Properties

Label 1512.2.cx
Level 1512
Weight 2
Character orbit cx
Rep. character \(\chi_{1512}(17,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 48
Newform subspaces 1
Sturm bound 576
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1512.cx (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(576\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1512, [\chi])\).

Total New Old
Modular forms 624 48 576
Cusp forms 528 48 480
Eisenstein series 96 0 96

Trace form

\( 48q + O(q^{10}) \) \( 48q + 48q^{25} - 18q^{29} + 18q^{31} + 6q^{41} - 6q^{43} - 18q^{47} - 12q^{49} + 12q^{53} + 18q^{61} + 36q^{65} + 12q^{77} + 6q^{79} + 18q^{89} + 6q^{91} + 54q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1512.2.cx.a \(48\) \(12.073\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(1512, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1512, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database