Properties

Label 1008.2.ca.e.257.9
Level $1008$
Weight $2$
Character 1008.257
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(257,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.9
Character \(\chi\) \(=\) 1008.257
Dual form 1008.2.ca.e.353.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.859678 + 1.50365i) q^{3} +(1.29668 + 2.24592i) q^{5} +(-1.66807 + 2.05367i) q^{7} +(-1.52191 - 2.58530i) q^{9} +(-3.06832 - 1.77150i) q^{11} +(-2.74094 - 1.58248i) q^{13} +(-4.49180 + 0.0189845i) q^{15} +(0.487640 + 0.844616i) q^{17} +(-2.11191 - 1.21931i) q^{19} +(-1.65398 - 4.27368i) q^{21} +(-2.92435 + 1.68838i) q^{23} +(-0.862775 + 1.49437i) q^{25} +(5.19573 - 0.0658821i) q^{27} +(0.267645 - 0.154525i) q^{29} -5.03410i q^{31} +(5.30147 - 3.09076i) q^{33} +(-6.77533 - 1.08340i) q^{35} +(-3.47324 + 6.01583i) q^{37} +(4.73582 - 2.76098i) q^{39} +(6.08175 - 10.5339i) q^{41} +(5.47630 + 9.48523i) q^{43} +(3.83296 - 6.77040i) q^{45} +2.86688 q^{47} +(-1.43508 - 6.85132i) q^{49} +(-1.68922 + 0.00713944i) q^{51} +(-7.81416 + 4.51151i) q^{53} -9.18828i q^{55} +(3.64898 - 2.12736i) q^{57} +0.439455 q^{59} +3.94033i q^{61} +(7.84800 + 1.18698i) q^{63} -8.20791i q^{65} -3.65121 q^{67} +(-0.0247192 - 5.84865i) q^{69} -5.25055i q^{71} +(-14.0773 + 8.12752i) q^{73} +(-1.50530 - 2.58199i) q^{75} +(8.75624 - 3.34632i) q^{77} -6.99318 q^{79} +(-4.36760 + 7.86919i) q^{81} +(-7.23851 - 12.5375i) q^{83} +(-1.26463 + 2.19040i) q^{85} +(0.00226237 + 0.535285i) q^{87} +(-2.31101 + 4.00279i) q^{89} +(7.82197 - 2.98928i) q^{91} +(7.56950 + 4.32770i) q^{93} -6.32426i q^{95} +(-12.4805 + 7.20560i) q^{97} +(0.0898447 + 10.6286i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} - 8 q^{15} + 8 q^{21} + 12 q^{23} - 24 q^{25} + 18 q^{27} + 18 q^{29} + 10 q^{39} + 6 q^{41} + 6 q^{43} + 6 q^{45} - 36 q^{47} + 6 q^{49} + 12 q^{51} + 12 q^{53} + 4 q^{57} - 46 q^{63} + 54 q^{75}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.859678 + 1.50365i −0.496335 + 0.868131i
\(4\) 0 0
\(5\) 1.29668 + 2.24592i 0.579894 + 1.00441i 0.995491 + 0.0948574i \(0.0302395\pi\)
−0.415596 + 0.909549i \(0.636427\pi\)
\(6\) 0 0
\(7\) −1.66807 + 2.05367i −0.630471 + 0.776213i
\(8\) 0 0
\(9\) −1.52191 2.58530i −0.507302 0.861768i
\(10\) 0 0
\(11\) −3.06832 1.77150i −0.925134 0.534126i −0.0398645 0.999205i \(-0.512693\pi\)
−0.885269 + 0.465079i \(0.846026\pi\)
\(12\) 0 0
\(13\) −2.74094 1.58248i −0.760200 0.438902i 0.0691677 0.997605i \(-0.477966\pi\)
−0.829367 + 0.558703i \(0.811299\pi\)
\(14\) 0 0
\(15\) −4.49180 + 0.0189845i −1.15978 + 0.00490178i
\(16\) 0 0
\(17\) 0.487640 + 0.844616i 0.118270 + 0.204850i 0.919082 0.394066i \(-0.128932\pi\)
−0.800812 + 0.598916i \(0.795599\pi\)
\(18\) 0 0
\(19\) −2.11191 1.21931i −0.484506 0.279730i 0.237786 0.971318i \(-0.423578\pi\)
−0.722293 + 0.691588i \(0.756912\pi\)
\(20\) 0 0
\(21\) −1.65398 4.27368i −0.360929 0.932593i
\(22\) 0 0
\(23\) −2.92435 + 1.68838i −0.609770 + 0.352051i −0.772875 0.634558i \(-0.781182\pi\)
0.163106 + 0.986609i \(0.447849\pi\)
\(24\) 0 0
\(25\) −0.862775 + 1.49437i −0.172555 + 0.298874i
\(26\) 0 0
\(27\) 5.19573 0.0658821i 0.999920 0.0126790i
\(28\) 0 0
\(29\) 0.267645 0.154525i 0.0497004 0.0286946i −0.474944 0.880016i \(-0.657532\pi\)
0.524644 + 0.851322i \(0.324198\pi\)
\(30\) 0 0
\(31\) 5.03410i 0.904150i −0.891980 0.452075i \(-0.850684\pi\)
0.891980 0.452075i \(-0.149316\pi\)
\(32\) 0 0
\(33\) 5.30147 3.09076i 0.922868 0.538031i
\(34\) 0 0
\(35\) −6.77533 1.08340i −1.14524 0.183128i
\(36\) 0 0
\(37\) −3.47324 + 6.01583i −0.570997 + 0.988996i 0.425467 + 0.904974i \(0.360110\pi\)
−0.996464 + 0.0840218i \(0.973223\pi\)
\(38\) 0 0
\(39\) 4.73582 2.76098i 0.758338 0.442111i
\(40\) 0 0
\(41\) 6.08175 10.5339i 0.949810 1.64512i 0.203988 0.978973i \(-0.434610\pi\)
0.745822 0.666146i \(-0.232057\pi\)
\(42\) 0 0
\(43\) 5.47630 + 9.48523i 0.835128 + 1.44648i 0.893926 + 0.448214i \(0.147940\pi\)
−0.0587983 + 0.998270i \(0.518727\pi\)
\(44\) 0 0
\(45\) 3.83296 6.77040i 0.571384 1.00927i
\(46\) 0 0
\(47\) 2.86688 0.418177 0.209089 0.977897i \(-0.432950\pi\)
0.209089 + 0.977897i \(0.432950\pi\)
\(48\) 0 0
\(49\) −1.43508 6.85132i −0.205012 0.978760i
\(50\) 0 0
\(51\) −1.68922 + 0.00713944i −0.236538 + 0.000999722i
\(52\) 0 0
\(53\) −7.81416 + 4.51151i −1.07336 + 0.619703i −0.929097 0.369836i \(-0.879414\pi\)
−0.144261 + 0.989540i \(0.546080\pi\)
\(54\) 0 0
\(55\) 9.18828i 1.23895i
\(56\) 0 0
\(57\) 3.64898 2.12736i 0.483320 0.281775i
\(58\) 0 0
\(59\) 0.439455 0.0572121 0.0286061 0.999591i \(-0.490893\pi\)
0.0286061 + 0.999591i \(0.490893\pi\)
\(60\) 0 0
\(61\) 3.94033i 0.504507i 0.967661 + 0.252254i \(0.0811717\pi\)
−0.967661 + 0.252254i \(0.918828\pi\)
\(62\) 0 0
\(63\) 7.84800 + 1.18698i 0.988755 + 0.149546i
\(64\) 0 0
\(65\) 8.20791i 1.01807i
\(66\) 0 0
\(67\) −3.65121 −0.446067 −0.223033 0.974811i \(-0.571596\pi\)
−0.223033 + 0.974811i \(0.571596\pi\)
\(68\) 0 0
\(69\) −0.0247192 5.84865i −0.00297584 0.704095i
\(70\) 0 0
\(71\) 5.25055i 0.623126i −0.950226 0.311563i \(-0.899148\pi\)
0.950226 0.311563i \(-0.100852\pi\)
\(72\) 0 0
\(73\) −14.0773 + 8.12752i −1.64762 + 0.951254i −0.669607 + 0.742716i \(0.733537\pi\)
−0.978014 + 0.208539i \(0.933129\pi\)
\(74\) 0 0
\(75\) −1.50530 2.58199i −0.173817 0.298142i
\(76\) 0 0
\(77\) 8.75624 3.34632i 0.997866 0.381349i
\(78\) 0 0
\(79\) −6.99318 −0.786795 −0.393397 0.919369i \(-0.628700\pi\)
−0.393397 + 0.919369i \(0.628700\pi\)
\(80\) 0 0
\(81\) −4.36760 + 7.86919i −0.485288 + 0.874354i
\(82\) 0 0
\(83\) −7.23851 12.5375i −0.794529 1.37616i −0.923138 0.384469i \(-0.874384\pi\)
0.128609 0.991695i \(-0.458949\pi\)
\(84\) 0 0
\(85\) −1.26463 + 2.19040i −0.137168 + 0.237582i
\(86\) 0 0
\(87\) 0.00226237 + 0.535285i 0.000242552 + 0.0573886i
\(88\) 0 0
\(89\) −2.31101 + 4.00279i −0.244967 + 0.424295i −0.962122 0.272619i \(-0.912110\pi\)
0.717156 + 0.696913i \(0.245444\pi\)
\(90\) 0 0
\(91\) 7.82197 2.98928i 0.819965 0.313362i
\(92\) 0 0
\(93\) 7.56950 + 4.32770i 0.784921 + 0.448762i
\(94\) 0 0
\(95\) 6.32426i 0.648855i
\(96\) 0 0
\(97\) −12.4805 + 7.20560i −1.26720 + 0.731617i −0.974457 0.224574i \(-0.927901\pi\)
−0.292742 + 0.956192i \(0.594568\pi\)
\(98\) 0 0
\(99\) 0.0898447 + 10.6286i 0.00902973 + 1.06821i
\(100\) 0 0
\(101\) −4.31460 + 7.47311i −0.429319 + 0.743602i −0.996813 0.0797753i \(-0.974580\pi\)
0.567494 + 0.823378i \(0.307913\pi\)
\(102\) 0 0
\(103\) 5.28044 3.04866i 0.520297 0.300394i −0.216759 0.976225i \(-0.569549\pi\)
0.737056 + 0.675832i \(0.236215\pi\)
\(104\) 0 0
\(105\) 7.45365 9.25633i 0.727402 0.903325i
\(106\) 0 0
\(107\) −13.8841 8.01599i −1.34223 0.774935i −0.355093 0.934831i \(-0.615551\pi\)
−0.987134 + 0.159896i \(0.948884\pi\)
\(108\) 0 0
\(109\) 2.78659 + 4.82652i 0.266907 + 0.462297i 0.968062 0.250713i \(-0.0806649\pi\)
−0.701154 + 0.713010i \(0.747332\pi\)
\(110\) 0 0
\(111\) −6.05981 10.3942i −0.575172 0.986574i
\(112\) 0 0
\(113\) −14.2144 8.20669i −1.33718 0.772021i −0.350791 0.936454i \(-0.614087\pi\)
−0.986388 + 0.164433i \(0.947421\pi\)
\(114\) 0 0
\(115\) −7.58392 4.37858i −0.707204 0.408305i
\(116\) 0 0
\(117\) 0.0802585 + 9.49455i 0.00741990 + 0.877772i
\(118\) 0 0
\(119\) −2.54798 0.407431i −0.233573 0.0373492i
\(120\) 0 0
\(121\) 0.776398 + 1.34476i 0.0705816 + 0.122251i
\(122\) 0 0
\(123\) 10.6109 + 18.2006i 0.956754 + 1.64109i
\(124\) 0 0
\(125\) 8.49185 0.759534
\(126\) 0 0
\(127\) 18.0255 1.59951 0.799754 0.600328i \(-0.204963\pi\)
0.799754 + 0.600328i \(0.204963\pi\)
\(128\) 0 0
\(129\) −18.9703 + 0.0801775i −1.67024 + 0.00705923i
\(130\) 0 0
\(131\) −5.21967 9.04074i −0.456045 0.789893i 0.542703 0.839925i \(-0.317401\pi\)
−0.998748 + 0.0500320i \(0.984068\pi\)
\(132\) 0 0
\(133\) 6.02688 2.30326i 0.522597 0.199718i
\(134\) 0 0
\(135\) 6.88519 + 11.5838i 0.592583 + 0.996973i
\(136\) 0 0
\(137\) −3.33412 1.92496i −0.284853 0.164460i 0.350765 0.936463i \(-0.385922\pi\)
−0.635619 + 0.772003i \(0.719255\pi\)
\(138\) 0 0
\(139\) 18.7634 + 10.8330i 1.59149 + 0.918847i 0.993052 + 0.117677i \(0.0375447\pi\)
0.598437 + 0.801170i \(0.295789\pi\)
\(140\) 0 0
\(141\) −2.46459 + 4.31077i −0.207556 + 0.363032i
\(142\) 0 0
\(143\) 5.60672 + 9.71113i 0.468858 + 0.812085i
\(144\) 0 0
\(145\) 0.694102 + 0.400740i 0.0576420 + 0.0332796i
\(146\) 0 0
\(147\) 11.5357 + 3.73207i 0.951446 + 0.307816i
\(148\) 0 0
\(149\) 8.22975 4.75145i 0.674207 0.389254i −0.123462 0.992349i \(-0.539400\pi\)
0.797669 + 0.603096i \(0.206066\pi\)
\(150\) 0 0
\(151\) −10.6690 + 18.4793i −0.868232 + 1.50382i −0.00442944 + 0.999990i \(0.501410\pi\)
−0.863802 + 0.503831i \(0.831923\pi\)
\(152\) 0 0
\(153\) 1.44145 2.54612i 0.116534 0.205842i
\(154\) 0 0
\(155\) 11.3062 6.52763i 0.908134 0.524312i
\(156\) 0 0
\(157\) 2.43102i 0.194016i −0.995284 0.0970082i \(-0.969073\pi\)
0.995284 0.0970082i \(-0.0309273\pi\)
\(158\) 0 0
\(159\) −0.0660522 15.6282i −0.00523828 1.23940i
\(160\) 0 0
\(161\) 1.41067 8.82197i 0.111176 0.695269i
\(162\) 0 0
\(163\) −8.31072 + 14.3946i −0.650946 + 1.12747i 0.331948 + 0.943298i \(0.392294\pi\)
−0.982894 + 0.184174i \(0.941039\pi\)
\(164\) 0 0
\(165\) 13.8159 + 7.89896i 1.07557 + 0.614933i
\(166\) 0 0
\(167\) 10.6037 18.3661i 0.820535 1.42121i −0.0847489 0.996402i \(-0.527009\pi\)
0.905284 0.424806i \(-0.139658\pi\)
\(168\) 0 0
\(169\) −1.49150 2.58336i −0.114731 0.198720i
\(170\) 0 0
\(171\) 0.0618397 + 7.31562i 0.00472900 + 0.559440i
\(172\) 0 0
\(173\) −10.1812 −0.774066 −0.387033 0.922066i \(-0.626500\pi\)
−0.387033 + 0.922066i \(0.626500\pi\)
\(174\) 0 0
\(175\) −1.62977 4.26456i −0.123199 0.322371i
\(176\) 0 0
\(177\) −0.377789 + 0.660784i −0.0283964 + 0.0496676i
\(178\) 0 0
\(179\) −0.589482 + 0.340338i −0.0440600 + 0.0254380i −0.521868 0.853026i \(-0.674765\pi\)
0.477808 + 0.878464i \(0.341431\pi\)
\(180\) 0 0
\(181\) 19.1298i 1.42191i 0.703239 + 0.710954i \(0.251737\pi\)
−0.703239 + 0.710954i \(0.748263\pi\)
\(182\) 0 0
\(183\) −5.92486 3.38741i −0.437978 0.250405i
\(184\) 0 0
\(185\) −18.0148 −1.32447
\(186\) 0 0
\(187\) 3.45541i 0.252684i
\(188\) 0 0
\(189\) −8.53155 + 10.7802i −0.620579 + 0.784144i
\(190\) 0 0
\(191\) 21.1511i 1.53044i 0.643768 + 0.765221i \(0.277370\pi\)
−0.643768 + 0.765221i \(0.722630\pi\)
\(192\) 0 0
\(193\) 12.8284 0.923410 0.461705 0.887033i \(-0.347238\pi\)
0.461705 + 0.887033i \(0.347238\pi\)
\(194\) 0 0
\(195\) 12.3418 + 7.05616i 0.883815 + 0.505302i
\(196\) 0 0
\(197\) 22.2854i 1.58777i 0.608069 + 0.793884i \(0.291944\pi\)
−0.608069 + 0.793884i \(0.708056\pi\)
\(198\) 0 0
\(199\) −6.65637 + 3.84306i −0.471858 + 0.272427i −0.717017 0.697056i \(-0.754493\pi\)
0.245159 + 0.969483i \(0.421160\pi\)
\(200\) 0 0
\(201\) 3.13887 5.49013i 0.221399 0.387244i
\(202\) 0 0
\(203\) −0.129108 + 0.807412i −0.00906162 + 0.0566692i
\(204\) 0 0
\(205\) 31.5444 2.20316
\(206\) 0 0
\(207\) 8.81556 + 4.99079i 0.612724 + 0.346884i
\(208\) 0 0
\(209\) 4.32002 + 7.48250i 0.298822 + 0.517575i
\(210\) 0 0
\(211\) −8.33679 + 14.4397i −0.573928 + 0.994073i 0.422229 + 0.906489i \(0.361248\pi\)
−0.996157 + 0.0875838i \(0.972085\pi\)
\(212\) 0 0
\(213\) 7.89498 + 4.51378i 0.540955 + 0.309279i
\(214\) 0 0
\(215\) −14.2021 + 24.5987i −0.968572 + 1.67762i
\(216\) 0 0
\(217\) 10.3383 + 8.39722i 0.701813 + 0.570041i
\(218\) 0 0
\(219\) −0.118994 28.1543i −0.00804084 1.90249i
\(220\) 0 0
\(221\) 3.08672i 0.207635i
\(222\) 0 0
\(223\) −4.45390 + 2.57146i −0.298255 + 0.172198i −0.641659 0.766990i \(-0.721753\pi\)
0.343404 + 0.939188i \(0.388420\pi\)
\(224\) 0 0
\(225\) 5.17646 0.0437572i 0.345098 0.00291715i
\(226\) 0 0
\(227\) −5.99271 + 10.3797i −0.397750 + 0.688924i −0.993448 0.114285i \(-0.963542\pi\)
0.595698 + 0.803209i \(0.296876\pi\)
\(228\) 0 0
\(229\) −2.25955 + 1.30455i −0.149316 + 0.0862074i −0.572796 0.819698i \(-0.694141\pi\)
0.423481 + 0.905905i \(0.360808\pi\)
\(230\) 0 0
\(231\) −2.49585 + 16.0430i −0.164215 + 1.05556i
\(232\) 0 0
\(233\) −3.13306 1.80887i −0.205253 0.118503i 0.393850 0.919175i \(-0.371143\pi\)
−0.599103 + 0.800672i \(0.704476\pi\)
\(234\) 0 0
\(235\) 3.71743 + 6.43878i 0.242499 + 0.420020i
\(236\) 0 0
\(237\) 6.01189 10.5153i 0.390514 0.683041i
\(238\) 0 0
\(239\) −12.8069 7.39409i −0.828412 0.478284i 0.0248967 0.999690i \(-0.492074\pi\)
−0.853309 + 0.521406i \(0.825408\pi\)
\(240\) 0 0
\(241\) −5.57890 3.22098i −0.359368 0.207481i 0.309435 0.950921i \(-0.399860\pi\)
−0.668804 + 0.743439i \(0.733193\pi\)
\(242\) 0 0
\(243\) −8.07775 13.3323i −0.518188 0.855267i
\(244\) 0 0
\(245\) 13.5267 12.1071i 0.864187 0.773492i
\(246\) 0 0
\(247\) 3.85909 + 6.68413i 0.245548 + 0.425301i
\(248\) 0 0
\(249\) 25.0747 0.105978i 1.58904 0.00671606i
\(250\) 0 0
\(251\) 6.21012 0.391979 0.195990 0.980606i \(-0.437208\pi\)
0.195990 + 0.980606i \(0.437208\pi\)
\(252\) 0 0
\(253\) 11.9638 0.752158
\(254\) 0 0
\(255\) −2.20642 3.78459i −0.138171 0.237000i
\(256\) 0 0
\(257\) 10.5883 + 18.3395i 0.660482 + 1.14399i 0.980489 + 0.196573i \(0.0629813\pi\)
−0.320007 + 0.947415i \(0.603685\pi\)
\(258\) 0 0
\(259\) −6.56089 17.1677i −0.407674 1.06675i
\(260\) 0 0
\(261\) −0.806825 0.456771i −0.0499412 0.0282734i
\(262\) 0 0
\(263\) 14.8592 + 8.57897i 0.916258 + 0.529002i 0.882439 0.470426i \(-0.155900\pi\)
0.0338189 + 0.999428i \(0.489233\pi\)
\(264\) 0 0
\(265\) −20.2650 11.7000i −1.24487 0.718725i
\(266\) 0 0
\(267\) −4.03205 6.91605i −0.246758 0.423255i
\(268\) 0 0
\(269\) −10.8061 18.7166i −0.658857 1.14117i −0.980912 0.194453i \(-0.937707\pi\)
0.322055 0.946721i \(-0.395627\pi\)
\(270\) 0 0
\(271\) −21.8475 12.6137i −1.32714 0.766227i −0.342287 0.939595i \(-0.611202\pi\)
−0.984857 + 0.173368i \(0.944535\pi\)
\(272\) 0 0
\(273\) −2.22955 + 14.3313i −0.134939 + 0.867370i
\(274\) 0 0
\(275\) 5.29454 3.05680i 0.319273 0.184332i
\(276\) 0 0
\(277\) −11.2256 + 19.4434i −0.674482 + 1.16824i 0.302137 + 0.953264i \(0.402300\pi\)
−0.976620 + 0.214973i \(0.931033\pi\)
\(278\) 0 0
\(279\) −13.0147 + 7.66143i −0.779168 + 0.458678i
\(280\) 0 0
\(281\) 10.3691 5.98662i 0.618571 0.357132i −0.157742 0.987480i \(-0.550421\pi\)
0.776312 + 0.630349i \(0.217088\pi\)
\(282\) 0 0
\(283\) 21.7299i 1.29171i 0.763460 + 0.645855i \(0.223499\pi\)
−0.763460 + 0.645855i \(0.776501\pi\)
\(284\) 0 0
\(285\) 9.50945 + 5.43682i 0.563291 + 0.322050i
\(286\) 0 0
\(287\) 11.4883 + 30.0612i 0.678134 + 1.77445i
\(288\) 0 0
\(289\) 8.02442 13.8987i 0.472024 0.817570i
\(290\) 0 0
\(291\) −0.105496 24.9607i −0.00618427 1.46322i
\(292\) 0 0
\(293\) 5.38110 9.32035i 0.314367 0.544500i −0.664935 0.746901i \(-0.731541\pi\)
0.979303 + 0.202400i \(0.0648743\pi\)
\(294\) 0 0
\(295\) 0.569833 + 0.986980i 0.0331770 + 0.0574642i
\(296\) 0 0
\(297\) −16.0589 9.00208i −0.931832 0.522353i
\(298\) 0 0
\(299\) 10.6873 0.618063
\(300\) 0 0
\(301\) −28.6143 4.57554i −1.64930 0.263730i
\(302\) 0 0
\(303\) −7.52775 12.9121i −0.432458 0.741781i
\(304\) 0 0
\(305\) −8.84966 + 5.10935i −0.506730 + 0.292561i
\(306\) 0 0
\(307\) 4.22117i 0.240915i −0.992719 0.120457i \(-0.961564\pi\)
0.992719 0.120457i \(-0.0384361\pi\)
\(308\) 0 0
\(309\) 0.0446349 + 10.5608i 0.00253919 + 0.600782i
\(310\) 0 0
\(311\) 4.18531 0.237327 0.118664 0.992935i \(-0.462139\pi\)
0.118664 + 0.992935i \(0.462139\pi\)
\(312\) 0 0
\(313\) 22.0395i 1.24574i −0.782324 0.622872i \(-0.785966\pi\)
0.782324 0.622872i \(-0.214034\pi\)
\(314\) 0 0
\(315\) 7.51050 + 19.1651i 0.423169 + 1.07983i
\(316\) 0 0
\(317\) 9.71612i 0.545711i −0.962055 0.272856i \(-0.912032\pi\)
0.962055 0.272856i \(-0.0879682\pi\)
\(318\) 0 0
\(319\) −1.09496 −0.0613061
\(320\) 0 0
\(321\) 23.9891 13.9856i 1.33894 0.780601i
\(322\) 0 0
\(323\) 2.37834i 0.132335i
\(324\) 0 0
\(325\) 4.72963 2.73065i 0.262353 0.151469i
\(326\) 0 0
\(327\) −9.65296 + 0.0407980i −0.533810 + 0.00225613i
\(328\) 0 0
\(329\) −4.78215 + 5.88761i −0.263649 + 0.324594i
\(330\) 0 0
\(331\) −27.7176 −1.52350 −0.761749 0.647872i \(-0.775659\pi\)
−0.761749 + 0.647872i \(0.775659\pi\)
\(332\) 0 0
\(333\) 20.8387 0.176152i 1.14195 0.00965305i
\(334\) 0 0
\(335\) −4.73447 8.20034i −0.258672 0.448032i
\(336\) 0 0
\(337\) 6.29141 10.8970i 0.342715 0.593600i −0.642221 0.766520i \(-0.721987\pi\)
0.984936 + 0.172920i \(0.0553201\pi\)
\(338\) 0 0
\(339\) 24.5598 14.3183i 1.33390 0.777666i
\(340\) 0 0
\(341\) −8.91788 + 15.4462i −0.482930 + 0.836460i
\(342\) 0 0
\(343\) 16.4641 + 8.48130i 0.888979 + 0.457947i
\(344\) 0 0
\(345\) 13.1036 7.63937i 0.705472 0.411290i
\(346\) 0 0
\(347\) 16.7223i 0.897700i 0.893607 + 0.448850i \(0.148166\pi\)
−0.893607 + 0.448850i \(0.851834\pi\)
\(348\) 0 0
\(349\) 13.9900 8.07714i 0.748869 0.432359i −0.0764164 0.997076i \(-0.524348\pi\)
0.825285 + 0.564717i \(0.191015\pi\)
\(350\) 0 0
\(351\) −14.3455 8.04158i −0.765704 0.429228i
\(352\) 0 0
\(353\) 7.82831 13.5590i 0.416659 0.721674i −0.578942 0.815369i \(-0.696534\pi\)
0.995601 + 0.0936943i \(0.0298676\pi\)
\(354\) 0 0
\(355\) 11.7923 6.80830i 0.625872 0.361347i
\(356\) 0 0
\(357\) 2.80307 3.48100i 0.148354 0.184234i
\(358\) 0 0
\(359\) 19.1396 + 11.0502i 1.01015 + 0.583209i 0.911235 0.411887i \(-0.135130\pi\)
0.0989127 + 0.995096i \(0.468464\pi\)
\(360\) 0 0
\(361\) −6.52655 11.3043i −0.343502 0.594964i
\(362\) 0 0
\(363\) −2.68950 + 0.0113671i −0.141162 + 0.000596618i
\(364\) 0 0
\(365\) −36.5075 21.0776i −1.91089 1.10325i
\(366\) 0 0
\(367\) 11.3893 + 6.57564i 0.594519 + 0.343246i 0.766882 0.641788i \(-0.221807\pi\)
−0.172363 + 0.985033i \(0.555140\pi\)
\(368\) 0 0
\(369\) −36.4892 + 0.308447i −1.89955 + 0.0160571i
\(370\) 0 0
\(371\) 3.76944 23.5732i 0.195700 1.22386i
\(372\) 0 0
\(373\) 2.21915 + 3.84367i 0.114903 + 0.199018i 0.917741 0.397179i \(-0.130011\pi\)
−0.802838 + 0.596197i \(0.796678\pi\)
\(374\) 0 0
\(375\) −7.30026 + 12.7687i −0.376984 + 0.659375i
\(376\) 0 0
\(377\) −0.978132 −0.0503763
\(378\) 0 0
\(379\) −14.8875 −0.764718 −0.382359 0.924014i \(-0.624888\pi\)
−0.382359 + 0.924014i \(0.624888\pi\)
\(380\) 0 0
\(381\) −15.4962 + 27.1040i −0.793892 + 1.38858i
\(382\) 0 0
\(383\) −2.81901 4.88267i −0.144045 0.249493i 0.784971 0.619532i \(-0.212678\pi\)
−0.929016 + 0.370039i \(0.879344\pi\)
\(384\) 0 0
\(385\) 18.8696 + 15.3267i 0.961686 + 0.781121i
\(386\) 0 0
\(387\) 16.1878 28.5935i 0.822871 1.45349i
\(388\) 0 0
\(389\) 33.3523 + 19.2560i 1.69103 + 0.976317i 0.953688 + 0.300797i \(0.0972528\pi\)
0.737342 + 0.675519i \(0.236081\pi\)
\(390\) 0 0
\(391\) −2.85206 1.64664i −0.144235 0.0832741i
\(392\) 0 0
\(393\) 18.0813 0.0764202i 0.912082 0.00385489i
\(394\) 0 0
\(395\) −9.06795 15.7061i −0.456258 0.790262i
\(396\) 0 0
\(397\) 2.50780 + 1.44788i 0.125863 + 0.0726669i 0.561609 0.827402i \(-0.310182\pi\)
−0.435747 + 0.900069i \(0.643516\pi\)
\(398\) 0 0
\(399\) −1.71789 + 11.0424i −0.0860019 + 0.552810i
\(400\) 0 0
\(401\) −22.2857 + 12.8666i −1.11289 + 0.642530i −0.939577 0.342337i \(-0.888782\pi\)
−0.173316 + 0.984866i \(0.555448\pi\)
\(402\) 0 0
\(403\) −7.96637 + 13.7981i −0.396833 + 0.687335i
\(404\) 0 0
\(405\) −23.3370 + 0.394568i −1.15962 + 0.0196062i
\(406\) 0 0
\(407\) 21.3140 12.3057i 1.05650 0.609969i
\(408\) 0 0
\(409\) 28.8575i 1.42691i 0.700699 + 0.713457i \(0.252871\pi\)
−0.700699 + 0.713457i \(0.747129\pi\)
\(410\) 0 0
\(411\) 5.76073 3.35850i 0.284156 0.165663i
\(412\) 0 0
\(413\) −0.733041 + 0.902492i −0.0360706 + 0.0444088i
\(414\) 0 0
\(415\) 18.7721 32.5142i 0.921486 1.59606i
\(416\) 0 0
\(417\) −32.4195 + 18.9006i −1.58759 + 0.925565i
\(418\) 0 0
\(419\) 6.07870 10.5286i 0.296964 0.514357i −0.678476 0.734623i \(-0.737359\pi\)
0.975440 + 0.220266i \(0.0706925\pi\)
\(420\) 0 0
\(421\) −13.9914 24.2338i −0.681898 1.18108i −0.974401 0.224817i \(-0.927821\pi\)
0.292503 0.956265i \(-0.405512\pi\)
\(422\) 0 0
\(423\) −4.36312 7.41175i −0.212142 0.360372i
\(424\) 0 0
\(425\) −1.68289 −0.0816323
\(426\) 0 0
\(427\) −8.09211 6.57274i −0.391605 0.318077i
\(428\) 0 0
\(429\) −19.4221 + 0.0820870i −0.937707 + 0.00396320i
\(430\) 0 0
\(431\) 13.9975 8.08147i 0.674236 0.389271i −0.123444 0.992352i \(-0.539394\pi\)
0.797680 + 0.603081i \(0.206060\pi\)
\(432\) 0 0
\(433\) 5.27197i 0.253355i −0.991944 0.126677i \(-0.959569\pi\)
0.991944 0.126677i \(-0.0404313\pi\)
\(434\) 0 0
\(435\) −1.19927 + 0.699176i −0.0575008 + 0.0335229i
\(436\) 0 0
\(437\) 8.23464 0.393916
\(438\) 0 0
\(439\) 10.5108i 0.501654i −0.968032 0.250827i \(-0.919298\pi\)
0.968032 0.250827i \(-0.0807025\pi\)
\(440\) 0 0
\(441\) −15.5287 + 14.1372i −0.739461 + 0.673200i
\(442\) 0 0
\(443\) 5.95601i 0.282978i 0.989940 + 0.141489i \(0.0451891\pi\)
−0.989940 + 0.141489i \(0.954811\pi\)
\(444\) 0 0
\(445\) −11.9866 −0.568219
\(446\) 0 0
\(447\) 0.0695651 + 16.4593i 0.00329031 + 0.778500i
\(448\) 0 0
\(449\) 1.85897i 0.0877304i 0.999037 + 0.0438652i \(0.0139672\pi\)
−0.999037 + 0.0438652i \(0.986033\pi\)
\(450\) 0 0
\(451\) −37.3215 + 21.5476i −1.75740 + 1.01464i
\(452\) 0 0
\(453\) −18.6144 31.9286i −0.874580 1.50014i
\(454\) 0 0
\(455\) 16.8563 + 13.6914i 0.790236 + 0.641862i
\(456\) 0 0
\(457\) 29.7493 1.39162 0.695808 0.718228i \(-0.255047\pi\)
0.695808 + 0.718228i \(0.255047\pi\)
\(458\) 0 0
\(459\) 2.58929 + 4.35628i 0.120858 + 0.203334i
\(460\) 0 0
\(461\) 14.9738 + 25.9353i 0.697398 + 1.20793i 0.969366 + 0.245622i \(0.0789921\pi\)
−0.271968 + 0.962306i \(0.587675\pi\)
\(462\) 0 0
\(463\) −7.57406 + 13.1187i −0.351997 + 0.609676i −0.986599 0.163163i \(-0.947830\pi\)
0.634603 + 0.772839i \(0.281164\pi\)
\(464\) 0 0
\(465\) 0.0955698 + 22.6122i 0.00443194 + 1.04861i
\(466\) 0 0
\(467\) 5.85158 10.1352i 0.270779 0.469002i −0.698283 0.715822i \(-0.746052\pi\)
0.969061 + 0.246820i \(0.0793855\pi\)
\(468\) 0 0
\(469\) 6.09048 7.49837i 0.281232 0.346243i
\(470\) 0 0
\(471\) 3.65539 + 2.08989i 0.168432 + 0.0962972i
\(472\) 0 0
\(473\) 38.8050i 1.78425i
\(474\) 0 0
\(475\) 3.64421 2.10399i 0.167208 0.0965375i
\(476\) 0 0
\(477\) 23.5561 + 13.3359i 1.07856 + 0.610608i
\(478\) 0 0
\(479\) −6.07088 + 10.5151i −0.277385 + 0.480446i −0.970734 0.240156i \(-0.922801\pi\)
0.693349 + 0.720602i \(0.256135\pi\)
\(480\) 0 0
\(481\) 19.0399 10.9927i 0.868144 0.501223i
\(482\) 0 0
\(483\) 12.0524 + 9.70520i 0.548404 + 0.441602i
\(484\) 0 0
\(485\) −32.3664 18.6868i −1.46968 0.848522i
\(486\) 0 0
\(487\) 5.22070 + 9.04251i 0.236572 + 0.409755i 0.959728 0.280929i \(-0.0906426\pi\)
−0.723156 + 0.690685i \(0.757309\pi\)
\(488\) 0 0
\(489\) −14.4998 24.8711i −0.655705 1.12471i
\(490\) 0 0
\(491\) −20.9972 12.1227i −0.947589 0.547091i −0.0552576 0.998472i \(-0.517598\pi\)
−0.892331 + 0.451382i \(0.850931\pi\)
\(492\) 0 0
\(493\) 0.261029 + 0.150705i 0.0117561 + 0.00678741i
\(494\) 0 0
\(495\) −23.7545 + 13.9837i −1.06769 + 0.628521i
\(496\) 0 0
\(497\) 10.7829 + 8.75829i 0.483678 + 0.392863i
\(498\) 0 0
\(499\) −0.174119 0.301584i −0.00779466 0.0135007i 0.862102 0.506735i \(-0.169148\pi\)
−0.869896 + 0.493234i \(0.835814\pi\)
\(500\) 0 0
\(501\) 18.5003 + 31.7331i 0.826535 + 1.41773i
\(502\) 0 0
\(503\) −32.3099 −1.44063 −0.720314 0.693648i \(-0.756002\pi\)
−0.720314 + 0.693648i \(0.756002\pi\)
\(504\) 0 0
\(505\) −22.3787 −0.995839
\(506\) 0 0
\(507\) 5.16667 0.0218368i 0.229460 0.000969806i
\(508\) 0 0
\(509\) −6.85232 11.8686i −0.303724 0.526065i 0.673253 0.739413i \(-0.264897\pi\)
−0.976976 + 0.213347i \(0.931563\pi\)
\(510\) 0 0
\(511\) 6.79069 42.4673i 0.300402 1.87864i
\(512\) 0 0
\(513\) −11.0533 6.19610i −0.488014 0.273564i
\(514\) 0 0
\(515\) 13.6941 + 7.90630i 0.603434 + 0.348393i
\(516\) 0 0
\(517\) −8.79650 5.07866i −0.386870 0.223359i
\(518\) 0 0
\(519\) 8.75259 15.3090i 0.384196 0.671990i
\(520\) 0 0
\(521\) 8.73516 + 15.1297i 0.382694 + 0.662846i 0.991446 0.130514i \(-0.0416629\pi\)
−0.608752 + 0.793361i \(0.708330\pi\)
\(522\) 0 0
\(523\) 23.3238 + 13.4660i 1.01988 + 0.588827i 0.914069 0.405559i \(-0.132923\pi\)
0.105810 + 0.994386i \(0.466257\pi\)
\(524\) 0 0
\(525\) 7.81347 + 1.21556i 0.341008 + 0.0530514i
\(526\) 0 0
\(527\) 4.25188 2.45482i 0.185215 0.106934i
\(528\) 0 0
\(529\) −5.79877 + 10.0438i −0.252120 + 0.436685i
\(530\) 0 0
\(531\) −0.668809 1.13612i −0.0290238 0.0493036i
\(532\) 0 0
\(533\) −33.3394 + 19.2485i −1.44409 + 0.833746i
\(534\) 0 0
\(535\) 41.5768i 1.79752i
\(536\) 0 0
\(537\) −0.00498282 1.17895i −0.000215025 0.0508756i
\(538\) 0 0
\(539\) −7.73379 + 23.5643i −0.333118 + 1.01499i
\(540\) 0 0
\(541\) −7.43375 + 12.8756i −0.319602 + 0.553567i −0.980405 0.196993i \(-0.936882\pi\)
0.660803 + 0.750559i \(0.270216\pi\)
\(542\) 0 0
\(543\) −28.7645 16.4455i −1.23440 0.705743i
\(544\) 0 0
\(545\) −7.22666 + 12.5169i −0.309556 + 0.536167i
\(546\) 0 0
\(547\) 4.17953 + 7.23915i 0.178704 + 0.309524i 0.941437 0.337190i \(-0.109476\pi\)
−0.762733 + 0.646713i \(0.776143\pi\)
\(548\) 0 0
\(549\) 10.1869 5.99681i 0.434768 0.255938i
\(550\) 0 0
\(551\) −0.753658 −0.0321069
\(552\) 0 0
\(553\) 11.6651 14.3617i 0.496052 0.610720i
\(554\) 0 0
\(555\) 15.4869 27.0878i 0.657382 1.14981i
\(556\) 0 0
\(557\) 0.617917 0.356754i 0.0261820 0.0151162i −0.486852 0.873485i \(-0.661855\pi\)
0.513034 + 0.858368i \(0.328522\pi\)
\(558\) 0 0
\(559\) 34.6646i 1.46616i
\(560\) 0 0
\(561\) 5.19571 + 2.97054i 0.219363 + 0.125416i
\(562\) 0 0
\(563\) −27.1877 −1.14582 −0.572912 0.819617i \(-0.694187\pi\)
−0.572912 + 0.819617i \(0.694187\pi\)
\(564\) 0 0
\(565\) 42.5659i 1.79076i
\(566\) 0 0
\(567\) −8.87522 22.0959i −0.372724 0.927942i
\(568\) 0 0
\(569\) 1.75321i 0.0734985i −0.999325 0.0367492i \(-0.988300\pi\)
0.999325 0.0367492i \(-0.0117003\pi\)
\(570\) 0 0
\(571\) −0.457634 −0.0191514 −0.00957570 0.999954i \(-0.503048\pi\)
−0.00957570 + 0.999954i \(0.503048\pi\)
\(572\) 0 0
\(573\) −31.8038 18.1832i −1.32862 0.759612i
\(574\) 0 0
\(575\) 5.82675i 0.242992i
\(576\) 0 0
\(577\) 19.8800 11.4777i 0.827617 0.477825i −0.0254193 0.999677i \(-0.508092\pi\)
0.853036 + 0.521852i \(0.174759\pi\)
\(578\) 0 0
\(579\) −11.0283 + 19.2894i −0.458321 + 0.801641i
\(580\) 0 0
\(581\) 37.8221 + 6.04790i 1.56912 + 0.250909i
\(582\) 0 0
\(583\) 31.9685 1.32400
\(584\) 0 0
\(585\) −21.2199 + 12.4917i −0.877337 + 0.516467i
\(586\) 0 0
\(587\) 2.81513 + 4.87594i 0.116193 + 0.201252i 0.918256 0.395987i \(-0.129598\pi\)
−0.802063 + 0.597239i \(0.796264\pi\)
\(588\) 0 0
\(589\) −6.13814 + 10.6316i −0.252918 + 0.438066i
\(590\) 0 0
\(591\) −33.5094 19.1583i −1.37839 0.788066i
\(592\) 0 0
\(593\) −1.35121 + 2.34037i −0.0554876 + 0.0961074i −0.892435 0.451176i \(-0.851005\pi\)
0.836947 + 0.547283i \(0.184338\pi\)
\(594\) 0 0
\(595\) −2.38886 6.25086i −0.0979337 0.256260i
\(596\) 0 0
\(597\) −0.0562655 13.3126i −0.00230279 0.544850i
\(598\) 0 0
\(599\) 11.9966i 0.490168i −0.969502 0.245084i \(-0.921184\pi\)
0.969502 0.245084i \(-0.0788156\pi\)
\(600\) 0 0
\(601\) −26.7530 + 15.4459i −1.09128 + 0.630050i −0.933917 0.357491i \(-0.883632\pi\)
−0.157363 + 0.987541i \(0.550299\pi\)
\(602\) 0 0
\(603\) 5.55681 + 9.43950i 0.226291 + 0.384406i
\(604\) 0 0
\(605\) −2.01348 + 3.48746i −0.0818598 + 0.141785i
\(606\) 0 0
\(607\) −5.95361 + 3.43732i −0.241649 + 0.139516i −0.615935 0.787797i \(-0.711221\pi\)
0.374285 + 0.927314i \(0.377888\pi\)
\(608\) 0 0
\(609\) −1.10307 0.888247i −0.0446987 0.0359936i
\(610\) 0 0
\(611\) −7.85794 4.53678i −0.317898 0.183539i
\(612\) 0 0
\(613\) −16.6455 28.8308i −0.672304 1.16447i −0.977249 0.212095i \(-0.931971\pi\)
0.304945 0.952370i \(-0.401362\pi\)
\(614\) 0 0
\(615\) −27.1180 + 47.4317i −1.09351 + 1.91263i
\(616\) 0 0
\(617\) 18.0757 + 10.4360i 0.727702 + 0.420139i 0.817581 0.575814i \(-0.195315\pi\)
−0.0898790 + 0.995953i \(0.528648\pi\)
\(618\) 0 0
\(619\) 16.7876 + 9.69230i 0.674749 + 0.389567i 0.797874 0.602825i \(-0.205958\pi\)
−0.123125 + 0.992391i \(0.539291\pi\)
\(620\) 0 0
\(621\) −15.0829 + 8.96502i −0.605257 + 0.359754i
\(622\) 0 0
\(623\) −4.36546 11.4230i −0.174898 0.457652i
\(624\) 0 0
\(625\) 15.3251 + 26.5439i 0.613005 + 1.06175i
\(626\) 0 0
\(627\) −14.9649 + 0.0632486i −0.597639 + 0.00252591i
\(628\) 0 0
\(629\) −6.77476 −0.270127
\(630\) 0 0
\(631\) 27.3629 1.08930 0.544649 0.838664i \(-0.316663\pi\)
0.544649 + 0.838664i \(0.316663\pi\)
\(632\) 0 0
\(633\) −14.5453 24.9491i −0.578125 0.991639i
\(634\) 0 0
\(635\) 23.3734 + 40.4839i 0.927546 + 1.60656i
\(636\) 0 0
\(637\) −6.90861 + 21.0500i −0.273729 + 0.834033i
\(638\) 0 0
\(639\) −13.5743 + 7.99085i −0.536990 + 0.316113i
\(640\) 0 0
\(641\) −30.0686 17.3601i −1.18764 0.685683i −0.229868 0.973222i \(-0.573830\pi\)
−0.957769 + 0.287539i \(0.907163\pi\)
\(642\) 0 0
\(643\) 3.52980 + 2.03793i 0.139202 + 0.0803681i 0.567983 0.823040i \(-0.307724\pi\)
−0.428782 + 0.903408i \(0.641057\pi\)
\(644\) 0 0
\(645\) −24.7785 42.5018i −0.975654 1.67351i
\(646\) 0 0
\(647\) −6.53976 11.3272i −0.257105 0.445318i 0.708360 0.705851i \(-0.249435\pi\)
−0.965465 + 0.260533i \(0.916102\pi\)
\(648\) 0 0
\(649\) −1.34839 0.778492i −0.0529288 0.0305585i
\(650\) 0 0
\(651\) −21.5141 + 8.32631i −0.843204 + 0.326334i
\(652\) 0 0
\(653\) −5.40555 + 3.12090i −0.211535 + 0.122130i −0.602025 0.798477i \(-0.705639\pi\)
0.390489 + 0.920607i \(0.372306\pi\)
\(654\) 0 0
\(655\) 13.5365 23.4459i 0.528916 0.916109i
\(656\) 0 0
\(657\) 42.4364 + 24.0247i 1.65560 + 0.937293i
\(658\) 0 0
\(659\) −1.79139 + 1.03426i −0.0697827 + 0.0402891i −0.534485 0.845178i \(-0.679495\pi\)
0.464703 + 0.885467i \(0.346161\pi\)
\(660\) 0 0
\(661\) 15.6238i 0.607695i −0.952721 0.303848i \(-0.901729\pi\)
0.952721 0.303848i \(-0.0982714\pi\)
\(662\) 0 0
\(663\) 4.64134 + 2.65359i 0.180255 + 0.103057i
\(664\) 0 0
\(665\) 12.9879 + 10.5493i 0.503649 + 0.409085i
\(666\) 0 0
\(667\) −0.521792 + 0.903771i −0.0202039 + 0.0349941i
\(668\) 0 0
\(669\) −0.0376483 8.90772i −0.00145557 0.344392i
\(670\) 0 0
\(671\) 6.98027 12.0902i 0.269470 0.466736i
\(672\) 0 0
\(673\) −15.1108 26.1727i −0.582478 1.00888i −0.995185 0.0980180i \(-0.968750\pi\)
0.412706 0.910864i \(-0.364584\pi\)
\(674\) 0 0
\(675\) −4.38430 + 7.82119i −0.168752 + 0.301038i
\(676\) 0 0
\(677\) 28.6876 1.10256 0.551278 0.834322i \(-0.314141\pi\)
0.551278 + 0.834322i \(0.314141\pi\)
\(678\) 0 0
\(679\) 6.02040 37.6501i 0.231042 1.44488i
\(680\) 0 0
\(681\) −10.4556 17.9341i −0.400658 0.687236i
\(682\) 0 0
\(683\) 7.48345 4.32057i 0.286346 0.165322i −0.349947 0.936770i \(-0.613800\pi\)
0.636293 + 0.771448i \(0.280467\pi\)
\(684\) 0 0
\(685\) 9.98423i 0.381478i
\(686\) 0 0
\(687\) −0.0190997 4.51907i −0.000728701 0.172413i
\(688\) 0 0
\(689\) 28.5575 1.08796
\(690\) 0 0
\(691\) 12.2390i 0.465594i −0.972525 0.232797i \(-0.925212\pi\)
0.972525 0.232797i \(-0.0747878\pi\)
\(692\) 0 0
\(693\) −21.9774 17.5447i −0.834854 0.666469i
\(694\) 0 0
\(695\) 56.1881i 2.13134i
\(696\) 0 0
\(697\) 11.8628 0.449336
\(698\) 0 0
\(699\) 5.41332 3.15596i 0.204751 0.119369i
\(700\) 0 0
\(701\) 3.05683i 0.115455i 0.998332 + 0.0577274i \(0.0183854\pi\)
−0.998332 + 0.0577274i \(0.981615\pi\)
\(702\) 0 0
\(703\) 14.6704 8.46994i 0.553303 0.319450i
\(704\) 0 0
\(705\) −12.8774 + 0.0544262i −0.484993 + 0.00204981i
\(706\) 0 0
\(707\) −8.15021 21.3264i −0.306520 0.802063i
\(708\) 0 0
\(709\) −12.0820 −0.453750 −0.226875 0.973924i \(-0.572851\pi\)
−0.226875 + 0.973924i \(0.572851\pi\)
\(710\) 0 0
\(711\) 10.6430 + 18.0795i 0.399143 + 0.678035i
\(712\) 0 0
\(713\) 8.49945 + 14.7215i 0.318307 + 0.551324i
\(714\) 0 0
\(715\) −14.5403 + 25.1845i −0.543776 + 0.941847i
\(716\) 0 0
\(717\) 22.1279 12.9006i 0.826383 0.481781i
\(718\) 0 0
\(719\) −6.27436 + 10.8675i −0.233994 + 0.405290i −0.958980 0.283474i \(-0.908513\pi\)
0.724986 + 0.688764i \(0.241846\pi\)
\(720\) 0 0
\(721\) −2.54721 + 15.9296i −0.0948630 + 0.593250i
\(722\) 0 0
\(723\) 9.63927 5.61969i 0.358488 0.208998i
\(724\) 0 0
\(725\) 0.533281i 0.0198056i
\(726\) 0 0
\(727\) 16.2736 9.39555i 0.603553 0.348462i −0.166885 0.985976i \(-0.553371\pi\)
0.770438 + 0.637515i \(0.220038\pi\)
\(728\) 0 0
\(729\) 26.9913 0.684612i 0.999678 0.0253560i
\(730\) 0 0
\(731\) −5.34092 + 9.25075i −0.197541 + 0.342151i
\(732\) 0 0
\(733\) 30.6628 17.7032i 1.13256 0.653882i 0.187981 0.982173i \(-0.439806\pi\)
0.944577 + 0.328290i \(0.106472\pi\)
\(734\) 0 0
\(735\) 6.57617 + 30.7475i 0.242566 + 1.13414i
\(736\) 0 0
\(737\) 11.2031 + 6.46811i 0.412671 + 0.238256i
\(738\) 0 0
\(739\) −11.1371 19.2900i −0.409684 0.709593i 0.585170 0.810910i \(-0.301028\pi\)
−0.994854 + 0.101317i \(0.967694\pi\)
\(740\) 0 0
\(741\) −13.3681 + 0.0565002i −0.491091 + 0.00207559i
\(742\) 0 0
\(743\) 8.68932 + 5.01678i 0.318780 + 0.184048i 0.650849 0.759207i \(-0.274413\pi\)
−0.332069 + 0.943255i \(0.607747\pi\)
\(744\) 0 0
\(745\) 21.3428 + 12.3222i 0.781938 + 0.451452i
\(746\) 0 0
\(747\) −21.3968 + 37.7946i −0.782868 + 1.38283i
\(748\) 0 0
\(749\) 39.6218 15.1421i 1.44775 0.553279i
\(750\) 0 0
\(751\) 16.7771 + 29.0587i 0.612203 + 1.06037i 0.990868 + 0.134833i \(0.0430499\pi\)
−0.378665 + 0.925534i \(0.623617\pi\)
\(752\) 0 0
\(753\) −5.33870 + 9.33783i −0.194553 + 0.340289i
\(754\) 0 0
\(755\) −55.3373 −2.01393
\(756\) 0 0
\(757\) 0.0340541 0.00123772 0.000618859 1.00000i \(-0.499803\pi\)
0.000618859 1.00000i \(0.499803\pi\)
\(758\) 0 0
\(759\) −10.2850 + 17.9893i −0.373323 + 0.652972i
\(760\) 0 0
\(761\) 11.4846 + 19.8919i 0.416315 + 0.721079i 0.995566 0.0940705i \(-0.0299879\pi\)
−0.579250 + 0.815150i \(0.696655\pi\)
\(762\) 0 0
\(763\) −14.5603 2.32825i −0.527118 0.0842882i
\(764\) 0 0
\(765\) 7.58750 0.0641379i 0.274327 0.00231891i
\(766\) 0 0
\(767\) −1.20452 0.695429i −0.0434926 0.0251105i
\(768\) 0 0
\(769\) −14.3775 8.30086i −0.518466 0.299337i 0.217841 0.975984i \(-0.430099\pi\)
−0.736307 + 0.676648i \(0.763432\pi\)
\(770\) 0 0
\(771\) −36.6787 + 0.155022i −1.32095 + 0.00558297i
\(772\) 0 0
\(773\) 0.803138 + 1.39107i 0.0288868 + 0.0500335i 0.880107 0.474775i \(-0.157470\pi\)
−0.851221 + 0.524808i \(0.824137\pi\)
\(774\) 0 0
\(775\) 7.52280 + 4.34329i 0.270227 + 0.156016i
\(776\) 0 0
\(777\) 31.4544 + 4.89343i 1.12842 + 0.175551i
\(778\) 0 0
\(779\) −25.6883 + 14.8311i −0.920378 + 0.531380i
\(780\) 0 0
\(781\) −9.30133 + 16.1104i −0.332828 + 0.576475i
\(782\) 0 0
\(783\) 1.38043 0.820503i 0.0493326 0.0293224i
\(784\) 0 0
\(785\) 5.45988 3.15226i 0.194871 0.112509i
\(786\) 0 0
\(787\) 15.9080i 0.567060i −0.958963 0.283530i \(-0.908494\pi\)
0.958963 0.283530i \(-0.0915055\pi\)
\(788\) 0 0
\(789\) −25.6739 + 14.9679i −0.914014 + 0.532870i
\(790\) 0 0
\(791\) 40.5644 15.5023i 1.44231 0.551198i
\(792\) 0 0
\(793\) 6.23549 10.8002i 0.221429 0.383526i
\(794\) 0 0
\(795\) 35.0140 20.4132i 1.24182 0.723980i
\(796\) 0 0
\(797\) 10.1844 17.6399i 0.360749 0.624836i −0.627335 0.778749i \(-0.715854\pi\)
0.988084 + 0.153914i \(0.0491878\pi\)
\(798\) 0 0
\(799\) 1.39800 + 2.42141i 0.0494578 + 0.0856634i
\(800\) 0 0
\(801\) 13.8656 0.117207i 0.489916 0.00414131i
\(802\) 0 0
\(803\) 57.5915 2.03236
\(804\) 0 0
\(805\) 21.6426 8.27106i 0.762803 0.291516i
\(806\) 0 0
\(807\) 37.4330 0.158210i 1.31770 0.00556924i
\(808\) 0 0
\(809\) 35.7396 20.6343i 1.25654 0.725462i 0.284137 0.958784i \(-0.408293\pi\)
0.972400 + 0.233322i \(0.0749595\pi\)
\(810\) 0 0
\(811\) 19.3660i 0.680032i −0.940420 0.340016i \(-0.889568\pi\)
0.940420 0.340016i \(-0.110432\pi\)
\(812\) 0 0
\(813\) 37.7484 22.0073i 1.32389 0.771829i
\(814\) 0 0
\(815\) −43.1055 −1.50992
\(816\) 0 0
\(817\) 26.7093i 0.934441i
\(818\) 0 0
\(819\) −19.6325 15.6728i −0.686015 0.547651i
\(820\) 0 0
\(821\) 32.4939i 1.13404i 0.823703 + 0.567022i \(0.191905\pi\)
−0.823703 + 0.567022i \(0.808095\pi\)
\(822\) 0 0
\(823\) −55.7913 −1.94476 −0.972381 0.233397i \(-0.925016\pi\)
−0.972381 + 0.233397i \(0.925016\pi\)
\(824\) 0 0
\(825\) 0.0447541 + 10.5890i 0.00155814 + 0.368661i
\(826\) 0 0
\(827\) 18.2989i 0.636314i −0.948038 0.318157i \(-0.896936\pi\)
0.948038 0.318157i \(-0.103064\pi\)
\(828\) 0 0
\(829\) 12.6483 7.30247i 0.439292 0.253625i −0.264005 0.964521i \(-0.585044\pi\)
0.703297 + 0.710896i \(0.251710\pi\)
\(830\) 0 0
\(831\) −19.5855 33.5944i −0.679414 1.16538i
\(832\) 0 0
\(833\) 5.08693 4.55307i 0.176252 0.157754i
\(834\) 0 0
\(835\) 54.9983 1.90330
\(836\) 0 0
\(837\) −0.331657 26.1558i −0.0114637 0.904077i
\(838\) 0 0
\(839\) 15.7379 + 27.2588i 0.543332 + 0.941079i 0.998710 + 0.0507803i \(0.0161708\pi\)
−0.455378 + 0.890298i \(0.650496\pi\)
\(840\) 0 0
\(841\) −14.4522 + 25.0320i −0.498353 + 0.863173i
\(842\) 0 0
\(843\) 0.0876490 + 20.7381i 0.00301879 + 0.714257i
\(844\) 0 0
\(845\) 3.86801 6.69959i 0.133064 0.230473i
\(846\) 0 0
\(847\) −4.05677 0.648694i −0.139392 0.0222894i
\(848\) 0 0
\(849\) −32.6741 18.6807i −1.12137 0.641121i
\(850\) 0 0
\(851\) 23.4565i 0.804080i
\(852\) 0 0
\(853\) 21.2554 12.2718i 0.727771 0.420179i −0.0898353 0.995957i \(-0.528634\pi\)
0.817606 + 0.575778i \(0.195301\pi\)
\(854\) 0 0
\(855\) −16.3501 + 9.62493i −0.559163 + 0.329166i
\(856\) 0 0
\(857\) −5.86511 + 10.1587i −0.200348 + 0.347014i −0.948641 0.316355i \(-0.897541\pi\)
0.748292 + 0.663369i \(0.230874\pi\)
\(858\) 0 0
\(859\) 29.5421 17.0561i 1.00796 0.581948i 0.0973688 0.995248i \(-0.468957\pi\)
0.910595 + 0.413300i \(0.135624\pi\)
\(860\) 0 0
\(861\) −55.0776 8.56855i −1.87704 0.292015i
\(862\) 0 0
\(863\) −20.8863 12.0587i −0.710978 0.410483i 0.100445 0.994943i \(-0.467973\pi\)
−0.811423 + 0.584459i \(0.801307\pi\)
\(864\) 0 0
\(865\) −13.2018 22.8663i −0.448876 0.777477i
\(866\) 0 0
\(867\) 14.0003 + 24.0143i 0.475476 + 0.815568i
\(868\) 0 0
\(869\) 21.4573 + 12.3884i 0.727890 + 0.420248i
\(870\) 0 0
\(871\) 10.0078 + 5.77798i 0.339100 + 0.195779i
\(872\) 0 0
\(873\) 37.6228 + 21.2995i 1.27334 + 0.720880i
\(874\) 0 0
\(875\) −14.1650 + 17.4394i −0.478865 + 0.589560i
\(876\) 0 0
\(877\) 25.8753 + 44.8173i 0.873747 + 1.51337i 0.858092 + 0.513496i \(0.171650\pi\)
0.0156551 + 0.999877i \(0.495017\pi\)
\(878\) 0 0
\(879\) 9.38849 + 16.1038i 0.316666 + 0.543167i
\(880\) 0 0
\(881\) 30.3925 1.02395 0.511975 0.859000i \(-0.328914\pi\)
0.511975 + 0.859000i \(0.328914\pi\)
\(882\) 0 0
\(883\) −35.4897 −1.19432 −0.597162 0.802121i \(-0.703705\pi\)
−0.597162 + 0.802121i \(0.703705\pi\)
\(884\) 0 0
\(885\) −1.97394 + 0.00834282i −0.0663534 + 0.000280441i
\(886\) 0 0
\(887\) 23.2756 + 40.3145i 0.781517 + 1.35363i 0.931058 + 0.364872i \(0.118887\pi\)
−0.149540 + 0.988756i \(0.547779\pi\)
\(888\) 0 0
\(889\) −30.0679 + 37.0184i −1.00844 + 1.24156i
\(890\) 0 0
\(891\) 27.3414 16.4080i 0.915972 0.549689i
\(892\) 0 0
\(893\) −6.05460 3.49562i −0.202609 0.116977i
\(894\) 0 0
\(895\) −1.52874 0.882620i −0.0511003 0.0295027i
\(896\) 0 0
\(897\) −9.18764 + 16.0699i −0.306766 + 0.536559i
\(898\) 0 0
\(899\) −0.777893 1.34735i −0.0259442 0.0449366i
\(900\) 0 0
\(901\) −7.62099 4.39998i −0.253892 0.146585i
\(902\) 0 0
\(903\) 31.4791 39.0924i 1.04756 1.30091i
\(904\) 0 0
\(905\) −42.9641 + 24.8053i −1.42817 + 0.824556i
\(906\) 0 0
\(907\) −7.31653 + 12.6726i −0.242941 + 0.420787i −0.961551 0.274627i \(-0.911446\pi\)
0.718610 + 0.695414i \(0.244779\pi\)
\(908\) 0 0
\(909\) 25.8867 0.218823i 0.858607 0.00725790i
\(910\) 0 0
\(911\) 6.67661 3.85474i 0.221206 0.127713i −0.385303 0.922790i \(-0.625903\pi\)
0.606508 + 0.795077i \(0.292570\pi\)
\(912\) 0 0
\(913\) 51.2919i 1.69752i
\(914\) 0 0
\(915\) −0.0748051 17.6992i −0.00247298 0.585116i
\(916\) 0 0
\(917\) 27.2734 + 4.36113i 0.900648 + 0.144017i
\(918\) 0 0
\(919\) −13.4738 + 23.3373i −0.444460 + 0.769827i −0.998014 0.0629860i \(-0.979938\pi\)
0.553555 + 0.832813i \(0.313271\pi\)
\(920\) 0 0
\(921\) 6.34714 + 3.62884i 0.209145 + 0.119574i
\(922\) 0 0
\(923\) −8.30890 + 14.3914i −0.273491 + 0.473700i
\(924\) 0 0
\(925\) −5.99325 10.3806i −0.197057 0.341312i
\(926\) 0 0
\(927\) −15.9181 9.01175i −0.522817 0.295985i
\(928\) 0 0
\(929\) 27.6274 0.906427 0.453213 0.891402i \(-0.350278\pi\)
0.453213 + 0.891402i \(0.350278\pi\)
\(930\) 0 0
\(931\) −5.32314 + 16.2192i −0.174459 + 0.531563i
\(932\) 0 0
\(933\) −3.59802 + 6.29323i −0.117794 + 0.206031i
\(934\) 0 0
\(935\) 7.76057 4.48057i 0.253798 0.146530i
\(936\) 0 0
\(937\) 7.60743i 0.248524i −0.992249 0.124262i \(-0.960344\pi\)
0.992249 0.124262i \(-0.0396563\pi\)
\(938\) 0 0
\(939\) 33.1396 + 18.9468i 1.08147 + 0.618307i
\(940\) 0 0
\(941\) −41.2996 −1.34633 −0.673165 0.739493i \(-0.735066\pi\)
−0.673165 + 0.739493i \(0.735066\pi\)
\(942\) 0 0
\(943\) 41.0731i 1.33753i
\(944\) 0 0
\(945\) −35.2742 5.18269i −1.14747 0.168593i
\(946\) 0 0
\(947\) 41.6059i 1.35201i −0.736897 0.676005i \(-0.763710\pi\)
0.736897 0.676005i \(-0.236290\pi\)
\(948\) 0 0
\(949\) 51.4466 1.67003
\(950\) 0 0
\(951\) 14.6096 + 8.35273i 0.473749 + 0.270856i
\(952\) 0 0
\(953\) 47.2656i 1.53108i 0.643386 + 0.765542i \(0.277529\pi\)
−0.643386 + 0.765542i \(0.722471\pi\)
\(954\) 0 0
\(955\) −47.5038 + 27.4263i −1.53719 + 0.887494i
\(956\) 0 0
\(957\) 0.941314 1.64643i 0.0304284 0.0532217i
\(958\) 0 0
\(959\) 9.51477 3.63621i 0.307248 0.117419i
\(960\) 0 0
\(961\) 5.65789 0.182512
\(962\) 0 0
\(963\) 0.406545 + 48.0942i 0.0131007 + 1.54981i
\(964\) 0 0
\(965\) 16.6344 + 28.8116i 0.535480 + 0.927479i
\(966\) 0 0
\(967\) 2.60192 4.50665i 0.0836720 0.144924i −0.821153 0.570709i \(-0.806669\pi\)
0.904825 + 0.425785i \(0.140002\pi\)
\(968\) 0 0
\(969\) 3.57619 + 2.04461i 0.114884 + 0.0656823i
\(970\) 0 0
\(971\) 8.67233 15.0209i 0.278308 0.482044i −0.692656 0.721268i \(-0.743560\pi\)
0.970964 + 0.239224i \(0.0768929\pi\)
\(972\) 0 0
\(973\) −53.5461 + 20.4634i −1.71661 + 0.656027i
\(974\) 0 0
\(975\) 0.0399790 + 9.45917i 0.00128035 + 0.302936i
\(976\) 0 0
\(977\) 26.9670i 0.862751i 0.902172 + 0.431376i \(0.141972\pi\)
−0.902172 + 0.431376i \(0.858028\pi\)
\(978\) 0 0
\(979\) 14.1818 8.18789i 0.453254 0.261686i
\(980\) 0 0
\(981\) 8.23709 14.5497i 0.262990 0.464537i
\(982\) 0 0
\(983\) 8.55646 14.8202i 0.272909 0.472692i −0.696697 0.717366i \(-0.745348\pi\)
0.969605 + 0.244674i \(0.0786810\pi\)
\(984\) 0 0
\(985\) −50.0512 + 28.8971i −1.59476 + 0.920738i
\(986\) 0 0
\(987\) −4.74177 12.2521i −0.150932 0.389989i
\(988\) 0 0
\(989\) −32.0293 18.4921i −1.01847 0.588015i
\(990\) 0 0
\(991\) 5.84386 + 10.1219i 0.185636 + 0.321531i 0.943791 0.330544i \(-0.107232\pi\)
−0.758155 + 0.652075i \(0.773899\pi\)
\(992\) 0 0
\(993\) 23.8282 41.6775i 0.756166 1.32260i
\(994\) 0 0
\(995\) −17.2624 9.96646i −0.547255 0.315958i
\(996\) 0 0
\(997\) −25.0296 14.4508i −0.792695 0.457663i 0.0482154 0.998837i \(-0.484647\pi\)
−0.840910 + 0.541174i \(0.817980\pi\)
\(998\) 0 0
\(999\) −17.6497 + 31.4855i −0.558412 + 0.996156i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.ca.e.257.9 48
3.2 odd 2 3024.2.ca.e.2609.5 48
4.3 odd 2 504.2.bs.a.257.16 48
7.3 odd 6 1008.2.df.e.689.1 48
9.2 odd 6 1008.2.df.e.929.1 48
9.7 even 3 3024.2.df.e.1601.5 48
12.11 even 2 1512.2.bs.a.1097.5 48
21.17 even 6 3024.2.df.e.17.5 48
28.3 even 6 504.2.cx.a.185.24 yes 48
36.7 odd 6 1512.2.cx.a.89.5 48
36.11 even 6 504.2.cx.a.425.24 yes 48
63.38 even 6 inner 1008.2.ca.e.353.9 48
63.52 odd 6 3024.2.ca.e.2033.5 48
84.59 odd 6 1512.2.cx.a.17.5 48
252.115 even 6 1512.2.bs.a.521.5 48
252.227 odd 6 504.2.bs.a.353.16 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.16 48 4.3 odd 2
504.2.bs.a.353.16 yes 48 252.227 odd 6
504.2.cx.a.185.24 yes 48 28.3 even 6
504.2.cx.a.425.24 yes 48 36.11 even 6
1008.2.ca.e.257.9 48 1.1 even 1 trivial
1008.2.ca.e.353.9 48 63.38 even 6 inner
1008.2.df.e.689.1 48 7.3 odd 6
1008.2.df.e.929.1 48 9.2 odd 6
1512.2.bs.a.521.5 48 252.115 even 6
1512.2.bs.a.1097.5 48 12.11 even 2
1512.2.cx.a.17.5 48 84.59 odd 6
1512.2.cx.a.89.5 48 36.7 odd 6
3024.2.ca.e.2033.5 48 63.52 odd 6
3024.2.ca.e.2609.5 48 3.2 odd 2
3024.2.df.e.17.5 48 21.17 even 6
3024.2.df.e.1601.5 48 9.7 even 3