Properties

Label 1512.2.bs.a.521.5
Level $1512$
Weight $2$
Character 1512.521
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(521,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.5
Character \(\chi\) \(=\) 1512.521
Dual form 1512.2.bs.a.1097.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29668 + 2.24592i) q^{5} +(1.66807 + 2.05367i) q^{7} +(-3.06832 + 1.77150i) q^{11} +(-2.74094 + 1.58248i) q^{13} +(-0.487640 + 0.844616i) q^{17} +(2.11191 - 1.21931i) q^{19} +(-2.92435 - 1.68838i) q^{23} +(-0.862775 - 1.49437i) q^{25} +(-0.267645 - 0.154525i) q^{29} -5.03410i q^{31} +(-6.77533 + 1.08340i) q^{35} +(-3.47324 - 6.01583i) q^{37} +(-6.08175 - 10.5339i) q^{41} +(-5.47630 + 9.48523i) q^{43} +2.86688 q^{47} +(-1.43508 + 6.85132i) q^{49} +(7.81416 + 4.51151i) q^{53} -9.18828i q^{55} +0.439455 q^{59} -3.94033i q^{61} -8.20791i q^{65} +3.65121 q^{67} +5.25055i q^{71} +(-14.0773 - 8.12752i) q^{73} +(-8.75624 - 3.34632i) q^{77} +6.99318 q^{79} +(-7.23851 + 12.5375i) q^{83} +(-1.26463 - 2.19040i) q^{85} +(2.31101 + 4.00279i) q^{89} +(-7.82197 - 2.98928i) q^{91} +6.32426i q^{95} +(-12.4805 - 7.20560i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{23} - 24 q^{25} - 18 q^{29} - 6 q^{41} - 6 q^{43} - 36 q^{47} + 6 q^{49} - 12 q^{53} + 36 q^{77} - 12 q^{79} - 18 q^{89} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.29668 + 2.24592i −0.579894 + 1.00441i 0.415596 + 0.909549i \(0.363573\pi\)
−0.995491 + 0.0948574i \(0.969760\pi\)
\(6\) 0 0
\(7\) 1.66807 + 2.05367i 0.630471 + 0.776213i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.06832 + 1.77150i −0.925134 + 0.534126i −0.885269 0.465079i \(-0.846026\pi\)
−0.0398645 + 0.999205i \(0.512693\pi\)
\(12\) 0 0
\(13\) −2.74094 + 1.58248i −0.760200 + 0.438902i −0.829367 0.558703i \(-0.811299\pi\)
0.0691677 + 0.997605i \(0.477966\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.487640 + 0.844616i −0.118270 + 0.204850i −0.919082 0.394066i \(-0.871068\pi\)
0.800812 + 0.598916i \(0.204401\pi\)
\(18\) 0 0
\(19\) 2.11191 1.21931i 0.484506 0.279730i −0.237786 0.971318i \(-0.576422\pi\)
0.722293 + 0.691588i \(0.243088\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.92435 1.68838i −0.609770 0.352051i 0.163106 0.986609i \(-0.447849\pi\)
−0.772875 + 0.634558i \(0.781182\pi\)
\(24\) 0 0
\(25\) −0.862775 1.49437i −0.172555 0.298874i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.267645 0.154525i −0.0497004 0.0286946i 0.474944 0.880016i \(-0.342468\pi\)
−0.524644 + 0.851322i \(0.675802\pi\)
\(30\) 0 0
\(31\) 5.03410i 0.904150i −0.891980 0.452075i \(-0.850684\pi\)
0.891980 0.452075i \(-0.149316\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.77533 + 1.08340i −1.14524 + 0.183128i
\(36\) 0 0
\(37\) −3.47324 6.01583i −0.570997 0.988996i −0.996464 0.0840218i \(-0.973223\pi\)
0.425467 0.904974i \(-0.360110\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.08175 10.5339i −0.949810 1.64512i −0.745822 0.666146i \(-0.767943\pi\)
−0.203988 0.978973i \(-0.565390\pi\)
\(42\) 0 0
\(43\) −5.47630 + 9.48523i −0.835128 + 1.44648i 0.0587983 + 0.998270i \(0.481273\pi\)
−0.893926 + 0.448214i \(0.852060\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.86688 0.418177 0.209089 0.977897i \(-0.432950\pi\)
0.209089 + 0.977897i \(0.432950\pi\)
\(48\) 0 0
\(49\) −1.43508 + 6.85132i −0.205012 + 0.978760i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.81416 + 4.51151i 1.07336 + 0.619703i 0.929097 0.369836i \(-0.120586\pi\)
0.144261 + 0.989540i \(0.453920\pi\)
\(54\) 0 0
\(55\) 9.18828i 1.23895i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.439455 0.0572121 0.0286061 0.999591i \(-0.490893\pi\)
0.0286061 + 0.999591i \(0.490893\pi\)
\(60\) 0 0
\(61\) 3.94033i 0.504507i −0.967661 0.252254i \(-0.918828\pi\)
0.967661 0.252254i \(-0.0811717\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.20791i 1.01807i
\(66\) 0 0
\(67\) 3.65121 0.446067 0.223033 0.974811i \(-0.428404\pi\)
0.223033 + 0.974811i \(0.428404\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.25055i 0.623126i 0.950226 + 0.311563i \(0.100852\pi\)
−0.950226 + 0.311563i \(0.899148\pi\)
\(72\) 0 0
\(73\) −14.0773 8.12752i −1.64762 0.951254i −0.978014 0.208539i \(-0.933129\pi\)
−0.669607 0.742716i \(-0.733537\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.75624 3.34632i −0.997866 0.381349i
\(78\) 0 0
\(79\) 6.99318 0.786795 0.393397 0.919369i \(-0.371300\pi\)
0.393397 + 0.919369i \(0.371300\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.23851 + 12.5375i −0.794529 + 1.37616i 0.128609 + 0.991695i \(0.458949\pi\)
−0.923138 + 0.384469i \(0.874384\pi\)
\(84\) 0 0
\(85\) −1.26463 2.19040i −0.137168 0.237582i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.31101 + 4.00279i 0.244967 + 0.424295i 0.962122 0.272619i \(-0.0878897\pi\)
−0.717156 + 0.696913i \(0.754556\pi\)
\(90\) 0 0
\(91\) −7.82197 2.98928i −0.819965 0.313362i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.32426i 0.648855i
\(96\) 0 0
\(97\) −12.4805 7.20560i −1.26720 0.731617i −0.292742 0.956192i \(-0.594568\pi\)
−0.974457 + 0.224574i \(0.927901\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.31460 + 7.47311i 0.429319 + 0.743602i 0.996813 0.0797753i \(-0.0254203\pi\)
−0.567494 + 0.823378i \(0.692087\pi\)
\(102\) 0 0
\(103\) −5.28044 3.04866i −0.520297 0.300394i 0.216759 0.976225i \(-0.430451\pi\)
−0.737056 + 0.675832i \(0.763785\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.8841 + 8.01599i −1.34223 + 0.774935i −0.987134 0.159896i \(-0.948884\pi\)
−0.355093 + 0.934831i \(0.615551\pi\)
\(108\) 0 0
\(109\) 2.78659 4.82652i 0.266907 0.462297i −0.701154 0.713010i \(-0.747332\pi\)
0.968062 + 0.250713i \(0.0806649\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.2144 8.20669i 1.33718 0.772021i 0.350791 0.936454i \(-0.385913\pi\)
0.986388 + 0.164433i \(0.0525794\pi\)
\(114\) 0 0
\(115\) 7.58392 4.37858i 0.707204 0.408305i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.54798 + 0.407431i −0.233573 + 0.0373492i
\(120\) 0 0
\(121\) 0.776398 1.34476i 0.0705816 0.122251i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.49185 −0.759534
\(126\) 0 0
\(127\) −18.0255 −1.59951 −0.799754 0.600328i \(-0.795037\pi\)
−0.799754 + 0.600328i \(0.795037\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.21967 + 9.04074i −0.456045 + 0.789893i −0.998748 0.0500320i \(-0.984068\pi\)
0.542703 + 0.839925i \(0.317401\pi\)
\(132\) 0 0
\(133\) 6.02688 + 2.30326i 0.522597 + 0.199718i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.33412 1.92496i 0.284853 0.164460i −0.350765 0.936463i \(-0.614078\pi\)
0.635619 + 0.772003i \(0.280745\pi\)
\(138\) 0 0
\(139\) −18.7634 + 10.8330i −1.59149 + 0.918847i −0.598437 + 0.801170i \(0.704211\pi\)
−0.993052 + 0.117677i \(0.962455\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.60672 9.71113i 0.468858 0.812085i
\(144\) 0 0
\(145\) 0.694102 0.400740i 0.0576420 0.0332796i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.22975 4.75145i −0.674207 0.389254i 0.123462 0.992349i \(-0.460600\pi\)
−0.797669 + 0.603096i \(0.793934\pi\)
\(150\) 0 0
\(151\) 10.6690 + 18.4793i 0.868232 + 1.50382i 0.863802 + 0.503831i \(0.168077\pi\)
0.00442944 + 0.999990i \(0.498590\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11.3062 + 6.52763i 0.908134 + 0.524312i
\(156\) 0 0
\(157\) 2.43102i 0.194016i 0.995284 + 0.0970082i \(0.0309273\pi\)
−0.995284 + 0.0970082i \(0.969073\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.41067 8.82197i −0.111176 0.695269i
\(162\) 0 0
\(163\) 8.31072 + 14.3946i 0.650946 + 1.12747i 0.982894 + 0.184174i \(0.0589609\pi\)
−0.331948 + 0.943298i \(0.607706\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.6037 + 18.3661i 0.820535 + 1.42121i 0.905284 + 0.424806i \(0.139658\pi\)
−0.0847489 + 0.996402i \(0.527009\pi\)
\(168\) 0 0
\(169\) −1.49150 + 2.58336i −0.114731 + 0.198720i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.1812 0.774066 0.387033 0.922066i \(-0.373500\pi\)
0.387033 + 0.922066i \(0.373500\pi\)
\(174\) 0 0
\(175\) 1.62977 4.26456i 0.123199 0.322371i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.589482 0.340338i −0.0440600 0.0254380i 0.477808 0.878464i \(-0.341431\pi\)
−0.521868 + 0.853026i \(0.674765\pi\)
\(180\) 0 0
\(181\) 19.1298i 1.42191i −0.703239 0.710954i \(-0.748263\pi\)
0.703239 0.710954i \(-0.251737\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.0148 1.32447
\(186\) 0 0
\(187\) 3.45541i 0.252684i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.1511i 1.53044i −0.643768 0.765221i \(-0.722630\pi\)
0.643768 0.765221i \(-0.277370\pi\)
\(192\) 0 0
\(193\) 12.8284 0.923410 0.461705 0.887033i \(-0.347238\pi\)
0.461705 + 0.887033i \(0.347238\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.2854i 1.58777i 0.608069 + 0.793884i \(0.291944\pi\)
−0.608069 + 0.793884i \(0.708056\pi\)
\(198\) 0 0
\(199\) 6.65637 + 3.84306i 0.471858 + 0.272427i 0.717017 0.697056i \(-0.245507\pi\)
−0.245159 + 0.969483i \(0.578840\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.129108 0.807412i −0.00906162 0.0566692i
\(204\) 0 0
\(205\) 31.5444 2.20316
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.32002 + 7.48250i −0.298822 + 0.517575i
\(210\) 0 0
\(211\) 8.33679 + 14.4397i 0.573928 + 0.994073i 0.996157 + 0.0875838i \(0.0279146\pi\)
−0.422229 + 0.906489i \(0.638752\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −14.2021 24.5987i −0.968572 1.67762i
\(216\) 0 0
\(217\) 10.3383 8.39722i 0.701813 0.570041i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.08672i 0.207635i
\(222\) 0 0
\(223\) 4.45390 + 2.57146i 0.298255 + 0.172198i 0.641659 0.766990i \(-0.278247\pi\)
−0.343404 + 0.939188i \(0.611580\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.99271 10.3797i −0.397750 0.688924i 0.595698 0.803209i \(-0.296876\pi\)
−0.993448 + 0.114285i \(0.963542\pi\)
\(228\) 0 0
\(229\) −2.25955 1.30455i −0.149316 0.0862074i 0.423481 0.905905i \(-0.360808\pi\)
−0.572796 + 0.819698i \(0.694141\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.13306 1.80887i 0.205253 0.118503i −0.393850 0.919175i \(-0.628857\pi\)
0.599103 + 0.800672i \(0.295524\pi\)
\(234\) 0 0
\(235\) −3.71743 + 6.43878i −0.242499 + 0.420020i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.8069 + 7.39409i −0.828412 + 0.478284i −0.853309 0.521406i \(-0.825408\pi\)
0.0248967 + 0.999690i \(0.492074\pi\)
\(240\) 0 0
\(241\) −5.57890 + 3.22098i −0.359368 + 0.207481i −0.668804 0.743439i \(-0.733193\pi\)
0.309435 + 0.950921i \(0.399860\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.5267 12.1071i −0.864187 0.773492i
\(246\) 0 0
\(247\) −3.85909 + 6.68413i −0.245548 + 0.425301i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.21012 0.391979 0.195990 0.980606i \(-0.437208\pi\)
0.195990 + 0.980606i \(0.437208\pi\)
\(252\) 0 0
\(253\) 11.9638 0.752158
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.5883 + 18.3395i −0.660482 + 1.14399i 0.320007 + 0.947415i \(0.396315\pi\)
−0.980489 + 0.196573i \(0.937019\pi\)
\(258\) 0 0
\(259\) 6.56089 17.1677i 0.407674 1.06675i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.8592 8.57897i 0.916258 0.529002i 0.0338189 0.999428i \(-0.489233\pi\)
0.882439 + 0.470426i \(0.155900\pi\)
\(264\) 0 0
\(265\) −20.2650 + 11.7000i −1.24487 + 0.718725i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.8061 18.7166i 0.658857 1.14117i −0.322055 0.946721i \(-0.604373\pi\)
0.980912 0.194453i \(-0.0622932\pi\)
\(270\) 0 0
\(271\) 21.8475 12.6137i 1.32714 0.766227i 0.342287 0.939595i \(-0.388798\pi\)
0.984857 + 0.173368i \(0.0554652\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.29454 + 3.05680i 0.319273 + 0.184332i
\(276\) 0 0
\(277\) −11.2256 19.4434i −0.674482 1.16824i −0.976620 0.214973i \(-0.931033\pi\)
0.302137 0.953264i \(-0.402300\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.3691 5.98662i −0.618571 0.357132i 0.157742 0.987480i \(-0.449579\pi\)
−0.776312 + 0.630349i \(0.782912\pi\)
\(282\) 0 0
\(283\) 21.7299i 1.29171i 0.763460 + 0.645855i \(0.223499\pi\)
−0.763460 + 0.645855i \(0.776501\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.4883 30.0612i 0.678134 1.77445i
\(288\) 0 0
\(289\) 8.02442 + 13.8987i 0.472024 + 0.817570i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.38110 9.32035i −0.314367 0.544500i 0.664935 0.746901i \(-0.268459\pi\)
−0.979303 + 0.202400i \(0.935126\pi\)
\(294\) 0 0
\(295\) −0.569833 + 0.986980i −0.0331770 + 0.0574642i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.6873 0.618063
\(300\) 0 0
\(301\) −28.6143 + 4.57554i −1.64930 + 0.263730i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.84966 + 5.10935i 0.506730 + 0.292561i
\(306\) 0 0
\(307\) 4.22117i 0.240915i −0.992719 0.120457i \(-0.961564\pi\)
0.992719 0.120457i \(-0.0384361\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.18531 0.237327 0.118664 0.992935i \(-0.462139\pi\)
0.118664 + 0.992935i \(0.462139\pi\)
\(312\) 0 0
\(313\) 22.0395i 1.24574i 0.782324 + 0.622872i \(0.214034\pi\)
−0.782324 + 0.622872i \(0.785966\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.71612i 0.545711i −0.962055 0.272856i \(-0.912032\pi\)
0.962055 0.272856i \(-0.0879682\pi\)
\(318\) 0 0
\(319\) 1.09496 0.0613061
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.37834i 0.132335i
\(324\) 0 0
\(325\) 4.72963 + 2.73065i 0.262353 + 0.151469i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.78215 + 5.88761i 0.263649 + 0.324594i
\(330\) 0 0
\(331\) 27.7176 1.52350 0.761749 0.647872i \(-0.224341\pi\)
0.761749 + 0.647872i \(0.224341\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.73447 + 8.20034i −0.258672 + 0.448032i
\(336\) 0 0
\(337\) 6.29141 + 10.8970i 0.342715 + 0.593600i 0.984936 0.172920i \(-0.0553201\pi\)
−0.642221 + 0.766520i \(0.721987\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.91788 + 15.4462i 0.482930 + 0.836460i
\(342\) 0 0
\(343\) −16.4641 + 8.48130i −0.888979 + 0.457947i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.7223i 0.897700i −0.893607 0.448850i \(-0.851834\pi\)
0.893607 0.448850i \(-0.148166\pi\)
\(348\) 0 0
\(349\) 13.9900 + 8.07714i 0.748869 + 0.432359i 0.825285 0.564717i \(-0.191015\pi\)
−0.0764164 + 0.997076i \(0.524348\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.82831 13.5590i −0.416659 0.721674i 0.578942 0.815369i \(-0.303466\pi\)
−0.995601 + 0.0936943i \(0.970132\pi\)
\(354\) 0 0
\(355\) −11.7923 6.80830i −0.625872 0.361347i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.1396 11.0502i 1.01015 0.583209i 0.0989127 0.995096i \(-0.468464\pi\)
0.911235 + 0.411887i \(0.135130\pi\)
\(360\) 0 0
\(361\) −6.52655 + 11.3043i −0.343502 + 0.594964i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 36.5075 21.0776i 1.91089 1.10325i
\(366\) 0 0
\(367\) −11.3893 + 6.57564i −0.594519 + 0.343246i −0.766882 0.641788i \(-0.778193\pi\)
0.172363 + 0.985033i \(0.444860\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.76944 + 23.5732i 0.195700 + 1.22386i
\(372\) 0 0
\(373\) 2.21915 3.84367i 0.114903 0.199018i −0.802838 0.596197i \(-0.796678\pi\)
0.917741 + 0.397179i \(0.130011\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.978132 0.0503763
\(378\) 0 0
\(379\) 14.8875 0.764718 0.382359 0.924014i \(-0.375112\pi\)
0.382359 + 0.924014i \(0.375112\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.81901 + 4.88267i −0.144045 + 0.249493i −0.929016 0.370039i \(-0.879344\pi\)
0.784971 + 0.619532i \(0.212678\pi\)
\(384\) 0 0
\(385\) 18.8696 15.3267i 0.961686 0.781121i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −33.3523 + 19.2560i −1.69103 + 0.976317i −0.737342 + 0.675519i \(0.763919\pi\)
−0.953688 + 0.300797i \(0.902747\pi\)
\(390\) 0 0
\(391\) 2.85206 1.64664i 0.144235 0.0832741i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9.06795 + 15.7061i −0.456258 + 0.790262i
\(396\) 0 0
\(397\) 2.50780 1.44788i 0.125863 0.0726669i −0.435747 0.900069i \(-0.643516\pi\)
0.561609 + 0.827402i \(0.310182\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.2857 + 12.8666i 1.11289 + 0.642530i 0.939577 0.342337i \(-0.111218\pi\)
0.173316 + 0.984866i \(0.444552\pi\)
\(402\) 0 0
\(403\) 7.96637 + 13.7981i 0.396833 + 0.687335i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21.3140 + 12.3057i 1.05650 + 0.609969i
\(408\) 0 0
\(409\) 28.8575i 1.42691i −0.700699 0.713457i \(-0.747129\pi\)
0.700699 0.713457i \(-0.252871\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.733041 + 0.902492i 0.0360706 + 0.0444088i
\(414\) 0 0
\(415\) −18.7721 32.5142i −0.921486 1.59606i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.07870 + 10.5286i 0.296964 + 0.514357i 0.975440 0.220266i \(-0.0706925\pi\)
−0.678476 + 0.734623i \(0.737359\pi\)
\(420\) 0 0
\(421\) −13.9914 + 24.2338i −0.681898 + 1.18108i 0.292503 + 0.956265i \(0.405512\pi\)
−0.974401 + 0.224817i \(0.927821\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.68289 0.0816323
\(426\) 0 0
\(427\) 8.09211 6.57274i 0.391605 0.318077i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.9975 + 8.08147i 0.674236 + 0.389271i 0.797680 0.603081i \(-0.206060\pi\)
−0.123444 + 0.992352i \(0.539394\pi\)
\(432\) 0 0
\(433\) 5.27197i 0.253355i 0.991944 + 0.126677i \(0.0404313\pi\)
−0.991944 + 0.126677i \(0.959569\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.23464 −0.393916
\(438\) 0 0
\(439\) 10.5108i 0.501654i −0.968032 0.250827i \(-0.919298\pi\)
0.968032 0.250827i \(-0.0807025\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.95601i 0.282978i −0.989940 0.141489i \(-0.954811\pi\)
0.989940 0.141489i \(-0.0451891\pi\)
\(444\) 0 0
\(445\) −11.9866 −0.568219
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.85897i 0.0877304i 0.999037 + 0.0438652i \(0.0139672\pi\)
−0.999037 + 0.0438652i \(0.986033\pi\)
\(450\) 0 0
\(451\) 37.3215 + 21.5476i 1.75740 + 1.01464i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16.8563 13.6914i 0.790236 0.641862i
\(456\) 0 0
\(457\) 29.7493 1.39162 0.695808 0.718228i \(-0.255047\pi\)
0.695808 + 0.718228i \(0.255047\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −14.9738 + 25.9353i −0.697398 + 1.20793i 0.271968 + 0.962306i \(0.412325\pi\)
−0.969366 + 0.245622i \(0.921008\pi\)
\(462\) 0 0
\(463\) 7.57406 + 13.1187i 0.351997 + 0.609676i 0.986599 0.163163i \(-0.0521695\pi\)
−0.634603 + 0.772839i \(0.718836\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.85158 + 10.1352i 0.270779 + 0.469002i 0.969061 0.246820i \(-0.0793855\pi\)
−0.698283 + 0.715822i \(0.746052\pi\)
\(468\) 0 0
\(469\) 6.09048 + 7.49837i 0.281232 + 0.346243i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 38.8050i 1.78425i
\(474\) 0 0
\(475\) −3.64421 2.10399i −0.167208 0.0965375i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.07088 10.5151i −0.277385 0.480446i 0.693349 0.720602i \(-0.256135\pi\)
−0.970734 + 0.240156i \(0.922801\pi\)
\(480\) 0 0
\(481\) 19.0399 + 10.9927i 0.868144 + 0.501223i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 32.3664 18.6868i 1.46968 0.848522i
\(486\) 0 0
\(487\) −5.22070 + 9.04251i −0.236572 + 0.409755i −0.959728 0.280929i \(-0.909357\pi\)
0.723156 + 0.690685i \(0.242691\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20.9972 + 12.1227i −0.947589 + 0.547091i −0.892331 0.451382i \(-0.850931\pi\)
−0.0552576 + 0.998472i \(0.517598\pi\)
\(492\) 0 0
\(493\) 0.261029 0.150705i 0.0117561 0.00678741i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.7829 + 8.75829i −0.483678 + 0.392863i
\(498\) 0 0
\(499\) 0.174119 0.301584i 0.00779466 0.0135007i −0.862102 0.506735i \(-0.830852\pi\)
0.869896 + 0.493234i \(0.164186\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −32.3099 −1.44063 −0.720314 0.693648i \(-0.756002\pi\)
−0.720314 + 0.693648i \(0.756002\pi\)
\(504\) 0 0
\(505\) −22.3787 −0.995839
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.85232 11.8686i 0.303724 0.526065i −0.673253 0.739413i \(-0.735103\pi\)
0.976976 + 0.213347i \(0.0684366\pi\)
\(510\) 0 0
\(511\) −6.79069 42.4673i −0.300402 1.87864i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.6941 7.90630i 0.603434 0.348393i
\(516\) 0 0
\(517\) −8.79650 + 5.07866i −0.386870 + 0.223359i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8.73516 + 15.1297i −0.382694 + 0.662846i −0.991446 0.130514i \(-0.958337\pi\)
0.608752 + 0.793361i \(0.291670\pi\)
\(522\) 0 0
\(523\) −23.3238 + 13.4660i −1.01988 + 0.588827i −0.914069 0.405559i \(-0.867077\pi\)
−0.105810 + 0.994386i \(0.533743\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.25188 + 2.45482i 0.185215 + 0.106934i
\(528\) 0 0
\(529\) −5.79877 10.0438i −0.252120 0.436685i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 33.3394 + 19.2485i 1.44409 + 0.833746i
\(534\) 0 0
\(535\) 41.5768i 1.79752i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.73379 23.5643i −0.333118 1.01499i
\(540\) 0 0
\(541\) −7.43375 12.8756i −0.319602 0.553567i 0.660803 0.750559i \(-0.270216\pi\)
−0.980405 + 0.196993i \(0.936882\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.22666 + 12.5169i 0.309556 + 0.536167i
\(546\) 0 0
\(547\) −4.17953 + 7.23915i −0.178704 + 0.309524i −0.941437 0.337190i \(-0.890524\pi\)
0.762733 + 0.646713i \(0.223857\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.753658 −0.0321069
\(552\) 0 0
\(553\) 11.6651 + 14.3617i 0.496052 + 0.610720i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.617917 0.356754i −0.0261820 0.0151162i 0.486852 0.873485i \(-0.338145\pi\)
−0.513034 + 0.858368i \(0.671478\pi\)
\(558\) 0 0
\(559\) 34.6646i 1.46616i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.1877 −1.14582 −0.572912 0.819617i \(-0.694187\pi\)
−0.572912 + 0.819617i \(0.694187\pi\)
\(564\) 0 0
\(565\) 42.5659i 1.79076i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.75321i 0.0734985i −0.999325 0.0367492i \(-0.988300\pi\)
0.999325 0.0367492i \(-0.0117003\pi\)
\(570\) 0 0
\(571\) 0.457634 0.0191514 0.00957570 0.999954i \(-0.496952\pi\)
0.00957570 + 0.999954i \(0.496952\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.82675i 0.242992i
\(576\) 0 0
\(577\) 19.8800 + 11.4777i 0.827617 + 0.477825i 0.853036 0.521852i \(-0.174759\pi\)
−0.0254193 + 0.999677i \(0.508092\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −37.8221 + 6.04790i −1.56912 + 0.250909i
\(582\) 0 0
\(583\) −31.9685 −1.32400
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.81513 4.87594i 0.116193 0.201252i −0.802063 0.597239i \(-0.796264\pi\)
0.918256 + 0.395987i \(0.129598\pi\)
\(588\) 0 0
\(589\) −6.13814 10.6316i −0.252918 0.438066i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.35121 + 2.34037i 0.0554876 + 0.0961074i 0.892435 0.451176i \(-0.148995\pi\)
−0.836947 + 0.547283i \(0.815662\pi\)
\(594\) 0 0
\(595\) 2.38886 6.25086i 0.0979337 0.256260i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.9966i 0.490168i 0.969502 + 0.245084i \(0.0788156\pi\)
−0.969502 + 0.245084i \(0.921184\pi\)
\(600\) 0 0
\(601\) −26.7530 15.4459i −1.09128 0.630050i −0.157363 0.987541i \(-0.550299\pi\)
−0.933917 + 0.357491i \(0.883632\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.01348 + 3.48746i 0.0818598 + 0.141785i
\(606\) 0 0
\(607\) 5.95361 + 3.43732i 0.241649 + 0.139516i 0.615935 0.787797i \(-0.288779\pi\)
−0.374285 + 0.927314i \(0.622112\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.85794 + 4.53678i −0.317898 + 0.183539i
\(612\) 0 0
\(613\) −16.6455 + 28.8308i −0.672304 + 1.16447i 0.304945 + 0.952370i \(0.401362\pi\)
−0.977249 + 0.212095i \(0.931971\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0757 + 10.4360i −0.727702 + 0.420139i −0.817581 0.575814i \(-0.804685\pi\)
0.0898790 + 0.995953i \(0.471352\pi\)
\(618\) 0 0
\(619\) −16.7876 + 9.69230i −0.674749 + 0.389567i −0.797874 0.602825i \(-0.794042\pi\)
0.123125 + 0.992391i \(0.460709\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.36546 + 11.4230i −0.174898 + 0.457652i
\(624\) 0 0
\(625\) 15.3251 26.5439i 0.613005 1.06175i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.77476 0.270127
\(630\) 0 0
\(631\) −27.3629 −1.08930 −0.544649 0.838664i \(-0.683337\pi\)
−0.544649 + 0.838664i \(0.683337\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 23.3734 40.4839i 0.927546 1.60656i
\(636\) 0 0
\(637\) −6.90861 21.0500i −0.273729 0.834033i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.0686 17.3601i 1.18764 0.685683i 0.229868 0.973222i \(-0.426170\pi\)
0.957769 + 0.287539i \(0.0928371\pi\)
\(642\) 0 0
\(643\) −3.52980 + 2.03793i −0.139202 + 0.0803681i −0.567983 0.823040i \(-0.692276\pi\)
0.428782 + 0.903408i \(0.358943\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.53976 + 11.3272i −0.257105 + 0.445318i −0.965465 0.260533i \(-0.916102\pi\)
0.708360 + 0.705851i \(0.249435\pi\)
\(648\) 0 0
\(649\) −1.34839 + 0.778492i −0.0529288 + 0.0305585i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.40555 + 3.12090i 0.211535 + 0.122130i 0.602025 0.798477i \(-0.294361\pi\)
−0.390489 + 0.920607i \(0.627694\pi\)
\(654\) 0 0
\(655\) −13.5365 23.4459i −0.528916 0.916109i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.79139 1.03426i −0.0697827 0.0402891i 0.464703 0.885467i \(-0.346161\pi\)
−0.534485 + 0.845178i \(0.679495\pi\)
\(660\) 0 0
\(661\) 15.6238i 0.607695i 0.952721 + 0.303848i \(0.0982714\pi\)
−0.952721 + 0.303848i \(0.901729\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12.9879 + 10.5493i −0.503649 + 0.409085i
\(666\) 0 0
\(667\) 0.521792 + 0.903771i 0.0202039 + 0.0349941i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.98027 + 12.0902i 0.269470 + 0.466736i
\(672\) 0 0
\(673\) −15.1108 + 26.1727i −0.582478 + 1.00888i 0.412706 + 0.910864i \(0.364584\pi\)
−0.995185 + 0.0980180i \(0.968750\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28.6876 −1.10256 −0.551278 0.834322i \(-0.685859\pi\)
−0.551278 + 0.834322i \(0.685859\pi\)
\(678\) 0 0
\(679\) −6.02040 37.6501i −0.231042 1.44488i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.48345 + 4.32057i 0.286346 + 0.165322i 0.636293 0.771448i \(-0.280467\pi\)
−0.349947 + 0.936770i \(0.613800\pi\)
\(684\) 0 0
\(685\) 9.98423i 0.381478i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −28.5575 −1.08796
\(690\) 0 0
\(691\) 12.2390i 0.465594i −0.972525 0.232797i \(-0.925212\pi\)
0.972525 0.232797i \(-0.0747878\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 56.1881i 2.13134i
\(696\) 0 0
\(697\) 11.8628 0.449336
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.05683i 0.115455i 0.998332 + 0.0577274i \(0.0183854\pi\)
−0.998332 + 0.0577274i \(0.981615\pi\)
\(702\) 0 0
\(703\) −14.6704 8.46994i −0.553303 0.319450i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.15021 + 21.3264i −0.306520 + 0.802063i
\(708\) 0 0
\(709\) −12.0820 −0.453750 −0.226875 0.973924i \(-0.572851\pi\)
−0.226875 + 0.973924i \(0.572851\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.49945 + 14.7215i −0.318307 + 0.551324i
\(714\) 0 0
\(715\) 14.5403 + 25.1845i 0.543776 + 0.941847i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.27436 10.8675i −0.233994 0.405290i 0.724986 0.688764i \(-0.241846\pi\)
−0.958980 + 0.283474i \(0.908513\pi\)
\(720\) 0 0
\(721\) −2.54721 15.9296i −0.0948630 0.593250i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.533281i 0.0198056i
\(726\) 0 0
\(727\) −16.2736 9.39555i −0.603553 0.348462i 0.166885 0.985976i \(-0.446629\pi\)
−0.770438 + 0.637515i \(0.779962\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.34092 9.25075i −0.197541 0.342151i
\(732\) 0 0
\(733\) 30.6628 + 17.7032i 1.13256 + 0.653882i 0.944577 0.328290i \(-0.106472\pi\)
0.187981 + 0.982173i \(0.439806\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.2031 + 6.46811i −0.412671 + 0.238256i
\(738\) 0 0
\(739\) 11.1371 19.2900i 0.409684 0.709593i −0.585170 0.810910i \(-0.698972\pi\)
0.994854 + 0.101317i \(0.0323057\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.68932 5.01678i 0.318780 0.184048i −0.332069 0.943255i \(-0.607747\pi\)
0.650849 + 0.759207i \(0.274413\pi\)
\(744\) 0 0
\(745\) 21.3428 12.3222i 0.781938 0.451452i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −39.6218 15.1421i −1.44775 0.553279i
\(750\) 0 0
\(751\) −16.7771 + 29.0587i −0.612203 + 1.06037i 0.378665 + 0.925534i \(0.376383\pi\)
−0.990868 + 0.134833i \(0.956950\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −55.3373 −2.01393
\(756\) 0 0
\(757\) 0.0340541 0.00123772 0.000618859 1.00000i \(-0.499803\pi\)
0.000618859 1.00000i \(0.499803\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.4846 + 19.8919i −0.416315 + 0.721079i −0.995566 0.0940705i \(-0.970012\pi\)
0.579250 + 0.815150i \(0.303345\pi\)
\(762\) 0 0
\(763\) 14.5603 2.32825i 0.527118 0.0842882i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.20452 + 0.695429i −0.0434926 + 0.0251105i
\(768\) 0 0
\(769\) −14.3775 + 8.30086i −0.518466 + 0.299337i −0.736307 0.676648i \(-0.763432\pi\)
0.217841 + 0.975984i \(0.430099\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.803138 + 1.39107i −0.0288868 + 0.0500335i −0.880107 0.474775i \(-0.842530\pi\)
0.851221 + 0.524808i \(0.175863\pi\)
\(774\) 0 0
\(775\) −7.52280 + 4.34329i −0.270227 + 0.156016i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −25.6883 14.8311i −0.920378 0.531380i
\(780\) 0 0
\(781\) −9.30133 16.1104i −0.332828 0.576475i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5.45988 3.15226i −0.194871 0.112509i
\(786\) 0 0
\(787\) 15.9080i 0.567060i −0.958963 0.283530i \(-0.908494\pi\)
0.958963 0.283530i \(-0.0915055\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 40.5644 + 15.5023i 1.44231 + 0.551198i
\(792\) 0 0
\(793\) 6.23549 + 10.8002i 0.221429 + 0.383526i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −10.1844 17.6399i −0.360749 0.624836i 0.627335 0.778749i \(-0.284146\pi\)
−0.988084 + 0.153914i \(0.950812\pi\)
\(798\) 0 0
\(799\) −1.39800 + 2.42141i −0.0494578 + 0.0856634i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 57.5915 2.03236
\(804\) 0 0
\(805\) 21.6426 + 8.27106i 0.762803 + 0.291516i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −35.7396 20.6343i −1.25654 0.725462i −0.284137 0.958784i \(-0.591707\pi\)
−0.972400 + 0.233322i \(0.925040\pi\)
\(810\) 0 0
\(811\) 19.3660i 0.680032i −0.940420 0.340016i \(-0.889568\pi\)
0.940420 0.340016i \(-0.110432\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −43.1055 −1.50992
\(816\) 0 0
\(817\) 26.7093i 0.934441i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 32.4939i 1.13404i 0.823703 + 0.567022i \(0.191905\pi\)
−0.823703 + 0.567022i \(0.808095\pi\)
\(822\) 0 0
\(823\) 55.7913 1.94476 0.972381 0.233397i \(-0.0749843\pi\)
0.972381 + 0.233397i \(0.0749843\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.2989i 0.636314i 0.948038 + 0.318157i \(0.103064\pi\)
−0.948038 + 0.318157i \(0.896936\pi\)
\(828\) 0 0
\(829\) 12.6483 + 7.30247i 0.439292 + 0.253625i 0.703297 0.710896i \(-0.251710\pi\)
−0.264005 + 0.964521i \(0.585044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5.08693 4.55307i −0.176252 0.157754i
\(834\) 0 0
\(835\) −54.9983 −1.90330
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.7379 27.2588i 0.543332 0.941079i −0.455378 0.890298i \(-0.650496\pi\)
0.998710 0.0507803i \(-0.0161708\pi\)
\(840\) 0 0
\(841\) −14.4522 25.0320i −0.498353 0.863173i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.86801 6.69959i −0.133064 0.230473i
\(846\) 0 0
\(847\) 4.05677 0.648694i 0.139392 0.0222894i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 23.4565i 0.804080i
\(852\) 0 0
\(853\) 21.2554 + 12.2718i 0.727771 + 0.420179i 0.817606 0.575778i \(-0.195301\pi\)
−0.0898353 + 0.995957i \(0.528634\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.86511 + 10.1587i 0.200348 + 0.347014i 0.948641 0.316355i \(-0.102459\pi\)
−0.748292 + 0.663369i \(0.769126\pi\)
\(858\) 0 0
\(859\) −29.5421 17.0561i −1.00796 0.581948i −0.0973688 0.995248i \(-0.531043\pi\)
−0.910595 + 0.413300i \(0.864376\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20.8863 + 12.0587i −0.710978 + 0.410483i −0.811423 0.584459i \(-0.801307\pi\)
0.100445 + 0.994943i \(0.467973\pi\)
\(864\) 0 0
\(865\) −13.2018 + 22.8663i −0.448876 + 0.777477i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −21.4573 + 12.3884i −0.727890 + 0.420248i
\(870\) 0 0
\(871\) −10.0078 + 5.77798i −0.339100 + 0.195779i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −14.1650 17.4394i −0.478865 0.589560i
\(876\) 0 0
\(877\) 25.8753 44.8173i 0.873747 1.51337i 0.0156551 0.999877i \(-0.495017\pi\)
0.858092 0.513496i \(-0.171650\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30.3925 −1.02395 −0.511975 0.859000i \(-0.671086\pi\)
−0.511975 + 0.859000i \(0.671086\pi\)
\(882\) 0 0
\(883\) 35.4897 1.19432 0.597162 0.802121i \(-0.296295\pi\)
0.597162 + 0.802121i \(0.296295\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.2756 40.3145i 0.781517 1.35363i −0.149540 0.988756i \(-0.547779\pi\)
0.931058 0.364872i \(-0.118887\pi\)
\(888\) 0 0
\(889\) −30.0679 37.0184i −1.00844 1.24156i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.05460 3.49562i 0.202609 0.116977i
\(894\) 0 0
\(895\) 1.52874 0.882620i 0.0511003 0.0295027i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.777893 + 1.34735i −0.0259442 + 0.0449366i
\(900\) 0 0
\(901\) −7.62099 + 4.39998i −0.253892 + 0.146585i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 42.9641 + 24.8053i 1.42817 + 0.824556i
\(906\) 0 0
\(907\) 7.31653 + 12.6726i 0.242941 + 0.420787i 0.961551 0.274627i \(-0.0885544\pi\)
−0.718610 + 0.695414i \(0.755221\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.67661 + 3.85474i 0.221206 + 0.127713i 0.606508 0.795077i \(-0.292570\pi\)
−0.385303 + 0.922790i \(0.625903\pi\)
\(912\) 0 0
\(913\) 51.2919i 1.69752i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −27.2734 + 4.36113i −0.900648 + 0.144017i
\(918\) 0 0
\(919\) 13.4738 + 23.3373i 0.444460 + 0.769827i 0.998014 0.0629860i \(-0.0200623\pi\)
−0.553555 + 0.832813i \(0.686729\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.30890 14.3914i −0.273491 0.473700i
\(924\) 0 0
\(925\) −5.99325 + 10.3806i −0.197057 + 0.341312i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27.6274 −0.906427 −0.453213 0.891402i \(-0.649722\pi\)
−0.453213 + 0.891402i \(0.649722\pi\)
\(930\) 0 0
\(931\) 5.32314 + 16.2192i 0.174459 + 0.531563i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.76057 + 4.48057i 0.253798 + 0.146530i
\(936\) 0 0
\(937\) 7.60743i 0.248524i 0.992249 + 0.124262i \(0.0396563\pi\)
−0.992249 + 0.124262i \(0.960344\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 41.2996 1.34633 0.673165 0.739493i \(-0.264934\pi\)
0.673165 + 0.739493i \(0.264934\pi\)
\(942\) 0 0
\(943\) 41.0731i 1.33753i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.6059i 1.35201i 0.736897 + 0.676005i \(0.236290\pi\)
−0.736897 + 0.676005i \(0.763710\pi\)
\(948\) 0 0
\(949\) 51.4466 1.67003
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 47.2656i 1.53108i 0.643386 + 0.765542i \(0.277529\pi\)
−0.643386 + 0.765542i \(0.722471\pi\)
\(954\) 0 0
\(955\) 47.5038 + 27.4263i 1.53719 + 0.887494i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.51477 + 3.63621i 0.307248 + 0.117419i
\(960\) 0 0
\(961\) 5.65789 0.182512
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16.6344 + 28.8116i −0.535480 + 0.927479i
\(966\) 0 0
\(967\) −2.60192 4.50665i −0.0836720 0.144924i 0.821153 0.570709i \(-0.193331\pi\)
−0.904825 + 0.425785i \(0.859998\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.67233 + 15.0209i 0.278308 + 0.482044i 0.970964 0.239224i \(-0.0768929\pi\)
−0.692656 + 0.721268i \(0.743560\pi\)
\(972\) 0 0
\(973\) −53.5461 20.4634i −1.71661 0.656027i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26.9670i 0.862751i 0.902172 + 0.431376i \(0.141972\pi\)
−0.902172 + 0.431376i \(0.858028\pi\)
\(978\) 0 0
\(979\) −14.1818 8.18789i −0.453254 0.261686i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.55646 + 14.8202i 0.272909 + 0.472692i 0.969605 0.244674i \(-0.0786810\pi\)
−0.696697 + 0.717366i \(0.745348\pi\)
\(984\) 0 0
\(985\) −50.0512 28.8971i −1.59476 0.920738i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.0293 18.4921i 1.01847 0.588015i
\(990\) 0 0
\(991\) −5.84386 + 10.1219i −0.185636 + 0.321531i −0.943791 0.330544i \(-0.892768\pi\)
0.758155 + 0.652075i \(0.226101\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17.2624 + 9.96646i −0.547255 + 0.315958i
\(996\) 0 0
\(997\) −25.0296 + 14.4508i −0.792695 + 0.457663i −0.840910 0.541174i \(-0.817980\pi\)
0.0482154 + 0.998837i \(0.484647\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bs.a.521.5 48
3.2 odd 2 504.2.bs.a.353.16 yes 48
4.3 odd 2 3024.2.ca.e.2033.5 48
7.5 odd 6 1512.2.cx.a.89.5 48
9.4 even 3 504.2.cx.a.185.24 yes 48
9.5 odd 6 1512.2.cx.a.17.5 48
12.11 even 2 1008.2.ca.e.353.9 48
21.5 even 6 504.2.cx.a.425.24 yes 48
28.19 even 6 3024.2.df.e.1601.5 48
36.23 even 6 3024.2.df.e.17.5 48
36.31 odd 6 1008.2.df.e.689.1 48
63.5 even 6 inner 1512.2.bs.a.1097.5 48
63.40 odd 6 504.2.bs.a.257.16 48
84.47 odd 6 1008.2.df.e.929.1 48
252.103 even 6 1008.2.ca.e.257.9 48
252.131 odd 6 3024.2.ca.e.2609.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.16 48 63.40 odd 6
504.2.bs.a.353.16 yes 48 3.2 odd 2
504.2.cx.a.185.24 yes 48 9.4 even 3
504.2.cx.a.425.24 yes 48 21.5 even 6
1008.2.ca.e.257.9 48 252.103 even 6
1008.2.ca.e.353.9 48 12.11 even 2
1008.2.df.e.689.1 48 36.31 odd 6
1008.2.df.e.929.1 48 84.47 odd 6
1512.2.bs.a.521.5 48 1.1 even 1 trivial
1512.2.bs.a.1097.5 48 63.5 even 6 inner
1512.2.cx.a.17.5 48 9.5 odd 6
1512.2.cx.a.89.5 48 7.5 odd 6
3024.2.ca.e.2033.5 48 4.3 odd 2
3024.2.ca.e.2609.5 48 252.131 odd 6
3024.2.df.e.17.5 48 36.23 even 6
3024.2.df.e.1601.5 48 28.19 even 6