Learn more

Refine search


Results (1-50 of 175 matches)

Next   Download to        
Label Char Prim Dim $A$ Field CM RM Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
140.1.h.a 140.h 35.c $1$ $0.070$ \(\Q\) \(\Q(\sqrt{-35}) \) None \(0\) \(-1\) \(1\) \(1\) \(q-q^{3}+q^{5}+q^{7}-q^{11}-q^{13}-q^{15}+\cdots\)
140.1.h.b 140.h 35.c $1$ $0.070$ \(\Q\) \(\Q(\sqrt{-35}) \) None \(0\) \(1\) \(-1\) \(-1\) \(q+q^{3}-q^{5}-q^{7}-q^{11}+q^{13}-q^{15}+\cdots\)
140.1.p.a 140.p 140.p $2$ $0.070$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-5}) \) None \(-1\) \(1\) \(-1\) \(-1\) \(q-\zeta_{6}q^{2}-\zeta_{6}^{2}q^{3}+\zeta_{6}^{2}q^{4}-\zeta_{6}q^{5}+\cdots\)
140.1.p.b 140.p 140.p $2$ $0.070$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-5}) \) None \(1\) \(-1\) \(-1\) \(1\) \(q+\zeta_{6}q^{2}+\zeta_{6}^{2}q^{3}+\zeta_{6}^{2}q^{4}-\zeta_{6}q^{5}+\cdots\)
140.2.a.a 140.a 1.a $1$ $1.118$ \(\Q\) None None \(0\) \(1\) \(1\) \(1\) $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+q^{7}-2q^{9}+3q^{11}-q^{13}+\cdots\)
140.2.a.b 140.a 1.a $1$ $1.118$ \(\Q\) None None \(0\) \(3\) \(-1\) \(-1\) $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-q^{5}-q^{7}+6q^{9}-5q^{11}+\cdots\)
140.2.c.a 140.c 140.c $4$ $1.118$ \(\Q(\sqrt{2}, \sqrt{-5})\) \(\Q(\sqrt{-5}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{2}q^{2}+(-2\beta _{1}-\beta _{2})q^{3}+2q^{4}+\cdots\)
140.2.c.b 140.c 140.c $16$ $1.118$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}-\beta _{9}q^{3}+(-1+\beta _{6})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
140.2.e.a 140.e 5.b $2$ $1.118$ \(\Q(\sqrt{-1}) \) None None \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{3}+(-2+i)q^{5}-iq^{7}-6q^{9}+\cdots\)
140.2.e.b 140.e 5.b $2$ $1.118$ \(\Q(\sqrt{-1}) \) None None \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+2i)q^{5}+iq^{7}+3q^{9}-4iq^{13}+\cdots\)
140.2.g.a 140.g 28.d $4$ $1.118$ \(\Q(\zeta_{12})\) None None \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\zeta_{12}+\zeta_{12}^{2})q^{2}+(\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
140.2.g.b 140.g 28.d $4$ $1.118$ \(\Q(\zeta_{12})\) None None \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\zeta_{12}+\zeta_{12}^{2})q^{2}+(-\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
140.2.g.c 140.g 28.d $8$ $1.118$ 8.0.342102016.5 None None \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{7}q^{2}+(-\beta _{4}+\beta _{6})q^{3}+(-\beta _{3}+\beta _{5}+\cdots)q^{4}+\cdots\)
140.2.i.a 140.i 7.c $2$ $1.118$ \(\Q(\sqrt{-3}) \) None None \(0\) \(-1\) \(1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{5}+(3-\zeta_{6})q^{7}+\cdots\)
140.2.i.b 140.i 7.c $2$ $1.118$ \(\Q(\sqrt{-3}) \) None None \(0\) \(3\) \(1\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(3-3\zeta_{6})q^{3}+\zeta_{6}q^{5}+(-1+3\zeta_{6})q^{7}+\cdots\)
140.2.k.a 140.k 20.e $36$ $1.118$ None None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
140.2.m.a 140.m 35.f $8$ $1.118$ 8.0.\(\cdots\).3 None None \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{3}+(-\beta _{2}+\beta _{6})q^{5}+(\beta _{4}-\beta _{7})q^{7}+\cdots\)
140.2.o.a 140.o 28.f $32$ $1.118$ None None \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
140.2.q.a 140.q 35.j $4$ $1.118$ \(\Q(\sqrt{-3}, \sqrt{-19})\) None None \(0\) \(-6\) \(1\) \(-3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\beta _{2})q^{3}+\beta _{1}q^{5}+(-\beta _{2}+\beta _{3})q^{7}+\cdots\)
140.2.q.b 140.q 35.j $4$ $1.118$ \(\Q(\sqrt{-3}, \sqrt{-19})\) None None \(0\) \(6\) \(-2\) \(3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2-\beta _{2})q^{3}+(-1+\beta _{1}-\beta _{3})q^{5}+\cdots\)
140.2.s.a 140.s 140.s $8$ $1.118$ 8.0.3317760000.3 \(\Q(\sqrt{-5}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{6}]$ \(q+\beta _{5}q^{2}+(\beta _{1}-\beta _{5})q^{3}-2\beta _{4}q^{4}-\beta _{7}q^{5}+\cdots\)
140.2.s.b 140.s 140.s $32$ $1.118$ None None \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$
140.2.u.a 140.u 35.k $16$ $1.118$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None None \(0\) \(0\) \(6\) \(2\) $\mathrm{SU}(2)[C_{12}]$ \(q+(2\beta _{1}+\beta _{2}+\beta _{10}-\beta _{11}+\beta _{13})q^{3}+\cdots\)
140.2.w.a 140.w 140.w $8$ $1.118$ 8.0.\(\cdots\).9 None None \(-4\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1+\beta _{2}+\beta _{4})q^{2}+\beta _{1}q^{3}+(-2\beta _{2}+\cdots)q^{4}+\cdots\)
140.2.w.b 140.w 140.w $72$ $1.118$ None None \(2\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{12}]$
140.3.b.a 140.b 4.b $24$ $3.815$ None None \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
140.3.d.a 140.d 7.b $4$ $3.815$ \(\Q(\sqrt{-5}, \sqrt{-13})\) None None \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(\beta _{1}-\beta _{2})q^{5}+(-2+\beta _{1}+\cdots)q^{7}+\cdots\)
140.3.f.a 140.f 20.d $36$ $3.815$ None None \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$
140.3.h.a 140.h 35.c $2$ $3.815$ \(\Q(\sqrt{105}) \) \(\Q(\sqrt{-35}) \) None \(0\) \(-1\) \(-10\) \(14\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{3}-5q^{5}+7q^{7}+(17+\beta )q^{9}+\cdots\)
140.3.h.b 140.h 35.c $2$ $3.815$ \(\Q(\sqrt{105}) \) \(\Q(\sqrt{-35}) \) None \(0\) \(1\) \(10\) \(-14\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{3}+5q^{5}-7q^{7}+(17+\beta )q^{9}+\cdots\)
140.3.h.c 140.h 35.c $4$ $3.815$ \(\Q(\sqrt{2}, \sqrt{-41})\) None None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+(\beta _{1}-\beta _{2})q^{5}+(-2\beta _{2}+\beta _{3})q^{7}+\cdots\)
140.3.j.a 140.j 140.j $88$ $3.815$ None None \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
140.3.l.a 140.l 5.c $4$ $3.815$ \(\Q(i, \sqrt{14})\) None None \(0\) \(4\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1}+\beta _{2})q^{3}+(-3+\beta _{1}+3\beta _{2}+\cdots)q^{5}+\cdots\)
140.3.l.b 140.l 5.c $8$ $3.815$ 8.0.\(\cdots\).32 None None \(0\) \(-8\) \(20\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{2}-\beta _{3}-\beta _{5})q^{3}+(3-\beta _{1}+\cdots)q^{5}+\cdots\)
140.3.n.a 140.n 35.i $16$ $3.815$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None None \(0\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{3}-\beta _{11}q^{5}+\beta _{15}q^{7}+(-2+\cdots)q^{9}+\cdots\)
140.3.p.a 140.p 140.p $4$ $3.815$ \(\Q(\sqrt{-3}, \sqrt{-5})\) \(\Q(\sqrt{-5}) \) None \(-4\) \(-4\) \(10\) \(-4\) $\mathrm{U}(1)[D_{6}]$ \(q+(-2+2\beta _{1})q^{2}+(-2\beta _{1}+\beta _{2})q^{3}+\cdots\)
140.3.p.b 140.p 140.p $4$ $3.815$ \(\Q(\sqrt{-3}, \sqrt{-5})\) \(\Q(\sqrt{-5}) \) None \(4\) \(4\) \(10\) \(4\) $\mathrm{U}(1)[D_{6}]$ \(q+(2-2\beta _{1})q^{2}+(2\beta _{1}-\beta _{2})q^{3}-4\beta _{1}q^{4}+\cdots\)
140.3.p.c 140.p 140.p $80$ $3.815$ None None \(0\) \(0\) \(-22\) \(0\) $\mathrm{SU}(2)[C_{6}]$
140.3.r.a 140.r 7.d $12$ $3.815$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None None \(0\) \(-6\) \(0\) \(14\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{2}q^{3}+\beta _{7}q^{5}+(1-\beta _{2}-\beta _{3}-\beta _{4}+\cdots)q^{7}+\cdots\)
140.3.t.a 140.t 28.g $64$ $3.815$ None None \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
140.3.v.a 140.v 35.l $32$ $3.815$ None None \(0\) \(0\) \(-2\) \(14\) $\mathrm{SU}(2)[C_{12}]$
140.3.x.a 140.x 140.x $176$ $3.815$ None None \(-2\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{12}]$
140.4.a.a 140.a 1.a $1$ $8.260$ \(\Q\) None None \(0\) \(-5\) \(-5\) \(7\) $+$ $\mathrm{SU}(2)$ \(q-5q^{3}-5q^{5}+7q^{7}-2q^{9}+15q^{11}+\cdots\)
140.4.a.b 140.a 1.a $1$ $8.260$ \(\Q\) None None \(0\) \(-5\) \(5\) \(7\) $-$ $\mathrm{SU}(2)$ \(q-5q^{3}+5q^{5}+7q^{7}-2q^{9}-15q^{11}+\cdots\)
140.4.a.c 140.a 1.a $1$ $8.260$ \(\Q\) None None \(0\) \(-4\) \(5\) \(-7\) $+$ $\mathrm{SU}(2)$ \(q-4q^{3}+5q^{5}-7q^{7}-11q^{9}+68q^{11}+\cdots\)
140.4.a.d 140.a 1.a $1$ $8.260$ \(\Q\) None None \(0\) \(1\) \(-5\) \(-7\) $-$ $\mathrm{SU}(2)$ \(q+q^{3}-5q^{5}-7q^{7}-26q^{9}-7q^{11}+\cdots\)
140.4.a.e 140.a 1.a $1$ $8.260$ \(\Q\) None None \(0\) \(8\) \(-5\) \(7\) $+$ $\mathrm{SU}(2)$ \(q+8q^{3}-5q^{5}+7q^{7}+37q^{9}+28q^{11}+\cdots\)
140.4.a.f 140.a 1.a $1$ $8.260$ \(\Q\) None None \(0\) \(9\) \(5\) \(-7\) $+$ $\mathrm{SU}(2)$ \(q+9q^{3}+5q^{5}-7q^{7}+54q^{9}+55q^{11}+\cdots\)
140.4.c.a 140.c 140.c $4$ $8.260$ \(\Q(\sqrt{2}, \sqrt{-5})\) \(\Q(\sqrt{-5}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2\beta _{2}q^{2}+(2\beta _{1}+\beta _{2})q^{3}+8q^{4}-5\beta _{3}q^{5}+\cdots\)
140.4.c.b 140.c 140.c $64$ $8.260$ None None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
Next   Download to