L(s) = 1 | − 2.59·5-s + (2.61 + 0.417i)7-s + 3.54i·11-s + (2.74 − 1.58i)13-s + (0.487 + 0.844i)17-s + (−2.11 − 1.21i)19-s − 3.37i·23-s + 1.72·25-s + (−0.267 − 0.154i)29-s + (4.35 + 2.51i)31-s + (−6.77 − 1.08i)35-s + (−3.47 + 6.01i)37-s + (6.08 + 10.5i)41-s + (5.47 − 9.48i)43-s + (−1.43 − 2.48i)47-s + ⋯ |
L(s) = 1 | − 1.15·5-s + (0.987 + 0.157i)7-s + 1.06i·11-s + (0.760 − 0.438i)13-s + (0.118 + 0.204i)17-s + (−0.484 − 0.279i)19-s − 0.704i·23-s + 0.345·25-s + (−0.0497 − 0.0286i)29-s + (0.783 + 0.452i)31-s + (−1.14 − 0.183i)35-s + (−0.570 + 0.988i)37-s + (0.949 + 1.64i)41-s + (0.835 − 1.44i)43-s + (−0.209 − 0.362i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.469000483\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.469000483\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.61 - 0.417i)T \) |
good | 5 | \( 1 + 2.59T + 5T^{2} \) |
| 11 | \( 1 - 3.54iT - 11T^{2} \) |
| 13 | \( 1 + (-2.74 + 1.58i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.487 - 0.844i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.11 + 1.21i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 3.37iT - 23T^{2} \) |
| 29 | \( 1 + (0.267 + 0.154i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.35 - 2.51i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.47 - 6.01i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.08 - 10.5i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.47 + 9.48i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.43 + 2.48i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (7.81 - 4.51i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.219 - 0.380i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.41 + 1.97i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.82 + 3.16i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.25iT - 71T^{2} \) |
| 73 | \( 1 + (14.0 - 8.12i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.49 - 6.05i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (7.23 - 12.5i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (2.31 - 4.00i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-12.4 - 7.20i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.471308465679335535347860410933, −8.246546088159583586519572329234, −7.46863682880253510117965146166, −6.74808325295536992037965270373, −5.78085238785230910712604970654, −4.67948666292571934484840389627, −4.37257580185399922123658384365, −3.34539524753428769661149652912, −2.23064245844347646344514116158, −1.05383127517184571438504461047,
0.56210156301098697223155413466, 1.74693780064702830138420362731, 3.10407388045284458501359527888, 3.95638238153627264334393956200, 4.46754009851904760208814235376, 5.58142648708055663160249143984, 6.23948835138488319083695955028, 7.42419929039847009421730941104, 7.76174290013233259645979295240, 8.585289838930304179806350033286