Properties

Label 1512.2
Level 1512
Weight 2
Dimension 26176
Nonzero newspaces 48
Sturm bound 248832
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(248832\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1512))\).

Total New Old
Modular forms 64368 26816 37552
Cusp forms 60049 26176 33873
Eisenstein series 4319 640 3679

Trace form

\( 26176 q - 32 q^{2} - 48 q^{3} - 56 q^{4} + 4 q^{5} - 48 q^{6} - 70 q^{7} - 92 q^{8} - 96 q^{9} - 72 q^{10} - 56 q^{11} - 48 q^{12} - 20 q^{13} - 46 q^{14} - 144 q^{15} - 64 q^{16} - 116 q^{17} - 48 q^{18}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1512))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1512.2.a \(\chi_{1512}(1, \cdot)\) 1512.2.a.a 1 1
1512.2.a.b 1
1512.2.a.c 1
1512.2.a.d 1
1512.2.a.e 1
1512.2.a.f 1
1512.2.a.g 1
1512.2.a.h 1
1512.2.a.i 1
1512.2.a.j 1
1512.2.a.k 1
1512.2.a.l 1
1512.2.a.m 2
1512.2.a.n 2
1512.2.a.o 2
1512.2.a.p 2
1512.2.a.q 2
1512.2.a.r 2
1512.2.b \(\chi_{1512}(55, \cdot)\) None 0 1
1512.2.c \(\chi_{1512}(757, \cdot)\) 1512.2.c.a 2 1
1512.2.c.b 2
1512.2.c.c 8
1512.2.c.d 16
1512.2.c.e 20
1512.2.c.f 24
1512.2.c.g 24
1512.2.h \(\chi_{1512}(1079, \cdot)\) None 0 1
1512.2.i \(\chi_{1512}(1133, \cdot)\) n/a 128 1
1512.2.j \(\chi_{1512}(323, \cdot)\) 1512.2.j.a 8 1
1512.2.j.b 8
1512.2.j.c 32
1512.2.j.d 48
1512.2.k \(\chi_{1512}(377, \cdot)\) 1512.2.k.a 16 1
1512.2.k.b 16
1512.2.p \(\chi_{1512}(811, \cdot)\) n/a 128 1
1512.2.q \(\chi_{1512}(793, \cdot)\) 1512.2.q.a 2 2
1512.2.q.b 2
1512.2.q.c 22
1512.2.q.d 22
1512.2.r \(\chi_{1512}(505, \cdot)\) 1512.2.r.a 2 2
1512.2.r.b 2
1512.2.r.c 6
1512.2.r.d 8
1512.2.r.e 8
1512.2.r.f 10
1512.2.s \(\chi_{1512}(865, \cdot)\) 1512.2.s.a 2 2
1512.2.s.b 2
1512.2.s.c 2
1512.2.s.d 2
1512.2.s.e 2
1512.2.s.f 2
1512.2.s.g 2
1512.2.s.h 2
1512.2.s.i 2
1512.2.s.j 2
1512.2.s.k 6
1512.2.s.l 6
1512.2.s.m 8
1512.2.s.n 8
1512.2.s.o 8
1512.2.s.p 8
1512.2.t \(\chi_{1512}(289, \cdot)\) 1512.2.t.a 2 2
1512.2.t.b 2
1512.2.t.c 22
1512.2.t.d 22
1512.2.w \(\chi_{1512}(1045, \cdot)\) n/a 184 2
1512.2.x \(\chi_{1512}(199, \cdot)\) None 0 2
1512.2.y \(\chi_{1512}(773, \cdot)\) n/a 184 2
1512.2.z \(\chi_{1512}(359, \cdot)\) None 0 2
1512.2.be \(\chi_{1512}(307, \cdot)\) n/a 184 2
1512.2.bf \(\chi_{1512}(451, \cdot)\) n/a 184 2
1512.2.bk \(\chi_{1512}(1027, \cdot)\) n/a 256 2
1512.2.bl \(\chi_{1512}(593, \cdot)\) 1512.2.bl.a 16 2
1512.2.bl.b 16
1512.2.bl.c 16
1512.2.bl.d 16
1512.2.bm \(\chi_{1512}(107, \cdot)\) n/a 256 2
1512.2.br \(\chi_{1512}(827, \cdot)\) n/a 144 2
1512.2.bs \(\chi_{1512}(521, \cdot)\) 1512.2.bs.a 48 2
1512.2.bt \(\chi_{1512}(611, \cdot)\) n/a 184 2
1512.2.bu \(\chi_{1512}(881, \cdot)\) 1512.2.bu.a 48 2
1512.2.bz \(\chi_{1512}(71, \cdot)\) None 0 2
1512.2.ca \(\chi_{1512}(341, \cdot)\) n/a 184 2
1512.2.cb \(\chi_{1512}(1367, \cdot)\) None 0 2
1512.2.cc \(\chi_{1512}(125, \cdot)\) n/a 184 2
1512.2.ch \(\chi_{1512}(269, \cdot)\) n/a 256 2
1512.2.ci \(\chi_{1512}(431, \cdot)\) None 0 2
1512.2.cj \(\chi_{1512}(109, \cdot)\) n/a 256 2
1512.2.ck \(\chi_{1512}(271, \cdot)\) None 0 2
1512.2.cp \(\chi_{1512}(559, \cdot)\) None 0 2
1512.2.cq \(\chi_{1512}(37, \cdot)\) n/a 184 2
1512.2.cr \(\chi_{1512}(1207, \cdot)\) None 0 2
1512.2.cs \(\chi_{1512}(253, \cdot)\) n/a 144 2
1512.2.cx \(\chi_{1512}(17, \cdot)\) 1512.2.cx.a 48 2
1512.2.cy \(\chi_{1512}(179, \cdot)\) n/a 184 2
1512.2.cz \(\chi_{1512}(19, \cdot)\) n/a 184 2
1512.2.dc \(\chi_{1512}(169, \cdot)\) n/a 324 6
1512.2.dd \(\chi_{1512}(193, \cdot)\) n/a 432 6
1512.2.de \(\chi_{1512}(25, \cdot)\) n/a 432 6
1512.2.dg \(\chi_{1512}(23, \cdot)\) None 0 6
1512.2.di \(\chi_{1512}(115, \cdot)\) n/a 1704 6
1512.2.dj \(\chi_{1512}(103, \cdot)\) None 0 6
1512.2.dl \(\chi_{1512}(11, \cdot)\) n/a 1704 6
1512.2.dn \(\chi_{1512}(173, \cdot)\) n/a 1704 6
1512.2.dr \(\chi_{1512}(293, \cdot)\) n/a 1704 6
1512.2.du \(\chi_{1512}(205, \cdot)\) n/a 1704 6
1512.2.dv \(\chi_{1512}(41, \cdot)\) n/a 432 6
1512.2.dx \(\chi_{1512}(85, \cdot)\) n/a 1296 6
1512.2.ea \(\chi_{1512}(185, \cdot)\) n/a 432 6
1512.2.eb \(\chi_{1512}(347, \cdot)\) n/a 1704 6
1512.2.ee \(\chi_{1512}(223, \cdot)\) None 0 6
1512.2.eg \(\chi_{1512}(155, \cdot)\) n/a 1296 6
1512.2.eh \(\chi_{1512}(31, \cdot)\) None 0 6
1512.2.ek \(\chi_{1512}(187, \cdot)\) n/a 1704 6
1512.2.el \(\chi_{1512}(239, \cdot)\) None 0 6
1512.2.en \(\chi_{1512}(139, \cdot)\) n/a 1704 6
1512.2.eq \(\chi_{1512}(95, \cdot)\) None 0 6
1512.2.es \(\chi_{1512}(257, \cdot)\) n/a 432 6
1512.2.eu \(\chi_{1512}(277, \cdot)\) n/a 1704 6
1512.2.ew \(\chi_{1512}(5, \cdot)\) n/a 1704 6

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1512))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1512)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(216))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(378))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(504))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(756))\)\(^{\oplus 2}\)