Properties

Label 140.2.c.b.139.6
Level $140$
Weight $2$
Character 140.139
Analytic conductor $1.118$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [140,2,Mod(139,140)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(140, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("140.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 28x^{12} + 16x^{10} - 40x^{8} + 610x^{6} + 1625x^{4} - 524x^{2} + 1444 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.6
Root \(0.328458 - 1.49331i\) of defining polynomial
Character \(\chi\) \(=\) 140.139
Dual form 140.2.c.b.139.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.331077 - 1.37491i) q^{2} +2.13578i q^{3} +(-1.78078 + 0.910404i) q^{4} +(-1.94442 + 1.10418i) q^{5} +(2.93651 - 0.707107i) q^{6} +(-2.35829 + 1.19935i) q^{7} +(1.84130 + 2.14700i) q^{8} -1.56155 q^{9} +(2.16191 + 2.30784i) q^{10} +2.33205i q^{11} +(-1.94442 - 3.80335i) q^{12} -1.09190 q^{13} +(2.42978 + 2.84537i) q^{14} +(-2.35829 - 4.15286i) q^{15} +(2.34233 - 3.24245i) q^{16} +4.98074 q^{17} +(0.516994 + 2.14700i) q^{18} -2.57501 q^{19} +(2.45733 - 3.73652i) q^{20} +(-2.56155 - 5.03680i) q^{21} +(3.20636 - 0.772087i) q^{22} +6.04090 q^{23} +(-4.58552 + 3.93261i) q^{24} +(2.56155 - 4.29400i) q^{25} +(0.361501 + 1.50126i) q^{26} +3.07221i q^{27} +(3.10770 - 4.28278i) q^{28} +0.561553 q^{29} +(-4.92904 + 4.61737i) q^{30} -6.59603 q^{31} +(-5.23358 - 2.14700i) q^{32} -4.98074 q^{33} +(-1.64901 - 6.84809i) q^{34} +(3.26121 - 4.93604i) q^{35} +(2.78078 - 1.42164i) q^{36} +5.49966i q^{37} +(0.852526 + 3.54042i) q^{38} -2.33205i q^{39} +(-5.95095 - 2.14154i) q^{40} +8.48528i q^{41} +(-6.07709 + 5.18948i) q^{42} -1.32431 q^{43} +(-2.12311 - 4.15286i) q^{44} +(3.03632 - 1.72424i) q^{45} +(-2.00000 - 8.30571i) q^{46} -9.74247i q^{47} +(6.92516 + 5.00270i) q^{48} +(4.12311 - 5.65685i) q^{49} +(-6.75195 - 2.10027i) q^{50} +10.6378i q^{51} +(1.94442 - 0.994066i) q^{52} +8.58800i q^{53} +(4.22402 - 1.01714i) q^{54} +(-2.57501 - 4.53448i) q^{55} +(-6.91734 - 2.85489i) q^{56} -5.49966i q^{57} +(-0.185917 - 0.772087i) q^{58} +14.3211 q^{59} +(7.98037 + 5.24831i) q^{60} +0.620058i q^{61} +(2.18379 + 9.06897i) q^{62} +(3.68260 - 1.87285i) q^{63} +(-1.21922 + 7.90655i) q^{64} +(2.12311 - 1.20565i) q^{65} +(1.64901 + 6.84809i) q^{66} +4.71659 q^{67} +(-8.86958 + 4.53448i) q^{68} +12.9020i q^{69} +(-7.86634 - 2.84968i) q^{70} +11.9473i q^{71} +(-2.87529 - 3.35265i) q^{72} +9.96148 q^{73} +(7.56155 - 1.82081i) q^{74} +(9.17104 + 5.47091i) q^{75} +(4.58552 - 2.34430i) q^{76} +(-2.79695 - 5.49966i) q^{77} +(-3.20636 + 0.772087i) q^{78} -10.6378i q^{79} +(-0.974211 + 8.89106i) q^{80} -11.2462 q^{81} +(11.6665 - 2.80928i) q^{82} -3.86098i q^{83} +(9.14707 + 6.63736i) q^{84} +(-9.68466 + 5.49966i) q^{85} +(0.438447 + 1.82081i) q^{86} +1.19935i q^{87} +(-5.00691 + 4.29400i) q^{88} -2.82843i q^{89} +(-3.37594 - 3.60382i) q^{90} +(2.57501 - 1.30957i) q^{91} +(-10.7575 + 5.49966i) q^{92} -14.0877i q^{93} +(-13.3951 + 3.22550i) q^{94} +(5.00691 - 2.84329i) q^{95} +(4.58552 - 11.1778i) q^{96} -14.9422 q^{97} +(-9.14275 - 3.79606i) q^{98} -3.64162i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 12 q^{4} + 8 q^{9} - 4 q^{14} - 12 q^{16} - 8 q^{21} + 8 q^{25} - 24 q^{29} - 4 q^{30} + 28 q^{36} + 32 q^{44} - 32 q^{46} - 12 q^{50} - 20 q^{56} + 44 q^{60} - 36 q^{64} - 32 q^{65} + 40 q^{70}+ \cdots + 40 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.331077 1.37491i −0.234107 0.972211i
\(3\) 2.13578i 1.23309i 0.787319 + 0.616546i \(0.211469\pi\)
−0.787319 + 0.616546i \(0.788531\pi\)
\(4\) −1.78078 + 0.910404i −0.890388 + 0.455202i
\(5\) −1.94442 + 1.10418i −0.869572 + 0.493806i
\(6\) 2.93651 0.707107i 1.19883 0.288675i
\(7\) −2.35829 + 1.19935i −0.891352 + 0.453313i
\(8\) 1.84130 + 2.14700i 0.650998 + 0.759079i
\(9\) −1.56155 −0.520518
\(10\) 2.16191 + 2.30784i 0.683656 + 0.729804i
\(11\) 2.33205i 0.703139i 0.936162 + 0.351569i \(0.114352\pi\)
−0.936162 + 0.351569i \(0.885648\pi\)
\(12\) −1.94442 3.80335i −0.561306 1.09793i
\(13\) −1.09190 −0.302837 −0.151419 0.988470i \(-0.548384\pi\)
−0.151419 + 0.988470i \(0.548384\pi\)
\(14\) 2.42978 + 2.84537i 0.649387 + 0.760458i
\(15\) −2.35829 4.15286i −0.608909 1.07226i
\(16\) 2.34233 3.24245i 0.585582 0.810613i
\(17\) 4.98074 1.20801 0.604003 0.796982i \(-0.293571\pi\)
0.604003 + 0.796982i \(0.293571\pi\)
\(18\) 0.516994 + 2.14700i 0.121857 + 0.506053i
\(19\) −2.57501 −0.590748 −0.295374 0.955382i \(-0.595444\pi\)
−0.295374 + 0.955382i \(0.595444\pi\)
\(20\) 2.45733 3.73652i 0.549475 0.835510i
\(21\) −2.56155 5.03680i −0.558977 1.09912i
\(22\) 3.20636 0.772087i 0.683599 0.164609i
\(23\) 6.04090 1.25961 0.629807 0.776752i \(-0.283134\pi\)
0.629807 + 0.776752i \(0.283134\pi\)
\(24\) −4.58552 + 3.93261i −0.936015 + 0.802741i
\(25\) 2.56155 4.29400i 0.512311 0.858800i
\(26\) 0.361501 + 1.50126i 0.0708962 + 0.294422i
\(27\) 3.07221i 0.591246i
\(28\) 3.10770 4.28278i 0.587300 0.809369i
\(29\) 0.561553 0.104278 0.0521389 0.998640i \(-0.483396\pi\)
0.0521389 + 0.998640i \(0.483396\pi\)
\(30\) −4.92904 + 4.61737i −0.899916 + 0.843012i
\(31\) −6.59603 −1.18468 −0.592341 0.805688i \(-0.701796\pi\)
−0.592341 + 0.805688i \(0.701796\pi\)
\(32\) −5.23358 2.14700i −0.925175 0.379540i
\(33\) −4.98074 −0.867035
\(34\) −1.64901 6.84809i −0.282802 1.17444i
\(35\) 3.26121 4.93604i 0.551246 0.834343i
\(36\) 2.78078 1.42164i 0.463463 0.236941i
\(37\) 5.49966i 0.904138i 0.891983 + 0.452069i \(0.149314\pi\)
−0.891983 + 0.452069i \(0.850686\pi\)
\(38\) 0.852526 + 3.54042i 0.138298 + 0.574332i
\(39\) 2.33205i 0.373427i
\(40\) −5.95095 2.14154i −0.940928 0.338607i
\(41\) 8.48528i 1.32518i 0.748983 + 0.662589i \(0.230542\pi\)
−0.748983 + 0.662589i \(0.769458\pi\)
\(42\) −6.07709 + 5.18948i −0.937715 + 0.800754i
\(43\) −1.32431 −0.201955 −0.100977 0.994889i \(-0.532197\pi\)
−0.100977 + 0.994889i \(0.532197\pi\)
\(44\) −2.12311 4.15286i −0.320070 0.626067i
\(45\) 3.03632 1.72424i 0.452627 0.257035i
\(46\) −2.00000 8.30571i −0.294884 1.22461i
\(47\) 9.74247i 1.42109i −0.703654 0.710543i \(-0.748450\pi\)
0.703654 0.710543i \(-0.251550\pi\)
\(48\) 6.92516 + 5.00270i 0.999561 + 0.722077i
\(49\) 4.12311 5.65685i 0.589015 0.808122i
\(50\) −6.75195 2.10027i −0.954870 0.297023i
\(51\) 10.6378i 1.48958i
\(52\) 1.94442 0.994066i 0.269643 0.137852i
\(53\) 8.58800i 1.17965i 0.807530 + 0.589826i \(0.200804\pi\)
−0.807530 + 0.589826i \(0.799196\pi\)
\(54\) 4.22402 1.01714i 0.574816 0.138415i
\(55\) −2.57501 4.53448i −0.347214 0.611430i
\(56\) −6.91734 2.85489i −0.924369 0.381501i
\(57\) 5.49966i 0.728447i
\(58\) −0.185917 0.772087i −0.0244121 0.101380i
\(59\) 14.3211 1.86444 0.932222 0.361888i \(-0.117868\pi\)
0.932222 + 0.361888i \(0.117868\pi\)
\(60\) 7.98037 + 5.24831i 1.03026 + 0.677554i
\(61\) 0.620058i 0.0793903i 0.999212 + 0.0396951i \(0.0126387\pi\)
−0.999212 + 0.0396951i \(0.987361\pi\)
\(62\) 2.18379 + 9.06897i 0.277342 + 1.15176i
\(63\) 3.68260 1.87285i 0.463964 0.235957i
\(64\) −1.21922 + 7.90655i −0.152403 + 0.988318i
\(65\) 2.12311 1.20565i 0.263339 0.149543i
\(66\) 1.64901 + 6.84809i 0.202979 + 0.842941i
\(67\) 4.71659 0.576223 0.288112 0.957597i \(-0.406973\pi\)
0.288112 + 0.957597i \(0.406973\pi\)
\(68\) −8.86958 + 4.53448i −1.07559 + 0.549887i
\(69\) 12.9020i 1.55322i
\(70\) −7.86634 2.84968i −0.940208 0.340602i
\(71\) 11.9473i 1.41789i 0.705265 + 0.708943i \(0.250828\pi\)
−0.705265 + 0.708943i \(0.749172\pi\)
\(72\) −2.87529 3.35265i −0.338856 0.395114i
\(73\) 9.96148 1.16590 0.582951 0.812507i \(-0.301898\pi\)
0.582951 + 0.812507i \(0.301898\pi\)
\(74\) 7.56155 1.82081i 0.879013 0.211665i
\(75\) 9.17104 + 5.47091i 1.05898 + 0.631726i
\(76\) 4.58552 2.34430i 0.525995 0.268910i
\(77\) −2.79695 5.49966i −0.318742 0.626744i
\(78\) −3.20636 + 0.772087i −0.363049 + 0.0874216i
\(79\) 10.6378i 1.19684i −0.801182 0.598421i \(-0.795795\pi\)
0.801182 0.598421i \(-0.204205\pi\)
\(80\) −0.974211 + 8.89106i −0.108920 + 0.994051i
\(81\) −11.2462 −1.24958
\(82\) 11.6665 2.80928i 1.28835 0.310233i
\(83\) 3.86098i 0.423798i −0.977292 0.211899i \(-0.932035\pi\)
0.977292 0.211899i \(-0.0679648\pi\)
\(84\) 9.14707 + 6.63736i 0.998027 + 0.724195i
\(85\) −9.68466 + 5.49966i −1.05045 + 0.596521i
\(86\) 0.438447 + 1.82081i 0.0472790 + 0.196343i
\(87\) 1.19935i 0.128584i
\(88\) −5.00691 + 4.29400i −0.533738 + 0.457742i
\(89\) 2.82843i 0.299813i −0.988700 0.149906i \(-0.952103\pi\)
0.988700 0.149906i \(-0.0478972\pi\)
\(90\) −3.37594 3.60382i −0.355855 0.379876i
\(91\) 2.57501 1.30957i 0.269935 0.137280i
\(92\) −10.7575 + 5.49966i −1.12155 + 0.573379i
\(93\) 14.0877i 1.46082i
\(94\) −13.3951 + 3.22550i −1.38159 + 0.332685i
\(95\) 5.00691 2.84329i 0.513698 0.291715i
\(96\) 4.58552 11.1778i 0.468008 1.14083i
\(97\) −14.9422 −1.51715 −0.758576 0.651584i \(-0.774105\pi\)
−0.758576 + 0.651584i \(0.774105\pi\)
\(98\) −9.14275 3.79606i −0.923557 0.383460i
\(99\) 3.64162i 0.365996i
\(100\) −0.652277 + 9.97870i −0.0652277 + 0.997870i
\(101\) 15.1104i 1.50354i −0.659425 0.751770i \(-0.729200\pi\)
0.659425 0.751770i \(-0.270800\pi\)
\(102\) 14.6260 3.52191i 1.44819 0.348722i
\(103\) 5.47091i 0.539065i 0.962991 + 0.269532i \(0.0868691\pi\)
−0.962991 + 0.269532i \(0.913131\pi\)
\(104\) −2.01051 2.34430i −0.197147 0.229878i
\(105\) 10.5423 + 6.96523i 1.02882 + 0.679737i
\(106\) 11.8078 2.84329i 1.14687 0.276165i
\(107\) −10.0138 −0.968072 −0.484036 0.875048i \(-0.660830\pi\)
−0.484036 + 0.875048i \(0.660830\pi\)
\(108\) −2.79695 5.47091i −0.269136 0.526439i
\(109\) 4.56155 0.436918 0.218459 0.975846i \(-0.429897\pi\)
0.218459 + 0.975846i \(0.429897\pi\)
\(110\) −5.38200 + 5.04168i −0.513154 + 0.480705i
\(111\) −11.7460 −1.11489
\(112\) −1.63506 + 10.4559i −0.154498 + 0.987993i
\(113\) 5.49966i 0.517364i 0.965963 + 0.258682i \(0.0832882\pi\)
−0.965963 + 0.258682i \(0.916712\pi\)
\(114\) −7.56155 + 1.82081i −0.708204 + 0.170534i
\(115\) −11.7460 + 6.67026i −1.09532 + 0.622005i
\(116\) −1.00000 + 0.511240i −0.0928477 + 0.0474674i
\(117\) 1.70505 0.157632
\(118\) −4.74137 19.6902i −0.436478 1.81263i
\(119\) −11.7460 + 5.97366i −1.07676 + 0.547605i
\(120\) 4.57385 12.7099i 0.417534 1.16025i
\(121\) 5.56155 0.505596
\(122\) 0.852526 0.205287i 0.0771841 0.0185858i
\(123\) −18.1227 −1.63407
\(124\) 11.7460 6.00505i 1.05483 0.539269i
\(125\) −0.239369 + 11.1778i −0.0214098 + 0.999771i
\(126\) −3.79423 4.44320i −0.338017 0.395832i
\(127\) 5.29723 0.470053 0.235026 0.971989i \(-0.424482\pi\)
0.235026 + 0.971989i \(0.424482\pi\)
\(128\) 11.2745 0.941346i 0.996533 0.0832041i
\(129\) 2.82843i 0.249029i
\(130\) −2.36058 2.51992i −0.207037 0.221012i
\(131\) 2.57501 0.224980 0.112490 0.993653i \(-0.464117\pi\)
0.112490 + 0.993653i \(0.464117\pi\)
\(132\) 8.86958 4.53448i 0.771998 0.394676i
\(133\) 6.07263 3.08835i 0.526564 0.267794i
\(134\) −1.56155 6.48490i −0.134898 0.560210i
\(135\) −3.39228 5.97366i −0.291961 0.514131i
\(136\) 9.17104 + 10.6937i 0.786410 + 0.916973i
\(137\) 3.08835i 0.263855i −0.991259 0.131928i \(-0.957883\pi\)
0.991259 0.131928i \(-0.0421167\pi\)
\(138\) 17.7392 4.27156i 1.51006 0.363619i
\(139\) 4.02102 0.341058 0.170529 0.985353i \(-0.445452\pi\)
0.170529 + 0.985353i \(0.445452\pi\)
\(140\) −1.31370 + 11.7590i −0.111028 + 0.993817i
\(141\) 20.8078 1.75233
\(142\) 16.4265 3.95548i 1.37849 0.331937i
\(143\) 2.54635i 0.212937i
\(144\) −3.65767 + 5.06326i −0.304806 + 0.421938i
\(145\) −1.09190 + 0.620058i −0.0906770 + 0.0514930i
\(146\) −3.29801 13.6962i −0.272946 1.13350i
\(147\) 12.0818 + 8.80604i 0.996489 + 0.726310i
\(148\) −5.00691 9.79366i −0.411565 0.805034i
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 4.48571 14.4207i 0.366257 1.17744i
\(151\) 4.95118i 0.402922i −0.979497 0.201461i \(-0.935431\pi\)
0.979497 0.201461i \(-0.0645689\pi\)
\(152\) −4.74137 5.52855i −0.384576 0.448425i
\(153\) −7.77769 −0.628789
\(154\) −6.63555 + 5.66637i −0.534708 + 0.456609i
\(155\) 12.8255 7.28323i 1.03017 0.585003i
\(156\) 2.12311 + 4.15286i 0.169984 + 0.332495i
\(157\) −3.88884 −0.310364 −0.155182 0.987886i \(-0.549596\pi\)
−0.155182 + 0.987886i \(0.549596\pi\)
\(158\) −14.6260 + 3.52191i −1.16358 + 0.280188i
\(159\) −18.3421 −1.45462
\(160\) 12.5470 1.60417i 0.991926 0.126820i
\(161\) −14.2462 + 7.24517i −1.12276 + 0.570999i
\(162\) 3.72336 + 15.4626i 0.292535 + 1.21485i
\(163\) −11.5012 −0.900840 −0.450420 0.892817i \(-0.648726\pi\)
−0.450420 + 0.892817i \(0.648726\pi\)
\(164\) −7.72503 15.1104i −0.603224 1.17992i
\(165\) 9.68466 5.49966i 0.753950 0.428148i
\(166\) −5.30852 + 1.27828i −0.412021 + 0.0992139i
\(167\) 0.673500i 0.0521170i 0.999660 + 0.0260585i \(0.00829562\pi\)
−0.999660 + 0.0260585i \(0.991704\pi\)
\(168\) 6.09742 14.7739i 0.470426 1.13983i
\(169\) −11.8078 −0.908290
\(170\) 10.7679 + 11.4948i 0.825862 + 0.881608i
\(171\) 4.02102 0.307495
\(172\) 2.35829 1.20565i 0.179818 0.0919303i
\(173\) 11.0534 0.840372 0.420186 0.907438i \(-0.361965\pi\)
0.420186 + 0.907438i \(0.361965\pi\)
\(174\) 1.64901 0.397078i 0.125011 0.0301024i
\(175\) −0.890873 + 13.1987i −0.0673437 + 0.997730i
\(176\) 7.56155 + 5.46242i 0.569973 + 0.411746i
\(177\) 30.5866i 2.29903i
\(178\) −3.88884 + 0.936426i −0.291481 + 0.0701881i
\(179\) 8.30571i 0.620798i 0.950606 + 0.310399i \(0.100463\pi\)
−0.950606 + 0.310399i \(0.899537\pi\)
\(180\) −3.83725 + 5.83477i −0.286011 + 0.434898i
\(181\) 3.44849i 0.256324i −0.991753 0.128162i \(-0.959092\pi\)
0.991753 0.128162i \(-0.0409077\pi\)
\(182\) −2.65307 3.10685i −0.196659 0.230295i
\(183\) −1.32431 −0.0978956
\(184\) 11.1231 + 12.9698i 0.820006 + 0.956147i
\(185\) −6.07263 10.6937i −0.446469 0.786213i
\(186\) −19.3693 + 4.66410i −1.42023 + 0.341988i
\(187\) 11.6153i 0.849396i
\(188\) 8.86958 + 17.3492i 0.646881 + 1.26532i
\(189\) −3.68466 7.24517i −0.268019 0.527008i
\(190\) −5.56695 5.94272i −0.403869 0.431130i
\(191\) 19.9660i 1.44469i −0.691535 0.722343i \(-0.743065\pi\)
0.691535 0.722343i \(-0.256935\pi\)
\(192\) −16.8866 2.60399i −1.21869 0.187927i
\(193\) 5.49966i 0.395874i −0.980215 0.197937i \(-0.936576\pi\)
0.980215 0.197937i \(-0.0634241\pi\)
\(194\) 4.94702 + 20.5443i 0.355175 + 1.47499i
\(195\) 2.57501 + 4.53448i 0.184400 + 0.324721i
\(196\) −2.19231 + 13.8273i −0.156593 + 0.987663i
\(197\) 16.4990i 1.17550i −0.809042 0.587751i \(-0.800013\pi\)
0.809042 0.587751i \(-0.199987\pi\)
\(198\) −5.00691 + 1.20565i −0.355825 + 0.0856821i
\(199\) 18.3421 1.30024 0.650118 0.759834i \(-0.274720\pi\)
0.650118 + 0.759834i \(0.274720\pi\)
\(200\) 13.9358 2.40689i 0.985411 0.170193i
\(201\) 10.0736i 0.710536i
\(202\) −20.7755 + 5.00270i −1.46176 + 0.351989i
\(203\) −1.32431 + 0.673500i −0.0929481 + 0.0472704i
\(204\) −9.68466 18.9435i −0.678062 1.32631i
\(205\) −9.36932 16.4990i −0.654381 1.15234i
\(206\) 7.52203 1.81129i 0.524085 0.126199i
\(207\) −9.43318 −0.655651
\(208\) −2.55758 + 3.54042i −0.177336 + 0.245484i
\(209\) 6.00505i 0.415378i
\(210\) 6.08628 16.8008i 0.419993 1.15936i
\(211\) 0.287088i 0.0197640i 0.999951 + 0.00988198i \(0.00314558\pi\)
−0.999951 + 0.00988198i \(0.996854\pi\)
\(212\) −7.81855 15.2933i −0.536980 1.05035i
\(213\) −25.5169 −1.74839
\(214\) 3.31534 + 13.7681i 0.226632 + 0.941170i
\(215\) 2.57501 1.46228i 0.175614 0.0997266i
\(216\) −6.59603 + 5.65685i −0.448803 + 0.384900i
\(217\) 15.5554 7.91096i 1.05597 0.537031i
\(218\) −1.51022 6.27174i −0.102285 0.424776i
\(219\) 21.2755i 1.43767i
\(220\) 8.71373 + 5.73060i 0.587480 + 0.386357i
\(221\) −5.43845 −0.365830
\(222\) 3.88884 + 16.1498i 0.261002 + 1.08390i
\(223\) 0.147647i 0.00988718i −0.999988 0.00494359i \(-0.998426\pi\)
0.999988 0.00494359i \(-0.00157360\pi\)
\(224\) 14.9173 1.21365i 0.996707 0.0810906i
\(225\) −4.00000 + 6.70531i −0.266667 + 0.447021i
\(226\) 7.56155 1.82081i 0.502987 0.121118i
\(227\) 10.1530i 0.673881i −0.941526 0.336941i \(-0.890608\pi\)
0.941526 0.336941i \(-0.109392\pi\)
\(228\) 5.00691 + 9.79366i 0.331591 + 0.648601i
\(229\) 9.45353i 0.624707i 0.949966 + 0.312354i \(0.101117\pi\)
−0.949966 + 0.312354i \(0.898883\pi\)
\(230\) 13.0599 + 13.9414i 0.861143 + 0.919271i
\(231\) 11.7460 5.97366i 0.772833 0.393038i
\(232\) 1.03399 + 1.20565i 0.0678846 + 0.0791551i
\(233\) 10.9993i 0.720589i −0.932839 0.360294i \(-0.882676\pi\)
0.932839 0.360294i \(-0.117324\pi\)
\(234\) −0.564503 2.34430i −0.0369027 0.153252i
\(235\) 10.7575 + 18.9435i 0.701741 + 1.23574i
\(236\) −25.5026 + 13.0380i −1.66008 + 0.848698i
\(237\) 22.7199 1.47582
\(238\) 12.1021 + 14.1721i 0.784464 + 0.918639i
\(239\) 2.33205i 0.150848i 0.997152 + 0.0754238i \(0.0240310\pi\)
−0.997152 + 0.0754238i \(0.975969\pi\)
\(240\) −18.9893 2.08070i −1.22576 0.134309i
\(241\) 16.0786i 1.03572i 0.855466 + 0.517858i \(0.173271\pi\)
−0.855466 + 0.517858i \(0.826729\pi\)
\(242\) −1.84130 7.64666i −0.118363 0.491546i
\(243\) 14.8028i 0.949601i
\(244\) −0.564503 1.10418i −0.0361386 0.0706882i
\(245\) −1.77085 + 15.5520i −0.113135 + 0.993580i
\(246\) 6.00000 + 24.9171i 0.382546 + 1.58866i
\(247\) 2.81164 0.178901
\(248\) −12.1453 14.1617i −0.771225 0.899267i
\(249\) 8.24621 0.522582
\(250\) 15.4477 3.37159i 0.977000 0.213238i
\(251\) 9.17104 0.578871 0.289435 0.957198i \(-0.406532\pi\)
0.289435 + 0.957198i \(0.406532\pi\)
\(252\) −4.85284 + 6.68779i −0.305700 + 0.421291i
\(253\) 14.0877i 0.885683i
\(254\) −1.75379 7.28323i −0.110042 0.456991i
\(255\) −11.7460 20.6843i −0.735566 1.29530i
\(256\) −5.02699 15.1898i −0.314187 0.949361i
\(257\) 6.55137 0.408663 0.204332 0.978902i \(-0.434498\pi\)
0.204332 + 0.978902i \(0.434498\pi\)
\(258\) −3.88884 + 0.936426i −0.242109 + 0.0582994i
\(259\) −6.59603 12.9698i −0.409857 0.805905i
\(260\) −2.68314 + 4.07988i −0.166402 + 0.253024i
\(261\) −0.876894 −0.0542784
\(262\) −0.852526 3.54042i −0.0526693 0.218728i
\(263\) 23.5829 1.45419 0.727093 0.686539i \(-0.240871\pi\)
0.727093 + 0.686539i \(0.240871\pi\)
\(264\) −9.17104 10.6937i −0.564438 0.658149i
\(265\) −9.48274 16.6987i −0.582520 1.02579i
\(266\) −6.25672 7.32687i −0.383624 0.449239i
\(267\) 6.04090 0.369697
\(268\) −8.39919 + 4.29400i −0.513062 + 0.262298i
\(269\) 0.968253i 0.0590354i −0.999564 0.0295177i \(-0.990603\pi\)
0.999564 0.0295177i \(-0.00939715\pi\)
\(270\) −7.09017 + 6.64184i −0.431494 + 0.404209i
\(271\) 6.59603 0.400680 0.200340 0.979726i \(-0.435795\pi\)
0.200340 + 0.979726i \(0.435795\pi\)
\(272\) 11.6665 16.1498i 0.707387 0.979226i
\(273\) 2.79695 + 5.49966i 0.169279 + 0.332854i
\(274\) −4.24621 + 1.02248i −0.256523 + 0.0617703i
\(275\) 10.0138 + 5.97366i 0.603856 + 0.360225i
\(276\) −11.7460 22.9756i −0.707029 1.38297i
\(277\) 19.5873i 1.17689i 0.808538 + 0.588444i \(0.200259\pi\)
−0.808538 + 0.588444i \(0.799741\pi\)
\(278\) −1.33126 5.52855i −0.0798440 0.331580i
\(279\) 10.3000 0.616648
\(280\) 16.6026 2.08691i 0.992192 0.124717i
\(281\) 17.0540 1.01735 0.508677 0.860957i \(-0.330135\pi\)
0.508677 + 0.860957i \(0.330135\pi\)
\(282\) −6.88897 28.6089i −0.410232 1.70363i
\(283\) 7.45904i 0.443394i −0.975116 0.221697i \(-0.928840\pi\)
0.975116 0.221697i \(-0.0711596\pi\)
\(284\) −10.8769 21.2755i −0.645425 1.26247i
\(285\) 6.07263 + 10.6937i 0.359712 + 0.633437i
\(286\) −3.50102 + 0.843038i −0.207019 + 0.0498499i
\(287\) −10.1768 20.0108i −0.600720 1.18120i
\(288\) 8.17252 + 3.35265i 0.481570 + 0.197557i
\(289\) 7.80776 0.459280
\(290\) 1.21403 + 1.29598i 0.0712901 + 0.0761023i
\(291\) 31.9133i 1.87079i
\(292\) −17.7392 + 9.06897i −1.03811 + 0.530721i
\(293\) 14.4635 0.844965 0.422483 0.906371i \(-0.361159\pi\)
0.422483 + 0.906371i \(0.361159\pi\)
\(294\) 8.10755 19.5269i 0.472842 1.13883i
\(295\) −27.8462 + 15.8131i −1.62127 + 0.920674i
\(296\) −11.8078 + 10.1265i −0.686312 + 0.588592i
\(297\) −7.16453 −0.415728
\(298\) 0.662153 + 2.74983i 0.0383575 + 0.159293i
\(299\) −6.59603 −0.381458
\(300\) −21.3123 1.39312i −1.23047 0.0804318i
\(301\) 3.12311 1.58831i 0.180013 0.0915487i
\(302\) −6.80745 + 1.63922i −0.391725 + 0.0943266i
\(303\) 32.2725 1.85400
\(304\) −6.03152 + 8.34935i −0.345932 + 0.478868i
\(305\) −0.684658 1.20565i −0.0392034 0.0690356i
\(306\) 2.57501 + 10.6937i 0.147204 + 0.611315i
\(307\) 13.8987i 0.793243i −0.917982 0.396622i \(-0.870182\pi\)
0.917982 0.396622i \(-0.129818\pi\)
\(308\) 9.98765 + 7.24730i 0.569099 + 0.412953i
\(309\) −11.6847 −0.664717
\(310\) −14.2600 15.2226i −0.809915 0.864585i
\(311\) 1.44600 0.0819954 0.0409977 0.999159i \(-0.486946\pi\)
0.0409977 + 0.999159i \(0.486946\pi\)
\(312\) 5.00691 4.29400i 0.283460 0.243100i
\(313\) −7.16453 −0.404963 −0.202482 0.979286i \(-0.564901\pi\)
−0.202482 + 0.979286i \(0.564901\pi\)
\(314\) 1.28751 + 5.34683i 0.0726581 + 0.301739i
\(315\) −5.09256 + 7.70789i −0.286933 + 0.434290i
\(316\) 9.68466 + 18.9435i 0.544805 + 1.06565i
\(317\) 24.4099i 1.37100i 0.728073 + 0.685499i \(0.240416\pi\)
−0.728073 + 0.685499i \(0.759584\pi\)
\(318\) 6.07263 + 25.2188i 0.340536 + 1.41420i
\(319\) 1.30957i 0.0733217i
\(320\) −6.35960 16.7199i −0.355513 0.934671i
\(321\) 21.3873i 1.19372i
\(322\) 14.6781 + 17.1886i 0.817977 + 0.957884i
\(323\) −12.8255 −0.713628
\(324\) 20.0270 10.2386i 1.11261 0.568811i
\(325\) −2.79695 + 4.68860i −0.155147 + 0.260077i
\(326\) 3.80776 + 15.8131i 0.210893 + 0.875806i
\(327\) 9.74247i 0.538760i
\(328\) −18.2179 + 15.6240i −1.00592 + 0.862689i
\(329\) 11.6847 + 22.9756i 0.644196 + 1.26669i
\(330\) −10.7679 11.4948i −0.592754 0.632766i
\(331\) 8.30571i 0.456523i 0.973600 + 0.228262i \(0.0733041\pi\)
−0.973600 + 0.228262i \(0.926696\pi\)
\(332\) 3.51506 + 6.87555i 0.192914 + 0.377345i
\(333\) 8.58800i 0.470620i
\(334\) 0.926004 0.222980i 0.0506687 0.0122009i
\(335\) −9.17104 + 5.20798i −0.501067 + 0.284543i
\(336\) −22.3316 3.49212i −1.21829 0.190511i
\(337\) 30.5866i 1.66616i −0.553153 0.833080i \(-0.686575\pi\)
0.553153 0.833080i \(-0.313425\pi\)
\(338\) 3.90928 + 16.2347i 0.212637 + 0.883049i
\(339\) −11.7460 −0.637958
\(340\) 12.2393 18.6106i 0.663769 1.00930i
\(341\) 15.3823i 0.832996i
\(342\) −1.33126 5.52855i −0.0719866 0.298950i
\(343\) −2.93893 + 18.2856i −0.158687 + 0.987329i
\(344\) −2.43845 2.84329i −0.131472 0.153300i
\(345\) −14.2462 25.0870i −0.766990 1.35064i
\(346\) −3.65951 15.1974i −0.196737 0.817019i
\(347\) −1.32431 −0.0710925 −0.0355463 0.999368i \(-0.511317\pi\)
−0.0355463 + 0.999368i \(0.511317\pi\)
\(348\) −1.09190 2.13578i −0.0585317 0.114490i
\(349\) 18.8307i 1.00799i −0.863708 0.503993i \(-0.831864\pi\)
0.863708 0.503993i \(-0.168136\pi\)
\(350\) 18.4421 3.14492i 0.985769 0.168103i
\(351\) 3.35453i 0.179051i
\(352\) 5.00691 12.2050i 0.266869 0.650527i
\(353\) 16.1685 0.860564 0.430282 0.902694i \(-0.358414\pi\)
0.430282 + 0.902694i \(0.358414\pi\)
\(354\) 42.0540 10.1265i 2.23514 0.538218i
\(355\) −13.1921 23.2306i −0.700162 1.23295i
\(356\) 2.57501 + 5.03680i 0.136475 + 0.266950i
\(357\) −12.7584 25.0870i −0.675248 1.32774i
\(358\) 11.4196 2.74983i 0.603547 0.145333i
\(359\) 10.3507i 0.546288i 0.961973 + 0.273144i \(0.0880635\pi\)
−0.961973 + 0.273144i \(0.911937\pi\)
\(360\) 9.29272 + 3.34413i 0.489770 + 0.176251i
\(361\) −12.3693 −0.651017
\(362\) −4.74137 + 1.14171i −0.249201 + 0.0600071i
\(363\) 11.8782i 0.623446i
\(364\) −3.39328 + 4.67635i −0.177856 + 0.245107i
\(365\) −19.3693 + 10.9993i −1.01384 + 0.575730i
\(366\) 0.438447 + 1.82081i 0.0229180 + 0.0951752i
\(367\) 23.3783i 1.22034i 0.792272 + 0.610168i \(0.208898\pi\)
−0.792272 + 0.610168i \(0.791102\pi\)
\(368\) 14.1498 19.5873i 0.737608 1.02106i
\(369\) 13.2502i 0.689779i
\(370\) −12.6923 + 11.8898i −0.659843 + 0.618120i
\(371\) −10.3000 20.2530i −0.534752 1.05149i
\(372\) 12.8255 + 25.0870i 0.664969 + 1.30070i
\(373\) 11.6763i 0.604578i 0.953216 + 0.302289i \(0.0977508\pi\)
−0.953216 + 0.302289i \(0.902249\pi\)
\(374\) 15.9701 3.84556i 0.825793 0.198849i
\(375\) −23.8733 0.511240i −1.23281 0.0264003i
\(376\) 20.9171 17.9388i 1.07872 0.925124i
\(377\) −0.613157 −0.0315792
\(378\) −8.74157 + 7.46479i −0.449618 + 0.383948i
\(379\) 24.9171i 1.27991i −0.768414 0.639954i \(-0.778954\pi\)
0.768414 0.639954i \(-0.221046\pi\)
\(380\) −6.32764 + 9.62157i −0.324601 + 0.493576i
\(381\) 11.3137i 0.579619i
\(382\) −27.4515 + 6.61026i −1.40454 + 0.338210i
\(383\) 18.6638i 0.953675i 0.878991 + 0.476838i \(0.158217\pi\)
−0.878991 + 0.476838i \(0.841783\pi\)
\(384\) 2.01051 + 24.0798i 0.102598 + 1.22882i
\(385\) 11.5111 + 7.60530i 0.586659 + 0.387602i
\(386\) −7.56155 + 1.82081i −0.384873 + 0.0926767i
\(387\) 2.06798 0.105121
\(388\) 26.6087 13.6035i 1.35085 0.690611i
\(389\) −11.9309 −0.604919 −0.302460 0.953162i \(-0.597808\pi\)
−0.302460 + 0.953162i \(0.597808\pi\)
\(390\) 5.38200 5.04168i 0.272528 0.255295i
\(391\) 30.0881 1.52162
\(392\) 19.7371 1.56366i 0.996876 0.0789767i
\(393\) 5.49966i 0.277421i
\(394\) −22.6847 + 5.46242i −1.14284 + 0.275193i
\(395\) 11.7460 + 20.6843i 0.591008 + 1.04074i
\(396\) 3.31534 + 6.48490i 0.166602 + 0.325879i
\(397\) −21.0149 −1.05471 −0.527353 0.849647i \(-0.676815\pi\)
−0.527353 + 0.849647i \(0.676815\pi\)
\(398\) −6.07263 25.2188i −0.304394 1.26410i
\(399\) 6.59603 + 12.9698i 0.330214 + 0.649303i
\(400\) −7.92309 18.3637i −0.396155 0.918184i
\(401\) 13.4384 0.671084 0.335542 0.942025i \(-0.391081\pi\)
0.335542 + 0.942025i \(0.391081\pi\)
\(402\) 13.8503 3.33513i 0.690791 0.166341i
\(403\) 7.20217 0.358766
\(404\) 13.7566 + 26.9082i 0.684414 + 1.33873i
\(405\) 21.8674 12.4179i 1.08660 0.617050i
\(406\) 1.36445 + 1.59783i 0.0677166 + 0.0792989i
\(407\) −12.8255 −0.635734
\(408\) −22.8393 + 19.5873i −1.13071 + 0.969717i
\(409\) 30.2208i 1.49432i 0.664643 + 0.747161i \(0.268583\pi\)
−0.664643 + 0.747161i \(0.731417\pi\)
\(410\) −19.5827 + 18.3444i −0.967120 + 0.905967i
\(411\) 6.59603 0.325358
\(412\) −4.98074 9.74247i −0.245383 0.479977i
\(413\) −33.7733 + 17.1760i −1.66187 + 0.845176i
\(414\) 3.12311 + 12.9698i 0.153492 + 0.637431i
\(415\) 4.26324 + 7.50738i 0.209274 + 0.368523i
\(416\) 5.71453 + 2.34430i 0.280178 + 0.114939i
\(417\) 8.58800i 0.420556i
\(418\) −8.25643 + 1.98813i −0.403835 + 0.0972427i
\(419\) −22.3631 −1.09251 −0.546254 0.837619i \(-0.683947\pi\)
−0.546254 + 0.837619i \(0.683947\pi\)
\(420\) −25.1146 2.80577i −1.22547 0.136908i
\(421\) 12.5616 0.612213 0.306106 0.951997i \(-0.400974\pi\)
0.306106 + 0.951997i \(0.400974\pi\)
\(422\) 0.394722 0.0950482i 0.0192147 0.00462688i
\(423\) 15.2134i 0.739700i
\(424\) −18.4384 + 15.8131i −0.895450 + 0.767952i
\(425\) 12.7584 21.3873i 0.618875 1.03744i
\(426\) 8.44804 + 35.0835i 0.409309 + 1.69980i
\(427\) −0.743668 1.46228i −0.0359886 0.0707647i
\(428\) 17.8324 9.11662i 0.861960 0.440668i
\(429\) 5.43845 0.262571
\(430\) −2.86303 3.05629i −0.138068 0.147387i
\(431\) 11.6602i 0.561654i 0.959758 + 0.280827i \(0.0906087\pi\)
−0.959758 + 0.280827i \(0.909391\pi\)
\(432\) 9.96148 + 7.19612i 0.479272 + 0.346223i
\(433\) −9.00400 −0.432705 −0.216352 0.976315i \(-0.569416\pi\)
−0.216352 + 0.976315i \(0.569416\pi\)
\(434\) −16.0269 18.7682i −0.769317 0.900901i
\(435\) −1.32431 2.33205i −0.0634957 0.111813i
\(436\) −8.12311 + 4.15286i −0.389026 + 0.198886i
\(437\) −15.5554 −0.744114
\(438\) 29.2520 7.04383i 1.39771 0.336567i
\(439\) 31.5341 1.50504 0.752521 0.658568i \(-0.228838\pi\)
0.752521 + 0.658568i \(0.228838\pi\)
\(440\) 4.99417 13.8779i 0.238088 0.661603i
\(441\) −6.43845 + 8.83348i −0.306593 + 0.420642i
\(442\) 1.80054 + 7.47740i 0.0856431 + 0.355663i
\(443\) −17.5420 −0.833448 −0.416724 0.909033i \(-0.636822\pi\)
−0.416724 + 0.909033i \(0.636822\pi\)
\(444\) 20.9171 10.6937i 0.992681 0.507498i
\(445\) 3.12311 + 5.49966i 0.148049 + 0.260709i
\(446\) −0.203002 + 0.0488825i −0.00961242 + 0.00231465i
\(447\) 4.27156i 0.202038i
\(448\) −6.60745 20.1082i −0.312173 0.950025i
\(449\) 6.31534 0.298039 0.149020 0.988834i \(-0.452388\pi\)
0.149020 + 0.988834i \(0.452388\pi\)
\(450\) 10.5435 + 3.27968i 0.497027 + 0.154606i
\(451\) −19.7881 −0.931784
\(452\) −5.00691 9.79366i −0.235505 0.460655i
\(453\) 10.5746 0.496840
\(454\) −13.9596 + 3.36144i −0.655155 + 0.157760i
\(455\) −3.56090 + 5.38964i −0.166938 + 0.252670i
\(456\) 11.8078 10.1265i 0.552949 0.474218i
\(457\) 10.3223i 0.482856i 0.970419 + 0.241428i \(0.0776157\pi\)
−0.970419 + 0.241428i \(0.922384\pi\)
\(458\) 12.9978 3.12985i 0.607347 0.146248i
\(459\) 15.3019i 0.714229i
\(460\) 14.8445 22.5719i 0.692126 1.05242i
\(461\) 21.1154i 0.983444i 0.870752 + 0.491722i \(0.163632\pi\)
−0.870752 + 0.491722i \(0.836368\pi\)
\(462\) −12.1021 14.1721i −0.563041 0.659344i
\(463\) 24.3266 1.13055 0.565277 0.824901i \(-0.308769\pi\)
0.565277 + 0.824901i \(0.308769\pi\)
\(464\) 1.31534 1.82081i 0.0610632 0.0845289i
\(465\) 15.5554 + 27.3924i 0.721363 + 1.27029i
\(466\) −15.1231 + 3.64162i −0.700564 + 0.168695i
\(467\) 23.1983i 1.07349i 0.843745 + 0.536744i \(0.180346\pi\)
−0.843745 + 0.536744i \(0.819654\pi\)
\(468\) −3.03632 + 1.55229i −0.140354 + 0.0717545i
\(469\) −11.1231 + 5.65685i −0.513617 + 0.261209i
\(470\) 22.4841 21.0624i 1.03711 0.971534i
\(471\) 8.30571i 0.382707i
\(472\) 26.3694 + 30.7473i 1.21375 + 1.41526i
\(473\) 3.08835i 0.142002i
\(474\) −7.52203 31.2379i −0.345498 1.43480i
\(475\) −6.59603 + 11.0571i −0.302646 + 0.507335i
\(476\) 15.4786 21.3314i 0.709462 0.977724i
\(477\) 13.4106i 0.614030i
\(478\) 3.20636 0.772087i 0.146656 0.0353144i
\(479\) −30.0881 −1.37476 −0.687381 0.726297i \(-0.741240\pi\)
−0.687381 + 0.726297i \(0.741240\pi\)
\(480\) 3.42615 + 26.7976i 0.156381 + 1.22314i
\(481\) 6.00505i 0.273807i
\(482\) 22.1067 5.32326i 1.00693 0.242468i
\(483\) −15.4741 30.4268i −0.704095 1.38447i
\(484\) −9.90388 + 5.06326i −0.450176 + 0.230148i
\(485\) 29.0540 16.4990i 1.31927 0.749179i
\(486\) −20.3526 + 4.90086i −0.923212 + 0.222308i
\(487\) −1.16128 −0.0526225 −0.0263112 0.999654i \(-0.508376\pi\)
−0.0263112 + 0.999654i \(0.508376\pi\)
\(488\) −1.33126 + 1.14171i −0.0602635 + 0.0516829i
\(489\) 24.5639i 1.11082i
\(490\) 21.9689 2.71414i 0.992455 0.122612i
\(491\) 14.2794i 0.644419i −0.946668 0.322210i \(-0.895574\pi\)
0.946668 0.322210i \(-0.104426\pi\)
\(492\) 32.2725 16.4990i 1.45495 0.743831i
\(493\) 2.79695 0.125968
\(494\) −0.930870 3.86577i −0.0418818 0.173929i
\(495\) 4.02102 + 7.08084i 0.180731 + 0.318260i
\(496\) −15.4501 + 21.3873i −0.693729 + 0.960318i
\(497\) −14.3291 28.1753i −0.642746 1.26384i
\(498\) −2.73013 11.3378i −0.122340 0.508060i
\(499\) 25.6525i 1.14836i −0.818727 0.574182i \(-0.805320\pi\)
0.818727 0.574182i \(-0.194680\pi\)
\(500\) −9.75003 20.1230i −0.436035 0.899930i
\(501\) −1.43845 −0.0642651
\(502\) −3.03632 12.6094i −0.135517 0.562785i
\(503\) 18.8114i 0.838761i 0.907811 + 0.419380i \(0.137753\pi\)
−0.907811 + 0.419380i \(0.862247\pi\)
\(504\) 10.8018 + 4.45806i 0.481150 + 0.198578i
\(505\) 16.6847 + 29.3810i 0.742458 + 1.30744i
\(506\) 19.3693 4.66410i 0.861071 0.207344i
\(507\) 25.2188i 1.12001i
\(508\) −9.43318 + 4.82262i −0.418530 + 0.213969i
\(509\) 28.0124i 1.24163i −0.783958 0.620814i \(-0.786802\pi\)
0.783958 0.620814i \(-0.213198\pi\)
\(510\) −24.5503 + 22.9979i −1.08710 + 1.01836i
\(511\) −23.4921 + 11.9473i −1.03923 + 0.528519i
\(512\) −19.2203 + 11.9407i −0.849426 + 0.527707i
\(513\) 7.91096i 0.349278i
\(514\) −2.16901 9.00757i −0.0956708 0.397307i
\(515\) −6.04090 10.6378i −0.266194 0.468756i
\(516\) 2.57501 + 5.03680i 0.113359 + 0.221733i
\(517\) 22.7199 0.999220
\(518\) −15.6486 + 13.3630i −0.687559 + 0.587135i
\(519\) 23.6076i 1.03626i
\(520\) 6.49782 + 2.33834i 0.284948 + 0.102543i
\(521\) 2.82843i 0.123916i 0.998079 + 0.0619578i \(0.0197344\pi\)
−0.998079 + 0.0619578i \(0.980266\pi\)
\(522\) 0.290319 + 1.20565i 0.0127069 + 0.0527701i
\(523\) 20.9472i 0.915958i −0.888963 0.457979i \(-0.848574\pi\)
0.888963 0.457979i \(-0.151426\pi\)
\(524\) −4.58552 + 2.34430i −0.200319 + 0.102411i
\(525\) −28.1896 1.90271i −1.23029 0.0830410i
\(526\) −7.80776 32.4245i −0.340435 1.41378i
\(527\) −32.8531 −1.43110
\(528\) −11.6665 + 16.1498i −0.507721 + 0.702830i
\(529\) 13.4924 0.586627
\(530\) −19.8198 + 18.5665i −0.860915 + 0.806477i
\(531\) −22.3631 −0.970476
\(532\) −8.00236 + 11.0282i −0.346946 + 0.478133i
\(533\) 9.26504i 0.401313i
\(534\) −2.00000 8.30571i −0.0865485 0.359423i
\(535\) 19.4711 11.0571i 0.841808 0.478040i
\(536\) 8.68466 + 10.1265i 0.375120 + 0.437399i
\(537\) −17.7392 −0.765502
\(538\) −1.33126 + 0.320566i −0.0573949 + 0.0138206i
\(539\) 13.1921 + 9.61528i 0.568222 + 0.414159i
\(540\) 11.4793 + 7.54941i 0.493992 + 0.324875i
\(541\) −19.4384 −0.835724 −0.417862 0.908510i \(-0.637220\pi\)
−0.417862 + 0.908510i \(0.637220\pi\)
\(542\) −2.18379 9.06897i −0.0938019 0.389546i
\(543\) 7.36520 0.316071
\(544\) −26.0671 10.6937i −1.11762 0.458486i
\(545\) −8.86958 + 5.03680i −0.379931 + 0.215753i
\(546\) 6.63555 5.66637i 0.283975 0.242498i
\(547\) 33.4337 1.42952 0.714762 0.699368i \(-0.246535\pi\)
0.714762 + 0.699368i \(0.246535\pi\)
\(548\) 2.81164 + 5.49966i 0.120107 + 0.234934i
\(549\) 0.968253i 0.0413240i
\(550\) 4.89793 15.7459i 0.208849 0.671406i
\(551\) −1.44600 −0.0616019
\(552\) −27.7006 + 23.7565i −1.17902 + 1.01114i
\(553\) 12.7584 + 25.0870i 0.542543 + 1.06681i
\(554\) 26.9309 6.48490i 1.14418 0.275517i
\(555\) 22.8393 12.9698i 0.969473 0.550538i
\(556\) −7.16053 + 3.66075i −0.303674 + 0.155250i
\(557\) 8.58800i 0.363885i −0.983309 0.181943i \(-0.941761\pi\)
0.983309 0.181943i \(-0.0582385\pi\)
\(558\) −3.41011 14.1617i −0.144361 0.599512i
\(559\) 1.44600 0.0611595
\(560\) −8.36604 22.1362i −0.353530 0.935423i
\(561\) −24.8078 −1.04738
\(562\) −5.64617 23.4477i −0.238169 0.989084i
\(563\) 6.78554i 0.285977i −0.989724 0.142988i \(-0.954329\pi\)
0.989724 0.142988i \(-0.0456711\pi\)
\(564\) −37.0540 + 18.9435i −1.56025 + 0.797664i
\(565\) −6.07263 10.6937i −0.255478 0.449885i
\(566\) −10.2555 + 2.46952i −0.431073 + 0.103801i
\(567\) 26.5219 13.4882i 1.11381 0.566450i
\(568\) −25.6509 + 21.9986i −1.07629 + 0.923042i
\(569\) −43.8617 −1.83878 −0.919390 0.393347i \(-0.871317\pi\)
−0.919390 + 0.393347i \(0.871317\pi\)
\(570\) 12.6923 11.8898i 0.531624 0.498008i
\(571\) 15.5889i 0.652377i 0.945305 + 0.326188i \(0.105764\pi\)
−0.945305 + 0.326188i \(0.894236\pi\)
\(572\) 2.31821 + 4.53448i 0.0969292 + 0.189596i
\(573\) 42.6429 1.78143
\(574\) −24.1438 + 20.6174i −1.00774 + 0.860553i
\(575\) 15.4741 25.9396i 0.645313 1.08176i
\(576\) 1.90388 12.3465i 0.0793284 0.514437i
\(577\) 36.0915 1.50251 0.751254 0.660013i \(-0.229449\pi\)
0.751254 + 0.660013i \(0.229449\pi\)
\(578\) −2.58497 10.7350i −0.107521 0.446517i
\(579\) 11.7460 0.488149
\(580\) 1.37992 2.09825i 0.0572980 0.0871251i
\(581\) 4.63068 + 9.10534i 0.192113 + 0.377753i
\(582\) −43.8780 + 10.5657i −1.81880 + 0.437964i
\(583\) −20.0276 −0.829460
\(584\) 18.3421 + 21.3873i 0.759001 + 0.885013i
\(585\) −3.31534 + 1.88269i −0.137073 + 0.0778398i
\(586\) −4.78852 19.8860i −0.197812 0.821485i
\(587\) 2.80928i 0.115951i 0.998318 + 0.0579757i \(0.0184646\pi\)
−0.998318 + 0.0579757i \(0.981535\pi\)
\(588\) −29.5320 4.68228i −1.21788 0.193094i
\(589\) 16.9848 0.699848
\(590\) 30.9609 + 33.0508i 1.27464 + 1.36068i
\(591\) 35.2381 1.44950
\(592\) 17.8324 + 12.8820i 0.732906 + 0.529447i
\(593\) −6.20705 −0.254893 −0.127447 0.991845i \(-0.540678\pi\)
−0.127447 + 0.991845i \(0.540678\pi\)
\(594\) 2.37201 + 9.85061i 0.0973247 + 0.404176i
\(595\) 16.2432 24.5851i 0.665908 1.00789i
\(596\) 3.56155 1.82081i 0.145887 0.0745832i
\(597\) 39.1746i 1.60331i
\(598\) 2.18379 + 9.06897i 0.0893019 + 0.370858i
\(599\) 17.9210i 0.732232i −0.930569 0.366116i \(-0.880687\pi\)
0.930569 0.366116i \(-0.119313\pi\)
\(600\) 5.14059 + 29.7638i 0.209864 + 1.21510i
\(601\) 42.2309i 1.72263i −0.508068 0.861317i \(-0.669640\pi\)
0.508068 0.861317i \(-0.330360\pi\)
\(602\) −3.21778 3.76815i −0.131147 0.153578i
\(603\) −7.36520 −0.299934
\(604\) 4.50758 + 8.81695i 0.183411 + 0.358757i
\(605\) −10.8140 + 6.14098i −0.439652 + 0.249666i
\(606\) −10.6847 44.3718i −0.434035 1.80248i
\(607\) 44.9666i 1.82514i −0.408921 0.912570i \(-0.634095\pi\)
0.408921 0.912570i \(-0.365905\pi\)
\(608\) 13.4765 + 5.52855i 0.546546 + 0.224212i
\(609\) −1.43845 2.82843i −0.0582888 0.114614i
\(610\) −1.43100 + 1.34051i −0.0579393 + 0.0542757i
\(611\) 10.6378i 0.430358i
\(612\) 13.8503 7.08084i 0.559866 0.286226i
\(613\) 47.7626i 1.92911i −0.263874 0.964557i \(-0.585000\pi\)
0.263874 0.964557i \(-0.415000\pi\)
\(614\) −19.1096 + 4.60155i −0.771200 + 0.185704i
\(615\) 35.2381 20.0108i 1.42094 0.806913i
\(616\) 6.65774 16.1316i 0.268248 0.649959i
\(617\) 14.7647i 0.594404i 0.954815 + 0.297202i \(0.0960535\pi\)
−0.954815 + 0.297202i \(0.903946\pi\)
\(618\) 3.86852 + 16.0654i 0.155615 + 0.646245i
\(619\) −26.0671 −1.04773 −0.523863 0.851803i \(-0.675510\pi\)
−0.523863 + 0.851803i \(0.675510\pi\)
\(620\) −16.2086 + 24.6462i −0.650953 + 0.989813i
\(621\) 18.5589i 0.744742i
\(622\) −0.478739 1.98813i −0.0191957 0.0797168i
\(623\) 3.39228 + 6.67026i 0.135909 + 0.267238i
\(624\) −7.56155 5.46242i −0.302704 0.218672i
\(625\) −11.8769 21.9986i −0.475076 0.879945i
\(626\) 2.37201 + 9.85061i 0.0948046 + 0.393710i
\(627\) 12.8255 0.512200
\(628\) 6.92516 3.54042i 0.276344 0.141278i
\(629\) 27.3924i 1.09220i
\(630\) 12.2837 + 4.44992i 0.489395 + 0.177289i
\(631\) 33.9582i 1.35186i 0.736968 + 0.675928i \(0.236257\pi\)
−0.736968 + 0.675928i \(0.763743\pi\)
\(632\) 22.8393 19.5873i 0.908498 0.779142i
\(633\) −0.613157 −0.0243708
\(634\) 33.5616 8.08156i 1.33290 0.320960i
\(635\) −10.3000 + 5.84912i −0.408745 + 0.232115i
\(636\) 32.6631 16.6987i 1.29518 0.662147i
\(637\) −4.50200 + 6.17669i −0.178376 + 0.244730i
\(638\) 1.80054 0.433567i 0.0712842 0.0171651i
\(639\) 18.6564i 0.738035i
\(640\) −20.8829 + 14.2795i −0.825470 + 0.564446i
\(641\) 39.8617 1.57444 0.787222 0.616670i \(-0.211519\pi\)
0.787222 + 0.616670i \(0.211519\pi\)
\(642\) −29.4057 + 7.08084i −1.16055 + 0.279458i
\(643\) 36.8341i 1.45260i −0.687380 0.726298i \(-0.741239\pi\)
0.687380 0.726298i \(-0.258761\pi\)
\(644\) 18.7733 25.8718i 0.739771 1.01949i
\(645\) 3.12311 + 5.49966i 0.122972 + 0.216549i
\(646\) 4.24621 + 17.6339i 0.167065 + 0.693797i
\(647\) 36.5712i 1.43776i 0.695134 + 0.718881i \(0.255345\pi\)
−0.695134 + 0.718881i \(0.744655\pi\)
\(648\) −20.7077 24.1456i −0.813474 0.948530i
\(649\) 33.3974i 1.31096i
\(650\) 7.37243 + 2.29328i 0.289170 + 0.0899497i
\(651\) 16.8961 + 33.2228i 0.662209 + 1.30211i
\(652\) 20.4810 10.4707i 0.802097 0.410064i
\(653\) 16.4990i 0.645654i −0.946458 0.322827i \(-0.895367\pi\)
0.946458 0.322827i \(-0.104633\pi\)
\(654\) 13.3951 3.22550i 0.523788 0.126127i
\(655\) −5.00691 + 2.84329i −0.195636 + 0.111096i
\(656\) 27.5131 + 19.8753i 1.07421 + 0.776001i
\(657\) −15.5554 −0.606873
\(658\) 27.7210 23.6721i 1.08068 0.922834i
\(659\) 42.8381i 1.66874i 0.551207 + 0.834368i \(0.314167\pi\)
−0.551207 + 0.834368i \(0.685833\pi\)
\(660\) −12.2393 + 18.6106i −0.476414 + 0.724417i
\(661\) 1.51198i 0.0588092i 0.999568 + 0.0294046i \(0.00936112\pi\)
−0.999568 + 0.0294046i \(0.990639\pi\)
\(662\) 11.4196 2.74983i 0.443837 0.106875i
\(663\) 11.6153i 0.451102i
\(664\) 8.28954 7.10923i 0.321696 0.275892i
\(665\) −8.39766 + 12.7104i −0.325647 + 0.492887i
\(666\) −11.8078 + 2.84329i −0.457542 + 0.110175i
\(667\) 3.39228 0.131350
\(668\) −0.613157 1.19935i −0.0237238 0.0464044i
\(669\) 0.315342 0.0121918
\(670\) 10.1968 + 10.8851i 0.393939 + 0.420530i
\(671\) −1.44600 −0.0558224
\(672\) 2.59209 + 31.8601i 0.0999922 + 1.22903i
\(673\) 14.0877i 0.543039i −0.962433 0.271520i \(-0.912474\pi\)
0.962433 0.271520i \(-0.0875262\pi\)
\(674\) −42.0540 + 10.1265i −1.61986 + 0.390059i
\(675\) 13.1921 + 7.86962i 0.507762 + 0.302902i
\(676\) 21.0270 10.7498i 0.808730 0.413455i
\(677\) 46.5317 1.78836 0.894179 0.447709i \(-0.147760\pi\)
0.894179 + 0.447709i \(0.147760\pi\)
\(678\) 3.88884 + 16.1498i 0.149350 + 0.620230i
\(679\) 35.2381 17.9210i 1.35232 0.687745i
\(680\) −29.6401 10.6664i −1.13665 0.409040i
\(681\) 21.6847 0.830958
\(682\) −21.1493 + 5.09271i −0.809847 + 0.195010i
\(683\) −20.1907 −0.772574 −0.386287 0.922379i \(-0.626243\pi\)
−0.386287 + 0.922379i \(0.626243\pi\)
\(684\) −7.16053 + 3.66075i −0.273790 + 0.139972i
\(685\) 3.41011 + 6.00505i 0.130293 + 0.229441i
\(686\) 26.1141 2.01315i 0.997042 0.0768625i
\(687\) −20.1907 −0.770322
\(688\) −3.10196 + 4.29400i −0.118261 + 0.163707i
\(689\) 9.37720i 0.357243i
\(690\) −29.7758 + 27.8930i −1.13355 + 1.06187i
\(691\) −37.8132 −1.43848 −0.719240 0.694761i \(-0.755510\pi\)
−0.719240 + 0.694761i \(0.755510\pi\)
\(692\) −19.6836 + 10.0630i −0.748258 + 0.382539i
\(693\) 4.36758 + 8.58800i 0.165911 + 0.326231i
\(694\) 0.438447 + 1.82081i 0.0166432 + 0.0691169i
\(695\) −7.81855 + 4.43994i −0.296575 + 0.168417i
\(696\) −2.57501 + 2.20837i −0.0976056 + 0.0837080i
\(697\) 42.2630i 1.60082i
\(698\) −25.8906 + 6.23442i −0.979975 + 0.235976i
\(699\) 23.4921 0.888553
\(700\) −10.4297 24.3150i −0.394207 0.919022i
\(701\) −30.6695 −1.15837 −0.579186 0.815196i \(-0.696629\pi\)
−0.579186 + 0.815196i \(0.696629\pi\)
\(702\) −4.61219 + 1.11061i −0.174076 + 0.0419171i
\(703\) 14.1617i 0.534118i
\(704\) −18.4384 2.84329i −0.694925 0.107160i
\(705\) −40.4591 + 22.9756i −1.52378 + 0.865312i
\(706\) −5.35302 22.2303i −0.201464 0.836650i
\(707\) 18.1227 + 35.6347i 0.681574 + 1.34018i
\(708\) −27.8462 54.4679i −1.04652 2.04703i
\(709\) 30.8078 1.15701 0.578505 0.815679i \(-0.303636\pi\)
0.578505 + 0.815679i \(0.303636\pi\)
\(710\) −27.5726 + 25.8291i −1.03478 + 0.969348i
\(711\) 16.6114i 0.622977i
\(712\) 6.07263 5.20798i 0.227582 0.195177i
\(713\) −39.8459 −1.49224
\(714\) −30.2684 + 25.8474i −1.13277 + 0.967316i
\(715\) 2.81164 + 4.95118i 0.105150 + 0.185164i
\(716\) −7.56155 14.7906i −0.282588 0.552751i
\(717\) −4.98074 −0.186009
\(718\) 14.2313 3.42687i 0.531107 0.127890i
\(719\) 27.1961 1.01424 0.507122 0.861874i \(-0.330709\pi\)
0.507122 + 0.861874i \(0.330709\pi\)
\(720\) 1.52128 13.8839i 0.0566948 0.517421i
\(721\) −6.56155 12.9020i −0.244365 0.480496i
\(722\) 4.09519 + 17.0067i 0.152407 + 0.632926i
\(723\) −34.3404 −1.27713
\(724\) 3.13951 + 6.14098i 0.116679 + 0.228228i
\(725\) 1.43845 2.41131i 0.0534226 0.0895537i
\(726\) 16.3316 3.93261i 0.606121 0.145953i
\(727\) 32.8255i 1.21743i 0.793389 + 0.608715i \(0.208315\pi\)
−0.793389 + 0.608715i \(0.791685\pi\)
\(728\) 7.55301 + 3.11724i 0.279933 + 0.115533i
\(729\) −2.12311 −0.0786335
\(730\) 21.5358 + 22.9895i 0.797077 + 0.850881i
\(731\) −6.59603 −0.243963
\(732\) 2.35829 1.20565i 0.0871651 0.0445623i
\(733\) −24.4250 −0.902156 −0.451078 0.892484i \(-0.648960\pi\)
−0.451078 + 0.892484i \(0.648960\pi\)
\(734\) 32.1431 7.74001i 1.18642 0.285689i
\(735\) −33.2156 3.78213i −1.22518 0.139506i
\(736\) −31.6155 12.9698i −1.16536 0.478073i
\(737\) 10.9993i 0.405165i
\(738\) −18.2179 + 4.38684i −0.670610 + 0.161482i
\(739\) 49.5472i 1.82262i −0.411718 0.911311i \(-0.635071\pi\)
0.411718 0.911311i \(-0.364929\pi\)
\(740\) 20.5495 + 13.5144i 0.755416 + 0.496801i
\(741\) 6.00505i 0.220601i
\(742\) −24.4361 + 20.8670i −0.897077 + 0.766051i
\(743\) 9.43318 0.346070 0.173035 0.984916i \(-0.444643\pi\)
0.173035 + 0.984916i \(0.444643\pi\)
\(744\) 30.2462 25.9396i 1.10888 0.950992i
\(745\) 3.88884 2.20837i 0.142476 0.0809084i
\(746\) 16.0540 3.86577i 0.587778 0.141536i
\(747\) 6.02913i 0.220594i
\(748\) −10.5746 20.6843i −0.386647 0.756293i
\(749\) 23.6155 12.0101i 0.862893 0.438839i
\(750\) 7.20097 + 32.9929i 0.262942 + 1.20473i
\(751\) 37.5999i 1.37204i 0.727584 + 0.686019i \(0.240643\pi\)
−0.727584 + 0.686019i \(0.759357\pi\)
\(752\) −31.5895 22.8201i −1.15195 0.832162i
\(753\) 19.5873i 0.713801i
\(754\) 0.203002 + 0.843038i 0.00739290 + 0.0307016i
\(755\) 5.46702 + 9.62719i 0.198965 + 0.350369i
\(756\) 13.1576 + 9.54749i 0.478537 + 0.347239i
\(757\) 25.7640i 0.936409i −0.883620 0.468204i \(-0.844901\pi\)
0.883620 0.468204i \(-0.155099\pi\)
\(758\) −34.2589 + 8.24948i −1.24434 + 0.299635i
\(759\) −30.0881 −1.09213
\(760\) 15.3238 + 5.51449i 0.555851 + 0.200031i
\(761\) 43.1228i 1.56320i −0.623780 0.781600i \(-0.714404\pi\)
0.623780 0.781600i \(-0.285596\pi\)
\(762\) 15.5554 3.74571i 0.563512 0.135693i
\(763\) −10.7575 + 5.47091i −0.389447 + 0.198060i
\(764\) 18.1771 + 35.5549i 0.657624 + 1.28633i
\(765\) 15.1231 8.58800i 0.546777 0.310500i
\(766\) 25.6611 6.17915i 0.927173 0.223262i
\(767\) −15.6371 −0.564623
\(768\) 32.4420 10.7365i 1.17065 0.387421i
\(769\) 14.4903i 0.522535i −0.965266 0.261267i \(-0.915860\pi\)
0.965266 0.261267i \(-0.0841404\pi\)
\(770\) 6.64559 18.3447i 0.239490 0.661097i
\(771\) 13.9923i 0.503920i
\(772\) 5.00691 + 9.79366i 0.180203 + 0.352481i
\(773\) −15.6898 −0.564323 −0.282161 0.959367i \(-0.591051\pi\)
−0.282161 + 0.959367i \(0.591051\pi\)
\(774\) −0.684658 2.84329i −0.0246095 0.102200i
\(775\) −16.8961 + 28.3234i −0.606925 + 1.01740i
\(776\) −27.5131 32.0810i −0.987663 1.15164i
\(777\) 27.7006 14.0877i 0.993755 0.505392i
\(778\) 3.95003 + 16.4039i 0.141616 + 0.588109i
\(779\) 21.8497i 0.782847i
\(780\) −8.71373 5.73060i −0.312002 0.205189i
\(781\) −27.8617 −0.996971
\(782\) −9.96148 41.3686i −0.356222 1.47934i
\(783\) 1.72521i 0.0616538i
\(784\) −8.68441 26.6192i −0.310157 0.950685i
\(785\) 7.56155 4.29400i 0.269883 0.153259i
\(786\) 7.56155 1.82081i 0.269712 0.0649461i
\(787\) 32.8578i 1.17126i −0.810580 0.585628i \(-0.800848\pi\)
0.810580 0.585628i \(-0.199152\pi\)
\(788\) 15.0207 + 29.3810i 0.535091 + 1.04665i
\(789\) 50.3680i 1.79315i
\(790\) 24.5503 22.9979i 0.873460 0.818228i
\(791\) −6.59603 12.9698i −0.234528 0.461153i
\(792\) 7.81855 6.70531i 0.277820 0.238263i
\(793\) 0.677039i 0.0240423i
\(794\) 6.95753 + 28.8936i 0.246913 + 1.02540i
\(795\) 35.6647 20.2530i 1.26490 0.718301i
\(796\) −32.6631 + 16.6987i −1.15771 + 0.591870i
\(797\) −2.04937 −0.0725925 −0.0362963 0.999341i \(-0.511556\pi\)
−0.0362963 + 0.999341i \(0.511556\pi\)
\(798\) 15.6486 13.3630i 0.553954 0.473044i
\(799\) 48.5247i 1.71668i
\(800\) −22.6253 + 16.9734i −0.799926 + 0.600099i
\(801\) 4.41674i 0.156058i
\(802\) −4.44916 18.4767i −0.157105 0.652435i
\(803\) 23.2306i 0.819792i
\(804\) −9.17104 17.9388i −0.323438 0.632653i
\(805\) 19.7006 29.8181i 0.694356 1.05095i
\(806\) −2.38447 9.90237i −0.0839894 0.348796i
\(807\) 2.06798 0.0727962
\(808\) 32.4420 27.8228i 1.14131 0.978802i
\(809\) −27.0540 −0.951167 −0.475584 0.879671i \(-0.657763\pi\)
−0.475584 + 0.879671i \(0.657763\pi\)
\(810\) −24.3133 25.9545i −0.854283 0.911948i
\(811\) −9.17104 −0.322039 −0.161019 0.986951i \(-0.551478\pi\)
−0.161019 + 0.986951i \(0.551478\pi\)
\(812\) 1.74514 2.40501i 0.0612423 0.0843992i
\(813\) 14.0877i 0.494076i
\(814\) 4.24621 + 17.6339i 0.148830 + 0.618068i
\(815\) 22.3631 12.6994i 0.783345 0.444840i
\(816\) 34.4924 + 24.9171i 1.20748 + 0.872274i
\(817\) 3.41011 0.119304
\(818\) 41.5510 10.0054i 1.45280 0.349830i
\(819\) −4.02102 + 2.04496i −0.140506 + 0.0714567i
\(820\) 31.7054 + 20.8511i 1.10720 + 0.728152i
\(821\) −35.9309 −1.25400 −0.626998 0.779021i \(-0.715717\pi\)
−0.626998 + 0.779021i \(0.715717\pi\)
\(822\) −2.18379 9.06897i −0.0761685 0.316317i
\(823\) 22.8393 0.796127 0.398064 0.917358i \(-0.369682\pi\)
0.398064 + 0.917358i \(0.369682\pi\)
\(824\) −11.7460 + 10.0736i −0.409193 + 0.350930i
\(825\) −12.7584 + 21.3873i −0.444191 + 0.744610i
\(826\) 34.7971 + 40.7488i 1.21075 + 1.41783i
\(827\) 4.71659 0.164012 0.0820059 0.996632i \(-0.473867\pi\)
0.0820059 + 0.996632i \(0.473867\pi\)
\(828\) 16.7984 8.58800i 0.583784 0.298454i
\(829\) 43.3947i 1.50716i −0.657357 0.753579i \(-0.728326\pi\)
0.657357 0.753579i \(-0.271674\pi\)
\(830\) 8.91055 8.34711i 0.309290 0.289732i
\(831\) −41.8342 −1.45121
\(832\) 1.33126 8.63312i 0.0461533 0.299300i
\(833\) 20.5361 28.1753i 0.711534 0.976217i
\(834\) 11.8078 2.84329i 0.408869 0.0984550i
\(835\) −0.743668 1.30957i −0.0257357 0.0453195i
\(836\) 5.46702 + 10.6937i 0.189081 + 0.369848i
\(837\) 20.2644i 0.700438i
\(838\) 7.40390 + 30.7473i 0.255763 + 1.06215i
\(839\) −32.3461 −1.11671 −0.558356 0.829601i \(-0.688568\pi\)
−0.558356 + 0.829601i \(0.688568\pi\)
\(840\) 4.45718 + 35.4594i 0.153787 + 1.22347i
\(841\) −28.6847 −0.989126
\(842\) −4.15884 17.2711i −0.143323 0.595200i
\(843\) 36.4235i 1.25449i
\(844\) −0.261366 0.511240i −0.00899660 0.0175976i
\(845\) 22.9593 13.0380i 0.789823 0.448519i
\(846\) 20.9171 5.03680i 0.719144 0.173169i
\(847\) −13.1158 + 6.67026i −0.450664 + 0.229193i
\(848\) 27.8462 + 20.1159i 0.956242 + 0.690784i
\(849\) 15.9309 0.546746
\(850\) −33.6297 10.4609i −1.15349 0.358806i
\(851\) 33.2228i 1.13886i
\(852\) 45.4398 23.2306i 1.55674 0.795869i
\(853\) 2.93137 0.100368 0.0501840 0.998740i \(-0.484019\pi\)
0.0501840 + 0.998740i \(0.484019\pi\)
\(854\) −1.76430 + 1.50661i −0.0603730 + 0.0515550i
\(855\) −7.81855 + 4.43994i −0.267389 + 0.151843i
\(856\) −18.4384 21.4997i −0.630213 0.734844i
\(857\) −5.59390 −0.191084 −0.0955419 0.995425i \(-0.530458\pi\)
−0.0955419 + 0.995425i \(0.530458\pi\)
\(858\) −1.80054 7.47740i −0.0614695 0.255274i
\(859\) 9.17104 0.312912 0.156456 0.987685i \(-0.449993\pi\)
0.156456 + 0.987685i \(0.449993\pi\)
\(860\) −3.25425 + 4.94829i −0.110969 + 0.168735i
\(861\) 42.7386 21.7355i 1.45653 0.740744i
\(862\) 16.0318 3.86043i 0.546046 0.131487i
\(863\) 30.7851 1.04794 0.523969 0.851737i \(-0.324451\pi\)
0.523969 + 0.851737i \(0.324451\pi\)
\(864\) 6.59603 16.0786i 0.224401 0.547007i
\(865\) −21.4924 + 12.2050i −0.730764 + 0.414981i
\(866\) 2.98102 + 12.3797i 0.101299 + 0.420680i
\(867\) 16.6757i 0.566335i
\(868\) −20.4985 + 28.2493i −0.695763 + 0.958845i
\(869\) 24.8078 0.841546
\(870\) −2.76792 + 2.59289i −0.0938412 + 0.0879074i
\(871\) −5.15002 −0.174502
\(872\) 8.39919 + 9.79366i 0.284432 + 0.331655i
\(873\) 23.3331 0.789705
\(874\) 5.15002 + 21.3873i 0.174202 + 0.723436i
\(875\) −12.8416 26.6476i −0.434125 0.900853i
\(876\) −19.3693 37.8869i −0.654429 1.28008i
\(877\) 5.49966i 0.185710i −0.995680 0.0928551i \(-0.970401\pi\)
0.995680 0.0928551i \(-0.0295993\pi\)
\(878\) −10.4402 43.3567i −0.352340 1.46322i
\(879\) 30.8908i 1.04192i
\(880\) −20.7344 2.27191i −0.698956 0.0765859i
\(881\) 30.7645i 1.03648i 0.855234 + 0.518241i \(0.173413\pi\)
−0.855234 + 0.518241i \(0.826587\pi\)
\(882\) 14.2769 + 5.92775i 0.480728 + 0.199598i
\(883\) −48.4902 −1.63183 −0.815913 0.578175i \(-0.803765\pi\)
−0.815913 + 0.578175i \(0.803765\pi\)
\(884\) 9.68466 4.95118i 0.325730 0.166526i
\(885\) −33.7733 59.4733i −1.13528 1.99917i
\(886\) 5.80776 + 24.1188i 0.195116 + 0.810287i
\(887\) 31.7738i 1.06686i −0.845845 0.533429i \(-0.820903\pi\)
0.845845 0.533429i \(-0.179097\pi\)
\(888\) −21.6280 25.2188i −0.725788 0.846287i
\(889\) −12.4924 + 6.35324i −0.418982 + 0.213081i
\(890\) 6.52757 6.11481i 0.218804 0.204969i
\(891\) 26.2267i 0.878628i
\(892\) 0.134418 + 0.262926i 0.00450066 + 0.00880343i
\(893\) 25.0870i 0.839503i
\(894\) −5.87302 + 1.41421i −0.196423 + 0.0472984i
\(895\) −9.17104 16.1498i −0.306554 0.539829i
\(896\) −25.4595 + 15.7420i −0.850543 + 0.525905i
\(897\) 14.0877i 0.470373i
\(898\) −2.09086 8.68305i −0.0697730 0.289757i
\(899\) −3.70402 −0.123536
\(900\) 1.01856 15.5823i 0.0339522 0.519409i
\(901\) 42.7746i 1.42503i
\(902\) 6.55137 + 27.2069i 0.218137 + 0.905891i
\(903\) 3.39228 + 6.67026i 0.112888 + 0.221972i
\(904\) −11.8078 + 10.1265i −0.392720 + 0.336803i
\(905\) 3.80776 + 6.70531i 0.126574 + 0.222892i
\(906\) −3.50102 14.5392i −0.116313 0.483033i
\(907\) −53.7874 −1.78598 −0.892991 0.450074i \(-0.851397\pi\)
−0.892991 + 0.450074i \(0.851397\pi\)
\(908\) 9.24337 + 18.0803i 0.306752 + 0.600016i
\(909\) 23.5957i 0.782619i
\(910\) 8.58922 + 3.11155i 0.284730 + 0.103147i
\(911\) 56.0950i 1.85851i −0.369438 0.929255i \(-0.620450\pi\)
0.369438 0.929255i \(-0.379550\pi\)
\(912\) −17.8324 12.8820i −0.590489 0.426566i
\(913\) 9.00400 0.297989
\(914\) 14.1922 3.41746i 0.469437 0.113040i
\(915\) 2.57501 1.46228i 0.0851272 0.0483415i
\(916\) −8.60654 16.8346i −0.284368 0.556232i
\(917\) −6.07263 + 3.08835i −0.200536 + 0.101986i
\(918\) 21.0387 5.06609i 0.694382 0.167206i
\(919\) 39.1965i 1.29297i 0.762925 + 0.646487i \(0.223762\pi\)
−0.762925 + 0.646487i \(0.776238\pi\)
\(920\) −35.9491 12.9368i −1.18521 0.426514i
\(921\) 29.6847 0.978143
\(922\) 29.0319 6.99083i 0.956115 0.230231i
\(923\) 13.0452i 0.429389i
\(924\) −15.4786 + 21.3314i −0.509210 + 0.701752i
\(925\) 23.6155 + 14.0877i 0.776474 + 0.463199i
\(926\) −8.05398 33.4470i −0.264670 1.09914i
\(927\) 8.54312i 0.280593i
\(928\) −2.93893 1.20565i −0.0964752 0.0395775i
\(929\) 28.9807i 0.950825i −0.879763 0.475412i \(-0.842299\pi\)
0.879763 0.475412i \(-0.157701\pi\)
\(930\) 32.5121 30.4563i 1.06611 0.998700i
\(931\) −10.6170 + 14.5665i −0.347960 + 0.477397i
\(932\) 10.0138 + 19.5873i 0.328013 + 0.641604i
\(933\) 3.08835i 0.101108i
\(934\) 31.8956 7.68041i 1.04366 0.251311i
\(935\) −12.8255 22.5851i −0.419437 0.738611i
\(936\) 3.13951 + 3.66075i 0.102618 + 0.119655i
\(937\) −49.4631 −1.61589 −0.807944 0.589259i \(-0.799420\pi\)
−0.807944 + 0.589259i \(0.799420\pi\)
\(938\) 11.4603 + 13.4205i 0.374192 + 0.438194i
\(939\) 15.3019i 0.499357i
\(940\) −36.4029 23.9404i −1.18733 0.780851i
\(941\) 8.75714i 0.285475i −0.989761 0.142737i \(-0.954410\pi\)
0.989761 0.142737i \(-0.0455904\pi\)
\(942\) −11.4196 + 2.74983i −0.372072 + 0.0895942i
\(943\) 51.2587i 1.66921i
\(944\) 33.5446 46.4354i 1.09179 1.51134i
\(945\) 15.1645 + 10.0191i 0.493302 + 0.325922i
\(946\) −4.24621 + 1.02248i −0.138056 + 0.0332437i
\(947\) 52.6261 1.71012 0.855060 0.518529i \(-0.173520\pi\)
0.855060 + 0.518529i \(0.173520\pi\)
\(948\) −40.4591 + 20.6843i −1.31405 + 0.671795i
\(949\) −10.8769 −0.353079
\(950\) 17.3864 + 5.40822i 0.564088 + 0.175466i
\(951\) −52.1342 −1.69057
\(952\) −34.4535 14.2195i −1.11664 0.460856i
\(953\) 31.2637i 1.01273i 0.862319 + 0.506365i \(0.169011\pi\)
−0.862319 + 0.506365i \(0.830989\pi\)
\(954\) −18.4384 + 4.43994i −0.596967 + 0.143748i
\(955\) 22.0461 + 38.8222i 0.713395 + 1.25626i
\(956\) −2.12311 4.15286i −0.0686661 0.134313i
\(957\) −2.79695 −0.0904125
\(958\) 9.96148 + 41.3686i 0.321841 + 1.33656i
\(959\) 3.70402 + 7.28323i 0.119609 + 0.235188i
\(960\) 35.7100 13.5827i 1.15254 0.438380i
\(961\) 12.5076 0.403470
\(962\) −8.25643 + 1.98813i −0.266198 + 0.0641000i
\(963\) 15.6371 0.503899
\(964\) −14.6381 28.6325i −0.471460 0.922190i
\(965\) 6.07263 + 10.6937i 0.195485 + 0.344241i
\(966\) −36.7111 + 31.3491i −1.18116 + 1.00864i
\(967\) 16.2177 0.521527 0.260764 0.965403i \(-0.416026\pi\)
0.260764 + 0.965403i \(0.416026\pi\)
\(968\) 10.2405 + 11.9407i 0.329142 + 0.383787i
\(969\) 27.3924i 0.879969i
\(970\) −32.3038 34.4843i −1.03721 1.10722i
\(971\) 36.3672 1.16708 0.583539 0.812085i \(-0.301668\pi\)
0.583539 + 0.812085i \(0.301668\pi\)
\(972\) 13.4765 + 26.3605i 0.432260 + 0.845513i
\(973\) −9.48274 + 4.82262i −0.304003 + 0.154606i
\(974\) 0.384472 + 1.59666i 0.0123193 + 0.0511602i
\(975\) −10.0138 5.97366i −0.320699 0.191310i
\(976\) 2.01051 + 1.45238i 0.0643548 + 0.0464895i
\(977\) 14.0877i 0.450704i −0.974277 0.225352i \(-0.927647\pi\)
0.974277 0.225352i \(-0.0723532\pi\)
\(978\) −33.7733 + 8.13254i −1.07995 + 0.260050i
\(979\) 6.59603 0.210810
\(980\) −11.0051 29.3068i −0.351545 0.936171i
\(981\) −7.12311 −0.227423
\(982\) −19.6329 + 4.72757i −0.626511 + 0.150863i
\(983\) 44.7361i 1.42686i −0.700727 0.713430i \(-0.747141\pi\)
0.700727 0.713430i \(-0.252859\pi\)
\(984\) −33.3693 38.9094i −1.06377 1.24039i
\(985\) 18.2179 + 32.0810i 0.580471 + 1.02218i
\(986\) −0.926004 3.84556i −0.0294900 0.122468i
\(987\) −49.0708 + 24.9559i −1.56194 + 0.794353i
\(988\) −5.00691 + 2.55973i −0.159291 + 0.0814359i
\(989\) −8.00000 −0.254385
\(990\) 8.40428 7.87285i 0.267105 0.250216i
\(991\) 0.574176i 0.0182393i 0.999958 + 0.00911966i \(0.00290292\pi\)
−0.999958 + 0.00911966i \(0.997097\pi\)
\(992\) 34.5209 + 14.1617i 1.09604 + 0.449634i
\(993\) −17.7392 −0.562935
\(994\) −33.9946 + 29.0294i −1.07824 + 0.920757i
\(995\) −35.6647 + 20.2530i −1.13065 + 0.642065i
\(996\) −14.6847 + 7.50738i −0.465301 + 0.237881i
\(997\) −47.7580 −1.51251 −0.756256 0.654276i \(-0.772973\pi\)
−0.756256 + 0.654276i \(0.772973\pi\)
\(998\) −35.2700 + 8.49295i −1.11645 + 0.268840i
\(999\) −16.8961 −0.534568
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.2.c.b.139.6 yes 16
4.3 odd 2 inner 140.2.c.b.139.9 yes 16
5.2 odd 4 700.2.g.l.251.14 16
5.3 odd 4 700.2.g.l.251.3 16
5.4 even 2 inner 140.2.c.b.139.11 yes 16
7.2 even 3 980.2.s.f.619.5 32
7.3 odd 6 980.2.s.f.19.15 32
7.4 even 3 980.2.s.f.19.16 32
7.5 odd 6 980.2.s.f.619.6 32
7.6 odd 2 inner 140.2.c.b.139.5 16
8.3 odd 2 2240.2.e.f.2239.15 16
8.5 even 2 2240.2.e.f.2239.3 16
20.3 even 4 700.2.g.l.251.2 16
20.7 even 4 700.2.g.l.251.15 16
20.19 odd 2 inner 140.2.c.b.139.8 yes 16
28.3 even 6 980.2.s.f.19.12 32
28.11 odd 6 980.2.s.f.19.11 32
28.19 even 6 980.2.s.f.619.1 32
28.23 odd 6 980.2.s.f.619.2 32
28.27 even 2 inner 140.2.c.b.139.10 yes 16
35.4 even 6 980.2.s.f.19.1 32
35.9 even 6 980.2.s.f.619.12 32
35.13 even 4 700.2.g.l.251.4 16
35.19 odd 6 980.2.s.f.619.11 32
35.24 odd 6 980.2.s.f.19.2 32
35.27 even 4 700.2.g.l.251.13 16
35.34 odd 2 inner 140.2.c.b.139.12 yes 16
40.19 odd 2 2240.2.e.f.2239.1 16
40.29 even 2 2240.2.e.f.2239.13 16
56.13 odd 2 2240.2.e.f.2239.14 16
56.27 even 2 2240.2.e.f.2239.2 16
140.19 even 6 980.2.s.f.619.16 32
140.27 odd 4 700.2.g.l.251.16 16
140.39 odd 6 980.2.s.f.19.6 32
140.59 even 6 980.2.s.f.19.5 32
140.79 odd 6 980.2.s.f.619.15 32
140.83 odd 4 700.2.g.l.251.1 16
140.139 even 2 inner 140.2.c.b.139.7 yes 16
280.69 odd 2 2240.2.e.f.2239.4 16
280.139 even 2 2240.2.e.f.2239.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.c.b.139.5 16 7.6 odd 2 inner
140.2.c.b.139.6 yes 16 1.1 even 1 trivial
140.2.c.b.139.7 yes 16 140.139 even 2 inner
140.2.c.b.139.8 yes 16 20.19 odd 2 inner
140.2.c.b.139.9 yes 16 4.3 odd 2 inner
140.2.c.b.139.10 yes 16 28.27 even 2 inner
140.2.c.b.139.11 yes 16 5.4 even 2 inner
140.2.c.b.139.12 yes 16 35.34 odd 2 inner
700.2.g.l.251.1 16 140.83 odd 4
700.2.g.l.251.2 16 20.3 even 4
700.2.g.l.251.3 16 5.3 odd 4
700.2.g.l.251.4 16 35.13 even 4
700.2.g.l.251.13 16 35.27 even 4
700.2.g.l.251.14 16 5.2 odd 4
700.2.g.l.251.15 16 20.7 even 4
700.2.g.l.251.16 16 140.27 odd 4
980.2.s.f.19.1 32 35.4 even 6
980.2.s.f.19.2 32 35.24 odd 6
980.2.s.f.19.5 32 140.59 even 6
980.2.s.f.19.6 32 140.39 odd 6
980.2.s.f.19.11 32 28.11 odd 6
980.2.s.f.19.12 32 28.3 even 6
980.2.s.f.19.15 32 7.3 odd 6
980.2.s.f.19.16 32 7.4 even 3
980.2.s.f.619.1 32 28.19 even 6
980.2.s.f.619.2 32 28.23 odd 6
980.2.s.f.619.5 32 7.2 even 3
980.2.s.f.619.6 32 7.5 odd 6
980.2.s.f.619.11 32 35.19 odd 6
980.2.s.f.619.12 32 35.9 even 6
980.2.s.f.619.15 32 140.79 odd 6
980.2.s.f.619.16 32 140.19 even 6
2240.2.e.f.2239.1 16 40.19 odd 2
2240.2.e.f.2239.2 16 56.27 even 2
2240.2.e.f.2239.3 16 8.5 even 2
2240.2.e.f.2239.4 16 280.69 odd 2
2240.2.e.f.2239.13 16 40.29 even 2
2240.2.e.f.2239.14 16 56.13 odd 2
2240.2.e.f.2239.15 16 8.3 odd 2
2240.2.e.f.2239.16 16 280.139 even 2