Properties

Label 3024.2.df.e.1601.5
Level $3024$
Weight $2$
Character 3024.1601
Analytic conductor $24.147$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(17,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.5
Character \(\chi\) \(=\) 3024.1601
Dual form 3024.2.df.e.17.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.59337 q^{5} +(2.61256 + 0.417759i) q^{7} +3.54299i q^{11} +(2.74094 - 1.58248i) q^{13} +(0.487640 + 0.844616i) q^{17} +(-2.11191 - 1.21931i) q^{19} -3.37675i q^{23} +1.72555 q^{25} +(-0.267645 - 0.154525i) q^{29} +(4.35965 + 2.51705i) q^{31} +(-6.77533 - 1.08340i) q^{35} +(-3.47324 + 6.01583i) q^{37} +(6.08175 + 10.5339i) q^{41} +(5.47630 - 9.48523i) q^{43} +(-1.43344 - 2.48279i) q^{47} +(6.65096 + 2.18284i) q^{49} +(-7.81416 + 4.51151i) q^{53} -9.18828i q^{55} +(-0.219727 + 0.380579i) q^{59} +(3.41242 - 1.97016i) q^{61} +(-7.10826 + 4.10396i) q^{65} +(1.82561 - 3.16204i) q^{67} -5.25055i q^{71} +(-14.0773 + 8.12752i) q^{73} +(-1.48012 + 9.25629i) q^{77} +(3.49659 + 6.05628i) q^{79} +(-7.23851 + 12.5375i) q^{83} +(-1.26463 - 2.19040i) q^{85} +(-2.31101 + 4.00279i) q^{89} +(7.82197 - 2.98928i) q^{91} +(5.47697 + 3.16213i) q^{95} +(12.4805 + 7.20560i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} - 18 q^{31} + 6 q^{41} + 6 q^{43} + 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} - 6 q^{79} + 18 q^{89} - 6 q^{91} - 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.59337 −1.15979 −0.579894 0.814692i \(-0.696906\pi\)
−0.579894 + 0.814692i \(0.696906\pi\)
\(6\) 0 0
\(7\) 2.61256 + 0.417759i 0.987455 + 0.157898i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.54299i 1.06825i 0.845405 + 0.534126i \(0.179359\pi\)
−0.845405 + 0.534126i \(0.820641\pi\)
\(12\) 0 0
\(13\) 2.74094 1.58248i 0.760200 0.438902i −0.0691677 0.997605i \(-0.522034\pi\)
0.829367 + 0.558703i \(0.188701\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.487640 + 0.844616i 0.118270 + 0.204850i 0.919082 0.394066i \(-0.128932\pi\)
−0.800812 + 0.598916i \(0.795599\pi\)
\(18\) 0 0
\(19\) −2.11191 1.21931i −0.484506 0.279730i 0.237786 0.971318i \(-0.423578\pi\)
−0.722293 + 0.691588i \(0.756912\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.37675i 0.704102i −0.935981 0.352051i \(-0.885484\pi\)
0.935981 0.352051i \(-0.114516\pi\)
\(24\) 0 0
\(25\) 1.72555 0.345110
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.267645 0.154525i −0.0497004 0.0286946i 0.474944 0.880016i \(-0.342468\pi\)
−0.524644 + 0.851322i \(0.675802\pi\)
\(30\) 0 0
\(31\) 4.35965 + 2.51705i 0.783017 + 0.452075i 0.837498 0.546440i \(-0.184017\pi\)
−0.0544814 + 0.998515i \(0.517351\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.77533 1.08340i −1.14524 0.183128i
\(36\) 0 0
\(37\) −3.47324 + 6.01583i −0.570997 + 0.988996i 0.425467 + 0.904974i \(0.360110\pi\)
−0.996464 + 0.0840218i \(0.973223\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.08175 + 10.5339i 0.949810 + 1.64512i 0.745822 + 0.666146i \(0.232057\pi\)
0.203988 + 0.978973i \(0.434610\pi\)
\(42\) 0 0
\(43\) 5.47630 9.48523i 0.835128 1.44648i −0.0587983 0.998270i \(-0.518727\pi\)
0.893926 0.448214i \(-0.147940\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.43344 2.48279i −0.209089 0.362152i 0.742339 0.670024i \(-0.233716\pi\)
−0.951428 + 0.307872i \(0.900383\pi\)
\(48\) 0 0
\(49\) 6.65096 + 2.18284i 0.950136 + 0.311834i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.81416 + 4.51151i −1.07336 + 0.619703i −0.929097 0.369836i \(-0.879414\pi\)
−0.144261 + 0.989540i \(0.546080\pi\)
\(54\) 0 0
\(55\) 9.18828i 1.23895i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.219727 + 0.380579i −0.0286061 + 0.0495471i −0.879974 0.475022i \(-0.842440\pi\)
0.851368 + 0.524569i \(0.175773\pi\)
\(60\) 0 0
\(61\) 3.41242 1.97016i 0.436916 0.252254i −0.265373 0.964146i \(-0.585495\pi\)
0.702289 + 0.711892i \(0.252162\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.10826 + 4.10396i −0.881671 + 0.509033i
\(66\) 0 0
\(67\) 1.82561 3.16204i 0.223033 0.386305i −0.732694 0.680558i \(-0.761737\pi\)
0.955728 + 0.294253i \(0.0950708\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.25055i 0.623126i −0.950226 0.311563i \(-0.899148\pi\)
0.950226 0.311563i \(-0.100852\pi\)
\(72\) 0 0
\(73\) −14.0773 + 8.12752i −1.64762 + 0.951254i −0.669607 + 0.742716i \(0.733537\pi\)
−0.978014 + 0.208539i \(0.933129\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.48012 + 9.25629i −0.168675 + 1.05485i
\(78\) 0 0
\(79\) 3.49659 + 6.05628i 0.393397 + 0.681384i 0.992895 0.118992i \(-0.0379663\pi\)
−0.599498 + 0.800376i \(0.704633\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.23851 + 12.5375i −0.794529 + 1.37616i 0.128609 + 0.991695i \(0.458949\pi\)
−0.923138 + 0.384469i \(0.874384\pi\)
\(84\) 0 0
\(85\) −1.26463 2.19040i −0.137168 0.237582i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.31101 + 4.00279i −0.244967 + 0.424295i −0.962122 0.272619i \(-0.912110\pi\)
0.717156 + 0.696913i \(0.245444\pi\)
\(90\) 0 0
\(91\) 7.82197 2.98928i 0.819965 0.313362i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.47697 + 3.16213i 0.561925 + 0.324428i
\(96\) 0 0
\(97\) 12.4805 + 7.20560i 1.26720 + 0.731617i 0.974457 0.224574i \(-0.0720991\pi\)
0.292742 + 0.956192i \(0.405432\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.62921 0.858638 0.429319 0.903153i \(-0.358754\pi\)
0.429319 + 0.903153i \(0.358754\pi\)
\(102\) 0 0
\(103\) 6.09732i 0.600787i 0.953815 + 0.300394i \(0.0971180\pi\)
−0.953815 + 0.300394i \(0.902882\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.8841 8.01599i −1.34223 0.774935i −0.355093 0.934831i \(-0.615551\pi\)
−0.987134 + 0.159896i \(0.948884\pi\)
\(108\) 0 0
\(109\) 2.78659 + 4.82652i 0.266907 + 0.462297i 0.968062 0.250713i \(-0.0806649\pi\)
−0.701154 + 0.713010i \(0.747332\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.2144 8.20669i 1.33718 0.772021i 0.350791 0.936454i \(-0.385913\pi\)
0.986388 + 0.164433i \(0.0525794\pi\)
\(114\) 0 0
\(115\) 8.75716i 0.816609i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.921142 + 2.41033i 0.0844410 + 0.220954i
\(120\) 0 0
\(121\) −1.55280 −0.141163
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.49185 0.759534
\(126\) 0 0
\(127\) 18.0255 1.59951 0.799754 0.600328i \(-0.204963\pi\)
0.799754 + 0.600328i \(0.204963\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.4393 0.912090 0.456045 0.889957i \(-0.349266\pi\)
0.456045 + 0.889957i \(0.349266\pi\)
\(132\) 0 0
\(133\) −5.00813 4.06780i −0.434260 0.352723i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.84991i 0.328920i 0.986384 + 0.164460i \(0.0525882\pi\)
−0.986384 + 0.164460i \(0.947412\pi\)
\(138\) 0 0
\(139\) −18.7634 + 10.8330i −1.59149 + 0.918847i −0.598437 + 0.801170i \(0.704211\pi\)
−0.993052 + 0.117677i \(0.962455\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.60672 + 9.71113i 0.468858 + 0.812085i
\(144\) 0 0
\(145\) 0.694102 + 0.400740i 0.0576420 + 0.0332796i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.50289i 0.778507i 0.921131 + 0.389254i \(0.127267\pi\)
−0.921131 + 0.389254i \(0.872733\pi\)
\(150\) 0 0
\(151\) 21.3380 1.73646 0.868232 0.496159i \(-0.165257\pi\)
0.868232 + 0.496159i \(0.165257\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −11.3062 6.52763i −0.908134 0.524312i
\(156\) 0 0
\(157\) 2.10532 + 1.21551i 0.168023 + 0.0970082i 0.581653 0.813437i \(-0.302406\pi\)
−0.413630 + 0.910445i \(0.635739\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.41067 8.82197i 0.111176 0.695269i
\(162\) 0 0
\(163\) −8.31072 + 14.3946i −0.650946 + 1.12747i 0.331948 + 0.943298i \(0.392294\pi\)
−0.982894 + 0.184174i \(0.941039\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.6037 + 18.3661i 0.820535 + 1.42121i 0.905284 + 0.424806i \(0.139658\pi\)
−0.0847489 + 0.996402i \(0.527009\pi\)
\(168\) 0 0
\(169\) −1.49150 + 2.58336i −0.114731 + 0.198720i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.09062 + 8.81722i 0.387033 + 0.670361i 0.992049 0.125853i \(-0.0401667\pi\)
−0.605016 + 0.796213i \(0.706833\pi\)
\(174\) 0 0
\(175\) 4.50810 + 0.720863i 0.340781 + 0.0544922i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.589482 + 0.340338i −0.0440600 + 0.0254380i −0.521868 0.853026i \(-0.674765\pi\)
0.477808 + 0.878464i \(0.341431\pi\)
\(180\) 0 0
\(181\) 19.1298i 1.42191i 0.703239 + 0.710954i \(0.251737\pi\)
−0.703239 + 0.710954i \(0.748263\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.00738 15.6012i 0.662236 1.14703i
\(186\) 0 0
\(187\) −2.99247 + 1.72770i −0.218831 + 0.126342i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.3174 10.5756i 1.32540 0.765221i 0.340817 0.940130i \(-0.389296\pi\)
0.984585 + 0.174909i \(0.0559631\pi\)
\(192\) 0 0
\(193\) −6.41421 + 11.1097i −0.461705 + 0.799697i −0.999046 0.0436683i \(-0.986096\pi\)
0.537341 + 0.843365i \(0.319429\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.2854i 1.58777i 0.608069 + 0.793884i \(0.291944\pi\)
−0.608069 + 0.793884i \(0.708056\pi\)
\(198\) 0 0
\(199\) −6.65637 + 3.84306i −0.471858 + 0.272427i −0.717017 0.697056i \(-0.754493\pi\)
0.245159 + 0.969483i \(0.421160\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.634685 0.515517i −0.0445461 0.0361822i
\(204\) 0 0
\(205\) −15.7722 27.3183i −1.10158 1.90799i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.32002 7.48250i 0.298822 0.517575i
\(210\) 0 0
\(211\) −8.33679 14.4397i −0.573928 0.994073i −0.996157 0.0875838i \(-0.972085\pi\)
0.422229 0.906489i \(-0.361248\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −14.2021 + 24.5987i −0.968572 + 1.67762i
\(216\) 0 0
\(217\) 10.3383 + 8.39722i 0.701813 + 0.570041i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.67318 + 1.54336i 0.179818 + 0.103818i
\(222\) 0 0
\(223\) 4.45390 + 2.57146i 0.298255 + 0.172198i 0.641659 0.766990i \(-0.278247\pi\)
−0.343404 + 0.939188i \(0.611580\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.9854 0.795500 0.397750 0.917494i \(-0.369791\pi\)
0.397750 + 0.917494i \(0.369791\pi\)
\(228\) 0 0
\(229\) 2.60911i 0.172415i −0.996277 0.0862074i \(-0.972525\pi\)
0.996277 0.0862074i \(-0.0274748\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.13306 1.80887i −0.205253 0.118503i 0.393850 0.919175i \(-0.371143\pi\)
−0.599103 + 0.800672i \(0.704476\pi\)
\(234\) 0 0
\(235\) 3.71743 + 6.43878i 0.242499 + 0.420020i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.8069 7.39409i 0.828412 0.478284i −0.0248967 0.999690i \(-0.507926\pi\)
0.853309 + 0.521406i \(0.174592\pi\)
\(240\) 0 0
\(241\) 6.44196i 0.414963i 0.978239 + 0.207481i \(0.0665267\pi\)
−0.978239 + 0.207481i \(0.933473\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −17.2484 5.66091i −1.10196 0.361662i
\(246\) 0 0
\(247\) −7.71817 −0.491095
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.21012 0.391979 0.195990 0.980606i \(-0.437208\pi\)
0.195990 + 0.980606i \(0.437208\pi\)
\(252\) 0 0
\(253\) 11.9638 0.752158
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −21.1767 −1.32096 −0.660482 0.750842i \(-0.729648\pi\)
−0.660482 + 0.750842i \(0.729648\pi\)
\(258\) 0 0
\(259\) −11.5872 + 14.2657i −0.719995 + 0.886430i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.1579i 1.05800i −0.848621 0.529002i \(-0.822566\pi\)
0.848621 0.529002i \(-0.177434\pi\)
\(264\) 0 0
\(265\) 20.2650 11.7000i 1.24487 0.718725i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.8061 18.7166i −0.658857 1.14117i −0.980912 0.194453i \(-0.937707\pi\)
0.322055 0.946721i \(-0.395627\pi\)
\(270\) 0 0
\(271\) −21.8475 12.6137i −1.32714 0.766227i −0.342287 0.939595i \(-0.611202\pi\)
−0.984857 + 0.173368i \(0.944535\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.11361i 0.368665i
\(276\) 0 0
\(277\) 22.4512 1.34896 0.674482 0.738291i \(-0.264367\pi\)
0.674482 + 0.738291i \(0.264367\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.3691 5.98662i −0.618571 0.357132i 0.157742 0.987480i \(-0.449579\pi\)
−0.776312 + 0.630349i \(0.782912\pi\)
\(282\) 0 0
\(283\) −18.8187 10.8650i −1.11865 0.645855i −0.177596 0.984103i \(-0.556832\pi\)
−0.941057 + 0.338249i \(0.890165\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.4883 + 30.0612i 0.678134 + 1.77445i
\(288\) 0 0
\(289\) 8.02442 13.8987i 0.472024 0.817570i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.38110 + 9.32035i 0.314367 + 0.544500i 0.979303 0.202400i \(-0.0648743\pi\)
−0.664935 + 0.746901i \(0.731541\pi\)
\(294\) 0 0
\(295\) 0.569833 0.986980i 0.0331770 0.0574642i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.34365 9.25547i −0.309031 0.535258i
\(300\) 0 0
\(301\) 18.2697 22.4930i 1.05305 1.29647i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.84966 + 5.10935i −0.506730 + 0.292561i
\(306\) 0 0
\(307\) 4.22117i 0.240915i −0.992719 0.120457i \(-0.961564\pi\)
0.992719 0.120457i \(-0.0384361\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.09266 + 3.62459i −0.118664 + 0.205532i −0.919238 0.393702i \(-0.871194\pi\)
0.800575 + 0.599233i \(0.204528\pi\)
\(312\) 0 0
\(313\) −19.0867 + 11.0197i −1.07885 + 0.622872i −0.930585 0.366076i \(-0.880701\pi\)
−0.148261 + 0.988948i \(0.547368\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.41440 + 4.85806i −0.472600 + 0.272856i −0.717327 0.696736i \(-0.754635\pi\)
0.244727 + 0.969592i \(0.421302\pi\)
\(318\) 0 0
\(319\) 0.547481 0.948264i 0.0306530 0.0530926i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.37834i 0.132335i
\(324\) 0 0
\(325\) 4.72963 2.73065i 0.262353 0.151469i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.70774 7.08527i −0.149283 0.390624i
\(330\) 0 0
\(331\) 13.8588 + 24.0042i 0.761749 + 1.31939i 0.941948 + 0.335758i \(0.108992\pi\)
−0.180200 + 0.983630i \(0.557674\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.73447 + 8.20034i −0.258672 + 0.448032i
\(336\) 0 0
\(337\) 6.29141 + 10.8970i 0.342715 + 0.593600i 0.984936 0.172920i \(-0.0553201\pi\)
−0.642221 + 0.766520i \(0.721987\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8.91788 + 15.4462i −0.482930 + 0.836460i
\(342\) 0 0
\(343\) 16.4641 + 8.48130i 0.888979 + 0.457947i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.4819 8.36115i −0.777431 0.448850i 0.0580881 0.998311i \(-0.481500\pi\)
−0.835519 + 0.549462i \(0.814833\pi\)
\(348\) 0 0
\(349\) −13.9900 8.07714i −0.748869 0.432359i 0.0764164 0.997076i \(-0.475652\pi\)
−0.825285 + 0.564717i \(0.808985\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.6566 −0.833318 −0.416659 0.909063i \(-0.636799\pi\)
−0.416659 + 0.909063i \(0.636799\pi\)
\(354\) 0 0
\(355\) 13.6166i 0.722694i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.1396 + 11.0502i 1.01015 + 0.583209i 0.911235 0.411887i \(-0.135130\pi\)
0.0989127 + 0.995096i \(0.468464\pi\)
\(360\) 0 0
\(361\) −6.52655 11.3043i −0.343502 0.594964i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 36.5075 21.0776i 1.91089 1.10325i
\(366\) 0 0
\(367\) 13.1513i 0.686492i −0.939246 0.343246i \(-0.888474\pi\)
0.939246 0.343246i \(-0.111526\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −22.2997 + 8.52216i −1.15774 + 0.442448i
\(372\) 0 0
\(373\) −4.43829 −0.229806 −0.114903 0.993377i \(-0.536656\pi\)
−0.114903 + 0.993377i \(0.536656\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.978132 −0.0503763
\(378\) 0 0
\(379\) −14.8875 −0.764718 −0.382359 0.924014i \(-0.624888\pi\)
−0.382359 + 0.924014i \(0.624888\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.63802 0.288089 0.144045 0.989571i \(-0.453989\pi\)
0.144045 + 0.989571i \(0.453989\pi\)
\(384\) 0 0
\(385\) 3.83848 24.0049i 0.195627 1.22341i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 38.5120i 1.95263i −0.216346 0.976317i \(-0.569414\pi\)
0.216346 0.976317i \(-0.430586\pi\)
\(390\) 0 0
\(391\) 2.85206 1.64664i 0.144235 0.0832741i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9.06795 15.7061i −0.456258 0.790262i
\(396\) 0 0
\(397\) 2.50780 + 1.44788i 0.125863 + 0.0726669i 0.561609 0.827402i \(-0.310182\pi\)
−0.435747 + 0.900069i \(0.643516\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.7333i 1.28506i −0.766261 0.642530i \(-0.777885\pi\)
0.766261 0.642530i \(-0.222115\pi\)
\(402\) 0 0
\(403\) 15.9327 0.793666
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21.3140 12.3057i −1.05650 0.609969i
\(408\) 0 0
\(409\) −24.9914 14.4288i −1.23574 0.713457i −0.267522 0.963552i \(-0.586205\pi\)
−0.968221 + 0.250095i \(0.919538\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.733041 + 0.902492i −0.0360706 + 0.0444088i
\(414\) 0 0
\(415\) 18.7721 32.5142i 0.921486 1.59606i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.07870 + 10.5286i 0.296964 + 0.514357i 0.975440 0.220266i \(-0.0706925\pi\)
−0.678476 + 0.734623i \(0.737359\pi\)
\(420\) 0 0
\(421\) −13.9914 + 24.2338i −0.681898 + 1.18108i 0.292503 + 0.956265i \(0.405512\pi\)
−0.974401 + 0.224817i \(0.927821\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.841446 + 1.45743i 0.0408161 + 0.0706956i
\(426\) 0 0
\(427\) 9.73822 3.72160i 0.471265 0.180101i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.9975 8.08147i 0.674236 0.389271i −0.123444 0.992352i \(-0.539394\pi\)
0.797680 + 0.603081i \(0.206060\pi\)
\(432\) 0 0
\(433\) 5.27197i 0.253355i −0.991944 0.126677i \(-0.959569\pi\)
0.991944 0.126677i \(-0.0404313\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.11732 + 7.13141i −0.196958 + 0.341142i
\(438\) 0 0
\(439\) −9.10263 + 5.25541i −0.434445 + 0.250827i −0.701238 0.712927i \(-0.747369\pi\)
0.266794 + 0.963754i \(0.414036\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.15805 2.97800i 0.245066 0.141489i −0.372437 0.928058i \(-0.621478\pi\)
0.617503 + 0.786568i \(0.288144\pi\)
\(444\) 0 0
\(445\) 5.99330 10.3807i 0.284109 0.492092i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.85897i 0.0877304i 0.999037 + 0.0438652i \(0.0139672\pi\)
−0.999037 + 0.0438652i \(0.986033\pi\)
\(450\) 0 0
\(451\) −37.3215 + 21.5476i −1.75740 + 1.01464i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −20.2852 + 7.75230i −0.950986 + 0.363433i
\(456\) 0 0
\(457\) −14.8747 25.7637i −0.695808 1.20517i −0.969908 0.243473i \(-0.921713\pi\)
0.274100 0.961701i \(-0.411620\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.9738 25.9353i 0.697398 1.20793i −0.271968 0.962306i \(-0.587675\pi\)
0.969366 0.245622i \(-0.0789921\pi\)
\(462\) 0 0
\(463\) −7.57406 13.1187i −0.351997 0.609676i 0.634603 0.772839i \(-0.281164\pi\)
−0.986599 + 0.163163i \(0.947830\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.85158 10.1352i 0.270779 0.469002i −0.698283 0.715822i \(-0.746052\pi\)
0.969061 + 0.246820i \(0.0793855\pi\)
\(468\) 0 0
\(469\) 6.09048 7.49837i 0.281232 0.346243i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 33.6061 + 19.4025i 1.54521 + 0.892127i
\(474\) 0 0
\(475\) −3.64421 2.10399i −0.167208 0.0965375i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.1418 0.554771 0.277385 0.960759i \(-0.410532\pi\)
0.277385 + 0.960759i \(0.410532\pi\)
\(480\) 0 0
\(481\) 21.9854i 1.00245i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −32.3664 18.6868i −1.46968 0.848522i
\(486\) 0 0
\(487\) 5.22070 + 9.04251i 0.236572 + 0.409755i 0.959728 0.280929i \(-0.0906426\pi\)
−0.723156 + 0.690685i \(0.757309\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20.9972 12.1227i 0.947589 0.547091i 0.0552576 0.998472i \(-0.482402\pi\)
0.892331 + 0.451382i \(0.149069\pi\)
\(492\) 0 0
\(493\) 0.301410i 0.0135748i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.19346 13.7174i 0.0983903 0.615309i
\(498\) 0 0
\(499\) 0.348239 0.0155893 0.00779466 0.999970i \(-0.497519\pi\)
0.00779466 + 0.999970i \(0.497519\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −32.3099 −1.44063 −0.720314 0.693648i \(-0.756002\pi\)
−0.720314 + 0.693648i \(0.756002\pi\)
\(504\) 0 0
\(505\) −22.3787 −0.995839
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.7046 0.607448 0.303724 0.952760i \(-0.401770\pi\)
0.303724 + 0.952760i \(0.401770\pi\)
\(510\) 0 0
\(511\) −40.1731 + 15.3527i −1.77715 + 0.679165i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.8126i 0.696786i
\(516\) 0 0
\(517\) 8.79650 5.07866i 0.386870 0.223359i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.73516 + 15.1297i 0.382694 + 0.662846i 0.991446 0.130514i \(-0.0416629\pi\)
−0.608752 + 0.793361i \(0.708330\pi\)
\(522\) 0 0
\(523\) 23.3238 + 13.4660i 1.01988 + 0.588827i 0.914069 0.405559i \(-0.132923\pi\)
0.105810 + 0.994386i \(0.466257\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.90965i 0.213868i
\(528\) 0 0
\(529\) 11.5975 0.504241
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 33.3394 + 19.2485i 1.44409 + 0.833746i
\(534\) 0 0
\(535\) 36.0066 + 20.7884i 1.55670 + 0.898761i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.73379 + 23.5643i −0.333118 + 1.01499i
\(540\) 0 0
\(541\) −7.43375 + 12.8756i −0.319602 + 0.553567i −0.980405 0.196993i \(-0.936882\pi\)
0.660803 + 0.750559i \(0.270216\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.22666 12.5169i −0.309556 0.536167i
\(546\) 0 0
\(547\) 4.17953 7.23915i 0.178704 0.309524i −0.762733 0.646713i \(-0.776143\pi\)
0.941437 + 0.337190i \(0.109476\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.376829 + 0.652687i 0.0160534 + 0.0278054i
\(552\) 0 0
\(553\) 6.60500 + 17.2831i 0.280873 + 0.734953i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.617917 0.356754i 0.0261820 0.0151162i −0.486852 0.873485i \(-0.661855\pi\)
0.513034 + 0.858368i \(0.328522\pi\)
\(558\) 0 0
\(559\) 34.6646i 1.46616i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.5939 23.5452i 0.572912 0.992314i −0.423352 0.905965i \(-0.639147\pi\)
0.996265 0.0863485i \(-0.0275199\pi\)
\(564\) 0 0
\(565\) −36.8632 + 21.2830i −1.55085 + 0.895381i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.51833 + 0.876606i −0.0636515 + 0.0367492i −0.531488 0.847066i \(-0.678367\pi\)
0.467836 + 0.883815i \(0.345034\pi\)
\(570\) 0 0
\(571\) 0.228817 0.396323i 0.00957570 0.0165856i −0.861198 0.508270i \(-0.830285\pi\)
0.870774 + 0.491684i \(0.163619\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.82675i 0.242992i
\(576\) 0 0
\(577\) 19.8800 11.4777i 0.827617 0.477825i −0.0254193 0.999677i \(-0.508092\pi\)
0.853036 + 0.521852i \(0.174759\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −24.1487 + 29.7309i −1.00186 + 1.23345i
\(582\) 0 0
\(583\) −15.9842 27.6855i −0.662000 1.14662i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.81513 4.87594i 0.116193 0.201252i −0.802063 0.597239i \(-0.796264\pi\)
0.918256 + 0.395987i \(0.129598\pi\)
\(588\) 0 0
\(589\) −6.13814 10.6316i −0.252918 0.438066i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.35121 + 2.34037i −0.0554876 + 0.0961074i −0.892435 0.451176i \(-0.851005\pi\)
0.836947 + 0.547283i \(0.184338\pi\)
\(594\) 0 0
\(595\) −2.38886 6.25086i −0.0979337 0.256260i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.3894 + 5.99831i 0.424498 + 0.245084i 0.697000 0.717071i \(-0.254518\pi\)
−0.272502 + 0.962155i \(0.587851\pi\)
\(600\) 0 0
\(601\) 26.7530 + 15.4459i 1.09128 + 0.630050i 0.933917 0.357491i \(-0.116368\pi\)
0.157363 + 0.987541i \(0.449701\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.02697 0.163720
\(606\) 0 0
\(607\) 6.87463i 0.279033i −0.990220 0.139516i \(-0.955445\pi\)
0.990220 0.139516i \(-0.0445548\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.85794 4.53678i −0.317898 0.183539i
\(612\) 0 0
\(613\) −16.6455 28.8308i −0.672304 1.16447i −0.977249 0.212095i \(-0.931971\pi\)
0.304945 0.952370i \(-0.401362\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0757 + 10.4360i −0.727702 + 0.420139i −0.817581 0.575814i \(-0.804685\pi\)
0.0898790 + 0.995953i \(0.471352\pi\)
\(618\) 0 0
\(619\) 19.3846i 0.779133i −0.920998 0.389567i \(-0.872625\pi\)
0.920998 0.389567i \(-0.127375\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.70985 + 9.49208i −0.308889 + 0.380292i
\(624\) 0 0
\(625\) −30.6502 −1.22601
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.77476 −0.270127
\(630\) 0 0
\(631\) 27.3629 1.08930 0.544649 0.838664i \(-0.316663\pi\)
0.544649 + 0.838664i \(0.316663\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −46.7468 −1.85509
\(636\) 0 0
\(637\) 21.6842 4.54198i 0.859158 0.179960i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.7202i 1.37137i 0.727900 + 0.685683i \(0.240496\pi\)
−0.727900 + 0.685683i \(0.759504\pi\)
\(642\) 0 0
\(643\) −3.52980 + 2.03793i −0.139202 + 0.0803681i −0.567983 0.823040i \(-0.692276\pi\)
0.428782 + 0.903408i \(0.358943\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.53976 11.3272i −0.257105 0.445318i 0.708360 0.705851i \(-0.249435\pi\)
−0.965465 + 0.260533i \(0.916102\pi\)
\(648\) 0 0
\(649\) −1.34839 0.778492i −0.0529288 0.0305585i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.24179i 0.244260i −0.992514 0.122130i \(-0.961027\pi\)
0.992514 0.122130i \(-0.0389725\pi\)
\(654\) 0 0
\(655\) −27.0730 −1.05783
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.79139 + 1.03426i 0.0697827 + 0.0402891i 0.534485 0.845178i \(-0.320505\pi\)
−0.464703 + 0.885467i \(0.653839\pi\)
\(660\) 0 0
\(661\) 13.5306 + 7.81190i 0.526280 + 0.303848i 0.739500 0.673156i \(-0.235062\pi\)
−0.213220 + 0.977004i \(0.568395\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.9879 + 10.5493i 0.503649 + 0.409085i
\(666\) 0 0
\(667\) −0.521792 + 0.903771i −0.0202039 + 0.0349941i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.98027 + 12.0902i 0.269470 + 0.466736i
\(672\) 0 0
\(673\) −15.1108 + 26.1727i −0.582478 + 1.00888i 0.412706 + 0.910864i \(0.364584\pi\)
−0.995185 + 0.0980180i \(0.968750\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.3438 24.8442i −0.551278 0.954841i −0.998183 0.0602595i \(-0.980807\pi\)
0.446905 0.894581i \(-0.352526\pi\)
\(678\) 0 0
\(679\) 29.5958 + 24.0389i 1.13578 + 0.922528i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.48345 4.32057i 0.286346 0.165322i −0.349947 0.936770i \(-0.613800\pi\)
0.636293 + 0.771448i \(0.280467\pi\)
\(684\) 0 0
\(685\) 9.98423i 0.381478i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.2788 + 24.7315i −0.543978 + 0.942197i
\(690\) 0 0
\(691\) −10.5993 + 6.11951i −0.403216 + 0.232797i −0.687871 0.725833i \(-0.741454\pi\)
0.284655 + 0.958630i \(0.408121\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 48.6603 28.0940i 1.84579 1.06567i
\(696\) 0 0
\(697\) −5.93140 + 10.2735i −0.224668 + 0.389136i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.05683i 0.115455i 0.998332 + 0.0577274i \(0.0183854\pi\)
−0.998332 + 0.0577274i \(0.981615\pi\)
\(702\) 0 0
\(703\) 14.6704 8.46994i 0.553303 0.319450i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 22.5443 + 3.60493i 0.847867 + 0.135577i
\(708\) 0 0
\(709\) 6.04101 + 10.4633i 0.226875 + 0.392959i 0.956880 0.290482i \(-0.0938158\pi\)
−0.730005 + 0.683441i \(0.760482\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.49945 14.7215i 0.318307 0.551324i
\(714\) 0 0
\(715\) −14.5403 25.1845i −0.543776 0.941847i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.27436 + 10.8675i −0.233994 + 0.405290i −0.958980 0.283474i \(-0.908513\pi\)
0.724986 + 0.688764i \(0.241846\pi\)
\(720\) 0 0
\(721\) −2.54721 + 15.9296i −0.0948630 + 0.593250i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.461835 0.266640i −0.0171521 0.00990278i
\(726\) 0 0
\(727\) −16.2736 9.39555i −0.603553 0.348462i 0.166885 0.985976i \(-0.446629\pi\)
−0.770438 + 0.637515i \(0.779962\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 10.6818 0.395082
\(732\) 0 0
\(733\) 35.4064i 1.30776i 0.756596 + 0.653882i \(0.226861\pi\)
−0.756596 + 0.653882i \(0.773139\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.2031 + 6.46811i 0.412671 + 0.238256i
\(738\) 0 0
\(739\) −11.1371 19.2900i −0.409684 0.709593i 0.585170 0.810910i \(-0.301028\pi\)
−0.994854 + 0.101317i \(0.967694\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.68932 + 5.01678i −0.318780 + 0.184048i −0.650849 0.759207i \(-0.725587\pi\)
0.332069 + 0.943255i \(0.392253\pi\)
\(744\) 0 0
\(745\) 24.6445i 0.902904i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −32.9243 26.7425i −1.20303 0.977148i
\(750\) 0 0
\(751\) −33.5541 −1.22441 −0.612203 0.790700i \(-0.709717\pi\)
−0.612203 + 0.790700i \(0.709717\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −55.3373 −2.01393
\(756\) 0 0
\(757\) 0.0340541 0.00123772 0.000618859 1.00000i \(-0.499803\pi\)
0.000618859 1.00000i \(0.499803\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.9691 −0.832631 −0.416315 0.909220i \(-0.636679\pi\)
−0.416315 + 0.909220i \(0.636679\pi\)
\(762\) 0 0
\(763\) 5.26383 + 13.7737i 0.190563 + 0.498642i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.39086i 0.0502210i
\(768\) 0 0
\(769\) 14.3775 8.30086i 0.518466 0.299337i −0.217841 0.975984i \(-0.569901\pi\)
0.736307 + 0.676648i \(0.236568\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.803138 + 1.39107i 0.0288868 + 0.0500335i 0.880107 0.474775i \(-0.157470\pi\)
−0.851221 + 0.524808i \(0.824137\pi\)
\(774\) 0 0
\(775\) 7.52280 + 4.34329i 0.270227 + 0.156016i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 29.6623i 1.06276i
\(780\) 0 0
\(781\) 18.6027 0.665656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5.45988 3.15226i −0.194871 0.112509i
\(786\) 0 0
\(787\) 13.7768 + 7.95401i 0.491088 + 0.283530i 0.725026 0.688722i \(-0.241828\pi\)
−0.233938 + 0.972252i \(0.575161\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 40.5644 15.5023i 1.44231 0.551198i
\(792\) 0 0
\(793\) 6.23549 10.8002i 0.221429 0.383526i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.1844 + 17.6399i 0.360749 + 0.624836i 0.988084 0.153914i \(-0.0491878\pi\)
−0.627335 + 0.778749i \(0.715854\pi\)
\(798\) 0 0
\(799\) 1.39800 2.42141i 0.0494578 0.0856634i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −28.7957 49.8757i −1.01618 1.76008i
\(804\) 0 0
\(805\) −3.65838 + 22.8786i −0.128941 + 0.806365i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 35.7396 20.6343i 1.25654 0.725462i 0.284137 0.958784i \(-0.408293\pi\)
0.972400 + 0.233322i \(0.0749595\pi\)
\(810\) 0 0
\(811\) 19.3660i 0.680032i −0.940420 0.340016i \(-0.889568\pi\)
0.940420 0.340016i \(-0.110432\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 21.5527 37.3305i 0.754960 1.30763i
\(816\) 0 0
\(817\) −23.1309 + 13.3547i −0.809249 + 0.467220i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.1405 16.2469i 0.982111 0.567022i 0.0792043 0.996858i \(-0.474762\pi\)
0.902907 + 0.429836i \(0.141429\pi\)
\(822\) 0 0
\(823\) 27.8957 48.3167i 0.972381 1.68421i 0.284063 0.958806i \(-0.408318\pi\)
0.688319 0.725408i \(-0.258349\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.2989i 0.636314i −0.948038 0.318157i \(-0.896936\pi\)
0.948038 0.318157i \(-0.103064\pi\)
\(828\) 0 0
\(829\) 12.6483 7.30247i 0.439292 0.253625i −0.264005 0.964521i \(-0.585044\pi\)
0.703297 + 0.710896i \(0.251710\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.39961 + 6.68195i 0.0484935 + 0.231516i
\(834\) 0 0
\(835\) −27.4992 47.6299i −0.951648 1.64830i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.7379 27.2588i 0.543332 0.941079i −0.455378 0.890298i \(-0.650496\pi\)
0.998710 0.0507803i \(-0.0161708\pi\)
\(840\) 0 0
\(841\) −14.4522 25.0320i −0.498353 0.863173i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.86801 6.69959i 0.133064 0.230473i
\(846\) 0 0
\(847\) −4.05677 0.648694i −0.139392 0.0222894i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 20.3140 + 11.7283i 0.696354 + 0.402040i
\(852\) 0 0
\(853\) −21.2554 12.2718i −0.727771 0.420179i 0.0898353 0.995957i \(-0.471366\pi\)
−0.817606 + 0.575778i \(0.804699\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.7302 0.400697 0.200348 0.979725i \(-0.435793\pi\)
0.200348 + 0.979725i \(0.435793\pi\)
\(858\) 0 0
\(859\) 34.1123i 1.16390i 0.813226 + 0.581948i \(0.197709\pi\)
−0.813226 + 0.581948i \(0.802291\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20.8863 12.0587i −0.710978 0.410483i 0.100445 0.994943i \(-0.467973\pi\)
−0.811423 + 0.584459i \(0.801307\pi\)
\(864\) 0 0
\(865\) −13.2018 22.8663i −0.448876 0.777477i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −21.4573 + 12.3884i −0.727890 + 0.420248i
\(870\) 0 0
\(871\) 11.5560i 0.391559i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 22.1855 + 3.54754i 0.750006 + 0.119929i
\(876\) 0 0
\(877\) −51.7506 −1.74749 −0.873747 0.486381i \(-0.838317\pi\)
−0.873747 + 0.486381i \(0.838317\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.3925 1.02395 0.511975 0.859000i \(-0.328914\pi\)
0.511975 + 0.859000i \(0.328914\pi\)
\(882\) 0 0
\(883\) −35.4897 −1.19432 −0.597162 0.802121i \(-0.703705\pi\)
−0.597162 + 0.802121i \(0.703705\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −46.5511 −1.56303 −0.781517 0.623884i \(-0.785554\pi\)
−0.781517 + 0.623884i \(0.785554\pi\)
\(888\) 0 0
\(889\) 47.0928 + 7.53033i 1.57944 + 0.252559i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.99125i 0.233953i
\(894\) 0 0
\(895\) 1.52874 0.882620i 0.0511003 0.0295027i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.777893 1.34735i −0.0259442 0.0449366i
\(900\) 0 0
\(901\) −7.62099 4.39998i −0.253892 0.146585i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 49.6106i 1.64911i
\(906\) 0 0
\(907\) 14.6331 0.485883 0.242941 0.970041i \(-0.421888\pi\)
0.242941 + 0.970041i \(0.421888\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.67661 3.85474i −0.221206 0.127713i 0.385303 0.922790i \(-0.374097\pi\)
−0.606508 + 0.795077i \(0.707430\pi\)
\(912\) 0 0
\(913\) −44.4201 25.6460i −1.47009 0.848758i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 27.2734 + 4.36113i 0.900648 + 0.144017i
\(918\) 0 0
\(919\) −13.4738 + 23.3373i −0.444460 + 0.769827i −0.998014 0.0629860i \(-0.979938\pi\)
0.553555 + 0.832813i \(0.313271\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.30890 14.3914i −0.273491 0.473700i
\(924\) 0 0
\(925\) −5.99325 + 10.3806i −0.197057 + 0.341312i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.8137 23.9261i −0.453213 0.784989i 0.545370 0.838195i \(-0.316389\pi\)
−0.998584 + 0.0532068i \(0.983056\pi\)
\(930\) 0 0
\(931\) −11.3847 12.7196i −0.373118 0.416867i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.76057 4.48057i 0.253798 0.146530i
\(936\) 0 0
\(937\) 7.60743i 0.248524i −0.992249 0.124262i \(-0.960344\pi\)
0.992249 0.124262i \(-0.0396563\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.6498 35.7665i 0.673165 1.16596i −0.303837 0.952724i \(-0.598268\pi\)
0.977002 0.213231i \(-0.0683988\pi\)
\(942\) 0 0
\(943\) 35.5704 20.5366i 1.15833 0.668763i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.0318 + 20.8030i −1.17088 + 0.676005i −0.953886 0.300169i \(-0.902957\pi\)
−0.216989 + 0.976174i \(0.569624\pi\)
\(948\) 0 0
\(949\) −25.7233 + 44.5541i −0.835014 + 1.44629i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 47.2656i 1.53108i 0.643386 + 0.765542i \(0.277529\pi\)
−0.643386 + 0.765542i \(0.722471\pi\)
\(954\) 0 0
\(955\) −47.5038 + 27.4263i −1.53719 + 0.887494i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.60833 + 10.0581i −0.0519358 + 0.324794i
\(960\) 0 0
\(961\) −2.82894 4.89987i −0.0912562 0.158060i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.6344 28.8116i 0.535480 0.927479i
\(966\) 0 0
\(967\) 2.60192 + 4.50665i 0.0836720 + 0.144924i 0.904825 0.425785i \(-0.140002\pi\)
−0.821153 + 0.570709i \(0.806669\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.67233 15.0209i 0.278308 0.482044i −0.692656 0.721268i \(-0.743560\pi\)
0.970964 + 0.239224i \(0.0768929\pi\)
\(972\) 0 0
\(973\) −53.5461 + 20.4634i −1.71661 + 0.656027i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −23.3541 13.4835i −0.747165 0.431376i 0.0775039 0.996992i \(-0.475305\pi\)
−0.824668 + 0.565616i \(0.808638\pi\)
\(978\) 0 0
\(979\) −14.1818 8.18789i −0.453254 0.261686i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.1129 −0.545817 −0.272909 0.962040i \(-0.587986\pi\)
−0.272909 + 0.962040i \(0.587986\pi\)
\(984\) 0 0
\(985\) 57.7942i 1.84148i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.0293 18.4921i −1.01847 0.588015i
\(990\) 0 0
\(991\) 5.84386 + 10.1219i 0.185636 + 0.321531i 0.943791 0.330544i \(-0.107232\pi\)
−0.758155 + 0.652075i \(0.773899\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 17.2624 9.96646i 0.547255 0.315958i
\(996\) 0 0
\(997\) 28.9017i 0.915325i 0.889126 + 0.457663i \(0.151313\pi\)
−0.889126 + 0.457663i \(0.848687\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.df.e.1601.5 48
3.2 odd 2 1008.2.df.e.929.1 48
4.3 odd 2 1512.2.cx.a.89.5 48
7.3 odd 6 3024.2.ca.e.2033.5 48
9.4 even 3 1008.2.ca.e.257.9 48
9.5 odd 6 3024.2.ca.e.2609.5 48
12.11 even 2 504.2.cx.a.425.24 yes 48
21.17 even 6 1008.2.ca.e.353.9 48
28.3 even 6 1512.2.bs.a.521.5 48
36.23 even 6 1512.2.bs.a.1097.5 48
36.31 odd 6 504.2.bs.a.257.16 48
63.31 odd 6 1008.2.df.e.689.1 48
63.59 even 6 inner 3024.2.df.e.17.5 48
84.59 odd 6 504.2.bs.a.353.16 yes 48
252.31 even 6 504.2.cx.a.185.24 yes 48
252.59 odd 6 1512.2.cx.a.17.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.16 48 36.31 odd 6
504.2.bs.a.353.16 yes 48 84.59 odd 6
504.2.cx.a.185.24 yes 48 252.31 even 6
504.2.cx.a.425.24 yes 48 12.11 even 2
1008.2.ca.e.257.9 48 9.4 even 3
1008.2.ca.e.353.9 48 21.17 even 6
1008.2.df.e.689.1 48 63.31 odd 6
1008.2.df.e.929.1 48 3.2 odd 2
1512.2.bs.a.521.5 48 28.3 even 6
1512.2.bs.a.1097.5 48 36.23 even 6
1512.2.cx.a.17.5 48 252.59 odd 6
1512.2.cx.a.89.5 48 4.3 odd 2
3024.2.ca.e.2033.5 48 7.3 odd 6
3024.2.ca.e.2609.5 48 9.5 odd 6
3024.2.df.e.17.5 48 63.59 even 6 inner
3024.2.df.e.1601.5 48 1.1 even 1 trivial