Properties

Label 504.2.cx.a.185.24
Level $504$
Weight $2$
Character 504.185
Analytic conductor $4.024$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(185,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.185"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 185.24
Character \(\chi\) \(=\) 504.185
Dual form 504.2.cx.a.425.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73204 - 0.00732041i) q^{3} +2.59337 q^{5} +(-2.61256 + 0.417759i) q^{7} +(2.99989 - 0.0253584i) q^{9} -3.54299i q^{11} +(2.74094 + 1.58248i) q^{13} +(4.49180 - 0.0189845i) q^{15} +(-0.487640 + 0.844616i) q^{17} +(2.11191 - 1.21931i) q^{19} +(-4.52199 + 0.742698i) q^{21} +3.37675i q^{23} +1.72555 q^{25} +(5.19573 - 0.0658821i) q^{27} +(0.267645 - 0.154525i) q^{29} +(-4.35965 + 2.51705i) q^{31} +(-0.0259361 - 6.13659i) q^{33} +(-6.77533 + 1.08340i) q^{35} +(-3.47324 - 6.01583i) q^{37} +(4.75899 + 2.72085i) q^{39} +(-6.08175 + 10.5339i) q^{41} +(-5.47630 - 9.48523i) q^{43} +(7.77982 - 0.0657636i) q^{45} +(-1.43344 + 2.48279i) q^{47} +(6.65096 - 2.18284i) q^{49} +(-0.838426 + 1.46648i) q^{51} +(7.81416 + 4.51151i) q^{53} -9.18828i q^{55} +(3.64898 - 2.12736i) q^{57} +(-0.219727 - 0.380579i) q^{59} +(3.41242 + 1.97016i) q^{61} +(-7.82681 + 1.31948i) q^{63} +(7.10826 + 4.10396i) q^{65} +(-1.82561 - 3.16204i) q^{67} +(0.0247192 + 5.84865i) q^{69} +5.25055i q^{71} +(-14.0773 - 8.12752i) q^{73} +(2.98871 - 0.0126317i) q^{75} +(1.48012 + 9.25629i) q^{77} +(-3.49659 + 6.05628i) q^{79} +(8.99871 - 0.152145i) q^{81} +(-7.23851 - 12.5375i) q^{83} +(-1.26463 + 2.19040i) q^{85} +(0.462439 - 0.269602i) q^{87} +(2.31101 + 4.00279i) q^{89} +(-7.82197 - 2.98928i) q^{91} +(-7.53265 + 4.39153i) q^{93} +(5.47697 - 3.16213i) q^{95} +(12.4805 - 7.20560i) q^{97} +(-0.0898447 - 10.6286i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{9} + 8 q^{15} - 10 q^{21} + 48 q^{25} + 18 q^{27} + 18 q^{29} + 18 q^{31} + 12 q^{33} - 4 q^{39} - 6 q^{41} - 6 q^{43} - 18 q^{45} + 18 q^{47} - 12 q^{49} + 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73204 0.00732041i 0.999991 0.00422644i
\(4\) 0 0
\(5\) 2.59337 1.15979 0.579894 0.814692i \(-0.303094\pi\)
0.579894 + 0.814692i \(0.303094\pi\)
\(6\) 0 0
\(7\) −2.61256 + 0.417759i −0.987455 + 0.157898i
\(8\) 0 0
\(9\) 2.99989 0.0253584i 0.999964 0.00845280i
\(10\) 0 0
\(11\) 3.54299i 1.06825i −0.845405 0.534126i \(-0.820641\pi\)
0.845405 0.534126i \(-0.179359\pi\)
\(12\) 0 0
\(13\) 2.74094 + 1.58248i 0.760200 + 0.438902i 0.829367 0.558703i \(-0.188701\pi\)
−0.0691677 + 0.997605i \(0.522034\pi\)
\(14\) 0 0
\(15\) 4.49180 0.0189845i 1.15978 0.00490178i
\(16\) 0 0
\(17\) −0.487640 + 0.844616i −0.118270 + 0.204850i −0.919082 0.394066i \(-0.871068\pi\)
0.800812 + 0.598916i \(0.204401\pi\)
\(18\) 0 0
\(19\) 2.11191 1.21931i 0.484506 0.279730i −0.237786 0.971318i \(-0.576422\pi\)
0.722293 + 0.691588i \(0.243088\pi\)
\(20\) 0 0
\(21\) −4.52199 + 0.742698i −0.986779 + 0.162070i
\(22\) 0 0
\(23\) 3.37675i 0.704102i 0.935981 + 0.352051i \(0.114516\pi\)
−0.935981 + 0.352051i \(0.885484\pi\)
\(24\) 0 0
\(25\) 1.72555 0.345110
\(26\) 0 0
\(27\) 5.19573 0.0658821i 0.999920 0.0126790i
\(28\) 0 0
\(29\) 0.267645 0.154525i 0.0497004 0.0286946i −0.474944 0.880016i \(-0.657532\pi\)
0.524644 + 0.851322i \(0.324198\pi\)
\(30\) 0 0
\(31\) −4.35965 + 2.51705i −0.783017 + 0.452075i −0.837498 0.546440i \(-0.815983\pi\)
0.0544814 + 0.998515i \(0.482649\pi\)
\(32\) 0 0
\(33\) −0.0259361 6.13659i −0.00451490 1.06824i
\(34\) 0 0
\(35\) −6.77533 + 1.08340i −1.14524 + 0.183128i
\(36\) 0 0
\(37\) −3.47324 6.01583i −0.570997 0.988996i −0.996464 0.0840218i \(-0.973223\pi\)
0.425467 0.904974i \(-0.360110\pi\)
\(38\) 0 0
\(39\) 4.75899 + 2.72085i 0.762048 + 0.435685i
\(40\) 0 0
\(41\) −6.08175 + 10.5339i −0.949810 + 1.64512i −0.203988 + 0.978973i \(0.565390\pi\)
−0.745822 + 0.666146i \(0.767943\pi\)
\(42\) 0 0
\(43\) −5.47630 9.48523i −0.835128 1.44648i −0.893926 0.448214i \(-0.852060\pi\)
0.0587983 0.998270i \(-0.481273\pi\)
\(44\) 0 0
\(45\) 7.77982 0.0657636i 1.15975 0.00980347i
\(46\) 0 0
\(47\) −1.43344 + 2.48279i −0.209089 + 0.362152i −0.951428 0.307872i \(-0.900383\pi\)
0.742339 + 0.670024i \(0.233716\pi\)
\(48\) 0 0
\(49\) 6.65096 2.18284i 0.950136 0.311834i
\(50\) 0 0
\(51\) −0.838426 + 1.46648i −0.117403 + 0.205348i
\(52\) 0 0
\(53\) 7.81416 + 4.51151i 1.07336 + 0.619703i 0.929097 0.369836i \(-0.120586\pi\)
0.144261 + 0.989540i \(0.453920\pi\)
\(54\) 0 0
\(55\) 9.18828i 1.23895i
\(56\) 0 0
\(57\) 3.64898 2.12736i 0.483320 0.281775i
\(58\) 0 0
\(59\) −0.219727 0.380579i −0.0286061 0.0495471i 0.851368 0.524569i \(-0.175773\pi\)
−0.879974 + 0.475022i \(0.842440\pi\)
\(60\) 0 0
\(61\) 3.41242 + 1.97016i 0.436916 + 0.252254i 0.702289 0.711892i \(-0.252162\pi\)
−0.265373 + 0.964146i \(0.585495\pi\)
\(62\) 0 0
\(63\) −7.82681 + 1.31948i −0.986085 + 0.166239i
\(64\) 0 0
\(65\) 7.10826 + 4.10396i 0.881671 + 0.509033i
\(66\) 0 0
\(67\) −1.82561 3.16204i −0.223033 0.386305i 0.732694 0.680558i \(-0.238263\pi\)
−0.955728 + 0.294253i \(0.904929\pi\)
\(68\) 0 0
\(69\) 0.0247192 + 5.84865i 0.00297584 + 0.704095i
\(70\) 0 0
\(71\) 5.25055i 0.623126i 0.950226 + 0.311563i \(0.100852\pi\)
−0.950226 + 0.311563i \(0.899148\pi\)
\(72\) 0 0
\(73\) −14.0773 8.12752i −1.64762 0.951254i −0.978014 0.208539i \(-0.933129\pi\)
−0.669607 0.742716i \(-0.733537\pi\)
\(74\) 0 0
\(75\) 2.98871 0.0126317i 0.345107 0.00145859i
\(76\) 0 0
\(77\) 1.48012 + 9.25629i 0.168675 + 1.05485i
\(78\) 0 0
\(79\) −3.49659 + 6.05628i −0.393397 + 0.681384i −0.992895 0.118992i \(-0.962034\pi\)
0.599498 + 0.800376i \(0.295367\pi\)
\(80\) 0 0
\(81\) 8.99871 0.152145i 0.999857 0.0169050i
\(82\) 0 0
\(83\) −7.23851 12.5375i −0.794529 1.37616i −0.923138 0.384469i \(-0.874384\pi\)
0.128609 0.991695i \(-0.458949\pi\)
\(84\) 0 0
\(85\) −1.26463 + 2.19040i −0.137168 + 0.237582i
\(86\) 0 0
\(87\) 0.462439 0.269602i 0.0495787 0.0289044i
\(88\) 0 0
\(89\) 2.31101 + 4.00279i 0.244967 + 0.424295i 0.962122 0.272619i \(-0.0878897\pi\)
−0.717156 + 0.696913i \(0.754556\pi\)
\(90\) 0 0
\(91\) −7.82197 2.98928i −0.819965 0.313362i
\(92\) 0 0
\(93\) −7.53265 + 4.39153i −0.781099 + 0.455380i
\(94\) 0 0
\(95\) 5.47697 3.16213i 0.561925 0.324428i
\(96\) 0 0
\(97\) 12.4805 7.20560i 1.26720 0.731617i 0.292742 0.956192i \(-0.405432\pi\)
0.974457 + 0.224574i \(0.0720991\pi\)
\(98\) 0 0
\(99\) −0.0898447 10.6286i −0.00902973 1.06821i
\(100\) 0 0
\(101\) −8.62921 −0.858638 −0.429319 0.903153i \(-0.641246\pi\)
−0.429319 + 0.903153i \(0.641246\pi\)
\(102\) 0 0
\(103\) 6.09732i 0.600787i 0.953815 + 0.300394i \(0.0971180\pi\)
−0.953815 + 0.300394i \(0.902882\pi\)
\(104\) 0 0
\(105\) −11.7272 + 1.92609i −1.14446 + 0.187967i
\(106\) 0 0
\(107\) −13.8841 + 8.01599i −1.34223 + 0.774935i −0.987134 0.159896i \(-0.948884\pi\)
−0.355093 + 0.934831i \(0.615551\pi\)
\(108\) 0 0
\(109\) 2.78659 4.82652i 0.266907 0.462297i −0.701154 0.713010i \(-0.747332\pi\)
0.968062 + 0.250713i \(0.0806649\pi\)
\(110\) 0 0
\(111\) −6.05981 10.3942i −0.575172 0.986574i
\(112\) 0 0
\(113\) −14.2144 8.20669i −1.33718 0.772021i −0.350791 0.936454i \(-0.614087\pi\)
−0.986388 + 0.164433i \(0.947421\pi\)
\(114\) 0 0
\(115\) 8.75716i 0.816609i
\(116\) 0 0
\(117\) 8.26265 + 4.67777i 0.763883 + 0.432460i
\(118\) 0 0
\(119\) 0.921142 2.41033i 0.0844410 0.220954i
\(120\) 0 0
\(121\) −1.55280 −0.141163
\(122\) 0 0
\(123\) −10.4567 + 18.2896i −0.942848 + 1.64912i
\(124\) 0 0
\(125\) −8.49185 −0.759534
\(126\) 0 0
\(127\) −18.0255 −1.59951 −0.799754 0.600328i \(-0.795037\pi\)
−0.799754 + 0.600328i \(0.795037\pi\)
\(128\) 0 0
\(129\) −9.55458 16.3887i −0.841234 1.44294i
\(130\) 0 0
\(131\) 10.4393 0.912090 0.456045 0.889957i \(-0.349266\pi\)
0.456045 + 0.889957i \(0.349266\pi\)
\(132\) 0 0
\(133\) −5.00813 + 4.06780i −0.434260 + 0.352723i
\(134\) 0 0
\(135\) 13.4744 0.170856i 1.15970 0.0147050i
\(136\) 0 0
\(137\) 3.84991i 0.328920i 0.986384 + 0.164460i \(0.0525882\pi\)
−0.986384 + 0.164460i \(0.947412\pi\)
\(138\) 0 0
\(139\) 18.7634 + 10.8330i 1.59149 + 0.918847i 0.993052 + 0.117677i \(0.0375447\pi\)
0.598437 + 0.801170i \(0.295789\pi\)
\(140\) 0 0
\(141\) −2.46459 + 4.31077i −0.207556 + 0.363032i
\(142\) 0 0
\(143\) 5.60672 9.71113i 0.468858 0.812085i
\(144\) 0 0
\(145\) 0.694102 0.400740i 0.0576420 0.0332796i
\(146\) 0 0
\(147\) 11.5037 3.82944i 0.948810 0.315847i
\(148\) 0 0
\(149\) 9.50289i 0.778507i 0.921131 + 0.389254i \(0.127267\pi\)
−0.921131 + 0.389254i \(0.872733\pi\)
\(150\) 0 0
\(151\) −21.3380 −1.73646 −0.868232 0.496159i \(-0.834743\pi\)
−0.868232 + 0.496159i \(0.834743\pi\)
\(152\) 0 0
\(153\) −1.44145 + 2.54612i −0.116534 + 0.205842i
\(154\) 0 0
\(155\) −11.3062 + 6.52763i −0.908134 + 0.524312i
\(156\) 0 0
\(157\) 2.10532 1.21551i 0.168023 0.0970082i −0.413630 0.910445i \(-0.635739\pi\)
0.581653 + 0.813437i \(0.302406\pi\)
\(158\) 0 0
\(159\) 13.5674 + 7.75689i 1.07597 + 0.615161i
\(160\) 0 0
\(161\) −1.41067 8.82197i −0.111176 0.695269i
\(162\) 0 0
\(163\) 8.31072 + 14.3946i 0.650946 + 1.12747i 0.982894 + 0.184174i \(0.0589609\pi\)
−0.331948 + 0.943298i \(0.607706\pi\)
\(164\) 0 0
\(165\) −0.0672619 15.9144i −0.00523633 1.23894i
\(166\) 0 0
\(167\) 10.6037 18.3661i 0.820535 1.42121i −0.0847489 0.996402i \(-0.527009\pi\)
0.905284 0.424806i \(-0.139658\pi\)
\(168\) 0 0
\(169\) −1.49150 2.58336i −0.114731 0.198720i
\(170\) 0 0
\(171\) 6.30460 3.71137i 0.482124 0.283815i
\(172\) 0 0
\(173\) −5.09062 + 8.81722i −0.387033 + 0.670361i −0.992049 0.125853i \(-0.959833\pi\)
0.605016 + 0.796213i \(0.293167\pi\)
\(174\) 0 0
\(175\) −4.50810 + 0.720863i −0.340781 + 0.0544922i
\(176\) 0 0
\(177\) −0.383361 0.657567i −0.0288152 0.0494258i
\(178\) 0 0
\(179\) −0.589482 0.340338i −0.0440600 0.0254380i 0.477808 0.878464i \(-0.341431\pi\)
−0.521868 + 0.853026i \(0.674765\pi\)
\(180\) 0 0
\(181\) 19.1298i 1.42191i −0.703239 0.710954i \(-0.748263\pi\)
0.703239 0.710954i \(-0.251737\pi\)
\(182\) 0 0
\(183\) 5.92486 + 3.38741i 0.437978 + 0.250405i
\(184\) 0 0
\(185\) −9.00738 15.6012i −0.662236 1.14703i
\(186\) 0 0
\(187\) 2.99247 + 1.72770i 0.218831 + 0.126342i
\(188\) 0 0
\(189\) −13.5467 + 2.34268i −0.985374 + 0.170405i
\(190\) 0 0
\(191\) 18.3174 + 10.5756i 1.32540 + 0.765221i 0.984585 0.174909i \(-0.0559631\pi\)
0.340817 + 0.940130i \(0.389296\pi\)
\(192\) 0 0
\(193\) −6.41421 11.1097i −0.461705 0.799697i 0.537341 0.843365i \(-0.319429\pi\)
−0.999046 + 0.0436683i \(0.986096\pi\)
\(194\) 0 0
\(195\) 12.3418 + 7.05616i 0.883815 + 0.505302i
\(196\) 0 0
\(197\) 22.2854i 1.58777i 0.608069 + 0.793884i \(0.291944\pi\)
−0.608069 + 0.793884i \(0.708056\pi\)
\(198\) 0 0
\(199\) 6.65637 + 3.84306i 0.471858 + 0.272427i 0.717017 0.697056i \(-0.245507\pi\)
−0.245159 + 0.969483i \(0.578840\pi\)
\(200\) 0 0
\(201\) −3.18516 5.46341i −0.224664 0.385359i
\(202\) 0 0
\(203\) −0.634685 + 0.515517i −0.0445461 + 0.0361822i
\(204\) 0 0
\(205\) −15.7722 + 27.3183i −1.10158 + 1.90799i
\(206\) 0 0
\(207\) 0.0856291 + 10.1299i 0.00595163 + 0.704076i
\(208\) 0 0
\(209\) −4.32002 7.48250i −0.298822 0.517575i
\(210\) 0 0
\(211\) 8.33679 14.4397i 0.573928 0.994073i −0.422229 0.906489i \(-0.638752\pi\)
0.996157 0.0875838i \(-0.0279146\pi\)
\(212\) 0 0
\(213\) 0.0384362 + 9.09414i 0.00263360 + 0.623120i
\(214\) 0 0
\(215\) −14.2021 24.5987i −0.968572 1.67762i
\(216\) 0 0
\(217\) 10.3383 8.39722i 0.701813 0.570041i
\(218\) 0 0
\(219\) −24.4418 13.9741i −1.65163 0.944282i
\(220\) 0 0
\(221\) −2.67318 + 1.54336i −0.179818 + 0.103818i
\(222\) 0 0
\(223\) −4.45390 + 2.57146i −0.298255 + 0.172198i −0.641659 0.766990i \(-0.721753\pi\)
0.343404 + 0.939188i \(0.388420\pi\)
\(224\) 0 0
\(225\) 5.17646 0.0437572i 0.345098 0.00291715i
\(226\) 0 0
\(227\) 11.9854 0.795500 0.397750 0.917494i \(-0.369791\pi\)
0.397750 + 0.917494i \(0.369791\pi\)
\(228\) 0 0
\(229\) 2.60911i 0.172415i 0.996277 + 0.0862074i \(0.0274748\pi\)
−0.996277 + 0.0862074i \(0.972525\pi\)
\(230\) 0 0
\(231\) 2.63137 + 16.0214i 0.173132 + 1.05413i
\(232\) 0 0
\(233\) 3.13306 1.80887i 0.205253 0.118503i −0.393850 0.919175i \(-0.628857\pi\)
0.599103 + 0.800672i \(0.295524\pi\)
\(234\) 0 0
\(235\) −3.71743 + 6.43878i −0.242499 + 0.420020i
\(236\) 0 0
\(237\) −6.01189 + 10.5153i −0.390514 + 0.683041i
\(238\) 0 0
\(239\) 12.8069 + 7.39409i 0.828412 + 0.478284i 0.853309 0.521406i \(-0.174592\pi\)
−0.0248967 + 0.999690i \(0.507926\pi\)
\(240\) 0 0
\(241\) 6.44196i 0.414963i −0.978239 0.207481i \(-0.933473\pi\)
0.978239 0.207481i \(-0.0665267\pi\)
\(242\) 0 0
\(243\) 15.5850 0.329395i 0.999777 0.0211307i
\(244\) 0 0
\(245\) 17.2484 5.66091i 1.10196 0.361662i
\(246\) 0 0
\(247\) 7.71817 0.491095
\(248\) 0 0
\(249\) −12.6291 21.6623i −0.800338 1.37279i
\(250\) 0 0
\(251\) 6.21012 0.391979 0.195990 0.980606i \(-0.437208\pi\)
0.195990 + 0.980606i \(0.437208\pi\)
\(252\) 0 0
\(253\) 11.9638 0.752158
\(254\) 0 0
\(255\) −2.17435 + 3.80311i −0.136163 + 0.238160i
\(256\) 0 0
\(257\) 21.1767 1.32096 0.660482 0.750842i \(-0.270352\pi\)
0.660482 + 0.750842i \(0.270352\pi\)
\(258\) 0 0
\(259\) 11.5872 + 14.2657i 0.719995 + 0.886430i
\(260\) 0 0
\(261\) 0.798988 0.470345i 0.0494561 0.0291136i
\(262\) 0 0
\(263\) 17.1579i 1.05800i 0.848621 + 0.529002i \(0.177434\pi\)
−0.848621 + 0.529002i \(0.822566\pi\)
\(264\) 0 0
\(265\) 20.2650 + 11.7000i 1.24487 + 0.718725i
\(266\) 0 0
\(267\) 4.03205 + 6.91605i 0.246758 + 0.423255i
\(268\) 0 0
\(269\) 10.8061 18.7166i 0.658857 1.14117i −0.322055 0.946721i \(-0.604373\pi\)
0.980912 0.194453i \(-0.0622932\pi\)
\(270\) 0 0
\(271\) 21.8475 12.6137i 1.32714 0.766227i 0.342287 0.939595i \(-0.388798\pi\)
0.984857 + 0.173368i \(0.0554652\pi\)
\(272\) 0 0
\(273\) −13.5698 5.12028i −0.821282 0.309893i
\(274\) 0 0
\(275\) 6.11361i 0.368665i
\(276\) 0 0
\(277\) 22.4512 1.34896 0.674482 0.738291i \(-0.264367\pi\)
0.674482 + 0.738291i \(0.264367\pi\)
\(278\) 0 0
\(279\) −13.0147 + 7.66143i −0.779168 + 0.458678i
\(280\) 0 0
\(281\) 10.3691 5.98662i 0.618571 0.357132i −0.157742 0.987480i \(-0.550421\pi\)
0.776312 + 0.630349i \(0.217088\pi\)
\(282\) 0 0
\(283\) 18.8187 10.8650i 1.11865 0.645855i 0.177596 0.984103i \(-0.443168\pi\)
0.941057 + 0.338249i \(0.109835\pi\)
\(284\) 0 0
\(285\) 9.46315 5.51701i 0.560549 0.326800i
\(286\) 0 0
\(287\) 11.4883 30.0612i 0.678134 1.77445i
\(288\) 0 0
\(289\) 8.02442 + 13.8987i 0.472024 + 0.817570i
\(290\) 0 0
\(291\) 21.5638 12.5717i 1.26410 0.736967i
\(292\) 0 0
\(293\) −5.38110 + 9.32035i −0.314367 + 0.544500i −0.979303 0.202400i \(-0.935126\pi\)
0.664935 + 0.746901i \(0.268459\pi\)
\(294\) 0 0
\(295\) −0.569833 0.986980i −0.0331770 0.0574642i
\(296\) 0 0
\(297\) −0.233420 18.4084i −0.0135444 1.06817i
\(298\) 0 0
\(299\) −5.34365 + 9.25547i −0.309031 + 0.535258i
\(300\) 0 0
\(301\) 18.2697 + 22.4930i 1.05305 + 1.29647i
\(302\) 0 0
\(303\) −14.9461 + 0.0631693i −0.858630 + 0.00362898i
\(304\) 0 0
\(305\) 8.84966 + 5.10935i 0.506730 + 0.292561i
\(306\) 0 0
\(307\) 4.22117i 0.240915i −0.992719 0.120457i \(-0.961564\pi\)
0.992719 0.120457i \(-0.0384361\pi\)
\(308\) 0 0
\(309\) 0.0446349 + 10.5608i 0.00253919 + 0.600782i
\(310\) 0 0
\(311\) −2.09266 3.62459i −0.118664 0.205532i 0.800575 0.599233i \(-0.204528\pi\)
−0.919238 + 0.393702i \(0.871194\pi\)
\(312\) 0 0
\(313\) −19.0867 11.0197i −1.07885 0.622872i −0.148261 0.988948i \(-0.547368\pi\)
−0.930585 + 0.366076i \(0.880701\pi\)
\(314\) 0 0
\(315\) −20.2978 + 3.42190i −1.14365 + 0.192802i
\(316\) 0 0
\(317\) 8.41440 + 4.85806i 0.472600 + 0.272856i 0.717327 0.696736i \(-0.245365\pi\)
−0.244727 + 0.969592i \(0.578698\pi\)
\(318\) 0 0
\(319\) −0.547481 0.948264i −0.0306530 0.0530926i
\(320\) 0 0
\(321\) −23.9891 + 13.9856i −1.33894 + 0.780601i
\(322\) 0 0
\(323\) 2.37834i 0.132335i
\(324\) 0 0
\(325\) 4.72963 + 2.73065i 0.262353 + 0.151469i
\(326\) 0 0
\(327\) 4.79115 8.38011i 0.264951 0.463421i
\(328\) 0 0
\(329\) 2.70774 7.08527i 0.149283 0.390624i
\(330\) 0 0
\(331\) −13.8588 + 24.0042i −0.761749 + 1.31939i 0.180200 + 0.983630i \(0.442326\pi\)
−0.941948 + 0.335758i \(0.891008\pi\)
\(332\) 0 0
\(333\) −10.5719 17.9588i −0.579336 0.984134i
\(334\) 0 0
\(335\) −4.73447 8.20034i −0.258672 0.448032i
\(336\) 0 0
\(337\) 6.29141 10.8970i 0.342715 0.593600i −0.642221 0.766520i \(-0.721987\pi\)
0.984936 + 0.172920i \(0.0553201\pi\)
\(338\) 0 0
\(339\) −24.6799 14.1102i −1.34043 0.766362i
\(340\) 0 0
\(341\) 8.91788 + 15.4462i 0.482930 + 0.836460i
\(342\) 0 0
\(343\) −16.4641 + 8.48130i −0.888979 + 0.457947i
\(344\) 0 0
\(345\) 0.0641060 + 15.1677i 0.00345135 + 0.816602i
\(346\) 0 0
\(347\) −14.4819 + 8.36115i −0.777431 + 0.448850i −0.835519 0.549462i \(-0.814833\pi\)
0.0580881 + 0.998311i \(0.481500\pi\)
\(348\) 0 0
\(349\) −13.9900 + 8.07714i −0.748869 + 0.432359i −0.825285 0.564717i \(-0.808985\pi\)
0.0764164 + 0.997076i \(0.475652\pi\)
\(350\) 0 0
\(351\) 14.3455 + 8.04158i 0.765704 + 0.429228i
\(352\) 0 0
\(353\) 15.6566 0.833318 0.416659 0.909063i \(-0.363201\pi\)
0.416659 + 0.909063i \(0.363201\pi\)
\(354\) 0 0
\(355\) 13.6166i 0.722694i
\(356\) 0 0
\(357\) 1.57781 4.18152i 0.0835064 0.221309i
\(358\) 0 0
\(359\) 19.1396 11.0502i 1.01015 0.583209i 0.0989127 0.995096i \(-0.468464\pi\)
0.911235 + 0.411887i \(0.135130\pi\)
\(360\) 0 0
\(361\) −6.52655 + 11.3043i −0.343502 + 0.594964i
\(362\) 0 0
\(363\) −2.68950 + 0.0113671i −0.141162 + 0.000596618i
\(364\) 0 0
\(365\) −36.5075 21.0776i −1.91089 1.10325i
\(366\) 0 0
\(367\) 13.1513i 0.686492i −0.939246 0.343246i \(-0.888474\pi\)
0.939246 0.343246i \(-0.111526\pi\)
\(368\) 0 0
\(369\) −17.9775 + 31.7548i −0.935870 + 1.65309i
\(370\) 0 0
\(371\) −22.2997 8.52216i −1.15774 0.442448i
\(372\) 0 0
\(373\) −4.43829 −0.229806 −0.114903 0.993377i \(-0.536656\pi\)
−0.114903 + 0.993377i \(0.536656\pi\)
\(374\) 0 0
\(375\) −14.7082 + 0.0621638i −0.759527 + 0.00321012i
\(376\) 0 0
\(377\) 0.978132 0.0503763
\(378\) 0 0
\(379\) 14.8875 0.764718 0.382359 0.924014i \(-0.375112\pi\)
0.382359 + 0.924014i \(0.375112\pi\)
\(380\) 0 0
\(381\) −31.2209 + 0.131954i −1.59949 + 0.00676022i
\(382\) 0 0
\(383\) 5.63802 0.288089 0.144045 0.989571i \(-0.453989\pi\)
0.144045 + 0.989571i \(0.453989\pi\)
\(384\) 0 0
\(385\) 3.83848 + 24.0049i 0.195627 + 1.22341i
\(386\) 0 0
\(387\) −16.6688 28.3158i −0.847325 1.43937i
\(388\) 0 0
\(389\) 38.5120i 1.95263i −0.216346 0.976317i \(-0.569414\pi\)
0.216346 0.976317i \(-0.430586\pi\)
\(390\) 0 0
\(391\) −2.85206 1.64664i −0.144235 0.0832741i
\(392\) 0 0
\(393\) 18.0813 0.0764202i 0.912082 0.00385489i
\(394\) 0 0
\(395\) −9.06795 + 15.7061i −0.456258 + 0.790262i
\(396\) 0 0
\(397\) 2.50780 1.44788i 0.125863 0.0726669i −0.435747 0.900069i \(-0.643516\pi\)
0.561609 + 0.827402i \(0.310182\pi\)
\(398\) 0 0
\(399\) −8.64447 + 7.08224i −0.432765 + 0.354556i
\(400\) 0 0
\(401\) 25.7333i 1.28506i −0.766261 0.642530i \(-0.777885\pi\)
0.766261 0.642530i \(-0.222115\pi\)
\(402\) 0 0
\(403\) −15.9327 −0.793666
\(404\) 0 0
\(405\) 23.3370 0.394568i 1.15962 0.0196062i
\(406\) 0 0
\(407\) −21.3140 + 12.3057i −1.05650 + 0.609969i
\(408\) 0 0
\(409\) −24.9914 + 14.4288i −1.23574 + 0.713457i −0.968221 0.250095i \(-0.919538\pi\)
−0.267522 + 0.963552i \(0.586205\pi\)
\(410\) 0 0
\(411\) 0.0281829 + 6.66818i 0.00139016 + 0.328917i
\(412\) 0 0
\(413\) 0.733041 + 0.902492i 0.0360706 + 0.0444088i
\(414\) 0 0
\(415\) −18.7721 32.5142i −0.921486 1.59606i
\(416\) 0 0
\(417\) 32.5781 + 18.6259i 1.59536 + 0.912112i
\(418\) 0 0
\(419\) 6.07870 10.5286i 0.296964 0.514357i −0.678476 0.734623i \(-0.737359\pi\)
0.975440 + 0.220266i \(0.0706925\pi\)
\(420\) 0 0
\(421\) −13.9914 24.2338i −0.681898 1.18108i −0.974401 0.224817i \(-0.927821\pi\)
0.292503 0.956265i \(-0.405512\pi\)
\(422\) 0 0
\(423\) −4.23720 + 7.48445i −0.206020 + 0.363906i
\(424\) 0 0
\(425\) −0.841446 + 1.45743i −0.0408161 + 0.0706956i
\(426\) 0 0
\(427\) −9.73822 3.72160i −0.471265 0.180101i
\(428\) 0 0
\(429\) 9.63995 16.8611i 0.465421 0.814060i
\(430\) 0 0
\(431\) 13.9975 + 8.08147i 0.674236 + 0.389271i 0.797680 0.603081i \(-0.206060\pi\)
−0.123444 + 0.992352i \(0.539394\pi\)
\(432\) 0 0
\(433\) 5.27197i 0.253355i 0.991944 + 0.126677i \(0.0404313\pi\)
−0.991944 + 0.126677i \(0.959569\pi\)
\(434\) 0 0
\(435\) 1.19927 0.699176i 0.0575008 0.0335229i
\(436\) 0 0
\(437\) 4.11732 + 7.13141i 0.196958 + 0.341142i
\(438\) 0 0
\(439\) 9.10263 + 5.25541i 0.434445 + 0.250827i 0.701238 0.712927i \(-0.252631\pi\)
−0.266794 + 0.963754i \(0.585964\pi\)
\(440\) 0 0
\(441\) 19.8968 6.71695i 0.947467 0.319855i
\(442\) 0 0
\(443\) 5.15805 + 2.97800i 0.245066 + 0.141489i 0.617503 0.786568i \(-0.288144\pi\)
−0.372437 + 0.928058i \(0.621478\pi\)
\(444\) 0 0
\(445\) 5.99330 + 10.3807i 0.284109 + 0.492092i
\(446\) 0 0
\(447\) 0.0695651 + 16.4593i 0.00329031 + 0.778500i
\(448\) 0 0
\(449\) 1.85897i 0.0877304i 0.999037 + 0.0438652i \(0.0139672\pi\)
−0.999037 + 0.0438652i \(0.986033\pi\)
\(450\) 0 0
\(451\) 37.3215 + 21.5476i 1.75740 + 1.01464i
\(452\) 0 0
\(453\) −36.9582 + 0.156203i −1.73645 + 0.00733906i
\(454\) 0 0
\(455\) −20.2852 7.75230i −0.950986 0.363433i
\(456\) 0 0
\(457\) −14.8747 + 25.7637i −0.695808 + 1.20517i 0.274100 + 0.961701i \(0.411620\pi\)
−0.969908 + 0.243473i \(0.921713\pi\)
\(458\) 0 0
\(459\) −2.47800 + 4.42053i −0.115663 + 0.206333i
\(460\) 0 0
\(461\) −14.9738 25.9353i −0.697398 1.20793i −0.969366 0.245622i \(-0.921008\pi\)
0.271968 0.962306i \(-0.412325\pi\)
\(462\) 0 0
\(463\) 7.57406 13.1187i 0.351997 0.609676i −0.634603 0.772839i \(-0.718836\pi\)
0.986599 + 0.163163i \(0.0521695\pi\)
\(464\) 0 0
\(465\) −19.5349 + 11.3888i −0.905910 + 0.528145i
\(466\) 0 0
\(467\) 5.85158 + 10.1352i 0.270779 + 0.469002i 0.969061 0.246820i \(-0.0793855\pi\)
−0.698283 + 0.715822i \(0.746052\pi\)
\(468\) 0 0
\(469\) 6.09048 + 7.49837i 0.281232 + 0.346243i
\(470\) 0 0
\(471\) 3.63760 2.12072i 0.167612 0.0977175i
\(472\) 0 0
\(473\) −33.6061 + 19.4025i −1.54521 + 0.892127i
\(474\) 0 0
\(475\) 3.64421 2.10399i 0.167208 0.0965375i
\(476\) 0 0
\(477\) 23.5561 + 13.3359i 1.07856 + 0.610608i
\(478\) 0 0
\(479\) 12.1418 0.554771 0.277385 0.960759i \(-0.410532\pi\)
0.277385 + 0.960759i \(0.410532\pi\)
\(480\) 0 0
\(481\) 21.9854i 1.00245i
\(482\) 0 0
\(483\) −2.50791 15.2696i −0.114114 0.694793i
\(484\) 0 0
\(485\) 32.3664 18.6868i 1.46968 0.848522i
\(486\) 0 0
\(487\) −5.22070 + 9.04251i −0.236572 + 0.409755i −0.959728 0.280929i \(-0.909357\pi\)
0.723156 + 0.690685i \(0.242691\pi\)
\(488\) 0 0
\(489\) 14.4998 + 24.8711i 0.655705 + 1.12471i
\(490\) 0 0
\(491\) 20.9972 + 12.1227i 0.947589 + 0.547091i 0.892331 0.451382i \(-0.149069\pi\)
0.0552576 + 0.998472i \(0.482402\pi\)
\(492\) 0 0
\(493\) 0.301410i 0.0135748i
\(494\) 0 0
\(495\) −0.233000 27.5638i −0.0104726 1.23890i
\(496\) 0 0
\(497\) −2.19346 13.7174i −0.0983903 0.615309i
\(498\) 0 0
\(499\) −0.348239 −0.0155893 −0.00779466 0.999970i \(-0.502481\pi\)
−0.00779466 + 0.999970i \(0.502481\pi\)
\(500\) 0 0
\(501\) 18.2315 31.8883i 0.814521 1.42466i
\(502\) 0 0
\(503\) −32.3099 −1.44063 −0.720314 0.693648i \(-0.756002\pi\)
−0.720314 + 0.693648i \(0.756002\pi\)
\(504\) 0 0
\(505\) −22.3787 −0.995839
\(506\) 0 0
\(507\) −2.60224 4.46354i −0.115570 0.198233i
\(508\) 0 0
\(509\) −13.7046 −0.607448 −0.303724 0.952760i \(-0.598230\pi\)
−0.303724 + 0.952760i \(0.598230\pi\)
\(510\) 0 0
\(511\) 40.1731 + 15.3527i 1.77715 + 0.679165i
\(512\) 0 0
\(513\) 10.8926 6.47437i 0.480921 0.285850i
\(514\) 0 0
\(515\) 15.8126i 0.696786i
\(516\) 0 0
\(517\) 8.79650 + 5.07866i 0.386870 + 0.223359i
\(518\) 0 0
\(519\) −8.75259 + 15.3090i −0.384196 + 0.671990i
\(520\) 0 0
\(521\) −8.73516 + 15.1297i −0.382694 + 0.662846i −0.991446 0.130514i \(-0.958337\pi\)
0.608752 + 0.793361i \(0.291670\pi\)
\(522\) 0 0
\(523\) −23.3238 + 13.4660i −1.01988 + 0.588827i −0.914069 0.405559i \(-0.867077\pi\)
−0.105810 + 0.994386i \(0.533743\pi\)
\(524\) 0 0
\(525\) −7.80292 + 1.28156i −0.340547 + 0.0559320i
\(526\) 0 0
\(527\) 4.90965i 0.213868i
\(528\) 0 0
\(529\) 11.5975 0.504241
\(530\) 0 0
\(531\) −0.668809 1.13612i −0.0290238 0.0493036i
\(532\) 0 0
\(533\) −33.3394 + 19.2485i −1.44409 + 0.833746i
\(534\) 0 0
\(535\) −36.0066 + 20.7884i −1.55670 + 0.898761i
\(536\) 0 0
\(537\) −1.02350 0.585162i −0.0441671 0.0252516i
\(538\) 0 0
\(539\) −7.73379 23.5643i −0.333118 1.01499i
\(540\) 0 0
\(541\) −7.43375 12.8756i −0.319602 0.553567i 0.660803 0.750559i \(-0.270216\pi\)
−0.980405 + 0.196993i \(0.936882\pi\)
\(542\) 0 0
\(543\) −0.140038 33.1335i −0.00600961 1.42190i
\(544\) 0 0
\(545\) 7.22666 12.5169i 0.309556 0.536167i
\(546\) 0 0
\(547\) −4.17953 7.23915i −0.178704 0.309524i 0.762733 0.646713i \(-0.223857\pi\)
−0.941437 + 0.337190i \(0.890524\pi\)
\(548\) 0 0
\(549\) 10.2869 + 5.82374i 0.439033 + 0.248551i
\(550\) 0 0
\(551\) 0.376829 0.652687i 0.0160534 0.0278054i
\(552\) 0 0
\(553\) 6.60500 17.2831i 0.280873 0.734953i
\(554\) 0 0
\(555\) −15.7153 26.9560i −0.667078 1.14422i
\(556\) 0 0
\(557\) −0.617917 0.356754i −0.0261820 0.0151162i 0.486852 0.873485i \(-0.338145\pi\)
−0.513034 + 0.858368i \(0.671478\pi\)
\(558\) 0 0
\(559\) 34.6646i 1.46616i
\(560\) 0 0
\(561\) 5.19571 + 2.97054i 0.219363 + 0.125416i
\(562\) 0 0
\(563\) 13.5939 + 23.5452i 0.572912 + 0.992314i 0.996265 + 0.0863485i \(0.0275199\pi\)
−0.423352 + 0.905965i \(0.639147\pi\)
\(564\) 0 0
\(565\) −36.8632 21.2830i −1.55085 0.895381i
\(566\) 0 0
\(567\) −23.4461 + 4.15678i −0.984645 + 0.174568i
\(568\) 0 0
\(569\) 1.51833 + 0.876606i 0.0636515 + 0.0367492i 0.531488 0.847066i \(-0.321633\pi\)
−0.467836 + 0.883815i \(0.654966\pi\)
\(570\) 0 0
\(571\) −0.228817 0.396323i −0.00957570 0.0165856i 0.861198 0.508270i \(-0.169715\pi\)
−0.870774 + 0.491684i \(0.836381\pi\)
\(572\) 0 0
\(573\) 31.8038 + 18.1832i 1.32862 + 0.759612i
\(574\) 0 0
\(575\) 5.82675i 0.242992i
\(576\) 0 0
\(577\) 19.8800 + 11.4777i 0.827617 + 0.477825i 0.853036 0.521852i \(-0.174759\pi\)
−0.0254193 + 0.999677i \(0.508092\pi\)
\(578\) 0 0
\(579\) −11.1910 19.1955i −0.465081 0.797738i
\(580\) 0 0
\(581\) 24.1487 + 29.7309i 1.00186 + 1.23345i
\(582\) 0 0
\(583\) 15.9842 27.6855i 0.662000 1.14662i
\(584\) 0 0
\(585\) 21.4281 + 12.1312i 0.885942 + 0.501562i
\(586\) 0 0
\(587\) 2.81513 + 4.87594i 0.116193 + 0.201252i 0.918256 0.395987i \(-0.129598\pi\)
−0.802063 + 0.597239i \(0.796264\pi\)
\(588\) 0 0
\(589\) −6.13814 + 10.6316i −0.252918 + 0.438066i
\(590\) 0 0
\(591\) 0.163138 + 38.5991i 0.00671061 + 1.58775i
\(592\) 0 0
\(593\) 1.35121 + 2.34037i 0.0554876 + 0.0961074i 0.892435 0.451176i \(-0.148995\pi\)
−0.836947 + 0.547283i \(0.815662\pi\)
\(594\) 0 0
\(595\) 2.38886 6.25086i 0.0979337 0.256260i
\(596\) 0 0
\(597\) 11.5572 + 6.60759i 0.473005 + 0.270430i
\(598\) 0 0
\(599\) 10.3894 5.99831i 0.424498 0.245084i −0.272502 0.962155i \(-0.587851\pi\)
0.697000 + 0.717071i \(0.254518\pi\)
\(600\) 0 0
\(601\) 26.7530 15.4459i 1.09128 0.630050i 0.157363 0.987541i \(-0.449701\pi\)
0.933917 + 0.357491i \(0.116368\pi\)
\(602\) 0 0
\(603\) −5.55681 9.43950i −0.226291 0.384406i
\(604\) 0 0
\(605\) −4.02697 −0.163720
\(606\) 0 0
\(607\) 6.87463i 0.279033i −0.990220 0.139516i \(-0.955445\pi\)
0.990220 0.139516i \(-0.0445548\pi\)
\(608\) 0 0
\(609\) −1.09552 + 0.897540i −0.0443928 + 0.0363701i
\(610\) 0 0
\(611\) −7.85794 + 4.53678i −0.317898 + 0.183539i
\(612\) 0 0
\(613\) −16.6455 + 28.8308i −0.672304 + 1.16447i 0.304945 + 0.952370i \(0.401362\pi\)
−0.977249 + 0.212095i \(0.931971\pi\)
\(614\) 0 0
\(615\) −27.1180 + 47.4317i −1.09351 + 1.91263i
\(616\) 0 0
\(617\) 18.0757 + 10.4360i 0.727702 + 0.420139i 0.817581 0.575814i \(-0.195315\pi\)
−0.0898790 + 0.995953i \(0.528648\pi\)
\(618\) 0 0
\(619\) 19.3846i 0.779133i −0.920998 0.389567i \(-0.872625\pi\)
0.920998 0.389567i \(-0.127375\pi\)
\(620\) 0 0
\(621\) 0.222468 + 17.5447i 0.00892731 + 0.704045i
\(622\) 0 0
\(623\) −7.70985 9.49208i −0.308889 0.380292i
\(624\) 0 0
\(625\) −30.6502 −1.22601
\(626\) 0 0
\(627\) −7.53720 12.9283i −0.301007 0.516307i
\(628\) 0 0
\(629\) 6.77476 0.270127
\(630\) 0 0
\(631\) −27.3629 −1.08930 −0.544649 0.838664i \(-0.683337\pi\)
−0.544649 + 0.838664i \(0.683337\pi\)
\(632\) 0 0
\(633\) 14.3339 25.0712i 0.569722 0.996490i
\(634\) 0 0
\(635\) −46.7468 −1.85509
\(636\) 0 0
\(637\) 21.6842 + 4.54198i 0.859158 + 0.179960i
\(638\) 0 0
\(639\) 0.133146 + 15.7511i 0.00526716 + 0.623104i
\(640\) 0 0
\(641\) 34.7202i 1.37137i 0.727900 + 0.685683i \(0.240496\pi\)
−0.727900 + 0.685683i \(0.759504\pi\)
\(642\) 0 0
\(643\) 3.52980 + 2.03793i 0.139202 + 0.0803681i 0.567983 0.823040i \(-0.307724\pi\)
−0.428782 + 0.903408i \(0.641057\pi\)
\(644\) 0 0
\(645\) −24.7785 42.5018i −0.975654 1.67351i
\(646\) 0 0
\(647\) −6.53976 + 11.3272i −0.257105 + 0.445318i −0.965465 0.260533i \(-0.916102\pi\)
0.708360 + 0.705851i \(0.249435\pi\)
\(648\) 0 0
\(649\) −1.34839 + 0.778492i −0.0529288 + 0.0305585i
\(650\) 0 0
\(651\) 17.8449 14.6200i 0.699397 0.573002i
\(652\) 0 0
\(653\) 6.24179i 0.244260i −0.992514 0.122130i \(-0.961027\pi\)
0.992514 0.122130i \(-0.0389725\pi\)
\(654\) 0 0
\(655\) 27.0730 1.05783
\(656\) 0 0
\(657\) −42.4364 24.0247i −1.65560 0.937293i
\(658\) 0 0
\(659\) 1.79139 1.03426i 0.0697827 0.0402891i −0.464703 0.885467i \(-0.653839\pi\)
0.534485 + 0.845178i \(0.320505\pi\)
\(660\) 0 0
\(661\) 13.5306 7.81190i 0.526280 0.303848i −0.213220 0.977004i \(-0.568395\pi\)
0.739500 + 0.673156i \(0.235062\pi\)
\(662\) 0 0
\(663\) −4.61875 + 2.69273i −0.179377 + 0.104577i
\(664\) 0 0
\(665\) −12.9879 + 10.5493i −0.503649 + 0.409085i
\(666\) 0 0
\(667\) 0.521792 + 0.903771i 0.0202039 + 0.0349941i
\(668\) 0 0
\(669\) −7.69549 + 4.48646i −0.297525 + 0.173457i
\(670\) 0 0
\(671\) 6.98027 12.0902i 0.269470 0.466736i
\(672\) 0 0
\(673\) −15.1108 26.1727i −0.582478 1.00888i −0.995185 0.0980180i \(-0.968750\pi\)
0.412706 0.910864i \(-0.364584\pi\)
\(674\) 0 0
\(675\) 8.96550 0.113683i 0.345082 0.00437565i
\(676\) 0 0
\(677\) 14.3438 24.8442i 0.551278 0.954841i −0.446905 0.894581i \(-0.647474\pi\)
0.998183 0.0602595i \(-0.0191928\pi\)
\(678\) 0 0
\(679\) −29.5958 + 24.0389i −1.13578 + 0.922528i
\(680\) 0 0
\(681\) 20.7592 0.0877382i 0.795493 0.00336213i
\(682\) 0 0
\(683\) 7.48345 + 4.32057i 0.286346 + 0.165322i 0.636293 0.771448i \(-0.280467\pi\)
−0.349947 + 0.936770i \(0.613800\pi\)
\(684\) 0 0
\(685\) 9.98423i 0.381478i
\(686\) 0 0
\(687\) 0.0190997 + 4.51907i 0.000728701 + 0.172413i
\(688\) 0 0
\(689\) 14.2788 + 24.7315i 0.543978 + 0.942197i
\(690\) 0 0
\(691\) 10.5993 + 6.11951i 0.403216 + 0.232797i 0.687871 0.725833i \(-0.258546\pi\)
−0.284655 + 0.958630i \(0.591879\pi\)
\(692\) 0 0
\(693\) 4.67491 + 27.7303i 0.177585 + 1.05339i
\(694\) 0 0
\(695\) 48.6603 + 28.0940i 1.84579 + 1.06567i
\(696\) 0 0
\(697\) −5.93140 10.2735i −0.224668 0.389136i
\(698\) 0 0
\(699\) 5.41332 3.15596i 0.204751 0.119369i
\(700\) 0 0
\(701\) 3.05683i 0.115455i 0.998332 + 0.0577274i \(0.0183854\pi\)
−0.998332 + 0.0577274i \(0.981615\pi\)
\(702\) 0 0
\(703\) −14.6704 8.46994i −0.553303 0.319450i
\(704\) 0 0
\(705\) −6.39159 + 11.1794i −0.240721 + 0.421041i
\(706\) 0 0
\(707\) 22.5443 3.60493i 0.847867 0.135577i
\(708\) 0 0
\(709\) 6.04101 10.4633i 0.226875 0.392959i −0.730005 0.683441i \(-0.760482\pi\)
0.956880 + 0.290482i \(0.0938158\pi\)
\(710\) 0 0
\(711\) −10.3358 + 18.2568i −0.387624 + 0.684685i
\(712\) 0 0
\(713\) −8.49945 14.7215i −0.318307 0.551324i
\(714\) 0 0
\(715\) 14.5403 25.1845i 0.543776 0.941847i
\(716\) 0 0
\(717\) 22.2362 + 12.7131i 0.830426 + 0.474778i
\(718\) 0 0
\(719\) −6.27436 10.8675i −0.233994 0.405290i 0.724986 0.688764i \(-0.241846\pi\)
−0.958980 + 0.283474i \(0.908513\pi\)
\(720\) 0 0
\(721\) −2.54721 15.9296i −0.0948630 0.593250i
\(722\) 0 0
\(723\) −0.0471578 11.1577i −0.00175382 0.414959i
\(724\) 0 0
\(725\) 0.461835 0.266640i 0.0171521 0.00990278i
\(726\) 0 0
\(727\) 16.2736 9.39555i 0.603553 0.348462i −0.166885 0.985976i \(-0.553371\pi\)
0.770438 + 0.637515i \(0.220038\pi\)
\(728\) 0 0
\(729\) 26.9913 0.684612i 0.999678 0.0253560i
\(730\) 0 0
\(731\) 10.6818 0.395082
\(732\) 0 0
\(733\) 35.4064i 1.30776i −0.756596 0.653882i \(-0.773139\pi\)
0.756596 0.653882i \(-0.226861\pi\)
\(734\) 0 0
\(735\) 29.8333 9.93115i 1.10042 0.366316i
\(736\) 0 0
\(737\) −11.2031 + 6.46811i −0.412671 + 0.238256i
\(738\) 0 0
\(739\) 11.1371 19.2900i 0.409684 0.709593i −0.585170 0.810910i \(-0.698972\pi\)
0.994854 + 0.101317i \(0.0323057\pi\)
\(740\) 0 0
\(741\) 13.3681 0.0565002i 0.491091 0.00207559i
\(742\) 0 0
\(743\) −8.68932 5.01678i −0.318780 0.184048i 0.332069 0.943255i \(-0.392253\pi\)
−0.650849 + 0.759207i \(0.725587\pi\)
\(744\) 0 0
\(745\) 24.6445i 0.902904i
\(746\) 0 0
\(747\) −22.0327 37.4275i −0.806133 1.36940i
\(748\) 0 0
\(749\) 32.9243 26.7425i 1.20303 0.977148i
\(750\) 0 0
\(751\) 33.5541 1.22441 0.612203 0.790700i \(-0.290283\pi\)
0.612203 + 0.790700i \(0.290283\pi\)
\(752\) 0 0
\(753\) 10.7561 0.0454606i 0.391976 0.00165668i
\(754\) 0 0
\(755\) −55.3373 −2.01393
\(756\) 0 0
\(757\) 0.0340541 0.00123772 0.000618859 1.00000i \(-0.499803\pi\)
0.000618859 1.00000i \(0.499803\pi\)
\(758\) 0 0
\(759\) 20.7217 0.0875800i 0.752151 0.00317895i
\(760\) 0 0
\(761\) 22.9691 0.832631 0.416315 0.909220i \(-0.363321\pi\)
0.416315 + 0.909220i \(0.363321\pi\)
\(762\) 0 0
\(763\) −5.26383 + 13.7737i −0.190563 + 0.498642i
\(764\) 0 0
\(765\) −3.73820 + 6.60303i −0.135155 + 0.238733i
\(766\) 0 0
\(767\) 1.39086i 0.0502210i
\(768\) 0 0
\(769\) 14.3775 + 8.30086i 0.518466 + 0.299337i 0.736307 0.676648i \(-0.236568\pi\)
−0.217841 + 0.975984i \(0.569901\pi\)
\(770\) 0 0
\(771\) 36.6787 0.155022i 1.32095 0.00558297i
\(772\) 0 0
\(773\) −0.803138 + 1.39107i −0.0288868 + 0.0500335i −0.880107 0.474775i \(-0.842530\pi\)
0.851221 + 0.524808i \(0.175863\pi\)
\(774\) 0 0
\(775\) −7.52280 + 4.34329i −0.270227 + 0.156016i
\(776\) 0 0
\(777\) 20.1739 + 24.6239i 0.723735 + 0.883379i
\(778\) 0 0
\(779\) 29.6623i 1.06276i
\(780\) 0 0
\(781\) 18.6027 0.665656
\(782\) 0 0
\(783\) 1.38043 0.820503i 0.0493326 0.0293224i
\(784\) 0 0
\(785\) 5.45988 3.15226i 0.194871 0.112509i
\(786\) 0 0
\(787\) −13.7768 + 7.95401i −0.491088 + 0.283530i −0.725026 0.688722i \(-0.758172\pi\)
0.233938 + 0.972252i \(0.424839\pi\)
\(788\) 0 0
\(789\) 0.125603 + 29.7182i 0.00447159 + 1.05799i
\(790\) 0 0
\(791\) 40.5644 + 15.5023i 1.44231 + 0.551198i
\(792\) 0 0
\(793\) 6.23549 + 10.8002i 0.221429 + 0.383526i
\(794\) 0 0
\(795\) 35.1853 + 20.1165i 1.24789 + 0.713457i
\(796\) 0 0
\(797\) −10.1844 + 17.6399i −0.360749 + 0.624836i −0.988084 0.153914i \(-0.950812\pi\)
0.627335 + 0.778749i \(0.284146\pi\)
\(798\) 0 0
\(799\) −1.39800 2.42141i −0.0494578 0.0856634i
\(800\) 0 0
\(801\) 7.03429 + 11.9493i 0.248544 + 0.422209i
\(802\) 0 0
\(803\) −28.7957 + 49.8757i −1.01618 + 1.76008i
\(804\) 0 0
\(805\) −3.65838 22.8786i −0.128941 0.806365i
\(806\) 0 0
\(807\) 18.5795 32.4970i 0.654028 1.14395i
\(808\) 0 0
\(809\) −35.7396 20.6343i −1.25654 0.725462i −0.284137 0.958784i \(-0.591707\pi\)
−0.972400 + 0.233322i \(0.925040\pi\)
\(810\) 0 0
\(811\) 19.3660i 0.680032i −0.940420 0.340016i \(-0.889568\pi\)
0.940420 0.340016i \(-0.110432\pi\)
\(812\) 0 0
\(813\) 37.7484 22.0073i 1.32389 0.771829i
\(814\) 0 0
\(815\) 21.5527 + 37.3305i 0.754960 + 1.30763i
\(816\) 0 0
\(817\) −23.1309 13.3547i −0.809249 0.467220i
\(818\) 0 0
\(819\) −23.5409 8.76917i −0.822585 0.306420i
\(820\) 0 0
\(821\) −28.1405 16.2469i −0.982111 0.567022i −0.0792043 0.996858i \(-0.525238\pi\)
−0.902907 + 0.429836i \(0.858571\pi\)
\(822\) 0 0
\(823\) −27.8957 48.3167i −0.972381 1.68421i −0.688319 0.725408i \(-0.741651\pi\)
−0.284063 0.958806i \(-0.591682\pi\)
\(824\) 0 0
\(825\) −0.0447541 10.5890i −0.00155814 0.368661i
\(826\) 0 0
\(827\) 18.2989i 0.636314i 0.948038 + 0.318157i \(0.103064\pi\)
−0.948038 + 0.318157i \(0.896936\pi\)
\(828\) 0 0
\(829\) 12.6483 + 7.30247i 0.439292 + 0.253625i 0.703297 0.710896i \(-0.251710\pi\)
−0.264005 + 0.964521i \(0.585044\pi\)
\(830\) 0 0
\(831\) 38.8864 0.164352i 1.34895 0.00570132i
\(832\) 0 0
\(833\) −1.39961 + 6.68195i −0.0484935 + 0.231516i
\(834\) 0 0
\(835\) 27.4992 47.6299i 0.951648 1.64830i
\(836\) 0 0
\(837\) −22.4858 + 13.3651i −0.777222 + 0.461967i
\(838\) 0 0
\(839\) 15.7379 + 27.2588i 0.543332 + 0.941079i 0.998710 + 0.0507803i \(0.0161708\pi\)
−0.455378 + 0.890298i \(0.650496\pi\)
\(840\) 0 0
\(841\) −14.4522 + 25.0320i −0.498353 + 0.863173i
\(842\) 0 0
\(843\) 17.9159 10.4449i 0.617056 0.359743i
\(844\) 0 0
\(845\) −3.86801 6.69959i −0.133064 0.230473i
\(846\) 0 0
\(847\) 4.05677 0.648694i 0.139392 0.0222894i
\(848\) 0 0
\(849\) 32.5150 18.9562i 1.11591 0.650577i
\(850\) 0 0
\(851\) 20.3140 11.7283i 0.696354 0.402040i
\(852\) 0 0
\(853\) −21.2554 + 12.2718i −0.727771 + 0.420179i −0.817606 0.575778i \(-0.804699\pi\)
0.0898353 + 0.995957i \(0.471366\pi\)
\(854\) 0 0
\(855\) 16.3501 9.62493i 0.559163 0.329166i
\(856\) 0 0
\(857\) −11.7302 −0.400697 −0.200348 0.979725i \(-0.564207\pi\)
−0.200348 + 0.979725i \(0.564207\pi\)
\(858\) 0 0
\(859\) 34.1123i 1.16390i 0.813226 + 0.581948i \(0.197709\pi\)
−0.813226 + 0.581948i \(0.802291\pi\)
\(860\) 0 0
\(861\) 19.6781 52.1511i 0.670628 1.77731i
\(862\) 0 0
\(863\) −20.8863 + 12.0587i −0.710978 + 0.410483i −0.811423 0.584459i \(-0.801307\pi\)
0.100445 + 0.994943i \(0.467973\pi\)
\(864\) 0 0
\(865\) −13.2018 + 22.8663i −0.448876 + 0.777477i
\(866\) 0 0
\(867\) 14.0003 + 24.0143i 0.475476 + 0.815568i
\(868\) 0 0
\(869\) 21.4573 + 12.3884i 0.727890 + 0.420248i
\(870\) 0 0
\(871\) 11.5560i 0.391559i
\(872\) 0 0
\(873\) 37.2573 21.9325i 1.26097 0.742303i
\(874\) 0 0
\(875\) 22.1855 3.54754i 0.750006 0.119929i
\(876\) 0 0
\(877\) −51.7506 −1.74749 −0.873747 0.486381i \(-0.838317\pi\)
−0.873747 + 0.486381i \(0.838317\pi\)
\(878\) 0 0
\(879\) −9.25203 + 16.1826i −0.312063 + 0.545824i
\(880\) 0 0
\(881\) −30.3925 −1.02395 −0.511975 0.859000i \(-0.671086\pi\)
−0.511975 + 0.859000i \(0.671086\pi\)
\(882\) 0 0
\(883\) 35.4897 1.19432 0.597162 0.802121i \(-0.296295\pi\)
0.597162 + 0.802121i \(0.296295\pi\)
\(884\) 0 0
\(885\) −0.994197 1.70531i −0.0334195 0.0573235i
\(886\) 0 0
\(887\) −46.5511 −1.56303 −0.781517 0.623884i \(-0.785554\pi\)
−0.781517 + 0.623884i \(0.785554\pi\)
\(888\) 0 0
\(889\) 47.0928 7.53033i 1.57944 0.252559i
\(890\) 0 0
\(891\) −0.539049 31.8824i −0.0180588 1.06810i
\(892\) 0 0
\(893\) 6.99125i 0.233953i
\(894\) 0 0
\(895\) −1.52874 0.882620i −0.0511003 0.0295027i
\(896\) 0 0
\(897\) −9.18764 + 16.0699i −0.306766 + 0.536559i
\(898\) 0 0
\(899\) −0.777893 + 1.34735i −0.0259442 + 0.0449366i
\(900\) 0 0
\(901\) −7.62099 + 4.39998i −0.253892 + 0.146585i
\(902\) 0 0
\(903\) 31.8084 + 38.8249i 1.05852 + 1.29201i
\(904\) 0 0
\(905\) 49.6106i 1.64911i
\(906\) 0 0
\(907\) −14.6331 −0.485883 −0.242941 0.970041i \(-0.578112\pi\)
−0.242941 + 0.970041i \(0.578112\pi\)
\(908\) 0 0
\(909\) −25.8867 + 0.218823i −0.858607 + 0.00725790i
\(910\) 0 0
\(911\) −6.67661 + 3.85474i −0.221206 + 0.127713i −0.606508 0.795077i \(-0.707430\pi\)
0.385303 + 0.922790i \(0.374097\pi\)
\(912\) 0 0
\(913\) −44.4201 + 25.6460i −1.47009 + 0.848758i
\(914\) 0 0
\(915\) 15.3653 + 8.78480i 0.507962 + 0.290417i
\(916\) 0 0
\(917\) −27.2734 + 4.36113i −0.900648 + 0.144017i
\(918\) 0 0
\(919\) 13.4738 + 23.3373i 0.444460 + 0.769827i 0.998014 0.0629860i \(-0.0200623\pi\)
−0.553555 + 0.832813i \(0.686729\pi\)
\(920\) 0 0
\(921\) −0.0309006 7.31121i −0.00101821 0.240912i
\(922\) 0 0
\(923\) −8.30890 + 14.3914i −0.273491 + 0.473700i
\(924\) 0 0
\(925\) −5.99325 10.3806i −0.197057 0.341312i
\(926\) 0 0
\(927\) 0.154618 + 18.2913i 0.00507833 + 0.600766i
\(928\) 0 0
\(929\) 13.8137 23.9261i 0.453213 0.784989i −0.545370 0.838195i \(-0.683611\pi\)
0.998584 + 0.0532068i \(0.0169442\pi\)
\(930\) 0 0
\(931\) 11.3847 12.7196i 0.373118 0.416867i
\(932\) 0 0
\(933\) −3.65109 6.26259i −0.119531 0.205028i
\(934\) 0 0
\(935\) 7.76057 + 4.48057i 0.253798 + 0.146530i
\(936\) 0 0
\(937\) 7.60743i 0.248524i 0.992249 + 0.124262i \(0.0396563\pi\)
−0.992249 + 0.124262i \(0.960344\pi\)
\(938\) 0 0
\(939\) −33.1396 18.9468i −1.08147 0.618307i
\(940\) 0 0
\(941\) −20.6498 35.7665i −0.673165 1.16596i −0.977002 0.213231i \(-0.931601\pi\)
0.303837 0.952724i \(-0.401732\pi\)
\(942\) 0 0
\(943\) −35.5704 20.5366i −1.15833 0.668763i
\(944\) 0 0
\(945\) −35.1314 + 6.07544i −1.14283 + 0.197634i
\(946\) 0 0
\(947\) −36.0318 20.8030i −1.17088 0.676005i −0.216989 0.976174i \(-0.569624\pi\)
−0.953886 + 0.300169i \(0.902957\pi\)
\(948\) 0 0
\(949\) −25.7233 44.5541i −0.835014 1.44629i
\(950\) 0 0
\(951\) 14.6096 + 8.35273i 0.473749 + 0.270856i
\(952\) 0 0
\(953\) 47.2656i 1.53108i 0.643386 + 0.765542i \(0.277529\pi\)
−0.643386 + 0.765542i \(0.722471\pi\)
\(954\) 0 0
\(955\) 47.5038 + 27.4263i 1.53719 + 0.887494i
\(956\) 0 0
\(957\) −0.955197 1.63842i −0.0308771 0.0529626i
\(958\) 0 0
\(959\) −1.60833 10.0581i −0.0519358 0.324794i
\(960\) 0 0
\(961\) −2.82894 + 4.89987i −0.0912562 + 0.158060i
\(962\) 0 0
\(963\) −41.4475 + 24.3992i −1.33563 + 0.786253i
\(964\) 0 0
\(965\) −16.6344 28.8116i −0.535480 0.927479i
\(966\) 0 0
\(967\) −2.60192 + 4.50665i −0.0836720 + 0.144924i −0.904825 0.425785i \(-0.859998\pi\)
0.821153 + 0.570709i \(0.193331\pi\)
\(968\) 0 0
\(969\) 0.0174104 + 4.11937i 0.000559304 + 0.132333i
\(970\) 0 0
\(971\) 8.67233 + 15.0209i 0.278308 + 0.482044i 0.970964 0.239224i \(-0.0768929\pi\)
−0.692656 + 0.721268i \(0.743560\pi\)
\(972\) 0 0
\(973\) −53.5461 20.4634i −1.71661 0.656027i
\(974\) 0 0
\(975\) 8.21187 + 4.69496i 0.262990 + 0.150359i
\(976\) 0 0
\(977\) 23.3541 13.4835i 0.747165 0.431376i −0.0775039 0.996992i \(-0.524695\pi\)
0.824668 + 0.565616i \(0.191362\pi\)
\(978\) 0 0
\(979\) 14.1818 8.18789i 0.453254 0.261686i
\(980\) 0 0
\(981\) 8.23709 14.5497i 0.262990 0.464537i
\(982\) 0 0
\(983\) −17.1129 −0.545817 −0.272909 0.962040i \(-0.587986\pi\)
−0.272909 + 0.962040i \(0.587986\pi\)
\(984\) 0 0
\(985\) 57.7942i 1.84148i
\(986\) 0 0
\(987\) 4.63804 12.2918i 0.147630 0.391251i
\(988\) 0 0
\(989\) 32.0293 18.4921i 1.01847 0.588015i
\(990\) 0 0
\(991\) −5.84386 + 10.1219i −0.185636 + 0.321531i −0.943791 0.330544i \(-0.892768\pi\)
0.758155 + 0.652075i \(0.226101\pi\)
\(992\) 0 0
\(993\) −23.8282 + 41.6775i −0.756166 + 1.32260i
\(994\) 0 0
\(995\) 17.2624 + 9.96646i 0.547255 + 0.315958i
\(996\) 0 0
\(997\) 28.9017i 0.915325i −0.889126 0.457663i \(-0.848687\pi\)
0.889126 0.457663i \(-0.151313\pi\)
\(998\) 0 0
\(999\) −18.4424 31.0278i −0.583491 0.981677i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.cx.a.185.24 yes 48
3.2 odd 2 1512.2.cx.a.17.5 48
4.3 odd 2 1008.2.df.e.689.1 48
7.5 odd 6 504.2.bs.a.257.16 48
9.2 odd 6 504.2.bs.a.353.16 yes 48
9.7 even 3 1512.2.bs.a.521.5 48
12.11 even 2 3024.2.df.e.17.5 48
21.5 even 6 1512.2.bs.a.1097.5 48
28.19 even 6 1008.2.ca.e.257.9 48
36.7 odd 6 3024.2.ca.e.2033.5 48
36.11 even 6 1008.2.ca.e.353.9 48
63.47 even 6 inner 504.2.cx.a.425.24 yes 48
63.61 odd 6 1512.2.cx.a.89.5 48
84.47 odd 6 3024.2.ca.e.2609.5 48
252.47 odd 6 1008.2.df.e.929.1 48
252.187 even 6 3024.2.df.e.1601.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.16 48 7.5 odd 6
504.2.bs.a.353.16 yes 48 9.2 odd 6
504.2.cx.a.185.24 yes 48 1.1 even 1 trivial
504.2.cx.a.425.24 yes 48 63.47 even 6 inner
1008.2.ca.e.257.9 48 28.19 even 6
1008.2.ca.e.353.9 48 36.11 even 6
1008.2.df.e.689.1 48 4.3 odd 2
1008.2.df.e.929.1 48 252.47 odd 6
1512.2.bs.a.521.5 48 9.7 even 3
1512.2.bs.a.1097.5 48 21.5 even 6
1512.2.cx.a.17.5 48 3.2 odd 2
1512.2.cx.a.89.5 48 63.61 odd 6
3024.2.ca.e.2033.5 48 36.7 odd 6
3024.2.ca.e.2609.5 48 84.47 odd 6
3024.2.df.e.17.5 48 12.11 even 2
3024.2.df.e.1601.5 48 252.187 even 6