Properties

Label 1008.2
Level 1008
Weight 2
Dimension 11597
Nonzero newspaces 40
Sturm bound 110592
Trace bound 29

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(110592\)
Trace bound: \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1008))\).

Total New Old
Modular forms 28992 12001 16991
Cusp forms 26305 11597 14708
Eisenstein series 2687 404 2283

Trace form

\( 11597q - 24q^{2} - 24q^{3} - 28q^{4} - 35q^{5} - 32q^{6} - 28q^{7} - 72q^{8} - 16q^{9} + O(q^{10}) \) \( 11597q - 24q^{2} - 24q^{3} - 28q^{4} - 35q^{5} - 32q^{6} - 28q^{7} - 72q^{8} - 16q^{9} - 76q^{10} - 45q^{11} - 32q^{12} - 50q^{13} - 12q^{14} - 66q^{15} + 20q^{16} - 37q^{17} + 8q^{18} - 67q^{19} + 76q^{20} - 37q^{21} + 32q^{22} + 5q^{23} + 32q^{24} + 23q^{25} + 92q^{26} + 12q^{27} - 52q^{28} - 28q^{29} + 8q^{30} - 17q^{31} + 36q^{32} - 30q^{33} - 4q^{34} + 33q^{35} - 72q^{36} - 119q^{37} - 116q^{38} + 90q^{39} - 140q^{40} + 30q^{41} - 80q^{42} + 78q^{43} - 148q^{44} + 6q^{45} - 136q^{46} + 141q^{47} - 136q^{48} - 60q^{49} - 144q^{50} + 40q^{51} - 40q^{52} + 35q^{53} - 120q^{54} + 114q^{55} - 48q^{56} - 64q^{57} - 16q^{58} + 55q^{59} - 248q^{60} + 65q^{61} - 120q^{62} - 33q^{63} + 44q^{64} - 150q^{65} - 272q^{66} - 5q^{67} - 136q^{68} - 142q^{69} + 56q^{70} - 68q^{71} - 256q^{72} + 85q^{73} - 140q^{74} - 20q^{75} + 44q^{76} + 62q^{77} - 296q^{78} + 17q^{79} - 292q^{80} - 128q^{81} - 92q^{82} - 72q^{83} - 184q^{84} + 130q^{85} - 316q^{86} - 54q^{87} - 172q^{88} + 99q^{89} - 320q^{90} + 80q^{91} - 268q^{92} + 138q^{93} - 292q^{94} + 25q^{95} - 168q^{96} + 38q^{97} - 248q^{98} - 18q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1008))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1008.2.a \(\chi_{1008}(1, \cdot)\) 1008.2.a.a 1 1
1008.2.a.b 1
1008.2.a.c 1
1008.2.a.d 1
1008.2.a.e 1
1008.2.a.f 1
1008.2.a.g 1
1008.2.a.h 1
1008.2.a.i 1
1008.2.a.j 1
1008.2.a.k 1
1008.2.a.l 1
1008.2.a.m 1
1008.2.a.n 2
1008.2.b \(\chi_{1008}(559, \cdot)\) 1008.2.b.a 2 1
1008.2.b.b 2
1008.2.b.c 2
1008.2.b.d 2
1008.2.b.e 2
1008.2.b.f 2
1008.2.b.g 2
1008.2.b.h 2
1008.2.b.i 4
1008.2.c \(\chi_{1008}(505, \cdot)\) None 0 1
1008.2.h \(\chi_{1008}(575, \cdot)\) 1008.2.h.a 4 1
1008.2.h.b 8
1008.2.i \(\chi_{1008}(377, \cdot)\) None 0 1
1008.2.j \(\chi_{1008}(71, \cdot)\) None 0 1
1008.2.k \(\chi_{1008}(881, \cdot)\) 1008.2.k.a 4 1
1008.2.k.b 4
1008.2.k.c 8
1008.2.p \(\chi_{1008}(55, \cdot)\) None 0 1
1008.2.q \(\chi_{1008}(529, \cdot)\) 1008.2.q.a 2 2
1008.2.q.b 2
1008.2.q.c 2
1008.2.q.d 2
1008.2.q.e 2
1008.2.q.f 2
1008.2.q.g 6
1008.2.q.h 6
1008.2.q.i 10
1008.2.q.j 14
1008.2.q.k 22
1008.2.q.l 22
1008.2.r \(\chi_{1008}(337, \cdot)\) 1008.2.r.a 2 2
1008.2.r.b 2
1008.2.r.c 2
1008.2.r.d 2
1008.2.r.e 4
1008.2.r.f 4
1008.2.r.g 6
1008.2.r.h 6
1008.2.r.i 6
1008.2.r.j 6
1008.2.r.k 6
1008.2.r.l 8
1008.2.r.m 8
1008.2.r.n 10
1008.2.s \(\chi_{1008}(289, \cdot)\) 1008.2.s.a 2 2
1008.2.s.b 2
1008.2.s.c 2
1008.2.s.d 2
1008.2.s.e 2
1008.2.s.f 2
1008.2.s.g 2
1008.2.s.h 2
1008.2.s.i 2
1008.2.s.j 2
1008.2.s.k 2
1008.2.s.l 2
1008.2.s.m 2
1008.2.s.n 2
1008.2.s.o 2
1008.2.s.p 2
1008.2.s.q 2
1008.2.s.r 4
1008.2.t \(\chi_{1008}(193, \cdot)\) 1008.2.t.a 2 2
1008.2.t.b 2
1008.2.t.c 2
1008.2.t.d 2
1008.2.t.e 2
1008.2.t.f 2
1008.2.t.g 6
1008.2.t.h 6
1008.2.t.i 10
1008.2.t.j 14
1008.2.t.k 22
1008.2.t.l 22
1008.2.v \(\chi_{1008}(323, \cdot)\) 1008.2.v.a 4 2
1008.2.v.b 4
1008.2.v.c 12
1008.2.v.d 36
1008.2.v.e 40
1008.2.x \(\chi_{1008}(307, \cdot)\) n/a 156 2
1008.2.z \(\chi_{1008}(253, \cdot)\) n/a 120 2
1008.2.bb \(\chi_{1008}(125, \cdot)\) n/a 128 2
1008.2.be \(\chi_{1008}(457, \cdot)\) None 0 2
1008.2.bf \(\chi_{1008}(31, \cdot)\) 1008.2.bf.a 2 2
1008.2.bf.b 2
1008.2.bf.c 2
1008.2.bf.d 2
1008.2.bf.e 4
1008.2.bf.f 4
1008.2.bf.g 24
1008.2.bf.h 24
1008.2.bf.i 32
1008.2.bg \(\chi_{1008}(185, \cdot)\) None 0 2
1008.2.bh \(\chi_{1008}(95, \cdot)\) 1008.2.bh.a 2 2
1008.2.bh.b 2
1008.2.bh.c 30
1008.2.bh.d 30
1008.2.bh.e 32
1008.2.bm \(\chi_{1008}(391, \cdot)\) None 0 2
1008.2.bn \(\chi_{1008}(103, \cdot)\) None 0 2
1008.2.bs \(\chi_{1008}(199, \cdot)\) None 0 2
1008.2.bt \(\chi_{1008}(17, \cdot)\) 1008.2.bt.a 4 2
1008.2.bt.b 4
1008.2.bt.c 8
1008.2.bt.d 16
1008.2.bu \(\chi_{1008}(359, \cdot)\) None 0 2
1008.2.bz \(\chi_{1008}(407, \cdot)\) None 0 2
1008.2.ca \(\chi_{1008}(257, \cdot)\) 1008.2.ca.a 2 2
1008.2.ca.b 10
1008.2.ca.c 16
1008.2.ca.d 16
1008.2.ca.e 48
1008.2.cb \(\chi_{1008}(23, \cdot)\) None 0 2
1008.2.cc \(\chi_{1008}(209, \cdot)\) 1008.2.cc.a 12 2
1008.2.cc.b 16
1008.2.cc.c 16
1008.2.cc.d 48
1008.2.ch \(\chi_{1008}(239, \cdot)\) 1008.2.ch.a 24 2
1008.2.ch.b 24
1008.2.ch.c 24
1008.2.ci \(\chi_{1008}(761, \cdot)\) None 0 2
1008.2.cj \(\chi_{1008}(527, \cdot)\) 1008.2.cj.a 2 2
1008.2.cj.b 2
1008.2.cj.c 30
1008.2.cj.d 30
1008.2.cj.e 32
1008.2.ck \(\chi_{1008}(41, \cdot)\) None 0 2
1008.2.cp \(\chi_{1008}(89, \cdot)\) None 0 2
1008.2.cq \(\chi_{1008}(431, \cdot)\) 1008.2.cq.a 8 2
1008.2.cq.b 12
1008.2.cq.c 12
1008.2.cr \(\chi_{1008}(361, \cdot)\) None 0 2
1008.2.cs \(\chi_{1008}(271, \cdot)\) 1008.2.cs.a 2 2
1008.2.cs.b 2
1008.2.cs.c 2
1008.2.cs.d 2
1008.2.cs.e 2
1008.2.cs.f 2
1008.2.cs.g 2
1008.2.cs.h 2
1008.2.cs.i 2
1008.2.cs.j 2
1008.2.cs.k 2
1008.2.cs.l 2
1008.2.cs.m 2
1008.2.cs.n 2
1008.2.cs.o 4
1008.2.cs.p 4
1008.2.cs.q 4
1008.2.cx \(\chi_{1008}(223, \cdot)\) 1008.2.cx.a 2 2
1008.2.cx.b 2
1008.2.cx.c 2
1008.2.cx.d 2
1008.2.cx.e 2
1008.2.cx.f 2
1008.2.cx.g 2
1008.2.cx.h 2
1008.2.cx.i 24
1008.2.cx.j 24
1008.2.cx.k 32
1008.2.cy \(\chi_{1008}(25, \cdot)\) None 0 2
1008.2.cz \(\chi_{1008}(367, \cdot)\) 1008.2.cz.a 2 2
1008.2.cz.b 2
1008.2.cz.c 2
1008.2.cz.d 2
1008.2.cz.e 4
1008.2.cz.f 4
1008.2.cz.g 24
1008.2.cz.h 24
1008.2.cz.i 32
1008.2.da \(\chi_{1008}(169, \cdot)\) None 0 2
1008.2.df \(\chi_{1008}(689, \cdot)\) 1008.2.df.a 2 2
1008.2.df.b 10
1008.2.df.c 16
1008.2.df.d 16
1008.2.df.e 48
1008.2.dg \(\chi_{1008}(599, \cdot)\) None 0 2
1008.2.dh \(\chi_{1008}(439, \cdot)\) None 0 2
1008.2.dk \(\chi_{1008}(139, \cdot)\) n/a 752 4
1008.2.dm \(\chi_{1008}(155, \cdot)\) n/a 576 4
1008.2.do \(\chi_{1008}(205, \cdot)\) n/a 752 4
1008.2.dr \(\chi_{1008}(5, \cdot)\) n/a 752 4
1008.2.ds \(\chi_{1008}(269, \cdot)\) n/a 256 4
1008.2.du \(\chi_{1008}(37, \cdot)\) n/a 312 4
1008.2.dx \(\chi_{1008}(277, \cdot)\) n/a 752 4
1008.2.dy \(\chi_{1008}(173, \cdot)\) n/a 752 4
1008.2.ea \(\chi_{1008}(347, \cdot)\) n/a 752 4
1008.2.ec \(\chi_{1008}(19, \cdot)\) n/a 312 4
1008.2.ef \(\chi_{1008}(115, \cdot)\) n/a 752 4
1008.2.eh \(\chi_{1008}(11, \cdot)\) n/a 752 4
1008.2.ei \(\chi_{1008}(107, \cdot)\) n/a 256 4
1008.2.ek \(\chi_{1008}(187, \cdot)\) n/a 752 4
1008.2.em \(\chi_{1008}(293, \cdot)\) n/a 752 4
1008.2.eo \(\chi_{1008}(85, \cdot)\) n/a 576 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1008))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1008)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(504))\)\(^{\oplus 2}\)