Properties

Label 140.2
Level 140
Weight 2
Dimension 266
Nonzero newspaces 12
Newform subspaces 21
Sturm bound 2304
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 21 \)
Sturm bound: \(2304\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(140))\).

Total New Old
Modular forms 696 322 374
Cusp forms 457 266 191
Eisenstein series 239 56 183

Trace form

\( 266 q - 2 q^{2} + 6 q^{3} - 6 q^{4} - 5 q^{5} - 24 q^{6} + 6 q^{7} - 26 q^{8} - 18 q^{9} - 30 q^{10} - 6 q^{11} - 36 q^{12} - 32 q^{13} - 30 q^{14} - 10 q^{15} - 26 q^{16} - 6 q^{17} - 6 q^{18} + 6 q^{19}+ \cdots - 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(140))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
140.2.a \(\chi_{140}(1, \cdot)\) 140.2.a.a 1 1
140.2.a.b 1
140.2.c \(\chi_{140}(139, \cdot)\) 140.2.c.a 4 1
140.2.c.b 16
140.2.e \(\chi_{140}(29, \cdot)\) 140.2.e.a 2 1
140.2.e.b 2
140.2.g \(\chi_{140}(111, \cdot)\) 140.2.g.a 4 1
140.2.g.b 4
140.2.g.c 8
140.2.i \(\chi_{140}(81, \cdot)\) 140.2.i.a 2 2
140.2.i.b 2
140.2.k \(\chi_{140}(43, \cdot)\) 140.2.k.a 36 2
140.2.m \(\chi_{140}(13, \cdot)\) 140.2.m.a 8 2
140.2.o \(\chi_{140}(31, \cdot)\) 140.2.o.a 32 2
140.2.q \(\chi_{140}(9, \cdot)\) 140.2.q.a 4 2
140.2.q.b 4
140.2.s \(\chi_{140}(19, \cdot)\) 140.2.s.a 8 2
140.2.s.b 32
140.2.u \(\chi_{140}(17, \cdot)\) 140.2.u.a 16 4
140.2.w \(\chi_{140}(23, \cdot)\) 140.2.w.a 8 4
140.2.w.b 72

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(140))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(140)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 1}\)