Properties

Label 140.2.c.b.139.9
Level $140$
Weight $2$
Character 140.139
Analytic conductor $1.118$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [140,2,Mod(139,140)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("140.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(140, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 28x^{12} + 16x^{10} - 40x^{8} + 610x^{6} + 1625x^{4} - 524x^{2} + 1444 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.9
Root \(1.61596 - 1.02509i\) of defining polynomial
Character \(\chi\) \(=\) 140.139
Dual form 140.2.c.b.139.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.331077 - 1.37491i) q^{2} -2.13578i q^{3} +(-1.78078 - 0.910404i) q^{4} +(-1.94442 + 1.10418i) q^{5} +(-2.93651 - 0.707107i) q^{6} +(2.35829 - 1.19935i) q^{7} +(-1.84130 + 2.14700i) q^{8} -1.56155 q^{9} +(0.874406 + 3.03898i) q^{10} -2.33205i q^{11} +(-1.94442 + 3.80335i) q^{12} -1.09190 q^{13} +(-0.868230 - 3.63953i) q^{14} +(2.35829 + 4.15286i) q^{15} +(2.34233 + 3.24245i) q^{16} +4.98074 q^{17} +(-0.516994 + 2.14700i) q^{18} +2.57501 q^{19} +(4.46783 - 0.196096i) q^{20} +(-2.56155 - 5.03680i) q^{21} +(-3.20636 - 0.772087i) q^{22} -6.04090 q^{23} +(4.58552 + 3.93261i) q^{24} +(2.56155 - 4.29400i) q^{25} +(-0.361501 + 1.50126i) q^{26} -3.07221i q^{27} +(-5.29149 - 0.0112214i) q^{28} +0.561553 q^{29} +(6.49060 - 1.86754i) q^{30} +6.59603 q^{31} +(5.23358 - 2.14700i) q^{32} -4.98074 q^{33} +(1.64901 - 6.84809i) q^{34} +(-3.26121 + 4.93604i) q^{35} +(2.78078 + 1.42164i) q^{36} +5.49966i q^{37} +(0.852526 - 3.54042i) q^{38} +2.33205i q^{39} +(1.20958 - 6.20781i) q^{40} +8.48528i q^{41} +(-7.77323 + 1.85435i) q^{42} +1.32431 q^{43} +(-2.12311 + 4.15286i) q^{44} +(3.03632 - 1.72424i) q^{45} +(-2.00000 + 8.30571i) q^{46} +9.74247i q^{47} +(6.92516 - 5.00270i) q^{48} +(4.12311 - 5.65685i) q^{49} +(-5.05581 - 4.94356i) q^{50} -10.6378i q^{51} +(1.94442 + 0.994066i) q^{52} +8.58800i q^{53} +(-4.22402 - 1.01714i) q^{54} +(2.57501 + 4.53448i) q^{55} +(-1.76732 + 7.27163i) q^{56} -5.49966i q^{57} +(0.185917 - 0.772087i) q^{58} -14.3211 q^{59} +(-0.418819 - 9.54231i) q^{60} +0.620058i q^{61} +(2.18379 - 9.06897i) q^{62} +(-3.68260 + 1.87285i) q^{63} +(-1.21922 - 7.90655i) q^{64} +(2.12311 - 1.20565i) q^{65} +(-1.64901 + 6.84809i) q^{66} -4.71659 q^{67} +(-8.86958 - 4.53448i) q^{68} +12.9020i q^{69} +(5.70692 + 6.11809i) q^{70} -11.9473i q^{71} +(2.87529 - 3.35265i) q^{72} +9.96148 q^{73} +(7.56155 + 1.82081i) q^{74} +(-9.17104 - 5.47091i) q^{75} +(-4.58552 - 2.34430i) q^{76} +(-2.79695 - 5.49966i) q^{77} +(3.20636 + 0.772087i) q^{78} +10.6378i q^{79} +(-8.13474 - 3.71833i) q^{80} -11.2462 q^{81} +(11.6665 + 2.80928i) q^{82} +3.86098i q^{83} +(-0.0239665 + 11.3015i) q^{84} +(-9.68466 + 5.49966i) q^{85} +(0.438447 - 1.82081i) q^{86} -1.19935i q^{87} +(5.00691 + 4.29400i) q^{88} -2.82843i q^{89} +(-1.36543 - 4.74553i) q^{90} +(-2.57501 + 1.30957i) q^{91} +(10.7575 + 5.49966i) q^{92} -14.0877i q^{93} +(13.3951 + 3.22550i) q^{94} +(-5.00691 + 2.84329i) q^{95} +(-4.58552 - 11.1778i) q^{96} -14.9422 q^{97} +(-6.41262 - 7.54177i) q^{98} +3.64162i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 12 q^{4} + 8 q^{9} - 4 q^{14} - 12 q^{16} - 8 q^{21} + 8 q^{25} - 24 q^{29} - 4 q^{30} + 28 q^{36} + 32 q^{44} - 32 q^{46} - 12 q^{50} - 20 q^{56} + 44 q^{60} - 36 q^{64} - 32 q^{65} + 40 q^{70}+ \cdots + 40 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.331077 1.37491i 0.234107 0.972211i
\(3\) 2.13578i 1.23309i −0.787319 0.616546i \(-0.788531\pi\)
0.787319 0.616546i \(-0.211469\pi\)
\(4\) −1.78078 0.910404i −0.890388 0.455202i
\(5\) −1.94442 + 1.10418i −0.869572 + 0.493806i
\(6\) −2.93651 0.707107i −1.19883 0.288675i
\(7\) 2.35829 1.19935i 0.891352 0.453313i
\(8\) −1.84130 + 2.14700i −0.650998 + 0.759079i
\(9\) −1.56155 −0.520518
\(10\) 0.874406 + 3.03898i 0.276511 + 0.961011i
\(11\) 2.33205i 0.703139i −0.936162 0.351569i \(-0.885648\pi\)
0.936162 0.351569i \(-0.114352\pi\)
\(12\) −1.94442 + 3.80335i −0.561306 + 1.09793i
\(13\) −1.09190 −0.302837 −0.151419 0.988470i \(-0.548384\pi\)
−0.151419 + 0.988470i \(0.548384\pi\)
\(14\) −0.868230 3.63953i −0.232044 0.972705i
\(15\) 2.35829 + 4.15286i 0.608909 + 1.07226i
\(16\) 2.34233 + 3.24245i 0.585582 + 0.810613i
\(17\) 4.98074 1.20801 0.604003 0.796982i \(-0.293571\pi\)
0.604003 + 0.796982i \(0.293571\pi\)
\(18\) −0.516994 + 2.14700i −0.121857 + 0.506053i
\(19\) 2.57501 0.590748 0.295374 0.955382i \(-0.404556\pi\)
0.295374 + 0.955382i \(0.404556\pi\)
\(20\) 4.46783 0.196096i 0.999038 0.0438485i
\(21\) −2.56155 5.03680i −0.558977 1.09912i
\(22\) −3.20636 0.772087i −0.683599 0.164609i
\(23\) −6.04090 −1.25961 −0.629807 0.776752i \(-0.716866\pi\)
−0.629807 + 0.776752i \(0.716866\pi\)
\(24\) 4.58552 + 3.93261i 0.936015 + 0.802741i
\(25\) 2.56155 4.29400i 0.512311 0.858800i
\(26\) −0.361501 + 1.50126i −0.0708962 + 0.294422i
\(27\) 3.07221i 0.591246i
\(28\) −5.29149 0.0112214i −0.999998 0.00212065i
\(29\) 0.561553 0.104278 0.0521389 0.998640i \(-0.483396\pi\)
0.0521389 + 0.998640i \(0.483396\pi\)
\(30\) 6.49060 1.86754i 1.18502 0.340964i
\(31\) 6.59603 1.18468 0.592341 0.805688i \(-0.298204\pi\)
0.592341 + 0.805688i \(0.298204\pi\)
\(32\) 5.23358 2.14700i 0.925175 0.379540i
\(33\) −4.98074 −0.867035
\(34\) 1.64901 6.84809i 0.282802 1.17444i
\(35\) −3.26121 + 4.93604i −0.551246 + 0.834343i
\(36\) 2.78078 + 1.42164i 0.463463 + 0.236941i
\(37\) 5.49966i 0.904138i 0.891983 + 0.452069i \(0.149314\pi\)
−0.891983 + 0.452069i \(0.850686\pi\)
\(38\) 0.852526 3.54042i 0.138298 0.574332i
\(39\) 2.33205i 0.373427i
\(40\) 1.20958 6.20781i 0.191251 0.981541i
\(41\) 8.48528i 1.32518i 0.748983 + 0.662589i \(0.230542\pi\)
−0.748983 + 0.662589i \(0.769458\pi\)
\(42\) −7.77323 + 1.85435i −1.19944 + 0.286132i
\(43\) 1.32431 0.201955 0.100977 0.994889i \(-0.467803\pi\)
0.100977 + 0.994889i \(0.467803\pi\)
\(44\) −2.12311 + 4.15286i −0.320070 + 0.626067i
\(45\) 3.03632 1.72424i 0.452627 0.257035i
\(46\) −2.00000 + 8.30571i −0.294884 + 1.22461i
\(47\) 9.74247i 1.42109i 0.703654 + 0.710543i \(0.251550\pi\)
−0.703654 + 0.710543i \(0.748450\pi\)
\(48\) 6.92516 5.00270i 0.999561 0.722077i
\(49\) 4.12311 5.65685i 0.589015 0.808122i
\(50\) −5.05581 4.94356i −0.715000 0.699125i
\(51\) 10.6378i 1.48958i
\(52\) 1.94442 + 0.994066i 0.269643 + 0.137852i
\(53\) 8.58800i 1.17965i 0.807530 + 0.589826i \(0.200804\pi\)
−0.807530 + 0.589826i \(0.799196\pi\)
\(54\) −4.22402 1.01714i −0.574816 0.138415i
\(55\) 2.57501 + 4.53448i 0.347214 + 0.611430i
\(56\) −1.76732 + 7.27163i −0.236168 + 0.971712i
\(57\) 5.49966i 0.728447i
\(58\) 0.185917 0.772087i 0.0244121 0.101380i
\(59\) −14.3211 −1.86444 −0.932222 0.361888i \(-0.882132\pi\)
−0.932222 + 0.361888i \(0.882132\pi\)
\(60\) −0.418819 9.54231i −0.0540693 1.23191i
\(61\) 0.620058i 0.0793903i 0.999212 + 0.0396951i \(0.0126387\pi\)
−0.999212 + 0.0396951i \(0.987361\pi\)
\(62\) 2.18379 9.06897i 0.277342 1.15176i
\(63\) −3.68260 + 1.87285i −0.463964 + 0.235957i
\(64\) −1.21922 7.90655i −0.152403 0.988318i
\(65\) 2.12311 1.20565i 0.263339 0.149543i
\(66\) −1.64901 + 6.84809i −0.202979 + 0.842941i
\(67\) −4.71659 −0.576223 −0.288112 0.957597i \(-0.593027\pi\)
−0.288112 + 0.957597i \(0.593027\pi\)
\(68\) −8.86958 4.53448i −1.07559 0.549887i
\(69\) 12.9020i 1.55322i
\(70\) 5.70692 + 6.11809i 0.682107 + 0.731252i
\(71\) 11.9473i 1.41789i −0.705265 0.708943i \(-0.749172\pi\)
0.705265 0.708943i \(-0.250828\pi\)
\(72\) 2.87529 3.35265i 0.338856 0.395114i
\(73\) 9.96148 1.16590 0.582951 0.812507i \(-0.301898\pi\)
0.582951 + 0.812507i \(0.301898\pi\)
\(74\) 7.56155 + 1.82081i 0.879013 + 0.211665i
\(75\) −9.17104 5.47091i −1.05898 0.631726i
\(76\) −4.58552 2.34430i −0.525995 0.268910i
\(77\) −2.79695 5.49966i −0.318742 0.626744i
\(78\) 3.20636 + 0.772087i 0.363049 + 0.0874216i
\(79\) 10.6378i 1.19684i 0.801182 + 0.598421i \(0.204205\pi\)
−0.801182 + 0.598421i \(0.795795\pi\)
\(80\) −8.13474 3.71833i −0.909492 0.415722i
\(81\) −11.2462 −1.24958
\(82\) 11.6665 + 2.80928i 1.28835 + 0.310233i
\(83\) 3.86098i 0.423798i 0.977292 + 0.211899i \(0.0679648\pi\)
−0.977292 + 0.211899i \(0.932035\pi\)
\(84\) −0.0239665 + 11.3015i −0.00261496 + 1.23309i
\(85\) −9.68466 + 5.49966i −1.05045 + 0.596521i
\(86\) 0.438447 1.82081i 0.0472790 0.196343i
\(87\) 1.19935i 0.128584i
\(88\) 5.00691 + 4.29400i 0.533738 + 0.457742i
\(89\) 2.82843i 0.299813i −0.988700 0.149906i \(-0.952103\pi\)
0.988700 0.149906i \(-0.0478972\pi\)
\(90\) −1.36543 4.74553i −0.143929 0.500223i
\(91\) −2.57501 + 1.30957i −0.269935 + 0.137280i
\(92\) 10.7575 + 5.49966i 1.12155 + 0.573379i
\(93\) 14.0877i 1.46082i
\(94\) 13.3951 + 3.22550i 1.38159 + 0.332685i
\(95\) −5.00691 + 2.84329i −0.513698 + 0.291715i
\(96\) −4.58552 11.1778i −0.468008 1.14083i
\(97\) −14.9422 −1.51715 −0.758576 0.651584i \(-0.774105\pi\)
−0.758576 + 0.651584i \(0.774105\pi\)
\(98\) −6.41262 7.54177i −0.647773 0.761834i
\(99\) 3.64162i 0.365996i
\(100\) −8.47083 + 5.31461i −0.847083 + 0.531461i
\(101\) 15.1104i 1.50354i −0.659425 0.751770i \(-0.729200\pi\)
0.659425 0.751770i \(-0.270800\pi\)
\(102\) −14.6260 3.52191i −1.44819 0.348722i
\(103\) 5.47091i 0.539065i −0.962991 0.269532i \(-0.913131\pi\)
0.962991 0.269532i \(-0.0868691\pi\)
\(104\) 2.01051 2.34430i 0.197147 0.229878i
\(105\) 10.5423 + 6.96523i 1.02882 + 0.679737i
\(106\) 11.8078 + 2.84329i 1.14687 + 0.276165i
\(107\) 10.0138 0.968072 0.484036 0.875048i \(-0.339170\pi\)
0.484036 + 0.875048i \(0.339170\pi\)
\(108\) −2.79695 + 5.47091i −0.269136 + 0.526439i
\(109\) 4.56155 0.436918 0.218459 0.975846i \(-0.429897\pi\)
0.218459 + 0.975846i \(0.429897\pi\)
\(110\) 7.08705 2.03916i 0.675724 0.194426i
\(111\) 11.7460 1.11489
\(112\) 9.41275 + 4.83738i 0.889421 + 0.457089i
\(113\) 5.49966i 0.517364i 0.965963 + 0.258682i \(0.0832882\pi\)
−0.965963 + 0.258682i \(0.916712\pi\)
\(114\) −7.56155 1.82081i −0.708204 0.170534i
\(115\) 11.7460 6.67026i 1.09532 0.622005i
\(116\) −1.00000 0.511240i −0.0928477 0.0474674i
\(117\) 1.70505 0.157632
\(118\) −4.74137 + 19.6902i −0.436478 + 1.81263i
\(119\) 11.7460 5.97366i 1.07676 0.547605i
\(120\) −13.2585 2.58340i −1.21033 0.235831i
\(121\) 5.56155 0.505596
\(122\) 0.852526 + 0.205287i 0.0771841 + 0.0185858i
\(123\) 18.1227 1.63407
\(124\) −11.7460 6.00505i −1.05483 0.539269i
\(125\) −0.239369 + 11.1778i −0.0214098 + 0.999771i
\(126\) 1.35579 + 5.68332i 0.120783 + 0.506310i
\(127\) −5.29723 −0.470053 −0.235026 0.971989i \(-0.575518\pi\)
−0.235026 + 0.971989i \(0.575518\pi\)
\(128\) −11.2745 0.941346i −0.996533 0.0832041i
\(129\) 2.82843i 0.249029i
\(130\) −0.954760 3.31825i −0.0837380 0.291030i
\(131\) −2.57501 −0.224980 −0.112490 0.993653i \(-0.535883\pi\)
−0.112490 + 0.993653i \(0.535883\pi\)
\(132\) 8.86958 + 4.53448i 0.771998 + 0.394676i
\(133\) 6.07263 3.08835i 0.526564 0.267794i
\(134\) −1.56155 + 6.48490i −0.134898 + 0.560210i
\(135\) 3.39228 + 5.97366i 0.291961 + 0.514131i
\(136\) −9.17104 + 10.6937i −0.786410 + 0.916973i
\(137\) 3.08835i 0.263855i −0.991259 0.131928i \(-0.957883\pi\)
0.991259 0.131928i \(-0.0421167\pi\)
\(138\) 17.7392 + 4.27156i 1.51006 + 0.363619i
\(139\) −4.02102 −0.341058 −0.170529 0.985353i \(-0.554548\pi\)
−0.170529 + 0.985353i \(0.554548\pi\)
\(140\) 10.3013 5.82096i 0.870617 0.491961i
\(141\) 20.8078 1.75233
\(142\) −16.4265 3.95548i −1.37849 0.331937i
\(143\) 2.54635i 0.212937i
\(144\) −3.65767 5.06326i −0.304806 0.421938i
\(145\) −1.09190 + 0.620058i −0.0906770 + 0.0514930i
\(146\) 3.29801 13.6962i 0.272946 1.13350i
\(147\) −12.0818 8.80604i −0.996489 0.726310i
\(148\) 5.00691 9.79366i 0.411565 0.805034i
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) −10.5583 + 10.7981i −0.862086 + 0.881661i
\(151\) 4.95118i 0.402922i 0.979497 + 0.201461i \(0.0645689\pi\)
−0.979497 + 0.201461i \(0.935431\pi\)
\(152\) −4.74137 + 5.52855i −0.384576 + 0.448425i
\(153\) −7.77769 −0.628789
\(154\) −8.48756 + 2.02475i −0.683947 + 0.163159i
\(155\) −12.8255 + 7.28323i −1.03017 + 0.585003i
\(156\) 2.12311 4.15286i 0.169984 0.332495i
\(157\) −3.88884 −0.310364 −0.155182 0.987886i \(-0.549596\pi\)
−0.155182 + 0.987886i \(0.549596\pi\)
\(158\) 14.6260 + 3.52191i 1.16358 + 0.280188i
\(159\) 18.3421 1.45462
\(160\) −7.80561 + 9.95352i −0.617087 + 0.786895i
\(161\) −14.2462 + 7.24517i −1.12276 + 0.570999i
\(162\) −3.72336 + 15.4626i −0.292535 + 1.21485i
\(163\) 11.5012 0.900840 0.450420 0.892817i \(-0.351274\pi\)
0.450420 + 0.892817i \(0.351274\pi\)
\(164\) 7.72503 15.1104i 0.603224 1.17992i
\(165\) 9.68466 5.49966i 0.753950 0.428148i
\(166\) 5.30852 + 1.27828i 0.412021 + 0.0992139i
\(167\) 0.673500i 0.0521170i −0.999660 0.0260585i \(-0.991704\pi\)
0.999660 0.0260585i \(-0.00829562\pi\)
\(168\) 15.5306 + 3.77460i 1.19821 + 0.291217i
\(169\) −11.8078 −0.908290
\(170\) 4.35519 + 15.1364i 0.334028 + 1.16091i
\(171\) −4.02102 −0.307495
\(172\) −2.35829 1.20565i −0.179818 0.0919303i
\(173\) 11.0534 0.840372 0.420186 0.907438i \(-0.361965\pi\)
0.420186 + 0.907438i \(0.361965\pi\)
\(174\) −1.64901 0.397078i −0.125011 0.0301024i
\(175\) 0.890873 13.1987i 0.0673437 0.997730i
\(176\) 7.56155 5.46242i 0.569973 0.411746i
\(177\) 30.5866i 2.29903i
\(178\) −3.88884 0.936426i −0.291481 0.0701881i
\(179\) 8.30571i 0.620798i −0.950606 0.310399i \(-0.899537\pi\)
0.950606 0.310399i \(-0.100463\pi\)
\(180\) −6.97676 + 0.306215i −0.520017 + 0.0228239i
\(181\) 3.44849i 0.256324i −0.991753 0.128162i \(-0.959092\pi\)
0.991753 0.128162i \(-0.0409077\pi\)
\(182\) 0.948017 + 3.97399i 0.0702717 + 0.294571i
\(183\) 1.32431 0.0978956
\(184\) 11.1231 12.9698i 0.820006 0.956147i
\(185\) −6.07263 10.6937i −0.446469 0.786213i
\(186\) −19.3693 4.66410i −1.42023 0.341988i
\(187\) 11.6153i 0.849396i
\(188\) 8.86958 17.3492i 0.646881 1.26532i
\(189\) −3.68466 7.24517i −0.268019 0.527008i
\(190\) 2.25161 + 7.82541i 0.163349 + 0.567715i
\(191\) 19.9660i 1.44469i 0.691535 + 0.722343i \(0.256935\pi\)
−0.691535 + 0.722343i \(0.743065\pi\)
\(192\) −16.8866 + 2.60399i −1.21869 + 0.187927i
\(193\) 5.49966i 0.395874i −0.980215 0.197937i \(-0.936576\pi\)
0.980215 0.197937i \(-0.0634241\pi\)
\(194\) −4.94702 + 20.5443i −0.355175 + 1.47499i
\(195\) −2.57501 4.53448i −0.184400 0.324721i
\(196\) −12.4924 + 6.31990i −0.892311 + 0.451421i
\(197\) 16.4990i 1.17550i −0.809042 0.587751i \(-0.800013\pi\)
0.809042 0.587751i \(-0.199987\pi\)
\(198\) 5.00691 + 1.20565i 0.355825 + 0.0856821i
\(199\) −18.3421 −1.30024 −0.650118 0.759834i \(-0.725280\pi\)
−0.650118 + 0.759834i \(0.725280\pi\)
\(200\) 4.50263 + 13.4062i 0.318384 + 0.947962i
\(201\) 10.0736i 0.710536i
\(202\) −20.7755 5.00270i −1.46176 0.351989i
\(203\) 1.32431 0.673500i 0.0929481 0.0472704i
\(204\) −9.68466 + 18.9435i −0.678062 + 1.32631i
\(205\) −9.36932 16.4990i −0.654381 1.15234i
\(206\) −7.52203 1.81129i −0.524085 0.126199i
\(207\) 9.43318 0.655651
\(208\) −2.55758 3.54042i −0.177336 0.245484i
\(209\) 6.00505i 0.415378i
\(210\) 13.0669 12.1887i 0.901702 0.841101i
\(211\) 0.287088i 0.0197640i −0.999951 0.00988198i \(-0.996854\pi\)
0.999951 0.00988198i \(-0.00314558\pi\)
\(212\) 7.81855 15.2933i 0.536980 1.05035i
\(213\) −25.5169 −1.74839
\(214\) 3.31534 13.7681i 0.226632 0.941170i
\(215\) −2.57501 + 1.46228i −0.175614 + 0.0997266i
\(216\) 6.59603 + 5.65685i 0.448803 + 0.384900i
\(217\) 15.5554 7.91096i 1.05597 0.537031i
\(218\) 1.51022 6.27174i 0.102285 0.424776i
\(219\) 21.2755i 1.43767i
\(220\) −0.457306 10.4192i −0.0308316 0.702463i
\(221\) −5.43845 −0.365830
\(222\) 3.88884 16.1498i 0.261002 1.08390i
\(223\) 0.147647i 0.00988718i 0.999988 + 0.00494359i \(0.00157360\pi\)
−0.999988 + 0.00494359i \(0.998426\pi\)
\(224\) 9.76732 11.3402i 0.652606 0.757697i
\(225\) −4.00000 + 6.70531i −0.266667 + 0.447021i
\(226\) 7.56155 + 1.82081i 0.502987 + 0.121118i
\(227\) 10.1530i 0.673881i 0.941526 + 0.336941i \(0.109392\pi\)
−0.941526 + 0.336941i \(0.890608\pi\)
\(228\) −5.00691 + 9.79366i −0.331591 + 0.648601i
\(229\) 9.45353i 0.624707i 0.949966 + 0.312354i \(0.101117\pi\)
−0.949966 + 0.312354i \(0.898883\pi\)
\(230\) −5.28219 18.3582i −0.348298 1.21050i
\(231\) −11.7460 + 5.97366i −0.772833 + 0.393038i
\(232\) −1.03399 + 1.20565i −0.0678846 + 0.0791551i
\(233\) 10.9993i 0.720589i −0.932839 0.360294i \(-0.882676\pi\)
0.932839 0.360294i \(-0.117324\pi\)
\(234\) 0.564503 2.34430i 0.0369027 0.153252i
\(235\) −10.7575 18.9435i −0.701741 1.23574i
\(236\) 25.5026 + 13.0380i 1.66008 + 0.848698i
\(237\) 22.7199 1.47582
\(238\) −4.32443 18.1275i −0.280311 1.17503i
\(239\) 2.33205i 0.150848i −0.997152 0.0754238i \(-0.975969\pi\)
0.997152 0.0754238i \(-0.0240310\pi\)
\(240\) −7.94153 + 17.3740i −0.512624 + 1.12149i
\(241\) 16.0786i 1.03572i 0.855466 + 0.517858i \(0.173271\pi\)
−0.855466 + 0.517858i \(0.826729\pi\)
\(242\) 1.84130 7.64666i 0.118363 0.491546i
\(243\) 14.8028i 0.949601i
\(244\) 0.564503 1.10418i 0.0361386 0.0706882i
\(245\) −1.77085 + 15.5520i −0.113135 + 0.993580i
\(246\) 6.00000 24.9171i 0.382546 1.58866i
\(247\) −2.81164 −0.178901
\(248\) −12.1453 + 14.1617i −0.771225 + 0.899267i
\(249\) 8.24621 0.522582
\(250\) 15.2892 + 4.02981i 0.966976 + 0.254868i
\(251\) −9.17104 −0.578871 −0.289435 0.957198i \(-0.593468\pi\)
−0.289435 + 0.957198i \(0.593468\pi\)
\(252\) 8.26294 + 0.0175229i 0.520516 + 0.00110384i
\(253\) 14.0877i 0.885683i
\(254\) −1.75379 + 7.28323i −0.110042 + 0.456991i
\(255\) 11.7460 + 20.6843i 0.735566 + 1.29530i
\(256\) −5.02699 + 15.1898i −0.314187 + 0.949361i
\(257\) 6.55137 0.408663 0.204332 0.978902i \(-0.434498\pi\)
0.204332 + 0.978902i \(0.434498\pi\)
\(258\) −3.88884 0.936426i −0.242109 0.0582994i
\(259\) 6.59603 + 12.9698i 0.409857 + 0.805905i
\(260\) −4.87841 + 0.214117i −0.302546 + 0.0132790i
\(261\) −0.876894 −0.0542784
\(262\) −0.852526 + 3.54042i −0.0526693 + 0.218728i
\(263\) −23.5829 −1.45419 −0.727093 0.686539i \(-0.759129\pi\)
−0.727093 + 0.686539i \(0.759129\pi\)
\(264\) 9.17104 10.6937i 0.564438 0.658149i
\(265\) −9.48274 16.6987i −0.582520 1.02579i
\(266\) −2.23570 9.37183i −0.137080 0.574624i
\(267\) −6.04090 −0.369697
\(268\) 8.39919 + 4.29400i 0.513062 + 0.262298i
\(269\) 0.968253i 0.0590354i −0.999564 0.0295177i \(-0.990603\pi\)
0.999564 0.0295177i \(-0.00939715\pi\)
\(270\) 9.33638 2.68635i 0.568194 0.163486i
\(271\) −6.59603 −0.400680 −0.200340 0.979726i \(-0.564205\pi\)
−0.200340 + 0.979726i \(0.564205\pi\)
\(272\) 11.6665 + 16.1498i 0.707387 + 0.979226i
\(273\) 2.79695 + 5.49966i 0.169279 + 0.332854i
\(274\) −4.24621 1.02248i −0.256523 0.0617703i
\(275\) −10.0138 5.97366i −0.603856 0.360225i
\(276\) 11.7460 22.9756i 0.707029 1.38297i
\(277\) 19.5873i 1.17689i 0.808538 + 0.588444i \(0.200259\pi\)
−0.808538 + 0.588444i \(0.799741\pi\)
\(278\) −1.33126 + 5.52855i −0.0798440 + 0.331580i
\(279\) −10.3000 −0.616648
\(280\) −4.59281 16.0906i −0.274473 0.961595i
\(281\) 17.0540 1.01735 0.508677 0.860957i \(-0.330135\pi\)
0.508677 + 0.860957i \(0.330135\pi\)
\(282\) 6.88897 28.6089i 0.410232 1.70363i
\(283\) 7.45904i 0.443394i 0.975116 + 0.221697i \(0.0711596\pi\)
−0.975116 + 0.221697i \(0.928840\pi\)
\(284\) −10.8769 + 21.2755i −0.645425 + 1.26247i
\(285\) 6.07263 + 10.6937i 0.359712 + 0.633437i
\(286\) 3.50102 + 0.843038i 0.207019 + 0.0498499i
\(287\) 10.1768 + 20.0108i 0.600720 + 1.18120i
\(288\) −8.17252 + 3.35265i −0.481570 + 0.197557i
\(289\) 7.80776 0.459280
\(290\) 0.491025 + 1.70655i 0.0288340 + 0.100212i
\(291\) 31.9133i 1.87079i
\(292\) −17.7392 9.06897i −1.03811 0.530721i
\(293\) 14.4635 0.844965 0.422483 0.906371i \(-0.361159\pi\)
0.422483 + 0.906371i \(0.361159\pi\)
\(294\) −16.1076 + 13.6959i −0.939411 + 0.798764i
\(295\) 27.8462 15.8131i 1.62127 0.920674i
\(296\) −11.8078 10.1265i −0.686312 0.588592i
\(297\) −7.16453 −0.415728
\(298\) −0.662153 + 2.74983i −0.0383575 + 0.159293i
\(299\) 6.59603 0.381458
\(300\) 11.3508 + 18.0918i 0.655340 + 1.04453i
\(301\) 3.12311 1.58831i 0.180013 0.0915487i
\(302\) 6.80745 + 1.63922i 0.391725 + 0.0943266i
\(303\) −32.2725 −1.85400
\(304\) 6.03152 + 8.34935i 0.345932 + 0.478868i
\(305\) −0.684658 1.20565i −0.0392034 0.0690356i
\(306\) −2.57501 + 10.6937i −0.147204 + 0.611315i
\(307\) 13.8987i 0.793243i 0.917982 + 0.396622i \(0.129818\pi\)
−0.917982 + 0.396622i \(0.870182\pi\)
\(308\) −0.0261689 + 12.3400i −0.00149111 + 0.703137i
\(309\) −11.6847 −0.664717
\(310\) 5.76761 + 20.0452i 0.327578 + 1.13849i
\(311\) −1.44600 −0.0819954 −0.0409977 0.999159i \(-0.513054\pi\)
−0.0409977 + 0.999159i \(0.513054\pi\)
\(312\) −5.00691 4.29400i −0.283460 0.243100i
\(313\) −7.16453 −0.404963 −0.202482 0.979286i \(-0.564901\pi\)
−0.202482 + 0.979286i \(0.564901\pi\)
\(314\) −1.28751 + 5.34683i −0.0726581 + 0.301739i
\(315\) 5.09256 7.70789i 0.286933 0.434290i
\(316\) 9.68466 18.9435i 0.544805 1.06565i
\(317\) 24.4099i 1.37100i 0.728073 + 0.685499i \(0.240416\pi\)
−0.728073 + 0.685499i \(0.759584\pi\)
\(318\) 6.07263 25.2188i 0.340536 1.41420i
\(319\) 1.30957i 0.0733217i
\(320\) 11.1010 + 14.0274i 0.620563 + 0.784156i
\(321\) 21.3873i 1.19372i
\(322\) 5.24489 + 21.9860i 0.292286 + 1.22523i
\(323\) 12.8255 0.713628
\(324\) 20.0270 + 10.2386i 1.11261 + 0.568811i
\(325\) −2.79695 + 4.68860i −0.155147 + 0.260077i
\(326\) 3.80776 15.8131i 0.210893 0.875806i
\(327\) 9.74247i 0.538760i
\(328\) −18.2179 15.6240i −1.00592 0.862689i
\(329\) 11.6847 + 22.9756i 0.644196 + 1.26669i
\(330\) −4.35519 15.1364i −0.239745 0.833230i
\(331\) 8.30571i 0.456523i −0.973600 0.228262i \(-0.926696\pi\)
0.973600 0.228262i \(-0.0733041\pi\)
\(332\) 3.51506 6.87555i 0.192914 0.377345i
\(333\) 8.58800i 0.470620i
\(334\) −0.926004 0.222980i −0.0506687 0.0122009i
\(335\) 9.17104 5.20798i 0.501067 0.284543i
\(336\) 10.3316 20.1035i 0.563633 1.09674i
\(337\) 30.5866i 1.66616i −0.553153 0.833080i \(-0.686575\pi\)
0.553153 0.833080i \(-0.313425\pi\)
\(338\) −3.90928 + 16.2347i −0.212637 + 0.883049i
\(339\) 11.7460 0.637958
\(340\) 22.2531 0.976705i 1.20684 0.0529693i
\(341\) 15.3823i 0.832996i
\(342\) −1.33126 + 5.52855i −0.0719866 + 0.298950i
\(343\) 2.93893 18.2856i 0.158687 0.987329i
\(344\) −2.43845 + 2.84329i −0.131472 + 0.153300i
\(345\) −14.2462 25.0870i −0.766990 1.35064i
\(346\) 3.65951 15.1974i 0.196737 0.817019i
\(347\) 1.32431 0.0710925 0.0355463 0.999368i \(-0.488683\pi\)
0.0355463 + 0.999368i \(0.488683\pi\)
\(348\) −1.09190 + 2.13578i −0.0585317 + 0.114490i
\(349\) 18.8307i 1.00799i −0.863708 0.503993i \(-0.831864\pi\)
0.863708 0.503993i \(-0.168136\pi\)
\(350\) −17.8522 5.59466i −0.954238 0.299047i
\(351\) 3.35453i 0.179051i
\(352\) −5.00691 12.2050i −0.266869 0.650527i
\(353\) 16.1685 0.860564 0.430282 0.902694i \(-0.358414\pi\)
0.430282 + 0.902694i \(0.358414\pi\)
\(354\) 42.0540 + 10.1265i 2.23514 + 0.538218i
\(355\) 13.1921 + 23.2306i 0.700162 + 1.23295i
\(356\) −2.57501 + 5.03680i −0.136475 + 0.266950i
\(357\) −12.7584 25.0870i −0.675248 1.32774i
\(358\) −11.4196 2.74983i −0.603547 0.145333i
\(359\) 10.3507i 0.546288i −0.961973 0.273144i \(-0.911937\pi\)
0.961973 0.273144i \(-0.0880635\pi\)
\(360\) −1.88882 + 9.69382i −0.0995497 + 0.510909i
\(361\) −12.3693 −0.651017
\(362\) −4.74137 1.14171i −0.249201 0.0600071i
\(363\) 11.8782i 0.623446i
\(364\) 5.77776 + 0.0122526i 0.302837 + 0.000642213i
\(365\) −19.3693 + 10.9993i −1.01384 + 0.575730i
\(366\) 0.438447 1.82081i 0.0229180 0.0951752i
\(367\) 23.3783i 1.22034i −0.792272 0.610168i \(-0.791102\pi\)
0.792272 0.610168i \(-0.208898\pi\)
\(368\) −14.1498 19.5873i −0.737608 1.02106i
\(369\) 13.2502i 0.689779i
\(370\) −16.7134 + 4.80893i −0.868886 + 0.250004i
\(371\) 10.3000 + 20.2530i 0.534752 + 1.05149i
\(372\) −12.8255 + 25.0870i −0.664969 + 1.30070i
\(373\) 11.6763i 0.604578i 0.953216 + 0.302289i \(0.0977508\pi\)
−0.953216 + 0.302289i \(0.902249\pi\)
\(374\) −15.9701 3.84556i −0.825793 0.198849i
\(375\) 23.8733 + 0.511240i 1.23281 + 0.0264003i
\(376\) −20.9171 17.9388i −1.07872 0.925124i
\(377\) −0.613157 −0.0315792
\(378\) −11.1814 + 2.66738i −0.575108 + 0.137195i
\(379\) 24.9171i 1.27991i 0.768414 + 0.639954i \(0.221046\pi\)
−0.768414 + 0.639954i \(0.778954\pi\)
\(380\) 11.5047 0.504951i 0.590180 0.0259034i
\(381\) 11.3137i 0.579619i
\(382\) 27.4515 + 6.61026i 1.40454 + 0.338210i
\(383\) 18.6638i 0.953675i −0.878991 0.476838i \(-0.841783\pi\)
0.878991 0.476838i \(-0.158217\pi\)
\(384\) −2.01051 + 24.0798i −0.102598 + 1.22882i
\(385\) 11.5111 + 7.60530i 0.586659 + 0.387602i
\(386\) −7.56155 1.82081i −0.384873 0.0926767i
\(387\) −2.06798 −0.105121
\(388\) 26.6087 + 13.6035i 1.35085 + 0.690611i
\(389\) −11.9309 −0.604919 −0.302460 0.953162i \(-0.597808\pi\)
−0.302460 + 0.953162i \(0.597808\pi\)
\(390\) −7.08705 + 2.03916i −0.358867 + 0.103257i
\(391\) −30.0881 −1.52162
\(392\) 4.55339 + 19.2683i 0.229981 + 0.973195i
\(393\) 5.49966i 0.277421i
\(394\) −22.6847 5.46242i −1.14284 0.275193i
\(395\) −11.7460 20.6843i −0.591008 1.04074i
\(396\) 3.31534 6.48490i 0.166602 0.325879i
\(397\) −21.0149 −1.05471 −0.527353 0.849647i \(-0.676815\pi\)
−0.527353 + 0.849647i \(0.676815\pi\)
\(398\) −6.07263 + 25.2188i −0.304394 + 1.26410i
\(399\) −6.59603 12.9698i −0.330214 0.649303i
\(400\) 19.9231 1.75225i 0.996155 0.0876127i
\(401\) 13.4384 0.671084 0.335542 0.942025i \(-0.391081\pi\)
0.335542 + 0.942025i \(0.391081\pi\)
\(402\) 13.8503 + 3.33513i 0.690791 + 0.166341i
\(403\) −7.20217 −0.358766
\(404\) −13.7566 + 26.9082i −0.684414 + 1.33873i
\(405\) 21.8674 12.4179i 1.08660 0.617050i
\(406\) −0.487557 2.04379i −0.0241971 0.101432i
\(407\) 12.8255 0.635734
\(408\) 22.8393 + 19.5873i 1.13071 + 0.969717i
\(409\) 30.2208i 1.49432i 0.664643 + 0.747161i \(0.268583\pi\)
−0.664643 + 0.747161i \(0.731417\pi\)
\(410\) −25.7866 + 7.41958i −1.27351 + 0.366427i
\(411\) −6.59603 −0.325358
\(412\) −4.98074 + 9.74247i −0.245383 + 0.479977i
\(413\) −33.7733 + 17.1760i −1.66187 + 0.845176i
\(414\) 3.12311 12.9698i 0.153492 0.637431i
\(415\) −4.26324 7.50738i −0.209274 0.368523i
\(416\) −5.71453 + 2.34430i −0.280178 + 0.114939i
\(417\) 8.58800i 0.420556i
\(418\) −8.25643 1.98813i −0.403835 0.0972427i
\(419\) 22.3631 1.09251 0.546254 0.837619i \(-0.316053\pi\)
0.546254 + 0.837619i \(0.316053\pi\)
\(420\) −12.4323 22.0013i −0.606634 1.07355i
\(421\) 12.5616 0.612213 0.306106 0.951997i \(-0.400974\pi\)
0.306106 + 0.951997i \(0.400974\pi\)
\(422\) −0.394722 0.0950482i −0.0192147 0.00462688i
\(423\) 15.2134i 0.739700i
\(424\) −18.4384 15.8131i −0.895450 0.767952i
\(425\) 12.7584 21.3873i 0.618875 1.03744i
\(426\) −8.44804 + 35.0835i −0.409309 + 1.69980i
\(427\) 0.743668 + 1.46228i 0.0359886 + 0.0707647i
\(428\) −17.8324 9.11662i −0.861960 0.440668i
\(429\) 5.43845 0.262571
\(430\) 1.15798 + 4.02455i 0.0558428 + 0.194081i
\(431\) 11.6602i 0.561654i −0.959758 0.280827i \(-0.909391\pi\)
0.959758 0.280827i \(-0.0906087\pi\)
\(432\) 9.96148 7.19612i 0.479272 0.346223i
\(433\) −9.00400 −0.432705 −0.216352 0.976315i \(-0.569416\pi\)
−0.216352 + 0.976315i \(0.569416\pi\)
\(434\) −5.72687 24.0064i −0.274899 1.15235i
\(435\) 1.32431 + 2.33205i 0.0634957 + 0.111813i
\(436\) −8.12311 4.15286i −0.389026 0.198886i
\(437\) −15.5554 −0.744114
\(438\) −29.2520 7.04383i −1.39771 0.336567i
\(439\) −31.5341 −1.50504 −0.752521 0.658568i \(-0.771162\pi\)
−0.752521 + 0.658568i \(0.771162\pi\)
\(440\) −14.4769 2.82080i −0.690160 0.134476i
\(441\) −6.43845 + 8.83348i −0.306593 + 0.420642i
\(442\) −1.80054 + 7.47740i −0.0856431 + 0.355663i
\(443\) 17.5420 0.833448 0.416724 0.909033i \(-0.363178\pi\)
0.416724 + 0.909033i \(0.363178\pi\)
\(444\) −20.9171 10.6937i −0.992681 0.507498i
\(445\) 3.12311 + 5.49966i 0.148049 + 0.260709i
\(446\) 0.203002 + 0.0488825i 0.00961242 + 0.00231465i
\(447\) 4.27156i 0.202038i
\(448\) −12.3580 17.1837i −0.583862 0.811853i
\(449\) 6.31534 0.298039 0.149020 0.988834i \(-0.452388\pi\)
0.149020 + 0.988834i \(0.452388\pi\)
\(450\) 7.89492 + 7.71963i 0.372170 + 0.363907i
\(451\) 19.7881 0.931784
\(452\) 5.00691 9.79366i 0.235505 0.460655i
\(453\) 10.5746 0.496840
\(454\) 13.9596 + 3.36144i 0.655155 + 0.157760i
\(455\) 3.56090 5.38964i 0.166938 0.252670i
\(456\) 11.8078 + 10.1265i 0.552949 + 0.474218i
\(457\) 10.3223i 0.482856i 0.970419 + 0.241428i \(0.0776157\pi\)
−0.970419 + 0.241428i \(0.922384\pi\)
\(458\) 12.9978 + 3.12985i 0.607347 + 0.146248i
\(459\) 15.3019i 0.714229i
\(460\) −26.9897 + 1.18460i −1.25840 + 0.0552322i
\(461\) 21.1154i 0.983444i 0.870752 + 0.491722i \(0.163632\pi\)
−0.870752 + 0.491722i \(0.836368\pi\)
\(462\) 4.32443 + 18.1275i 0.201191 + 0.843370i
\(463\) −24.3266 −1.13055 −0.565277 0.824901i \(-0.691231\pi\)
−0.565277 + 0.824901i \(0.691231\pi\)
\(464\) 1.31534 + 1.82081i 0.0610632 + 0.0845289i
\(465\) 15.5554 + 27.3924i 0.721363 + 1.27029i
\(466\) −15.1231 3.64162i −0.700564 0.168695i
\(467\) 23.1983i 1.07349i −0.843745 0.536744i \(-0.819654\pi\)
0.843745 0.536744i \(-0.180346\pi\)
\(468\) −3.03632 1.55229i −0.140354 0.0717545i
\(469\) −11.1231 + 5.65685i −0.513617 + 0.261209i
\(470\) −29.6072 + 8.51887i −1.36568 + 0.392946i
\(471\) 8.30571i 0.382707i
\(472\) 26.3694 30.7473i 1.21375 1.41526i
\(473\) 3.08835i 0.142002i
\(474\) 7.52203 31.2379i 0.345498 1.43480i
\(475\) 6.59603 11.0571i 0.302646 0.507335i
\(476\) −26.3555 0.0558911i −1.20800 0.00256176i
\(477\) 13.4106i 0.614030i
\(478\) −3.20636 0.772087i −0.146656 0.0353144i
\(479\) 30.0881 1.37476 0.687381 0.726297i \(-0.258760\pi\)
0.687381 + 0.726297i \(0.258760\pi\)
\(480\) 21.2585 + 16.6711i 0.970314 + 0.760926i
\(481\) 6.00505i 0.273807i
\(482\) 22.1067 + 5.32326i 1.00693 + 0.242468i
\(483\) 15.4741 + 30.4268i 0.704095 + 1.38447i
\(484\) −9.90388 5.06326i −0.450176 0.230148i
\(485\) 29.0540 16.4990i 1.31927 0.749179i
\(486\) 20.3526 + 4.90086i 0.923212 + 0.222308i
\(487\) 1.16128 0.0526225 0.0263112 0.999654i \(-0.491624\pi\)
0.0263112 + 0.999654i \(0.491624\pi\)
\(488\) −1.33126 1.14171i −0.0602635 0.0516829i
\(489\) 24.5639i 1.11082i
\(490\) 20.7963 + 7.58366i 0.939483 + 0.342595i
\(491\) 14.2794i 0.644419i 0.946668 + 0.322210i \(0.104426\pi\)
−0.946668 + 0.322210i \(0.895574\pi\)
\(492\) −32.2725 16.4990i −1.45495 0.743831i
\(493\) 2.79695 0.125968
\(494\) −0.930870 + 3.86577i −0.0418818 + 0.173929i
\(495\) −4.02102 7.08084i −0.180731 0.318260i
\(496\) 15.4501 + 21.3873i 0.693729 + 0.960318i
\(497\) −14.3291 28.1753i −0.642746 1.26384i
\(498\) 2.73013 11.3378i 0.122340 0.508060i
\(499\) 25.6525i 1.14836i 0.818727 + 0.574182i \(0.194680\pi\)
−0.818727 + 0.574182i \(0.805320\pi\)
\(500\) 10.6026 19.6872i 0.474161 0.880438i
\(501\) −1.43845 −0.0642651
\(502\) −3.03632 + 12.6094i −0.135517 + 0.562785i
\(503\) 18.8114i 0.838761i −0.907811 0.419380i \(-0.862247\pi\)
0.907811 0.419380i \(-0.137753\pi\)
\(504\) 2.75976 11.3550i 0.122929 0.505793i
\(505\) 16.6847 + 29.3810i 0.742458 + 1.30744i
\(506\) 19.3693 + 4.66410i 0.861071 + 0.207344i
\(507\) 25.2188i 1.12001i
\(508\) 9.43318 + 4.82262i 0.418530 + 0.213969i
\(509\) 28.0124i 1.24163i −0.783958 0.620814i \(-0.786802\pi\)
0.783958 0.620814i \(-0.213198\pi\)
\(510\) 32.3280 9.30172i 1.43151 0.411887i
\(511\) 23.4921 11.9473i 1.03923 0.528519i
\(512\) 19.2203 + 11.9407i 0.849426 + 0.527707i
\(513\) 7.91096i 0.349278i
\(514\) 2.16901 9.00757i 0.0956708 0.397307i
\(515\) 6.04090 + 10.6378i 0.266194 + 0.468756i
\(516\) −2.57501 + 5.03680i −0.113359 + 0.221733i
\(517\) 22.7199 0.999220
\(518\) 20.0162 4.77497i 0.879460 0.209800i
\(519\) 23.6076i 1.03626i
\(520\) −1.32074 + 6.77828i −0.0579181 + 0.297247i
\(521\) 2.82843i 0.123916i 0.998079 + 0.0619578i \(0.0197344\pi\)
−0.998079 + 0.0619578i \(0.980266\pi\)
\(522\) −0.290319 + 1.20565i −0.0127069 + 0.0527701i
\(523\) 20.9472i 0.915958i 0.888963 + 0.457979i \(0.151426\pi\)
−0.888963 + 0.457979i \(0.848574\pi\)
\(524\) 4.58552 + 2.34430i 0.200319 + 0.102411i
\(525\) −28.1896 1.90271i −1.23029 0.0830410i
\(526\) −7.80776 + 32.4245i −0.340435 + 1.41378i
\(527\) 32.8531 1.43110
\(528\) −11.6665 16.1498i −0.507721 0.702830i
\(529\) 13.4924 0.586627
\(530\) −26.0988 + 7.50940i −1.13366 + 0.326187i
\(531\) 22.3631 0.970476
\(532\) −13.6256 0.0288954i −0.590747 0.00125277i
\(533\) 9.26504i 0.401313i
\(534\) −2.00000 + 8.30571i −0.0865485 + 0.359423i
\(535\) −19.4711 + 11.0571i −0.841808 + 0.478040i
\(536\) 8.68466 10.1265i 0.375120 0.437399i
\(537\) −17.7392 −0.765502
\(538\) −1.33126 0.320566i −0.0573949 0.0138206i
\(539\) −13.1921 9.61528i −0.568222 0.414159i
\(540\) −0.602449 13.7261i −0.0259253 0.590678i
\(541\) −19.4384 −0.835724 −0.417862 0.908510i \(-0.637220\pi\)
−0.417862 + 0.908510i \(0.637220\pi\)
\(542\) −2.18379 + 9.06897i −0.0938019 + 0.389546i
\(543\) −7.36520 −0.316071
\(544\) 26.0671 10.6937i 1.11762 0.458486i
\(545\) −8.86958 + 5.03680i −0.379931 + 0.215753i
\(546\) 8.48756 2.02475i 0.363234 0.0866515i
\(547\) −33.4337 −1.42952 −0.714762 0.699368i \(-0.753465\pi\)
−0.714762 + 0.699368i \(0.753465\pi\)
\(548\) −2.81164 + 5.49966i −0.120107 + 0.234934i
\(549\) 0.968253i 0.0413240i
\(550\) −11.5286 + 11.7904i −0.491582 + 0.502744i
\(551\) 1.44600 0.0616019
\(552\) −27.7006 23.7565i −1.17902 1.01114i
\(553\) 12.7584 + 25.0870i 0.542543 + 1.06681i
\(554\) 26.9309 + 6.48490i 1.14418 + 0.275517i
\(555\) −22.8393 + 12.9698i −0.969473 + 0.550538i
\(556\) 7.16053 + 3.66075i 0.303674 + 0.155250i
\(557\) 8.58800i 0.363885i −0.983309 0.181943i \(-0.941761\pi\)
0.983309 0.181943i \(-0.0582385\pi\)
\(558\) −3.41011 + 14.1617i −0.144361 + 0.599512i
\(559\) −1.44600 −0.0611595
\(560\) −23.6437 + 0.987507i −0.999129 + 0.0417298i
\(561\) −24.8078 −1.04738
\(562\) 5.64617 23.4477i 0.238169 0.989084i
\(563\) 6.78554i 0.285977i 0.989724 + 0.142988i \(0.0456711\pi\)
−0.989724 + 0.142988i \(0.954329\pi\)
\(564\) −37.0540 18.9435i −1.56025 0.797664i
\(565\) −6.07263 10.6937i −0.255478 0.449885i
\(566\) 10.2555 + 2.46952i 0.431073 + 0.103801i
\(567\) −26.5219 + 13.4882i −1.11381 + 0.566450i
\(568\) 25.6509 + 21.9986i 1.07629 + 0.923042i
\(569\) −43.8617 −1.83878 −0.919390 0.393347i \(-0.871317\pi\)
−0.919390 + 0.393347i \(0.871317\pi\)
\(570\) 16.7134 4.80893i 0.700045 0.201424i
\(571\) 15.5889i 0.652377i −0.945305 0.326188i \(-0.894236\pi\)
0.945305 0.326188i \(-0.105764\pi\)
\(572\) 2.31821 4.53448i 0.0969292 0.189596i
\(573\) 42.6429 1.78143
\(574\) 30.8824 7.36718i 1.28901 0.307500i
\(575\) −15.4741 + 25.9396i −0.645313 + 1.08176i
\(576\) 1.90388 + 12.3465i 0.0793284 + 0.514437i
\(577\) 36.0915 1.50251 0.751254 0.660013i \(-0.229449\pi\)
0.751254 + 0.660013i \(0.229449\pi\)
\(578\) 2.58497 10.7350i 0.107521 0.446517i
\(579\) −11.7460 −0.488149
\(580\) 2.50893 0.110119i 0.104177 0.00457242i
\(581\) 4.63068 + 9.10534i 0.192113 + 0.377753i
\(582\) 43.8780 + 10.5657i 1.81880 + 0.437964i
\(583\) 20.0276 0.829460
\(584\) −18.3421 + 21.3873i −0.759001 + 0.885013i
\(585\) −3.31534 + 1.88269i −0.137073 + 0.0778398i
\(586\) 4.78852 19.8860i 0.197812 0.821485i
\(587\) 2.80928i 0.115951i −0.998318 0.0579757i \(-0.981535\pi\)
0.998318 0.0579757i \(-0.0184646\pi\)
\(588\) 13.4979 + 26.6809i 0.556645 + 1.10030i
\(589\) 16.9848 0.699848
\(590\) −12.5224 43.5215i −0.515540 1.79175i
\(591\) −35.2381 −1.44950
\(592\) −17.8324 + 12.8820i −0.732906 + 0.529447i
\(593\) −6.20705 −0.254893 −0.127447 0.991845i \(-0.540678\pi\)
−0.127447 + 0.991845i \(0.540678\pi\)
\(594\) −2.37201 + 9.85061i −0.0973247 + 0.404176i
\(595\) −16.2432 + 24.5851i −0.665908 + 1.00789i
\(596\) 3.56155 + 1.82081i 0.145887 + 0.0745832i
\(597\) 39.1746i 1.60331i
\(598\) 2.18379 9.06897i 0.0893019 0.370858i
\(599\) 17.9210i 0.732232i 0.930569 + 0.366116i \(0.119313\pi\)
−0.930569 + 0.366116i \(0.880687\pi\)
\(600\) 28.6327 9.61663i 1.16892 0.392597i
\(601\) 42.2309i 1.72263i −0.508068 0.861317i \(-0.669640\pi\)
0.508068 0.861317i \(-0.330360\pi\)
\(602\) −1.14980 4.81985i −0.0468625 0.196443i
\(603\) 7.36520 0.299934
\(604\) 4.50758 8.81695i 0.183411 0.358757i
\(605\) −10.8140 + 6.14098i −0.439652 + 0.249666i
\(606\) −10.6847 + 44.3718i −0.434035 + 1.80248i
\(607\) 44.9666i 1.82514i 0.408921 + 0.912570i \(0.365905\pi\)
−0.408921 + 0.912570i \(0.634095\pi\)
\(608\) 13.4765 5.52855i 0.546546 0.224212i
\(609\) −1.43845 2.82843i −0.0582888 0.114614i
\(610\) −1.88435 + 0.542182i −0.0762949 + 0.0219523i
\(611\) 10.6378i 0.430358i
\(612\) 13.8503 + 7.08084i 0.559866 + 0.286226i
\(613\) 47.7626i 1.92911i −0.263874 0.964557i \(-0.585000\pi\)
0.263874 0.964557i \(-0.415000\pi\)
\(614\) 19.1096 + 4.60155i 0.771200 + 0.185704i
\(615\) −35.2381 + 20.0108i −1.42094 + 0.806913i
\(616\) 16.9578 + 4.12147i 0.683249 + 0.166059i
\(617\) 14.7647i 0.594404i 0.954815 + 0.297202i \(0.0960535\pi\)
−0.954815 + 0.297202i \(0.903946\pi\)
\(618\) −3.86852 + 16.0654i −0.155615 + 0.646245i
\(619\) 26.0671 1.04773 0.523863 0.851803i \(-0.324490\pi\)
0.523863 + 0.851803i \(0.324490\pi\)
\(620\) 29.4700 1.29346i 1.18354 0.0519465i
\(621\) 18.5589i 0.744742i
\(622\) −0.478739 + 1.98813i −0.0191957 + 0.0797168i
\(623\) −3.39228 6.67026i −0.135909 0.267238i
\(624\) −7.56155 + 5.46242i −0.302704 + 0.218672i
\(625\) −11.8769 21.9986i −0.475076 0.879945i
\(626\) −2.37201 + 9.85061i −0.0948046 + 0.393710i
\(627\) −12.8255 −0.512200
\(628\) 6.92516 + 3.54042i 0.276344 + 0.141278i
\(629\) 27.3924i 1.09220i
\(630\) −8.91166 9.55373i −0.355049 0.380630i
\(631\) 33.9582i 1.35186i −0.736968 0.675928i \(-0.763743\pi\)
0.736968 0.675928i \(-0.236257\pi\)
\(632\) −22.8393 19.5873i −0.908498 0.779142i
\(633\) −0.613157 −0.0243708
\(634\) 33.5616 + 8.08156i 1.33290 + 0.320960i
\(635\) 10.3000 5.84912i 0.408745 0.232115i
\(636\) −32.6631 16.6987i −1.29518 0.662147i
\(637\) −4.50200 + 6.17669i −0.178376 + 0.244730i
\(638\) −1.80054 0.433567i −0.0712842 0.0171651i
\(639\) 18.6564i 0.738035i
\(640\) 22.9618 10.6187i 0.907643 0.419742i
\(641\) 39.8617 1.57444 0.787222 0.616670i \(-0.211519\pi\)
0.787222 + 0.616670i \(0.211519\pi\)
\(642\) −29.4057 7.08084i −1.16055 0.279458i
\(643\) 36.8341i 1.45260i 0.687380 + 0.726298i \(0.258761\pi\)
−0.687380 + 0.726298i \(0.741239\pi\)
\(644\) 31.9653 + 0.0677876i 1.25961 + 0.00267121i
\(645\) 3.12311 + 5.49966i 0.122972 + 0.216549i
\(646\) 4.24621 17.6339i 0.167065 0.693797i
\(647\) 36.5712i 1.43776i −0.695134 0.718881i \(-0.744655\pi\)
0.695134 0.718881i \(-0.255345\pi\)
\(648\) 20.7077 24.1456i 0.813474 0.948530i
\(649\) 33.3974i 1.31096i
\(650\) 5.52042 + 5.39785i 0.216529 + 0.211721i
\(651\) −16.8961 33.2228i −0.662209 1.30211i
\(652\) −20.4810 10.4707i −0.802097 0.410064i
\(653\) 16.4990i 0.645654i −0.946458 0.322827i \(-0.895367\pi\)
0.946458 0.322827i \(-0.104633\pi\)
\(654\) −13.3951 3.22550i −0.523788 0.126127i
\(655\) 5.00691 2.84329i 0.195636 0.111096i
\(656\) −27.5131 + 19.8753i −1.07421 + 0.776001i
\(657\) −15.5554 −0.606873
\(658\) 35.4580 8.45871i 1.38230 0.329755i
\(659\) 42.8381i 1.66874i −0.551207 0.834368i \(-0.685833\pi\)
0.551207 0.834368i \(-0.314167\pi\)
\(660\) −22.2531 + 0.976705i −0.866202 + 0.0380182i
\(661\) 1.51198i 0.0588092i 0.999568 + 0.0294046i \(0.00936112\pi\)
−0.999568 + 0.0294046i \(0.990639\pi\)
\(662\) −11.4196 2.74983i −0.443837 0.106875i
\(663\) 11.6153i 0.451102i
\(664\) −8.28954 7.10923i −0.321696 0.275892i
\(665\) −8.39766 + 12.7104i −0.325647 + 0.492887i
\(666\) −11.8078 2.84329i −0.457542 0.110175i
\(667\) −3.39228 −0.131350
\(668\) −0.613157 + 1.19935i −0.0237238 + 0.0464044i
\(669\) 0.315342 0.0121918
\(670\) −4.12421 14.3336i −0.159332 0.553756i
\(671\) 1.44600 0.0558224
\(672\) −24.2201 20.8608i −0.934311 0.804724i
\(673\) 14.0877i 0.543039i −0.962433 0.271520i \(-0.912474\pi\)
0.962433 0.271520i \(-0.0875262\pi\)
\(674\) −42.0540 10.1265i −1.61986 0.390059i
\(675\) −13.1921 7.86962i −0.507762 0.302902i
\(676\) 21.0270 + 10.7498i 0.808730 + 0.413455i
\(677\) 46.5317 1.78836 0.894179 0.447709i \(-0.147760\pi\)
0.894179 + 0.447709i \(0.147760\pi\)
\(678\) 3.88884 16.1498i 0.149350 0.620230i
\(679\) −35.2381 + 17.9210i −1.35232 + 0.687745i
\(680\) 6.02460 30.9195i 0.231033 1.18571i
\(681\) 21.6847 0.830958
\(682\) −21.1493 5.09271i −0.809847 0.195010i
\(683\) 20.1907 0.772574 0.386287 0.922379i \(-0.373757\pi\)
0.386287 + 0.922379i \(0.373757\pi\)
\(684\) 7.16053 + 3.66075i 0.273790 + 0.139972i
\(685\) 3.41011 + 6.00505i 0.130293 + 0.229441i
\(686\) −24.1681 10.0947i −0.922742 0.385418i
\(687\) 20.1907 0.770322
\(688\) 3.10196 + 4.29400i 0.118261 + 0.163707i
\(689\) 9.37720i 0.357243i
\(690\) −39.2090 + 11.2816i −1.49266 + 0.429483i
\(691\) 37.8132 1.43848 0.719240 0.694761i \(-0.244490\pi\)
0.719240 + 0.694761i \(0.244490\pi\)
\(692\) −19.6836 10.0630i −0.748258 0.382539i
\(693\) 4.36758 + 8.58800i 0.165911 + 0.326231i
\(694\) 0.438447 1.82081i 0.0166432 0.0691169i
\(695\) 7.81855 4.43994i 0.296575 0.168417i
\(696\) 2.57501 + 2.20837i 0.0976056 + 0.0837080i
\(697\) 42.2630i 1.60082i
\(698\) −25.8906 6.23442i −0.979975 0.235976i
\(699\) −23.4921 −0.888553
\(700\) −13.6026 + 22.6929i −0.514131 + 0.857712i
\(701\) −30.6695 −1.15837 −0.579186 0.815196i \(-0.696629\pi\)
−0.579186 + 0.815196i \(0.696629\pi\)
\(702\) 4.61219 + 1.11061i 0.174076 + 0.0419171i
\(703\) 14.1617i 0.534118i
\(704\) −18.4384 + 2.84329i −0.694925 + 0.107160i
\(705\) −40.4591 + 22.9756i −1.52378 + 0.865312i
\(706\) 5.35302 22.2303i 0.201464 0.836650i
\(707\) −18.1227 35.6347i −0.681574 1.34018i
\(708\) 27.8462 54.4679i 1.04652 2.04703i
\(709\) 30.8078 1.15701 0.578505 0.815679i \(-0.303636\pi\)
0.578505 + 0.815679i \(0.303636\pi\)
\(710\) 36.3077 10.4468i 1.36260 0.392062i
\(711\) 16.6114i 0.622977i
\(712\) 6.07263 + 5.20798i 0.227582 + 0.195177i
\(713\) −39.8459 −1.49224
\(714\) −38.7164 + 9.23603i −1.44893 + 0.345650i
\(715\) −2.81164 4.95118i −0.105150 0.185164i
\(716\) −7.56155 + 14.7906i −0.282588 + 0.552751i
\(717\) −4.98074 −0.186009
\(718\) −14.2313 3.42687i −0.531107 0.127890i
\(719\) −27.1961 −1.01424 −0.507122 0.861874i \(-0.669291\pi\)
−0.507122 + 0.861874i \(0.669291\pi\)
\(720\) 12.7028 + 5.80637i 0.473406 + 0.216391i
\(721\) −6.56155 12.9020i −0.244365 0.480496i
\(722\) −4.09519 + 17.0067i −0.152407 + 0.632926i
\(723\) 34.3404 1.27713
\(724\) −3.13951 + 6.14098i −0.116679 + 0.228228i
\(725\) 1.43845 2.41131i 0.0534226 0.0895537i
\(726\) −16.3316 3.93261i −0.606121 0.145953i
\(727\) 32.8255i 1.21743i −0.793389 0.608715i \(-0.791685\pi\)
0.793389 0.608715i \(-0.208315\pi\)
\(728\) 1.92973 7.93986i 0.0715204 0.294271i
\(729\) −2.12311 −0.0786335
\(730\) 8.71038 + 30.2728i 0.322385 + 1.12045i
\(731\) 6.59603 0.243963
\(732\) −2.35829 1.20565i −0.0871651 0.0445623i
\(733\) −24.4250 −0.902156 −0.451078 0.892484i \(-0.648960\pi\)
−0.451078 + 0.892484i \(0.648960\pi\)
\(734\) −32.1431 7.74001i −1.18642 0.285689i
\(735\) 33.2156 + 3.78213i 1.22518 + 0.139506i
\(736\) −31.6155 + 12.9698i −1.16536 + 0.478073i
\(737\) 10.9993i 0.405165i
\(738\) −18.2179 4.38684i −0.670610 0.161482i
\(739\) 49.5472i 1.82262i 0.411718 + 0.911311i \(0.364929\pi\)
−0.411718 + 0.911311i \(0.635071\pi\)
\(740\) 1.07846 + 24.5716i 0.0396451 + 0.903268i
\(741\) 6.00505i 0.220601i
\(742\) 31.2563 7.45637i 1.14745 0.273732i
\(743\) −9.43318 −0.346070 −0.173035 0.984916i \(-0.555357\pi\)
−0.173035 + 0.984916i \(0.555357\pi\)
\(744\) 30.2462 + 25.9396i 1.10888 + 0.950992i
\(745\) 3.88884 2.20837i 0.142476 0.0809084i
\(746\) 16.0540 + 3.86577i 0.587778 + 0.141536i
\(747\) 6.02913i 0.220594i
\(748\) −10.5746 + 20.6843i −0.386647 + 0.756293i
\(749\) 23.6155 12.0101i 0.862893 0.438839i
\(750\) 8.60679 32.6544i 0.314276 1.19237i
\(751\) 37.5999i 1.37204i −0.727584 0.686019i \(-0.759357\pi\)
0.727584 0.686019i \(-0.240643\pi\)
\(752\) −31.5895 + 22.8201i −1.15195 + 0.832162i
\(753\) 19.5873i 0.713801i
\(754\) −0.203002 + 0.843038i −0.00739290 + 0.0307016i
\(755\) −5.46702 9.62719i −0.198965 0.350369i
\(756\) −0.0344746 + 16.2565i −0.00125383 + 0.591245i
\(757\) 25.7640i 0.936409i −0.883620 0.468204i \(-0.844901\pi\)
0.883620 0.468204i \(-0.155099\pi\)
\(758\) 34.2589 + 8.24948i 1.24434 + 0.299635i
\(759\) 30.0881 1.09213
\(760\) 3.11468 15.9852i 0.112981 0.579844i
\(761\) 43.1228i 1.56320i −0.623780 0.781600i \(-0.714404\pi\)
0.623780 0.781600i \(-0.285596\pi\)
\(762\) 15.5554 + 3.74571i 0.563512 + 0.135693i
\(763\) 10.7575 5.47091i 0.389447 0.198060i
\(764\) 18.1771 35.5549i 0.657624 1.28633i
\(765\) 15.1231 8.58800i 0.546777 0.310500i
\(766\) −25.6611 6.17915i −0.927173 0.223262i
\(767\) 15.6371 0.564623
\(768\) 32.4420 + 10.7365i 1.17065 + 0.387421i
\(769\) 14.4903i 0.522535i −0.965266 0.261267i \(-0.915860\pi\)
0.965266 0.261267i \(-0.0841404\pi\)
\(770\) 14.2677 13.3088i 0.514172 0.479616i
\(771\) 13.9923i 0.503920i
\(772\) −5.00691 + 9.79366i −0.180203 + 0.352481i
\(773\) −15.6898 −0.564323 −0.282161 0.959367i \(-0.591051\pi\)
−0.282161 + 0.959367i \(0.591051\pi\)
\(774\) −0.684658 + 2.84329i −0.0246095 + 0.102200i
\(775\) 16.8961 28.3234i 0.606925 1.01740i
\(776\) 27.5131 32.0810i 0.987663 1.15164i
\(777\) 27.7006 14.0877i 0.993755 0.505392i
\(778\) −3.95003 + 16.4039i −0.141616 + 0.588109i
\(779\) 21.8497i 0.782847i
\(780\) 0.457306 + 10.4192i 0.0163742 + 0.373067i
\(781\) −27.8617 −0.996971
\(782\) −9.96148 + 41.3686i −0.356222 + 1.47934i
\(783\) 1.72521i 0.0616538i
\(784\) 27.9997 + 0.118756i 0.999991 + 0.00424130i
\(785\) 7.56155 4.29400i 0.269883 0.153259i
\(786\) 7.56155 + 1.82081i 0.269712 + 0.0649461i
\(787\) 32.8578i 1.17126i 0.810580 + 0.585628i \(0.199152\pi\)
−0.810580 + 0.585628i \(0.800848\pi\)
\(788\) −15.0207 + 29.3810i −0.535091 + 1.04665i
\(789\) 50.3680i 1.79315i
\(790\) −32.3280 + 9.30172i −1.15018 + 0.330940i
\(791\) 6.59603 + 12.9698i 0.234528 + 0.461153i
\(792\) −7.81855 6.70531i −0.277820 0.238263i
\(793\) 0.677039i 0.0240423i
\(794\) −6.95753 + 28.8936i −0.246913 + 1.02540i
\(795\) −35.6647 + 20.2530i −1.26490 + 0.718301i
\(796\) 32.6631 + 16.6987i 1.15771 + 0.591870i
\(797\) −2.04937 −0.0725925 −0.0362963 0.999341i \(-0.511556\pi\)
−0.0362963 + 0.999341i \(0.511556\pi\)
\(798\) −20.0162 + 4.77497i −0.708564 + 0.169032i
\(799\) 48.5247i 1.71668i
\(800\) 4.18687 27.9727i 0.148028 0.988983i
\(801\) 4.41674i 0.156058i
\(802\) 4.44916 18.4767i 0.157105 0.652435i
\(803\) 23.2306i 0.819792i
\(804\) 9.17104 17.9388i 0.323438 0.632653i
\(805\) 19.7006 29.8181i 0.694356 1.05095i
\(806\) −2.38447 + 9.90237i −0.0839894 + 0.348796i
\(807\) −2.06798 −0.0727962
\(808\) 32.4420 + 27.8228i 1.14131 + 0.978802i
\(809\) −27.0540 −0.951167 −0.475584 0.879671i \(-0.657763\pi\)
−0.475584 + 0.879671i \(0.657763\pi\)
\(810\) −9.83375 34.1770i −0.345523 1.20086i
\(811\) 9.17104 0.322039 0.161019 0.986951i \(-0.448522\pi\)
0.161019 + 0.986951i \(0.448522\pi\)
\(812\) −2.97145 0.00630143i −0.104278 0.000221137i
\(813\) 14.0877i 0.494076i
\(814\) 4.24621 17.6339i 0.148830 0.618068i
\(815\) −22.3631 + 12.6994i −0.783345 + 0.444840i
\(816\) 34.4924 24.9171i 1.20748 0.872274i
\(817\) 3.41011 0.119304
\(818\) 41.5510 + 10.0054i 1.45280 + 0.349830i
\(819\) 4.02102 2.04496i 0.140506 0.0714567i
\(820\) 1.66393 + 37.9108i 0.0581071 + 1.32390i
\(821\) −35.9309 −1.25400 −0.626998 0.779021i \(-0.715717\pi\)
−0.626998 + 0.779021i \(0.715717\pi\)
\(822\) −2.18379 + 9.06897i −0.0761685 + 0.316317i
\(823\) −22.8393 −0.796127 −0.398064 0.917358i \(-0.630318\pi\)
−0.398064 + 0.917358i \(0.630318\pi\)
\(824\) 11.7460 + 10.0736i 0.409193 + 0.350930i
\(825\) −12.7584 + 21.3873i −0.444191 + 0.744610i
\(826\) 12.4340 + 52.1219i 0.432634 + 1.81355i
\(827\) −4.71659 −0.164012 −0.0820059 0.996632i \(-0.526133\pi\)
−0.0820059 + 0.996632i \(0.526133\pi\)
\(828\) −16.7984 8.58800i −0.583784 0.298454i
\(829\) 43.3947i 1.50716i −0.657357 0.753579i \(-0.728326\pi\)
0.657357 0.753579i \(-0.271674\pi\)
\(830\) −11.7335 + 3.37607i −0.407275 + 0.117185i
\(831\) 41.8342 1.45121
\(832\) 1.33126 + 8.63312i 0.0461533 + 0.299300i
\(833\) 20.5361 28.1753i 0.711534 0.976217i
\(834\) 11.8078 + 2.84329i 0.408869 + 0.0984550i
\(835\) 0.743668 + 1.30957i 0.0257357 + 0.0453195i
\(836\) −5.46702 + 10.6937i −0.189081 + 0.369848i
\(837\) 20.2644i 0.700438i
\(838\) 7.40390 30.7473i 0.255763 1.06215i
\(839\) 32.3461 1.11671 0.558356 0.829601i \(-0.311432\pi\)
0.558356 + 0.829601i \(0.311432\pi\)
\(840\) −34.3659 + 9.80923i −1.18574 + 0.338450i
\(841\) −28.6847 −0.989126
\(842\) 4.15884 17.2711i 0.143323 0.595200i
\(843\) 36.4235i 1.25449i
\(844\) −0.261366 + 0.511240i −0.00899660 + 0.0175976i
\(845\) 22.9593 13.0380i 0.789823 0.448519i
\(846\) −20.9171 5.03680i −0.719144 0.173169i
\(847\) 13.1158 6.67026i 0.450664 0.229193i
\(848\) −27.8462 + 20.1159i −0.956242 + 0.690784i
\(849\) 15.9309 0.546746
\(850\) −25.1817 24.6226i −0.863724 0.844547i
\(851\) 33.2228i 1.13886i
\(852\) 45.4398 + 23.2306i 1.55674 + 0.795869i
\(853\) 2.93137 0.100368 0.0501840 0.998740i \(-0.484019\pi\)
0.0501840 + 0.998740i \(0.484019\pi\)
\(854\) 2.25672 0.538353i 0.0772233 0.0184221i
\(855\) 7.81855 4.43994i 0.267389 0.151843i
\(856\) −18.4384 + 21.4997i −0.630213 + 0.734844i
\(857\) −5.59390 −0.191084 −0.0955419 0.995425i \(-0.530458\pi\)
−0.0955419 + 0.995425i \(0.530458\pi\)
\(858\) 1.80054 7.47740i 0.0614695 0.255274i
\(859\) −9.17104 −0.312912 −0.156456 0.987685i \(-0.550007\pi\)
−0.156456 + 0.987685i \(0.550007\pi\)
\(860\) 5.91678 0.259692i 0.201761 0.00885542i
\(861\) 42.7386 21.7355i 1.45653 0.740744i
\(862\) −16.0318 3.86043i −0.546046 0.131487i
\(863\) −30.7851 −1.04794 −0.523969 0.851737i \(-0.675549\pi\)
−0.523969 + 0.851737i \(0.675549\pi\)
\(864\) −6.59603 16.0786i −0.224401 0.547007i
\(865\) −21.4924 + 12.2050i −0.730764 + 0.414981i
\(866\) −2.98102 + 12.3797i −0.101299 + 0.420680i
\(867\) 16.6757i 0.566335i
\(868\) −34.9028 0.0740170i −1.18468 0.00251230i
\(869\) 24.8078 0.841546
\(870\) 3.64481 1.04872i 0.123571 0.0355550i
\(871\) 5.15002 0.174502
\(872\) −8.39919 + 9.79366i −0.284432 + 0.331655i
\(873\) 23.3331 0.789705
\(874\) −5.15002 + 21.3873i −0.174202 + 0.723436i
\(875\) 12.8416 + 26.6476i 0.434125 + 0.900853i
\(876\) −19.3693 + 37.8869i −0.654429 + 1.28008i
\(877\) 5.49966i 0.185710i −0.995680 0.0928551i \(-0.970401\pi\)
0.995680 0.0928551i \(-0.0295993\pi\)
\(878\) −10.4402 + 43.3567i −0.352340 + 1.46322i
\(879\) 30.8908i 1.04192i
\(880\) −8.67132 + 18.9706i −0.292310 + 0.639499i
\(881\) 30.7645i 1.03648i 0.855234 + 0.518241i \(0.173413\pi\)
−0.855234 + 0.518241i \(0.826587\pi\)
\(882\) 10.0136 + 11.7769i 0.337177 + 0.396548i
\(883\) 48.4902 1.63183 0.815913 0.578175i \(-0.196235\pi\)
0.815913 + 0.578175i \(0.196235\pi\)
\(884\) 9.68466 + 4.95118i 0.325730 + 0.166526i
\(885\) −33.7733 59.4733i −1.13528 1.99917i
\(886\) 5.80776 24.1188i 0.195116 0.810287i
\(887\) 31.7738i 1.06686i 0.845845 + 0.533429i \(0.179097\pi\)
−0.845845 + 0.533429i \(0.820903\pi\)
\(888\) −21.6280 + 25.2188i −0.725788 + 0.846287i
\(889\) −12.4924 + 6.35324i −0.418982 + 0.213081i
\(890\) 8.59554 2.47319i 0.288123 0.0829016i
\(891\) 26.2267i 0.878628i
\(892\) 0.134418 0.262926i 0.00450066 0.00880343i
\(893\) 25.0870i 0.839503i
\(894\) 5.87302 + 1.41421i 0.196423 + 0.0472984i
\(895\) 9.17104 + 16.1498i 0.306554 + 0.539829i
\(896\) −27.7175 + 11.3021i −0.925978 + 0.377577i
\(897\) 14.0877i 0.470373i
\(898\) 2.09086 8.68305i 0.0697730 0.289757i
\(899\) 3.70402 0.123536
\(900\) 13.2276 8.29904i 0.440922 0.276635i
\(901\) 42.7746i 1.42503i
\(902\) 6.55137 27.2069i 0.218137 0.905891i
\(903\) −3.39228 6.67026i −0.112888 0.221972i
\(904\) −11.8078 10.1265i −0.392720 0.336803i
\(905\) 3.80776 + 6.70531i 0.126574 + 0.222892i
\(906\) 3.50102 14.5392i 0.116313 0.483033i
\(907\) 53.7874 1.78598 0.892991 0.450074i \(-0.148603\pi\)
0.892991 + 0.450074i \(0.148603\pi\)
\(908\) 9.24337 18.0803i 0.306752 0.600016i
\(909\) 23.5957i 0.782619i
\(910\) −6.23136 6.68032i −0.206568 0.221450i
\(911\) 56.0950i 1.85851i 0.369438 + 0.929255i \(0.379550\pi\)
−0.369438 + 0.929255i \(0.620450\pi\)
\(912\) 17.8324 12.8820i 0.590489 0.426566i
\(913\) 9.00400 0.297989
\(914\) 14.1922 + 3.41746i 0.469437 + 0.113040i
\(915\) −2.57501 + 1.46228i −0.0851272 + 0.0483415i
\(916\) 8.60654 16.8346i 0.284368 0.556232i
\(917\) −6.07263 + 3.08835i −0.200536 + 0.101986i
\(918\) −21.0387 5.06609i −0.694382 0.167206i
\(919\) 39.1965i 1.29297i −0.762925 0.646487i \(-0.776238\pi\)
0.762925 0.646487i \(-0.223762\pi\)
\(920\) −7.30695 + 37.5007i −0.240903 + 1.23636i
\(921\) 29.6847 0.978143
\(922\) 29.0319 + 6.99083i 0.956115 + 0.230231i
\(923\) 13.0452i 0.429389i
\(924\) 26.3555 + 0.0558911i 0.867033 + 0.00183868i
\(925\) 23.6155 + 14.0877i 0.776474 + 0.463199i
\(926\) −8.05398 + 33.4470i −0.264670 + 1.09914i
\(927\) 8.54312i 0.280593i
\(928\) 2.93893 1.20565i 0.0964752 0.0395775i
\(929\) 28.9807i 0.950825i −0.879763 0.475412i \(-0.842299\pi\)
0.879763 0.475412i \(-0.157701\pi\)
\(930\) 42.8121 12.3183i 1.40387 0.403934i
\(931\) 10.6170 14.5665i 0.347960 0.477397i
\(932\) −10.0138 + 19.5873i −0.328013 + 0.641604i
\(933\) 3.08835i 0.101108i
\(934\) −31.8956 7.68041i −1.04366 0.251311i
\(935\) 12.8255 + 22.5851i 0.419437 + 0.738611i
\(936\) −3.13951 + 3.66075i −0.102618 + 0.119655i
\(937\) −49.4631 −1.61589 −0.807944 0.589259i \(-0.799420\pi\)
−0.807944 + 0.589259i \(0.799420\pi\)
\(938\) 4.09509 + 17.1662i 0.133709 + 0.560495i
\(939\) 15.3019i 0.499357i
\(940\) 1.91046 + 43.5277i 0.0623125 + 1.41972i
\(941\) 8.75714i 0.285475i −0.989761 0.142737i \(-0.954410\pi\)
0.989761 0.142737i \(-0.0455904\pi\)
\(942\) 11.4196 + 2.74983i 0.372072 + 0.0895942i
\(943\) 51.2587i 1.66921i
\(944\) −33.5446 46.4354i −1.09179 1.51134i
\(945\) 15.1645 + 10.0191i 0.493302 + 0.325922i
\(946\) −4.24621 1.02248i −0.138056 0.0332437i
\(947\) −52.6261 −1.71012 −0.855060 0.518529i \(-0.826480\pi\)
−0.855060 + 0.518529i \(0.826480\pi\)
\(948\) −40.4591 20.6843i −1.31405 0.671795i
\(949\) −10.8769 −0.353079
\(950\) −13.0188 12.7297i −0.422385 0.413007i
\(951\) 52.1342 1.69057
\(952\) −8.80255 + 36.2181i −0.285292 + 1.17383i
\(953\) 31.2637i 1.01273i 0.862319 + 0.506365i \(0.169011\pi\)
−0.862319 + 0.506365i \(0.830989\pi\)
\(954\) −18.4384 4.43994i −0.596967 0.143748i
\(955\) −22.0461 38.8222i −0.713395 1.25626i
\(956\) −2.12311 + 4.15286i −0.0686661 + 0.134313i
\(957\) −2.79695 −0.0904125
\(958\) 9.96148 41.3686i 0.321841 1.33656i
\(959\) −3.70402 7.28323i −0.119609 0.235188i
\(960\) 29.9595 23.7092i 0.966938 0.765212i
\(961\) 12.5076 0.403470
\(962\) −8.25643 1.98813i −0.266198 0.0641000i
\(963\) −15.6371 −0.503899
\(964\) 14.6381 28.6325i 0.471460 0.922190i
\(965\) 6.07263 + 10.6937i 0.195485 + 0.344241i
\(966\) 46.9573 11.2019i 1.51083 0.360416i
\(967\) −16.2177 −0.521527 −0.260764 0.965403i \(-0.583974\pi\)
−0.260764 + 0.965403i \(0.583974\pi\)
\(968\) −10.2405 + 11.9407i −0.329142 + 0.383787i
\(969\) 27.3924i 0.879969i
\(970\) −13.0656 45.4091i −0.419510 1.45800i
\(971\) −36.3672 −1.16708 −0.583539 0.812085i \(-0.698332\pi\)
−0.583539 + 0.812085i \(0.698332\pi\)
\(972\) 13.4765 26.3605i 0.432260 0.845513i
\(973\) −9.48274 + 4.82262i −0.304003 + 0.154606i
\(974\) 0.384472 1.59666i 0.0123193 0.0511602i
\(975\) 10.0138 + 5.97366i 0.320699 + 0.191310i
\(976\) −2.01051 + 1.45238i −0.0643548 + 0.0464895i
\(977\) 14.0877i 0.450704i −0.974277 0.225352i \(-0.927647\pi\)
0.974277 0.225352i \(-0.0723532\pi\)
\(978\) −33.7733 8.13254i −1.07995 0.260050i
\(979\) −6.59603 −0.210810
\(980\) 17.3121 26.0824i 0.553014 0.833172i
\(981\) −7.12311 −0.227423
\(982\) 19.6329 + 4.72757i 0.626511 + 0.150863i
\(983\) 44.7361i 1.42686i 0.700727 + 0.713430i \(0.252859\pi\)
−0.700727 + 0.713430i \(0.747141\pi\)
\(984\) −33.3693 + 38.9094i −1.06377 + 1.24039i
\(985\) 18.2179 + 32.0810i 0.580471 + 1.02218i
\(986\) 0.926004 3.84556i 0.0294900 0.122468i
\(987\) 49.0708 24.9559i 1.56194 0.794353i
\(988\) 5.00691 + 2.55973i 0.159291 + 0.0814359i
\(989\) −8.00000 −0.254385
\(990\) −11.0668 + 3.18425i −0.351726 + 0.101202i
\(991\) 0.574176i 0.0182393i −0.999958 0.00911966i \(-0.997097\pi\)
0.999958 0.00911966i \(-0.00290292\pi\)
\(992\) 34.5209 14.1617i 1.09604 0.449634i
\(993\) −17.7392 −0.562935
\(994\) −43.4827 + 10.3730i −1.37919 + 0.329013i
\(995\) 35.6647 20.2530i 1.13065 0.642065i
\(996\) −14.6847 7.50738i −0.465301 0.237881i
\(997\) −47.7580 −1.51251 −0.756256 0.654276i \(-0.772973\pi\)
−0.756256 + 0.654276i \(0.772973\pi\)
\(998\) 35.2700 + 8.49295i 1.11645 + 0.268840i
\(999\) 16.8961 0.534568
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.2.c.b.139.9 yes 16
4.3 odd 2 inner 140.2.c.b.139.6 yes 16
5.2 odd 4 700.2.g.l.251.15 16
5.3 odd 4 700.2.g.l.251.2 16
5.4 even 2 inner 140.2.c.b.139.8 yes 16
7.2 even 3 980.2.s.f.619.2 32
7.3 odd 6 980.2.s.f.19.12 32
7.4 even 3 980.2.s.f.19.11 32
7.5 odd 6 980.2.s.f.619.1 32
7.6 odd 2 inner 140.2.c.b.139.10 yes 16
8.3 odd 2 2240.2.e.f.2239.3 16
8.5 even 2 2240.2.e.f.2239.15 16
20.3 even 4 700.2.g.l.251.3 16
20.7 even 4 700.2.g.l.251.14 16
20.19 odd 2 inner 140.2.c.b.139.11 yes 16
28.3 even 6 980.2.s.f.19.15 32
28.11 odd 6 980.2.s.f.19.16 32
28.19 even 6 980.2.s.f.619.6 32
28.23 odd 6 980.2.s.f.619.5 32
28.27 even 2 inner 140.2.c.b.139.5 16
35.4 even 6 980.2.s.f.19.6 32
35.9 even 6 980.2.s.f.619.15 32
35.13 even 4 700.2.g.l.251.1 16
35.19 odd 6 980.2.s.f.619.16 32
35.24 odd 6 980.2.s.f.19.5 32
35.27 even 4 700.2.g.l.251.16 16
35.34 odd 2 inner 140.2.c.b.139.7 yes 16
40.19 odd 2 2240.2.e.f.2239.13 16
40.29 even 2 2240.2.e.f.2239.1 16
56.13 odd 2 2240.2.e.f.2239.2 16
56.27 even 2 2240.2.e.f.2239.14 16
140.19 even 6 980.2.s.f.619.11 32
140.27 odd 4 700.2.g.l.251.13 16
140.39 odd 6 980.2.s.f.19.1 32
140.59 even 6 980.2.s.f.19.2 32
140.79 odd 6 980.2.s.f.619.12 32
140.83 odd 4 700.2.g.l.251.4 16
140.139 even 2 inner 140.2.c.b.139.12 yes 16
280.69 odd 2 2240.2.e.f.2239.16 16
280.139 even 2 2240.2.e.f.2239.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.c.b.139.5 16 28.27 even 2 inner
140.2.c.b.139.6 yes 16 4.3 odd 2 inner
140.2.c.b.139.7 yes 16 35.34 odd 2 inner
140.2.c.b.139.8 yes 16 5.4 even 2 inner
140.2.c.b.139.9 yes 16 1.1 even 1 trivial
140.2.c.b.139.10 yes 16 7.6 odd 2 inner
140.2.c.b.139.11 yes 16 20.19 odd 2 inner
140.2.c.b.139.12 yes 16 140.139 even 2 inner
700.2.g.l.251.1 16 35.13 even 4
700.2.g.l.251.2 16 5.3 odd 4
700.2.g.l.251.3 16 20.3 even 4
700.2.g.l.251.4 16 140.83 odd 4
700.2.g.l.251.13 16 140.27 odd 4
700.2.g.l.251.14 16 20.7 even 4
700.2.g.l.251.15 16 5.2 odd 4
700.2.g.l.251.16 16 35.27 even 4
980.2.s.f.19.1 32 140.39 odd 6
980.2.s.f.19.2 32 140.59 even 6
980.2.s.f.19.5 32 35.24 odd 6
980.2.s.f.19.6 32 35.4 even 6
980.2.s.f.19.11 32 7.4 even 3
980.2.s.f.19.12 32 7.3 odd 6
980.2.s.f.19.15 32 28.3 even 6
980.2.s.f.19.16 32 28.11 odd 6
980.2.s.f.619.1 32 7.5 odd 6
980.2.s.f.619.2 32 7.2 even 3
980.2.s.f.619.5 32 28.23 odd 6
980.2.s.f.619.6 32 28.19 even 6
980.2.s.f.619.11 32 140.19 even 6
980.2.s.f.619.12 32 140.79 odd 6
980.2.s.f.619.15 32 35.9 even 6
980.2.s.f.619.16 32 35.19 odd 6
2240.2.e.f.2239.1 16 40.29 even 2
2240.2.e.f.2239.2 16 56.13 odd 2
2240.2.e.f.2239.3 16 8.3 odd 2
2240.2.e.f.2239.4 16 280.139 even 2
2240.2.e.f.2239.13 16 40.19 odd 2
2240.2.e.f.2239.14 16 56.27 even 2
2240.2.e.f.2239.15 16 8.5 even 2
2240.2.e.f.2239.16 16 280.69 odd 2