 0
\(577\) 19.8800 + 11.4777i 0.827617 + 0.477825i 0.853036 0.521852i \(-0.174759\pi\)
−0.0254193 + 0.999677i \(0.508092\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −24.1487 29.7309i −1.00186 1.23345i
\(582\) 0 0
\(583\) 15.9842 27.6855i 0.662000 1.14662i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.81513 4.87594i −0.116193 0.201252i 0.802063 0.597239i \(-0.203736\pi\)
−0.918256 + 0.395987i \(0.870402\pi\)
\(588\) 0 0
\(589\) −6.13814 + 10.6316i −0.252918 + 0.438066i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.35121 2.34037i −0.0554876 0.0961074i 0.836947 0.547283i \(-0.184338\pi\)
−0.892435 + 0.451176i \(0.851005\pi\)
\(594\) 0 0
\(595\) 2.38886 6.25086i 0.0979337 0.256260i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.3894 + 5.99831i −0.424498 + 0.245084i −0.697000 0.717071i \(-0.745482\pi\)
0.272502 + 0.962155i \(0.412149\pi\)
\(600\) 0 0
\(601\) 26.7530 15.4459i 1.09128 0.630050i 0.157363 0.987541i \(-0.449701\pi\)
0.933917 + 0.357491i \(0.116368\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.02697 0.163720
\(606\) 0 0
\(607\) 6.87463i 0.279033i −0.990220 0.139516i \(-0.955445\pi\)
0.990220 0.139516i \(-0.0445548\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.85794 4.53678i 0.317898 0.183539i
\(612\) 0 0
\(613\) −16.6455 + 28.8308i −0.672304 + 1.16447i 0.304945 + 0.952370i \(0.401362\pi\)
−0.977249 + 0.212095i \(0.931971\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0757 10.4360i −0.727702 0.420139i 0.0898790 0.995953i \(-0.471352\pi\)
−0.817581 + 0.575814i \(0.804685\pi\)
\(618\) 0 0
\(619\) 19.3846i 0.779133i −0.920998 0.389567i \(-0.872625\pi\)
0.920998 0.389567i \(-0.127375\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.70985 + 9.49208i 0.308889 + 0.380292i
\(624\) 0 0
\(625\) −30.6502 −1.22601
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.77476 −0.270127
\(630\) 0 0
\(631\) −27.3629 −1.08930 −0.544649 0.838664i \(-0.683337\pi\)
−0.544649 + 0.838664i \(0.683337\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 46.7468 1.85509
\(636\) 0 0
\(637\) 21.6842 + 4.54198i 0.859158 + 0.179960i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.7202i 1.37137i −0.727900 0.685683i \(-0.759504\pi\)
0.727900 0.685683i \(-0.240496\pi\)
\(642\) 0 0
\(643\) 3.52980 + 2.03793i 0.139202 + 0.0803681i 0.567983 0.823040i \(-0.307724\pi\)
−0.428782 + 0.903408i \(0.641057\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.53976 11.3272i 0.257105 0.445318i −0.708360 0.705851i \(-0.750565\pi\)
0.965465 + 0.260533i \(0.0838982\pi\)
\(648\) 0 0
\(649\) −1.34839 + 0.778492i −0.0529288 + 0.0305585i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.24179i 0.244260i 0.992514 + 0.122130i \(0.0389725\pi\)
−0.992514 + 0.122130i \(0.961027\pi\)
\(654\) 0 0
\(655\) 27.0730 1.05783
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.79139 + 1.03426i −0.0697827 + 0.0402891i −0.534485 0.845178i \(-0.679495\pi\)
0.464703 + 0.885467i \(0.346161\pi\)
\(660\) 0 0
\(661\) 13.5306 7.81190i 0.526280 0.303848i −0.213220 0.977004i \(-0.568395\pi\)
0.739500 + 0.673156i \(0.235062\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.9879 10.5493i 0.503649 0.409085i
\(666\) 0 0
\(667\) 0.521792 + 0.903771i 0.0202039 + 0.0349941i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.98027 + 12.0902i −0.269470 + 0.466736i
\(672\) 0 0
\(673\) −15.1108 26.1727i −0.582478 1.00888i −0.995185 0.0980180i \(-0.968750\pi\)
0.412706 0.910864i \(-0.364584\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.3438 + 24.8442i −0.551278 + 0.954841i 0.446905 + 0.894581i \(0.352526\pi\)
−0.998183 + 0.0602595i \(0.980807\pi\)
\(678\) 0 0
\(679\) −29.5958 + 24.0389i −1.13578 + 0.922528i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.48345 4.32057i −0.286346 0.165322i 0.349947 0.936770i \(-0.386200\pi\)
−0.636293 + 0.771448i \(0.719533\pi\)
\(684\) 0 0
\(685\) 9.98423i 0.381478i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.2788 24.7315i −0.543978 0.942197i
\(690\) 0 0
\(691\) 10.5993 + 6.11951i 0.403216 + 0.232797i 0.687871 0.725833i \(-0.258546\pi\)
−0.284655 + 0.958630i \(0.591879\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −48.6603 28.0940i −1.84579 1.06567i
\(696\) 0 0
\(697\) −5.93140 10.2735i −0.224668 0.389136i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.05683i 0.115455i −0.998332 0.0577274i \(-0.981615\pi\)
0.998332 0.0577274i \(-0.0183854\pi\)
\(702\) 0 0
\(703\) −14.6704 8.46994i −0.553303 0.319450i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22.5443 + 3.60493i −0.847867 + 0.135577i
\(708\) 0 0
\(709\) 6.04101 10.4633i 0.226875 0.392959i −0.730005 0.683441i \(-0.760482\pi\)
0.956880 + 0.290482i \(0.0938158\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.49945 + 14.7215i 0.318307 + 0.551324i
\(714\) 0 0
\(715\) 14.5403 25.1845i 0.543776 0.941847i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.27436 + 10.8675i 0.233994 + 0.405290i 0.958980 0.283474i \(-0.0914871\pi\)
−0.724986 + 0.688764i \(0.758154\pi\)
\(720\) 0 0
\(721\) −2.54721 15.9296i −0.0948630 0.593250i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.461835 + 0.266640i −0.0171521 + 0.00990278i
\(726\) 0 0
\(727\) 16.2736 9.39555i 0.603553 0.348462i −0.166885 0.985976i \(-0.553371\pi\)
0.770438 + 0.637515i \(0.220038\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.6818 −0.395082
\(732\) 0 0
\(733\) 35.4064i 1.30776i −0.756596 0.653882i \(-0.773139\pi\)
0.756596 0.653882i \(-0.226861\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.2031 6.46811i 0.412671 0.238256i
\(738\) 0 0
\(739\) 11.1371 19.2900i 0.409684 0.709593i −0.585170 0.810910i \(-0.698972\pi\)
0.994854 + 0.101317i \(0.0323057\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.68932 + 5.01678i 0.318780 + 0.184048i 0.650849 0.759207i \(-0.274413\pi\)
−0.332069 + 0.943255i \(0.607747\pi\)
\(744\) 0 0
\(745\) 24.6445i 0.902904i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −32.9243 + 26.7425i −1.20303 + 0.977148i
\(750\) 0 0
\(751\) 33.5541 1.22441 0.612203 0.790700i \(-0.290283\pi\)
0.612203 + 0.790700i \(0.290283\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 55.3373 2.01393
\(756\) 0 0
\(757\) 0.0340541 0.00123772 0.000618859 1.00000i \(-0.499803\pi\)
0.000618859 1.00000i \(0.499803\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.9691 −0.832631 −0.416315 0.909220i \(-0.636679\pi\)
−0.416315 + 0.909220i \(0.636679\pi\)
\(762\) 0 0
\(763\) −5.26383 + 13.7737i −0.190563 + 0.498642i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.39086i 0.0502210i
\(768\) 0 0
\(769\) 14.3775 + 8.30086i 0.518466 + 0.299337i 0.736307 0.676648i \(-0.236568\pi\)
−0.217841 + 0.975984i \(0.569901\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.803138 1.39107i 0.0288868 0.0500335i −0.851221 0.524808i \(-0.824137\pi\)
0.880107 + 0.474775i \(0.157470\pi\)
\(774\) 0 0
\(775\) −7.52280 + 4.34329i −0.270227 + 0.156016i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 29.6623i 1.06276i
\(780\) 0 0
\(781\) 18.6027 0.665656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5.45988 + 3.15226i −0.194871 + 0.112509i
\(786\) 0 0
\(787\) −13.7768 + 7.95401i −0.491088 + 0.283530i −0.725026 0.688722i \(-0.758172\pi\)
0.233938 + 0.972252i \(0.424839\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −40.5644 15.5023i −1.44231 0.551198i
\(792\) 0 0
\(793\) 6.23549 + 10.8002i 0.221429 + 0.383526i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.1844 17.6399i 0.360749 0.624836i −0.627335 0.778749i \(-0.715854\pi\)
0.988084 + 0.153914i \(0.0491878\pi\)
\(798\) 0 0
\(799\) −1.39800 2.42141i −0.0494578 0.0856634i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 28.7957 49.8757i 1.01618 1.76008i
\(804\) 0 0
\(805\) −3.65838 22.8786i −0.128941 0.806365i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 35.7396 + 20.6343i 1.25654 + 0.725462i 0.972400 0.233322i \(-0.0749595\pi\)
0.284137 + 0.958784i \(0.408293\pi\)
\(810\) 0 0
\(811\) 19.3660i 0.680032i −0.940420 0.340016i \(-0.889568\pi\)
0.940420 0.340016i \(-0.110432\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −21.5527 37.3305i −0.754960 1.30763i
\(816\) 0 0
\(817\) −23.1309 13.3547i −0.809249 0.467220i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.1405 + 16.2469i 0.982111 + 0.567022i 0.902907 0.429836i \(-0.141429\pi\)
0.0792043 + 0.996858i \(0.474762\pi\)
\(822\) 0 0
\(823\) −27.8957 48.3167i −0.972381 1.68421i −0.688319 0.725408i \(-0.741651\pi\)
−0.284063 0.958806i \(-0.591682\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.2989i 0.636314i −0.948038 0.318157i \(-0.896936\pi\)
0.948038 0.318157i \(-0.103064\pi\)
\(828\) 0 0
\(829\) 12.6483 + 7.30247i 0.439292 + 0.253625i 0.703297 0.710896i \(-0.251710\pi\)
−0.264005 + 0.964521i \(0.585044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.39961 6.68195i 0.0484935 0.231516i
\(834\) 0 0
\(835\) 27.4992 47.6299i 0.951648 1.64830i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −15.7379 27.2588i −0.543332 0.941079i −0.998710 0.0507803i \(-0.983829\pi\)
0.455378 0.890298i \(-0.349504\pi\)
\(840\) 0 0
\(841\) −14.4522 + 25.0320i −0.498353 + 0.863173i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.86801 + 6.69959i 0.133064 + 0.230473i
\(846\) 0 0
\(847\) 4.05677 0.648694i 0.139392 0.0222894i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.3140 + 11.7283i −0.696354 + 0.402040i
\(852\) 0 0
\(853\) −21.2554 + 12.2718i −0.727771 + 0.420179i −0.817606 0.575778i \(-0.804699\pi\)
0.0898353 + 0.995957i \(0.471366\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.7302 0.400697 0.200348 0.979725i \(-0.435793\pi\)
0.200348 + 0.979725i \(0.435793\pi\)
\(858\) 0 0
\(859\) 34.1123i 1.16390i 0.813226 + 0.581948i \(0.197709\pi\)
−0.813226 + 0.581948i \(0.802291\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 20.8863 12.0587i 0.710978 0.410483i −0.100445 0.994943i \(-0.532027\pi\)
0.811423 + 0.584459i \(0.198693\pi\)
\(864\) 0 0
\(865\) −13.2018 + 22.8663i −0.448876 + 0.777477i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −21.4573 12.3884i −0.727890 0.420248i
\(870\) 0 0
\(871\) 11.5560i 0.391559i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −22.1855 + 3.54754i −0.750006 + 0.119929i
\(876\) 0 0
\(877\) −51.7506 −1.74749 −0.873747 0.486381i \(-0.838317\pi\)
−0.873747 + 0.486381i \(0.838317\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.3925 1.02395 0.511975 0.859000i \(-0.328914\pi\)
0.511975 + 0.859000i \(0.328914\pi\)
\(882\) 0 0
\(883\) 35.4897 1.19432 0.597162 0.802121i \(-0.296295\pi\)
0.597162 + 0.802121i \(0.296295\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 46.5511 1.56303 0.781517 0.623884i \(-0.214446\pi\)
0.781517 + 0.623884i \(0.214446\pi\)
\(888\) 0 0
\(889\) 47.0928 7.53033i 1.57944 0.252559i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.99125i 0.233953i
\(894\) 0 0
\(895\) −1.52874 0.882620i −0.0511003 0.0295027i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.777893 1.34735i 0.0259442 0.0449366i
\(900\) 0 0
\(901\) −7.62099 + 4.39998i −0.253892 + 0.146585i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 49.6106i 1.64911i
\(906\) 0 0
\(907\) −14.6331 −0.485883 −0.242941 0.970041i \(-0.578112\pi\)
−0.242941 + 0.970041i \(0.578112\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.67661 3.85474i 0.221206 0.127713i −0.385303 0.922790i \(-0.625903\pi\)
0.606508 + 0.795077i \(0.292570\pi\)
\(912\) 0 0
\(913\) −44.4201 + 25.6460i −1.47009 + 0.848758i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 27.2734 4.36113i 0.900648 0.144017i
\(918\) 0 0
\(919\) 13.4738 + 23.3373i 0.444460 + 0.769827i 0.998014 0.0629860i \(-0.0200623\pi\)
−0.553555 + 0.832813i \(0.686729\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.30890 14.3914i 0.273491 0.473700i
\(924\) 0 0
\(925\) −5.99325 10.3806i −0.197057 0.341312i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.8137 + 23.9261i −0.453213 + 0.784989i −0.998584 0.0532068i \(-0.983056\pi\)
0.545370 + 0.838195i \(0.316389\pi\)
\(930\) 0 0
\(931\) 11.3847 12.7196i 0.373118 0.416867i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7.76057 4.48057i −0.253798 0.146530i
\(936\) 0 0
\(937\) 7.60743i 0.248524i 0.992249 + 0.124262i \(0.0396563\pi\)
−0.992249 + 0.124262i \(0.960344\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.6498 + 35.7665i 0.673165 + 1.16596i 0.977002 + 0.213231i \(0.0683988\pi\)
−0.303837 + 0.952724i \(0.598268\pi\)
\(942\) 0 0
\(943\) −35.5704 20.5366i −1.15833 0.668763i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.0318 + 20.8030i 1.17088 + 0.676005i 0.953886 0.300169i \(-0.0970430\pi\)
0.216989 + 0.976174i \(0.430376\pi\)
\(948\) 0 0
\(949\) −25.7233 44.5541i −0.835014 1.44629i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 47.2656i 1.53108i −0.643386 0.765542i \(-0.722471\pi\)
0.643386 0.765542i \(-0.277529\pi\)
\(954\) 0 0
\(955\) 47.5038 + 27.4263i 1.53719 + 0.887494i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.60833 + 10.0581i 0.0519358 + 0.324794i
\(960\) 0 0
\(961\) −2.82894 + 4.89987i −0.0912562 + 0.158060i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.6344 + 28.8116i 0.535480 + 0.927479i
\(966\) 0 0
\(967\) −2.60192 + 4.50665i −0.0836720 + 0.144924i −0.904825 0.425785i \(-0.859998\pi\)
0.821153 + 0.570709i \(0.193331\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8.67233 15.0209i −0.278308 0.482044i 0.692656 0.721268i \(-0.256440\pi\)
−0.970964 + 0.239224i \(0.923107\pi\)
\(972\) 0 0
\(973\) −53.5461 20.4634i −1.71661 0.656027i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −23.3541 + 13.4835i −0.747165 + 0.431376i −0.824668 0.565616i \(-0.808638\pi\)
0.0775039 + 0.996992i \(0.475305\pi\)
\(978\) 0 0
\(979\) 14.1818 8.18789i 0.453254 0.261686i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.1129 0.545817 0.272909 0.962040i \(-0.412014\pi\)
0.272909 + 0.962040i \(0.412014\pi\)
\(984\) 0 0
\(985\) 57.7942i 1.84148i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.0293 + 18.4921i −1.01847 + 0.588015i
\(990\) 0 0
\(991\) −5.84386 + 10.1219i −0.185636 + 0.321531i −0.943791 0.330544i \(-0.892768\pi\)
0.758155 + 0.652075i \(0.226101\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17.2624 9.96646i −0.547255 0.315958i
\(996\) 0 0
\(997\) 28.9017i 0.915325i −0.889126 0.457663i \(-0.848687\pi\)
0.889126 0.457663i \(-0.151313\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.17.5 48
3.2 odd 2 504.2.cx.a.185.24 yes 48
4.3 odd 2 3024.2.df.e.17.5 48
7.5 odd 6 1512.2.bs.a.1097.5 48
9.2 odd 6 1512.2.bs.a.521.5 48
9.7 even 3 504.2.bs.a.353.16 yes 48
12.11 even 2 1008.2.df.e.689.1 48
21.5 even 6 504.2.bs.a.257.16 48
28.19 even 6 3024.2.ca.e.2609.5 48
36.7 odd 6 1008.2.ca.e.353.9 48
36.11 even 6 3024.2.ca.e.2033.5 48
63.47 even 6 inner 1512.2.cx.a.89.5 48
63.61 odd 6 504.2.cx.a.425.24 yes 48
84.47 odd 6 1008.2.ca.e.257.9 48
252.47 odd 6 3024.2.df.e.1601.5 48
252.187 even 6 1008.2.df.e.929.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.16 48 21.5 even 6
504.2.bs.a.353.16 yes 48 9.7 even 3
504.2.cx.a.185.24 yes 48 3.2 odd 2
504.2.cx.a.425.24 yes 48 63.61 odd 6
1008.2.ca.e.257.9 48 84.47 odd 6
1008.2.ca.e.353.9 48 36.7 odd 6
1008.2.df.e.689.1 48 12.11 even 2
1008.2.df.e.929.1 48 252.187 even 6
1512.2.bs.a.521.5 48 9.2 odd 6
1512.2.bs.a.1097.5 48 7.5 odd 6
1512.2.cx.a.17.5 48 1.1 even 1 trivial
1512.2.cx.a.89.5 48 63.47 even 6 inner
3024.2.ca.e.2033.5 48 36.11 even 6
3024.2.ca.e.2609.5 48 28.19 even 6
3024.2.df.e.17.5 48 4.3 odd 2
3024.2.df.e.1601.5 48 252.47 odd 6