Properties

Label 980.2.s.f.19.1
Level $980$
Weight $2$
Character 980.19
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(19,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,12,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Character \(\chi\) \(=\) 980.19
Dual form 980.2.s.f.619.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35625 - 0.400736i) q^{2} +(-1.84964 + 1.06789i) q^{3} +(1.67882 + 1.08700i) q^{4} +(-1.92846 + 1.13183i) q^{5} +(2.93651 - 0.707107i) q^{6} +(-1.84130 - 2.14700i) q^{8} +(0.780776 - 1.35234i) q^{9} +(3.06904 - 0.762234i) q^{10} +(2.01961 - 1.16602i) q^{11} +(-4.26600 - 0.217754i) q^{12} +1.09190 q^{13} +(2.35829 - 4.15286i) q^{15} +(1.63688 + 3.64974i) q^{16} +(2.49037 + 4.31345i) q^{17} +(-1.60086 + 1.52123i) q^{18} +(1.28751 - 2.23003i) q^{19} +(-4.46783 - 0.196096i) q^{20} +(-3.20636 + 0.772087i) q^{22} +(3.02045 - 5.23157i) q^{23} +(5.69850 + 2.00487i) q^{24} +(2.43794 - 4.36537i) q^{25} +(-1.48088 - 0.437562i) q^{26} -3.07221i q^{27} +0.561553 q^{29} +(-4.86263 + 4.68725i) q^{30} +(3.29801 + 5.71233i) q^{31} +(-0.757434 - 5.60592i) q^{32} +(-2.49037 + 4.31345i) q^{33} +(-1.64901 - 6.84809i) q^{34} +(2.78078 - 1.42164i) q^{36} +(4.76284 + 2.74983i) q^{37} +(-2.63983 + 2.50852i) q^{38} +(-2.01961 + 1.16602i) q^{39} +(5.98091 + 2.05638i) q^{40} +8.48528i q^{41} +1.32431 q^{43} +(4.65803 + 0.237764i) q^{44} +(0.0249209 + 3.49165i) q^{45} +(-6.19296 + 5.88491i) q^{46} +(-8.43723 - 4.87123i) q^{47} +(-6.92516 - 5.00270i) q^{48} +(-5.05581 + 4.94356i) q^{50} +(-9.21257 - 5.31888i) q^{51} +(1.83310 + 1.18689i) q^{52} +(-7.43743 + 4.29400i) q^{53} +(-1.23114 + 4.16667i) q^{54} +(-2.57501 + 4.53448i) q^{55} +5.49966i q^{57} +(-0.761605 - 0.225034i) q^{58} +(-7.16053 - 12.4024i) q^{59} +(8.47329 - 4.40845i) q^{60} +(-0.536986 - 0.310029i) q^{61} +(-2.18379 - 9.06897i) q^{62} +(-1.21922 + 7.90655i) q^{64} +(-2.10568 + 1.23584i) q^{65} +(5.10611 - 4.85213i) q^{66} +(2.35829 + 4.08469i) q^{67} +(-0.507812 + 9.94853i) q^{68} +12.9020i q^{69} +11.9473i q^{71} +(-4.34113 + 0.813745i) q^{72} +(4.98074 + 8.62689i) q^{73} +(-5.35764 - 5.63809i) q^{74} +(0.152429 + 10.6778i) q^{75} +(4.58552 - 2.34430i) q^{76} +(3.20636 - 0.772087i) q^{78} +(9.21257 + 5.31888i) q^{79} +(-7.28754 - 5.18573i) q^{80} +(5.62311 + 9.73950i) q^{81} +(3.40036 - 11.5082i) q^{82} +3.86098i q^{83} +(-9.68466 - 5.49966i) q^{85} +(-1.79609 - 0.530698i) q^{86} +(-1.03867 + 0.599676i) q^{87} +(-6.22217 - 2.18911i) q^{88} +(2.44949 + 1.41421i) q^{89} +(1.36543 - 4.74553i) q^{90} +(10.7575 - 5.49966i) q^{92} +(-12.2003 - 7.04383i) q^{93} +(9.49090 + 9.98771i) q^{94} +(0.0410947 + 5.75775i) q^{95} +(7.38748 + 9.56006i) q^{96} +14.9422 q^{97} -3.64162i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 12 q^{4} - 8 q^{9} + 12 q^{16} - 8 q^{25} - 48 q^{29} + 4 q^{30} + 56 q^{36} - 32 q^{44} + 32 q^{46} - 24 q^{50} - 44 q^{60} - 72 q^{64} + 32 q^{65} - 88 q^{74} + 48 q^{81} - 112 q^{85} - 40 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.35625 0.400736i −0.959013 0.283363i
\(3\) −1.84964 + 1.06789i −1.06789 + 0.616546i −0.927604 0.373565i \(-0.878135\pi\)
−0.140285 + 0.990111i \(0.544802\pi\)
\(4\) 1.67882 + 1.08700i 0.839411 + 0.543498i
\(5\) −1.92846 + 1.13183i −0.862435 + 0.506168i
\(6\) 2.93651 0.707107i 1.19883 0.288675i
\(7\) 0 0
\(8\) −1.84130 2.14700i −0.650998 0.759079i
\(9\) 0.780776 1.35234i 0.260259 0.450781i
\(10\) 3.06904 0.762234i 0.970515 0.241039i
\(11\) 2.01961 1.16602i 0.608936 0.351569i −0.163613 0.986525i \(-0.552315\pi\)
0.772549 + 0.634955i \(0.218981\pi\)
\(12\) −4.26600 0.217754i −1.23149 0.0628601i
\(13\) 1.09190 0.302837 0.151419 0.988470i \(-0.451616\pi\)
0.151419 + 0.988470i \(0.451616\pi\)
\(14\) 0 0
\(15\) 2.35829 4.15286i 0.608909 1.07226i
\(16\) 1.63688 + 3.64974i 0.409220 + 0.912436i
\(17\) 2.49037 + 4.31345i 0.604003 + 1.04616i 0.992208 + 0.124591i \(0.0397620\pi\)
−0.388205 + 0.921573i \(0.626905\pi\)
\(18\) −1.60086 + 1.52123i −0.377326 + 0.358557i
\(19\) 1.28751 2.23003i 0.295374 0.511603i −0.679698 0.733492i \(-0.737889\pi\)
0.975072 + 0.221889i \(0.0712224\pi\)
\(20\) −4.46783 0.196096i −0.999038 0.0438485i
\(21\) 0 0
\(22\) −3.20636 + 0.772087i −0.683599 + 0.164609i
\(23\) 3.02045 5.23157i 0.629807 1.09086i −0.357783 0.933805i \(-0.616467\pi\)
0.987590 0.157053i \(-0.0501993\pi\)
\(24\) 5.69850 + 2.00487i 1.16320 + 0.409242i
\(25\) 2.43794 4.36537i 0.487588 0.873074i
\(26\) −1.48088 0.437562i −0.290425 0.0858130i
\(27\) 3.07221i 0.591246i
\(28\) 0 0
\(29\) 0.561553 0.104278 0.0521389 0.998640i \(-0.483396\pi\)
0.0521389 + 0.998640i \(0.483396\pi\)
\(30\) −4.86263 + 4.68725i −0.887791 + 0.855771i
\(31\) 3.29801 + 5.71233i 0.592341 + 1.02596i 0.993916 + 0.110138i \(0.0351294\pi\)
−0.401576 + 0.915826i \(0.631537\pi\)
\(32\) −0.757434 5.60592i −0.133897 0.990995i
\(33\) −2.49037 + 4.31345i −0.433518 + 0.750875i
\(34\) −1.64901 6.84809i −0.282802 1.17444i
\(35\) 0 0
\(36\) 2.78078 1.42164i 0.463463 0.236941i
\(37\) 4.76284 + 2.74983i 0.783006 + 0.452069i 0.837495 0.546446i \(-0.184019\pi\)
−0.0544884 + 0.998514i \(0.517353\pi\)
\(38\) −2.63983 + 2.50852i −0.428237 + 0.406935i
\(39\) −2.01961 + 1.16602i −0.323397 + 0.186713i
\(40\) 5.98091 + 2.05638i 0.945665 + 0.325142i
\(41\) 8.48528i 1.32518i 0.748983 + 0.662589i \(0.230542\pi\)
−0.748983 + 0.662589i \(0.769458\pi\)
\(42\) 0 0
\(43\) 1.32431 0.201955 0.100977 0.994889i \(-0.467803\pi\)
0.100977 + 0.994889i \(0.467803\pi\)
\(44\) 4.65803 + 0.237764i 0.702225 + 0.0358443i
\(45\) 0.0249209 + 3.49165i 0.00371498 + 0.520504i
\(46\) −6.19296 + 5.88491i −0.913102 + 0.867682i
\(47\) −8.43723 4.87123i −1.23070 0.710543i −0.263521 0.964654i \(-0.584884\pi\)
−0.967175 + 0.254111i \(0.918217\pi\)
\(48\) −6.92516 5.00270i −0.999561 0.722077i
\(49\) 0 0
\(50\) −5.05581 + 4.94356i −0.715000 + 0.699125i
\(51\) −9.21257 5.31888i −1.29002 0.744792i
\(52\) 1.83310 + 1.18689i 0.254205 + 0.164591i
\(53\) −7.43743 + 4.29400i −1.02161 + 0.589826i −0.914570 0.404428i \(-0.867471\pi\)
−0.107040 + 0.994255i \(0.534137\pi\)
\(54\) −1.23114 + 4.16667i −0.167537 + 0.567013i
\(55\) −2.57501 + 4.53448i −0.347214 + 0.611430i
\(56\) 0 0
\(57\) 5.49966i 0.728447i
\(58\) −0.761605 0.225034i −0.100004 0.0295485i
\(59\) −7.16053 12.4024i −0.932222 1.61466i −0.779515 0.626384i \(-0.784534\pi\)
−0.152707 0.988272i \(-0.548799\pi\)
\(60\) 8.47329 4.40845i 1.09390 0.569128i
\(61\) −0.536986 0.310029i −0.0687540 0.0396951i 0.465229 0.885190i \(-0.345972\pi\)
−0.533983 + 0.845495i \(0.679305\pi\)
\(62\) −2.18379 9.06897i −0.277342 1.15176i
\(63\) 0 0
\(64\) −1.21922 + 7.90655i −0.152403 + 0.988318i
\(65\) −2.10568 + 1.23584i −0.261177 + 0.153287i
\(66\) 5.10611 4.85213i 0.628519 0.597255i
\(67\) 2.35829 + 4.08469i 0.288112 + 0.499024i 0.973359 0.229287i \(-0.0736393\pi\)
−0.685247 + 0.728310i \(0.740306\pi\)
\(68\) −0.507812 + 9.94853i −0.0615813 + 1.20644i
\(69\) 12.9020i 1.55322i
\(70\) 0 0
\(71\) 11.9473i 1.41789i 0.705265 + 0.708943i \(0.250828\pi\)
−0.705265 + 0.708943i \(0.749172\pi\)
\(72\) −4.34113 + 0.813745i −0.511607 + 0.0959008i
\(73\) 4.98074 + 8.62689i 0.582951 + 1.00970i 0.995127 + 0.0985973i \(0.0314356\pi\)
−0.412176 + 0.911104i \(0.635231\pi\)
\(74\) −5.35764 5.63809i −0.622813 0.655415i
\(75\) 0.152429 + 10.6778i 0.0176010 + 1.23297i
\(76\) 4.58552 2.34430i 0.525995 0.268910i
\(77\) 0 0
\(78\) 3.20636 0.772087i 0.363049 0.0874216i
\(79\) 9.21257 + 5.31888i 1.03650 + 0.598421i 0.918839 0.394634i \(-0.129128\pi\)
0.117657 + 0.993054i \(0.462462\pi\)
\(80\) −7.28754 5.18573i −0.814772 0.579782i
\(81\) 5.62311 + 9.73950i 0.624790 + 1.08217i
\(82\) 3.40036 11.5082i 0.375507 1.27086i
\(83\) 3.86098i 0.423798i 0.977292 + 0.211899i \(0.0679648\pi\)
−0.977292 + 0.211899i \(0.932035\pi\)
\(84\) 0 0
\(85\) −9.68466 5.49966i −1.05045 0.596521i
\(86\) −1.79609 0.530698i −0.193677 0.0572266i
\(87\) −1.03867 + 0.599676i −0.111357 + 0.0642921i
\(88\) −6.22217 2.18911i −0.663285 0.233360i
\(89\) 2.44949 + 1.41421i 0.259645 + 0.149906i 0.624173 0.781286i \(-0.285436\pi\)
−0.364527 + 0.931193i \(0.618769\pi\)
\(90\) 1.36543 4.74553i 0.143929 0.500223i
\(91\) 0 0
\(92\) 10.7575 5.49966i 1.12155 0.573379i
\(93\) −12.2003 7.04383i −1.26511 0.730411i
\(94\) 9.49090 + 9.98771i 0.978911 + 1.03015i
\(95\) 0.0410947 + 5.75775i 0.00421623 + 0.590733i
\(96\) 7.38748 + 9.56006i 0.753981 + 0.975720i
\(97\) 14.9422 1.51715 0.758576 0.651584i \(-0.225895\pi\)
0.758576 + 0.651584i \(0.225895\pi\)
\(98\) 0 0
\(99\) 3.64162i 0.365996i
\(100\) 8.83800 4.67865i 0.883800 0.467865i
\(101\) −13.0860 + 7.55519i −1.30210 + 0.751770i −0.980765 0.195194i \(-0.937466\pi\)
−0.321339 + 0.946964i \(0.604133\pi\)
\(102\) 10.3631 + 10.9055i 1.02610 + 1.07981i
\(103\) 4.73795 + 2.73546i 0.466844 + 0.269532i 0.714918 0.699209i \(-0.246464\pi\)
−0.248074 + 0.968741i \(0.579798\pi\)
\(104\) −2.01051 2.34430i −0.197147 0.229878i
\(105\) 0 0
\(106\) 11.8078 2.84329i 1.14687 0.276165i
\(107\) −5.00691 + 8.67222i −0.484036 + 0.838375i −0.999832 0.0183365i \(-0.994163\pi\)
0.515796 + 0.856712i \(0.327496\pi\)
\(108\) 3.33947 5.15768i 0.321341 0.496298i
\(109\) −2.28078 3.95042i −0.218459 0.378382i 0.735878 0.677114i \(-0.236770\pi\)
−0.954337 + 0.298732i \(0.903436\pi\)
\(110\) 5.30949 5.11799i 0.506240 0.487981i
\(111\) −11.7460 −1.11489
\(112\) 0 0
\(113\) 5.49966i 0.517364i −0.965963 0.258682i \(-0.916712\pi\)
0.965963 0.258682i \(-0.0832882\pi\)
\(114\) 2.20391 7.45890i 0.206415 0.698590i
\(115\) 0.0964069 + 13.5075i 0.00898999 + 1.25958i
\(116\) 0.942747 + 0.610405i 0.0875318 + 0.0566747i
\(117\) 0.852526 1.47662i 0.0788161 0.136513i
\(118\) 4.74137 + 19.6902i 0.436478 + 1.81263i
\(119\) 0 0
\(120\) −13.2585 + 2.58340i −1.21033 + 0.235831i
\(121\) −2.78078 + 4.81645i −0.252798 + 0.437859i
\(122\) 0.604047 + 0.635666i 0.0546878 + 0.0575505i
\(123\) −9.06134 15.6947i −0.817034 1.41514i
\(124\) −0.672500 + 13.1749i −0.0603922 + 1.18314i
\(125\) 0.239369 + 11.1778i 0.0214098 + 0.999771i
\(126\) 0 0
\(127\) −5.29723 −0.470053 −0.235026 0.971989i \(-0.575518\pi\)
−0.235026 + 0.971989i \(0.575518\pi\)
\(128\) 4.82201 10.2347i 0.426209 0.904625i
\(129\) −2.44949 + 1.41421i −0.215666 + 0.124515i
\(130\) 3.35107 0.832279i 0.293908 0.0729957i
\(131\) −1.28751 + 2.23003i −0.112490 + 0.194838i −0.916774 0.399407i \(-0.869216\pi\)
0.804284 + 0.594246i \(0.202549\pi\)
\(132\) −8.86958 + 4.53448i −0.771998 + 0.394676i
\(133\) 0 0
\(134\) −1.56155 6.48490i −0.134898 0.560210i
\(135\) 3.47720 + 5.92463i 0.299270 + 0.509911i
\(136\) 4.67545 13.2892i 0.400917 1.13954i
\(137\) 2.67459 1.54417i 0.228505 0.131928i −0.381377 0.924420i \(-0.624550\pi\)
0.609882 + 0.792492i \(0.291217\pi\)
\(138\) 5.17030 17.4983i 0.440126 1.48956i
\(139\) 4.02102 0.341058 0.170529 0.985353i \(-0.445452\pi\)
0.170529 + 0.985353i \(0.445452\pi\)
\(140\) 0 0
\(141\) 20.8078 1.75233
\(142\) 4.78773 16.2035i 0.401777 1.35977i
\(143\) 2.20521 1.27318i 0.184409 0.106468i
\(144\) 6.21375 + 0.636006i 0.517812 + 0.0530005i
\(145\) −1.08293 + 0.635580i −0.0899328 + 0.0527821i
\(146\) −3.29801 13.6962i −0.272946 1.13350i
\(147\) 0 0
\(148\) 5.00691 + 9.79366i 0.411565 + 0.805034i
\(149\) 1.00000 1.73205i 0.0819232 0.141895i −0.822153 0.569267i \(-0.807227\pi\)
0.904076 + 0.427372i \(0.140560\pi\)
\(150\) 4.07225 14.5428i 0.332498 1.18742i
\(151\) −4.28785 + 2.47559i −0.348940 + 0.201461i −0.664218 0.747539i \(-0.731236\pi\)
0.315278 + 0.948999i \(0.397902\pi\)
\(152\) −7.15855 + 1.34187i −0.580635 + 0.108840i
\(153\) 7.77769 0.628789
\(154\) 0 0
\(155\) −12.8255 7.28323i −1.03017 0.585003i
\(156\) −4.65803 0.237764i −0.372941 0.0190364i
\(157\) −1.94442 3.36784i −0.155182 0.268783i 0.777943 0.628334i \(-0.216263\pi\)
−0.933125 + 0.359552i \(0.882930\pi\)
\(158\) −10.3631 10.9055i −0.824442 0.867598i
\(159\) 9.17104 15.8847i 0.727311 1.25974i
\(160\) 7.80561 + 9.95352i 0.617087 + 0.786895i
\(161\) 0 0
\(162\) −3.72336 15.4626i −0.292535 1.21485i
\(163\) −5.75058 + 9.96029i −0.450420 + 0.780150i −0.998412 0.0563333i \(-0.982059\pi\)
0.547992 + 0.836484i \(0.315392\pi\)
\(164\) −9.22346 + 14.2453i −0.720232 + 1.11237i
\(165\) −0.0794878 11.1370i −0.00618812 0.867013i
\(166\) 1.54724 5.23646i 0.120089 0.406428i
\(167\) 0.673500i 0.0521170i −0.999660 0.0260585i \(-0.991704\pi\)
0.999660 0.0260585i \(-0.00829562\pi\)
\(168\) 0 0
\(169\) −11.8078 −0.908290
\(170\) 10.9309 + 11.3399i 0.838361 + 0.869730i
\(171\) −2.01051 3.48230i −0.153747 0.266298i
\(172\) 2.22327 + 1.43952i 0.169523 + 0.109762i
\(173\) 5.52669 9.57250i 0.420186 0.727784i −0.575771 0.817611i \(-0.695298\pi\)
0.995957 + 0.0898270i \(0.0286314\pi\)
\(174\) 1.64901 0.397078i 0.125011 0.0301024i
\(175\) 0 0
\(176\) 7.56155 + 5.46242i 0.569973 + 0.411746i
\(177\) 26.4888 + 15.2933i 1.99102 + 1.14952i
\(178\) −2.75539 2.89962i −0.206525 0.217336i
\(179\) 7.19296 4.15286i 0.537627 0.310399i −0.206490 0.978449i \(-0.566204\pi\)
0.744117 + 0.668050i \(0.232871\pi\)
\(180\) −3.75357 + 5.88894i −0.279775 + 0.438936i
\(181\) 3.44849i 0.256324i −0.991753 0.128162i \(-0.959092\pi\)
0.991753 0.128162i \(-0.0409077\pi\)
\(182\) 0 0
\(183\) 1.32431 0.0978956
\(184\) −16.7937 + 3.14799i −1.23805 + 0.232073i
\(185\) −12.2973 + 0.0877692i −0.904115 + 0.00645292i
\(186\) 13.7239 + 14.4423i 1.00628 + 1.05896i
\(187\) 10.0592 + 5.80766i 0.735599 + 0.424698i
\(188\) −8.86958 17.3492i −0.646881 1.26532i
\(189\) 0 0
\(190\) 2.25161 7.82541i 0.163349 0.567715i
\(191\) 17.2910 + 9.98298i 1.25113 + 0.722343i 0.971335 0.237716i \(-0.0763987\pi\)
0.279800 + 0.960058i \(0.409732\pi\)
\(192\) −6.18820 15.9263i −0.446595 1.14938i
\(193\) 4.76284 2.74983i 0.342837 0.197937i −0.318689 0.947859i \(-0.603243\pi\)
0.661526 + 0.749922i \(0.269909\pi\)
\(194\) −20.2654 5.98789i −1.45497 0.429905i
\(195\) 2.57501 4.53448i 0.184400 0.324721i
\(196\) 0 0
\(197\) 16.4990i 1.17550i 0.809042 + 0.587751i \(0.199987\pi\)
−0.809042 + 0.587751i \(0.800013\pi\)
\(198\) −1.45933 + 4.93894i −0.103710 + 0.350995i
\(199\) −9.17104 15.8847i −0.650118 1.12604i −0.983094 0.183102i \(-0.941386\pi\)
0.332976 0.942935i \(-0.391947\pi\)
\(200\) −13.8614 + 2.80371i −0.980151 + 0.198252i
\(201\) −8.72399 5.03680i −0.615343 0.355268i
\(202\) 20.7755 5.00270i 1.46176 0.351989i
\(203\) 0 0
\(204\) −9.68466 18.9435i −0.678062 1.32631i
\(205\) −9.60387 16.3635i −0.670763 1.14288i
\(206\) −5.32964 5.60862i −0.371334 0.390771i
\(207\) −4.71659 8.16937i −0.327826 0.567811i
\(208\) 1.78730 + 3.98514i 0.123927 + 0.276320i
\(209\) 6.00505i 0.415378i
\(210\) 0 0
\(211\) 0.287088i 0.0197640i 0.999951 + 0.00988198i \(0.00314558\pi\)
−0.999951 + 0.00988198i \(0.996854\pi\)
\(212\) −17.1537 0.875592i −1.17812 0.0601359i
\(213\) −12.7584 22.0982i −0.874193 1.51415i
\(214\) 10.2659 9.75524i 0.701761 0.666854i
\(215\) −2.55388 + 1.49889i −0.174173 + 0.102223i
\(216\) −6.59603 + 5.65685i −0.448803 + 0.384900i
\(217\) 0 0
\(218\) 1.51022 + 6.27174i 0.102285 + 0.424776i
\(219\) −18.4251 10.6378i −1.24506 0.718833i
\(220\) −9.25195 + 4.81356i −0.623766 + 0.324530i
\(221\) 2.71922 + 4.70983i 0.182915 + 0.316818i
\(222\) 15.9306 + 4.70707i 1.06919 + 0.315918i
\(223\) 0.147647i 0.00988718i 0.999988 + 0.00494359i \(0.00157360\pi\)
−0.999988 + 0.00494359i \(0.998426\pi\)
\(224\) 0 0
\(225\) −4.00000 6.70531i −0.266667 0.447021i
\(226\) −2.20391 + 7.45890i −0.146602 + 0.496159i
\(227\) 8.79279 5.07652i 0.583598 0.336941i −0.178964 0.983856i \(-0.557275\pi\)
0.762562 + 0.646915i \(0.223941\pi\)
\(228\) −5.97810 + 9.23294i −0.395909 + 0.611466i
\(229\) −8.18700 4.72677i −0.541012 0.312354i 0.204477 0.978871i \(-0.434451\pi\)
−0.745489 + 0.666518i \(0.767784\pi\)
\(230\) 5.28219 18.3582i 0.348298 1.21050i
\(231\) 0 0
\(232\) −1.03399 1.20565i −0.0678846 0.0791551i
\(233\) −9.52568 5.49966i −0.624048 0.360294i 0.154395 0.988009i \(-0.450657\pi\)
−0.778443 + 0.627715i \(0.783990\pi\)
\(234\) −1.74797 + 1.66102i −0.114269 + 0.108585i
\(235\) 21.7843 0.155480i 1.42105 0.0101424i
\(236\) 1.46011 28.6049i 0.0950449 1.86202i
\(237\) −22.7199 −1.47582
\(238\) 0 0
\(239\) 2.33205i 0.150848i 0.997152 + 0.0754238i \(0.0240310\pi\)
−0.997152 + 0.0754238i \(0.975969\pi\)
\(240\) 19.0171 + 1.80944i 1.22755 + 0.116799i
\(241\) 13.9245 8.03932i 0.896957 0.517858i 0.0207451 0.999785i \(-0.493396\pi\)
0.876212 + 0.481927i \(0.160063\pi\)
\(242\) 5.70155 5.41794i 0.366509 0.348278i
\(243\) −12.8196 7.40140i −0.822378 0.474800i
\(244\) −0.564503 1.10418i −0.0361386 0.0706882i
\(245\) 0 0
\(246\) 6.00000 + 24.9171i 0.382546 + 1.58866i
\(247\) 1.40582 2.43495i 0.0894503 0.154932i
\(248\) 6.19174 17.5989i 0.393176 1.11753i
\(249\) −4.12311 7.14143i −0.261291 0.452570i
\(250\) 4.15469 15.2558i 0.262766 0.964860i
\(251\) 9.17104 0.578871 0.289435 0.957198i \(-0.406532\pi\)
0.289435 + 0.957198i \(0.406532\pi\)
\(252\) 0 0
\(253\) 14.0877i 0.885683i
\(254\) 7.18436 + 2.12279i 0.450787 + 0.133196i
\(255\) 23.7861 0.169768i 1.48955 0.0106313i
\(256\) −10.6412 + 11.9484i −0.665078 + 0.746774i
\(257\) 3.27569 5.67366i 0.204332 0.353913i −0.745588 0.666407i \(-0.767831\pi\)
0.949920 + 0.312494i \(0.101165\pi\)
\(258\) 3.88884 0.936426i 0.242109 0.0582994i
\(259\) 0 0
\(260\) −4.87841 0.214117i −0.302546 0.0132790i
\(261\) 0.438447 0.759413i 0.0271392 0.0470065i
\(262\) 2.63983 2.50852i 0.163089 0.154977i
\(263\) 11.7915 + 20.4234i 0.727093 + 1.25936i 0.958107 + 0.286412i \(0.0924626\pi\)
−0.231013 + 0.972951i \(0.574204\pi\)
\(264\) 13.8465 2.59553i 0.852193 0.159744i
\(265\) 9.48274 16.6987i 0.582520 1.02579i
\(266\) 0 0
\(267\) −6.04090 −0.369697
\(268\) −0.480881 + 9.42091i −0.0293745 + 0.575474i
\(269\) −0.838532 + 0.484127i −0.0511262 + 0.0295177i −0.525345 0.850889i \(-0.676064\pi\)
0.474219 + 0.880407i \(0.342730\pi\)
\(270\) −2.34174 9.42872i −0.142514 0.573814i
\(271\) −3.29801 + 5.71233i −0.200340 + 0.346999i −0.948638 0.316364i \(-0.897538\pi\)
0.748298 + 0.663363i \(0.230871\pi\)
\(272\) −11.6665 + 16.1498i −0.707387 + 0.979226i
\(273\) 0 0
\(274\) −4.24621 + 1.02248i −0.256523 + 0.0617703i
\(275\) −0.166436 11.6591i −0.0100365 0.703067i
\(276\) −14.0244 + 21.6602i −0.844172 + 1.30379i
\(277\) −16.9631 + 9.79366i −1.01921 + 0.588444i −0.913876 0.405993i \(-0.866926\pi\)
−0.105338 + 0.994436i \(0.533593\pi\)
\(278\) −5.45350 1.61137i −0.327079 0.0966433i
\(279\) 10.3000 0.616648
\(280\) 0 0
\(281\) 17.0540 1.01735 0.508677 0.860957i \(-0.330135\pi\)
0.508677 + 0.860957i \(0.330135\pi\)
\(282\) −28.2205 8.33842i −1.68051 0.496546i
\(283\) 6.45972 3.72952i 0.383991 0.221697i −0.295563 0.955323i \(-0.595507\pi\)
0.679553 + 0.733626i \(0.262174\pi\)
\(284\) −12.9867 + 20.0574i −0.770618 + 1.19019i
\(285\) −6.22466 10.6059i −0.368717 0.628238i
\(286\) −3.50102 + 0.843038i −0.207019 + 0.0498499i
\(287\) 0 0
\(288\) −8.17252 3.35265i −0.481570 0.197557i
\(289\) −3.90388 + 6.76172i −0.229640 + 0.397748i
\(290\) 1.72343 0.428034i 0.101203 0.0251350i
\(291\) −27.6377 + 15.9566i −1.62015 + 0.935395i
\(292\) −1.01562 + 19.8971i −0.0594350 + 1.16439i
\(293\) −14.4635 −0.844965 −0.422483 0.906371i \(-0.638841\pi\)
−0.422483 + 0.906371i \(0.638841\pi\)
\(294\) 0 0
\(295\) 27.8462 + 15.8131i 1.62127 + 0.920674i
\(296\) −2.86594 15.2891i −0.166579 0.888660i
\(297\) −3.58227 6.20467i −0.207864 0.360031i
\(298\) −2.05034 + 1.94836i −0.118773 + 0.112865i
\(299\) 3.29801 5.71233i 0.190729 0.330352i
\(300\) −11.3508 + 18.0918i −0.655340 + 1.04453i
\(301\) 0 0
\(302\) 6.80745 1.63922i 0.391725 0.0943266i
\(303\) 16.1362 27.9488i 0.927002 1.60561i
\(304\) 10.2465 + 1.04878i 0.587678 + 0.0601516i
\(305\) 1.38646 0.00989553i 0.0793883 0.000566616i
\(306\) −10.5485 3.11680i −0.603016 0.178176i
\(307\) 13.8987i 0.793243i 0.917982 + 0.396622i \(0.129818\pi\)
−0.917982 + 0.396622i \(0.870182\pi\)
\(308\) 0 0
\(309\) −11.6847 −0.664717
\(310\) 14.4759 + 15.0175i 0.822174 + 0.852937i
\(311\) −0.723002 1.25228i −0.0409977 0.0710101i 0.844798 0.535085i \(-0.179720\pi\)
−0.885796 + 0.464075i \(0.846387\pi\)
\(312\) 6.22217 + 2.18911i 0.352261 + 0.123934i
\(313\) −3.58227 + 6.20467i −0.202482 + 0.350708i −0.949327 0.314289i \(-0.898234\pi\)
0.746846 + 0.664997i \(0.231567\pi\)
\(314\) 1.28751 + 5.34683i 0.0726581 + 0.301739i
\(315\) 0 0
\(316\) 9.68466 + 18.9435i 0.544805 + 1.06565i
\(317\) 21.1396 + 12.2050i 1.18732 + 0.685499i 0.957696 0.287781i \(-0.0929174\pi\)
0.229623 + 0.973280i \(0.426251\pi\)
\(318\) −18.8038 + 17.8684i −1.05446 + 1.00201i
\(319\) 1.13412 0.654784i 0.0634985 0.0366609i
\(320\) −6.59761 16.6274i −0.368818 0.929502i
\(321\) 21.3873i 1.19372i
\(322\) 0 0
\(323\) 12.8255 0.713628
\(324\) −1.14661 + 22.4632i −0.0637006 + 1.24795i
\(325\) 2.66197 4.76653i 0.147660 0.264399i
\(326\) 11.7907 11.2042i 0.653024 0.620541i
\(327\) 8.43723 + 4.87123i 0.466580 + 0.269380i
\(328\) 18.2179 15.6240i 1.00592 0.862689i
\(329\) 0 0
\(330\) −4.35519 + 15.1364i −0.239745 + 0.833230i
\(331\) −7.19296 4.15286i −0.395361 0.228262i 0.289120 0.957293i \(-0.406637\pi\)
−0.684480 + 0.729031i \(0.739971\pi\)
\(332\) −4.19687 + 6.48190i −0.230333 + 0.355741i
\(333\) 7.43743 4.29400i 0.407569 0.235310i
\(334\) −0.269896 + 0.913433i −0.0147680 + 0.0499809i
\(335\) −9.17104 5.20798i −0.501067 0.284543i
\(336\) 0 0
\(337\) 30.5866i 1.66616i 0.553153 + 0.833080i \(0.313425\pi\)
−0.553153 + 0.833080i \(0.686575\pi\)
\(338\) 16.0143 + 4.73180i 0.871061 + 0.257376i
\(339\) 5.87302 + 10.1724i 0.318979 + 0.552488i
\(340\) −10.2807 19.7601i −0.557550 1.07164i
\(341\) 13.3214 + 7.69113i 0.721395 + 0.416498i
\(342\) 1.33126 + 5.52855i 0.0719866 + 0.298950i
\(343\) 0 0
\(344\) −2.43845 2.84329i −0.131472 0.153300i
\(345\) −14.6028 24.8811i −0.786191 1.33955i
\(346\) −11.3316 + 10.7680i −0.609191 + 0.578889i
\(347\) −0.662153 1.14688i −0.0355463 0.0615679i 0.847705 0.530468i \(-0.177984\pi\)
−0.883251 + 0.468900i \(0.844650\pi\)
\(348\) −2.39559 0.122280i −0.128417 0.00655491i
\(349\) 18.8307i 1.00799i −0.863708 0.503993i \(-0.831864\pi\)
0.863708 0.503993i \(-0.168136\pi\)
\(350\) 0 0
\(351\) 3.35453i 0.179051i
\(352\) −8.06636 10.4386i −0.429938 0.556379i
\(353\) 8.08427 + 14.0024i 0.430282 + 0.745270i 0.996897 0.0787120i \(-0.0250808\pi\)
−0.566615 + 0.823982i \(0.691747\pi\)
\(354\) −29.7968 31.3566i −1.58368 1.66658i
\(355\) −13.5223 23.0400i −0.717689 1.22284i
\(356\) 2.57501 + 5.03680i 0.136475 + 0.266950i
\(357\) 0 0
\(358\) −11.4196 + 2.74983i −0.603547 + 0.145333i
\(359\) −8.96394 5.17534i −0.473099 0.273144i 0.244437 0.969665i \(-0.421397\pi\)
−0.717536 + 0.696521i \(0.754730\pi\)
\(360\) 7.45069 6.48268i 0.392686 0.341667i
\(361\) 6.18466 + 10.7121i 0.325508 + 0.563797i
\(362\) −1.38193 + 4.67700i −0.0726328 + 0.245818i
\(363\) 11.8782i 0.623446i
\(364\) 0 0
\(365\) −19.3693 10.9993i −1.01384 0.575730i
\(366\) −1.79609 0.530698i −0.0938831 0.0277400i
\(367\) −20.2462 + 11.6891i −1.05684 + 0.610168i −0.924557 0.381043i \(-0.875565\pi\)
−0.132286 + 0.991212i \(0.542232\pi\)
\(368\) 24.0380 + 2.46040i 1.25307 + 0.128257i
\(369\) 11.4750 + 6.62511i 0.597366 + 0.344889i
\(370\) 16.7134 + 4.80893i 0.868886 + 0.250004i
\(371\) 0 0
\(372\) −12.8255 25.0870i −0.664969 1.30070i
\(373\) 10.1120 + 5.83817i 0.523580 + 0.302289i 0.738398 0.674365i \(-0.235582\pi\)
−0.214818 + 0.976654i \(0.568916\pi\)
\(374\) −11.3154 11.9077i −0.585105 0.615733i
\(375\) −12.3794 20.4192i −0.639268 1.05444i
\(376\) 5.07693 + 27.0841i 0.261822 + 1.39676i
\(377\) 0.613157 0.0315792
\(378\) 0 0
\(379\) 24.9171i 1.27991i −0.768414 0.639954i \(-0.778954\pi\)
0.768414 0.639954i \(-0.221046\pi\)
\(380\) −6.18966 + 9.71091i −0.317523 + 0.498159i
\(381\) 9.79796 5.65685i 0.501965 0.289809i
\(382\) −19.4504 20.4685i −0.995168 1.04726i
\(383\) 16.1633 + 9.33190i 0.825907 + 0.476838i 0.852449 0.522810i \(-0.175116\pi\)
−0.0265422 + 0.999648i \(0.508450\pi\)
\(384\) 2.01051 + 24.0798i 0.102598 + 1.22882i
\(385\) 0 0
\(386\) −7.56155 + 1.82081i −0.384873 + 0.0926767i
\(387\) 1.03399 1.79092i 0.0525605 0.0910375i
\(388\) 25.0853 + 16.2421i 1.27351 + 0.824569i
\(389\) 5.96543 + 10.3324i 0.302460 + 0.523875i 0.976692 0.214643i \(-0.0688589\pi\)
−0.674233 + 0.738519i \(0.735526\pi\)
\(390\) −5.30949 + 5.11799i −0.268856 + 0.259159i
\(391\) 30.0881 1.52162
\(392\) 0 0
\(393\) 5.49966i 0.277421i
\(394\) 6.61173 22.3767i 0.333094 1.12732i
\(395\) −23.7861 + 0.169768i −1.19681 + 0.00854197i
\(396\) 3.95842 6.11362i 0.198918 0.307221i
\(397\) −10.5074 + 18.1994i −0.527353 + 0.913402i 0.472139 + 0.881524i \(0.343482\pi\)
−0.999492 + 0.0318775i \(0.989851\pi\)
\(398\) 6.07263 + 25.2188i 0.304394 + 1.26410i
\(399\) 0 0
\(400\) 19.9231 + 1.75225i 0.996155 + 0.0876127i
\(401\) −6.71922 + 11.6380i −0.335542 + 0.581176i −0.983589 0.180425i \(-0.942253\pi\)
0.648047 + 0.761601i \(0.275586\pi\)
\(402\) 9.81347 + 10.3272i 0.489451 + 0.515072i
\(403\) 3.60109 + 6.23726i 0.179383 + 0.310700i
\(404\) −30.1815 1.54058i −1.50158 0.0766469i
\(405\) −21.8674 12.4179i −1.08660 0.617050i
\(406\) 0 0
\(407\) 12.8255 0.635734
\(408\) 5.54347 + 29.5731i 0.274443 + 1.46408i
\(409\) 26.1720 15.1104i 1.29412 0.747161i 0.314738 0.949178i \(-0.398083\pi\)
0.979382 + 0.202018i \(0.0647499\pi\)
\(410\) 6.46777 + 26.0417i 0.319420 + 1.28611i
\(411\) −3.29801 + 5.71233i −0.162679 + 0.281768i
\(412\) 4.98074 + 9.74247i 0.245383 + 0.479977i
\(413\) 0 0
\(414\) 3.12311 + 12.9698i 0.153492 + 0.637431i
\(415\) −4.36996 7.44577i −0.214513 0.365498i
\(416\) −0.827039 6.12107i −0.0405489 0.300110i
\(417\) −7.43743 + 4.29400i −0.364212 + 0.210278i
\(418\) −2.40644 + 8.14434i −0.117703 + 0.398353i
\(419\) −22.3631 −1.09251 −0.546254 0.837619i \(-0.683947\pi\)
−0.546254 + 0.837619i \(0.683947\pi\)
\(420\) 0 0
\(421\) 12.5616 0.612213 0.306106 0.951997i \(-0.400974\pi\)
0.306106 + 0.951997i \(0.400974\pi\)
\(422\) 0.115047 0.389363i 0.00560038 0.0189539i
\(423\) −13.1752 + 7.60669i −0.640599 + 0.369850i
\(424\) 22.9138 + 8.06162i 1.11279 + 0.391507i
\(425\) 24.9012 0.355471i 1.20788 0.0172429i
\(426\) 8.44804 + 35.0835i 0.409309 + 1.69980i
\(427\) 0 0
\(428\) −17.8324 + 9.11662i −0.861960 + 0.440668i
\(429\) −2.71922 + 4.70983i −0.131285 + 0.227393i
\(430\) 4.06435 1.00943i 0.196000 0.0486791i
\(431\) 10.0981 5.83012i 0.486407 0.280827i −0.236676 0.971589i \(-0.576058\pi\)
0.723083 + 0.690762i \(0.242725\pi\)
\(432\) 11.2128 5.02884i 0.539474 0.241950i
\(433\) 9.00400 0.432705 0.216352 0.976315i \(-0.430584\pi\)
0.216352 + 0.976315i \(0.430584\pi\)
\(434\) 0 0
\(435\) 1.32431 2.33205i 0.0634957 0.111813i
\(436\) 0.465074 9.11124i 0.0222730 0.436349i
\(437\) −7.77769 13.4713i −0.372057 0.644422i
\(438\) 20.7261 + 21.8111i 0.990333 + 1.04217i
\(439\) −15.7671 + 27.3094i −0.752521 + 1.30340i 0.194076 + 0.980986i \(0.437829\pi\)
−0.946597 + 0.322418i \(0.895504\pi\)
\(440\) 14.4769 2.82080i 0.690160 0.134476i
\(441\) 0 0
\(442\) −1.80054 7.47740i −0.0856431 0.355663i
\(443\) −8.77102 + 15.1919i −0.416724 + 0.721787i −0.995608 0.0936230i \(-0.970155\pi\)
0.578884 + 0.815410i \(0.303488\pi\)
\(444\) −19.7195 12.7679i −0.935847 0.605938i
\(445\) −6.32439 + 0.0451390i −0.299805 + 0.00213979i
\(446\) 0.0591675 0.200246i 0.00280166 0.00948193i
\(447\) 4.27156i 0.202038i
\(448\) 0 0
\(449\) 6.31534 0.298039 0.149020 0.988834i \(-0.452388\pi\)
0.149020 + 0.988834i \(0.452388\pi\)
\(450\) 2.73794 + 10.6970i 0.129068 + 0.504262i
\(451\) 9.89404 + 17.1370i 0.465892 + 0.806949i
\(452\) 5.97810 9.23294i 0.281186 0.434281i
\(453\) 5.28732 9.15790i 0.248420 0.430276i
\(454\) −13.9596 + 3.36144i −0.655155 + 0.157760i
\(455\) 0 0
\(456\) 11.8078 10.1265i 0.552949 0.474218i
\(457\) 8.93935 + 5.16114i 0.418165 + 0.241428i 0.694292 0.719693i \(-0.255718\pi\)
−0.276127 + 0.961121i \(0.589051\pi\)
\(458\) 9.20942 + 9.69150i 0.430328 + 0.452854i
\(459\) 13.2518 7.65093i 0.618541 0.357115i
\(460\) −14.5208 + 22.7815i −0.677034 + 1.06219i
\(461\) 21.1154i 0.983444i 0.870752 + 0.491722i \(0.163632\pi\)
−0.870752 + 0.491722i \(0.836368\pi\)
\(462\) 0 0
\(463\) −24.3266 −1.13055 −0.565277 0.824901i \(-0.691231\pi\)
−0.565277 + 0.824901i \(0.691231\pi\)
\(464\) 0.919195 + 2.04952i 0.0426726 + 0.0951467i
\(465\) 31.5002 0.224825i 1.46078 0.0104260i
\(466\) 10.7153 + 11.2762i 0.496376 + 0.522359i
\(467\) 20.0903 + 11.5991i 0.929668 + 0.536744i 0.886707 0.462333i \(-0.152987\pi\)
0.0429615 + 0.999077i \(0.486321\pi\)
\(468\) 3.03632 1.55229i 0.140354 0.0717545i
\(469\) 0 0
\(470\) −29.6072 8.51887i −1.36568 0.392946i
\(471\) 7.19296 + 4.15286i 0.331434 + 0.191353i
\(472\) −13.4433 + 38.2102i −0.618777 + 1.75877i
\(473\) 2.67459 1.54417i 0.122978 0.0710012i
\(474\) 30.8138 + 9.10469i 1.41533 + 0.418192i
\(475\) −6.59603 11.0571i −0.302646 0.507335i
\(476\) 0 0
\(477\) 13.4106i 0.614030i
\(478\) 0.934536 3.16284i 0.0427447 0.144665i
\(479\) 15.0441 + 26.0571i 0.687381 + 1.19058i 0.972682 + 0.232141i \(0.0745730\pi\)
−0.285301 + 0.958438i \(0.592094\pi\)
\(480\) −25.0668 10.0749i −1.14414 0.459853i
\(481\) 5.20053 + 3.00252i 0.237124 + 0.136903i
\(482\) −22.1067 + 5.32326i −1.00693 + 0.242468i
\(483\) 0 0
\(484\) −9.90388 + 5.06326i −0.450176 + 0.230148i
\(485\) −28.8155 + 16.9120i −1.30844 + 0.767934i
\(486\) 14.4206 + 15.1754i 0.654130 + 0.688371i
\(487\) −0.580639 1.00570i −0.0263112 0.0455724i 0.852570 0.522613i \(-0.175043\pi\)
−0.878881 + 0.477041i \(0.841709\pi\)
\(488\) 0.323120 + 1.72377i 0.0146270 + 0.0780312i
\(489\) 24.5639i 1.11082i
\(490\) 0 0
\(491\) 14.2794i 0.644419i −0.946668 0.322210i \(-0.895574\pi\)
0.946668 0.322210i \(-0.104426\pi\)
\(492\) 1.84770 36.1982i 0.0833009 1.63194i
\(493\) 1.39847 + 2.42223i 0.0629841 + 0.109092i
\(494\) −2.88242 + 2.73904i −0.129686 + 0.123235i
\(495\) 4.12168 + 7.02272i 0.185256 + 0.315648i
\(496\) −15.4501 + 21.3873i −0.693729 + 0.960318i
\(497\) 0 0
\(498\) 2.73013 + 11.3378i 0.122340 + 0.508060i
\(499\) 22.2157 + 12.8263i 0.994513 + 0.574182i 0.906620 0.421948i \(-0.138653\pi\)
0.0878928 + 0.996130i \(0.471987\pi\)
\(500\) −11.7483 + 19.0257i −0.525402 + 0.850854i
\(501\) 0.719224 + 1.24573i 0.0321325 + 0.0556552i
\(502\) −12.4382 3.67517i −0.555144 0.164031i
\(503\) 18.8114i 0.838761i −0.907811 0.419380i \(-0.862247\pi\)
0.907811 0.419380i \(-0.137753\pi\)
\(504\) 0 0
\(505\) 16.6847 29.3810i 0.742458 1.30744i
\(506\) −5.64543 + 19.1064i −0.250970 + 0.849382i
\(507\) 21.8401 12.6094i 0.969953 0.560003i
\(508\) −8.89310 5.75806i −0.394567 0.255473i
\(509\) 24.2595 + 14.0062i 1.07528 + 0.620814i 0.929620 0.368520i \(-0.120136\pi\)
0.145662 + 0.989334i \(0.453469\pi\)
\(510\) −32.3280 9.30172i −1.43151 0.411887i
\(511\) 0 0
\(512\) 19.2203 11.9407i 0.849426 0.527707i
\(513\) −6.85110 3.95548i −0.302483 0.174639i
\(514\) −6.71628 + 6.38220i −0.296243 + 0.281507i
\(515\) −12.2330 + 0.0873105i −0.539051 + 0.00384736i
\(516\) −5.64950 0.288373i −0.248705 0.0126949i
\(517\) −22.7199 −0.999220
\(518\) 0 0
\(519\) 23.6076i 1.03626i
\(520\) 6.53053 + 2.24535i 0.286383 + 0.0984651i
\(521\) 2.44949 1.41421i 0.107314 0.0619578i −0.445382 0.895340i \(-0.646932\pi\)
0.552696 + 0.833383i \(0.313599\pi\)
\(522\) −0.898968 + 0.854251i −0.0393467 + 0.0373896i
\(523\) −18.1408 10.4736i −0.793243 0.457979i 0.0478601 0.998854i \(-0.484760\pi\)
−0.841103 + 0.540875i \(0.818093\pi\)
\(524\) −4.58552 + 2.34430i −0.200319 + 0.102411i
\(525\) 0 0
\(526\) −7.80776 32.4245i −0.340435 1.41378i
\(527\) −16.4265 + 28.4516i −0.715552 + 1.23937i
\(528\) −19.8194 2.02861i −0.862529 0.0882839i
\(529\) −6.74621 11.6848i −0.293314 0.508034i
\(530\) −19.5527 + 18.8475i −0.849316 + 0.818684i
\(531\) −22.3631 −0.970476
\(532\) 0 0
\(533\) 9.26504i 0.401313i
\(534\) 8.19296 + 2.42080i 0.354544 + 0.104758i
\(535\) −0.159811 22.3910i −0.00690923 0.968048i
\(536\) 4.42749 12.5844i 0.191239 0.543563i
\(537\) −8.86958 + 15.3626i −0.382751 + 0.662944i
\(538\) 1.33126 0.320566i 0.0573949 0.0138206i
\(539\) 0 0
\(540\) −0.602449 + 13.7261i −0.0259253 + 0.590678i
\(541\) 9.71922 16.8342i 0.417862 0.723758i −0.577862 0.816134i \(-0.696113\pi\)
0.995724 + 0.0923761i \(0.0294462\pi\)
\(542\) 6.76206 6.42570i 0.290455 0.276008i
\(543\) 3.68260 + 6.37845i 0.158036 + 0.273726i
\(544\) 22.2945 17.2280i 0.955870 0.738642i
\(545\) 8.86958 + 5.03680i 0.379931 + 0.215753i
\(546\) 0 0
\(547\) −33.4337 −1.42952 −0.714762 0.699368i \(-0.753465\pi\)
−0.714762 + 0.699368i \(0.753465\pi\)
\(548\) 6.16866 + 0.314873i 0.263512 + 0.0134507i
\(549\) −0.838532 + 0.484127i −0.0357877 + 0.0206620i
\(550\) −4.44647 + 15.8793i −0.189598 + 0.677094i
\(551\) 0.723002 1.25228i 0.0308009 0.0533488i
\(552\) 27.7006 23.7565i 1.17902 1.01114i
\(553\) 0 0
\(554\) 26.9309 6.48490i 1.14418 0.275517i
\(555\) 22.6518 13.2945i 0.961516 0.564320i
\(556\) 6.75057 + 4.37083i 0.286288 + 0.185364i
\(557\) 7.43743 4.29400i 0.315134 0.181943i −0.334088 0.942542i \(-0.608428\pi\)
0.649222 + 0.760599i \(0.275095\pi\)
\(558\) −13.9694 4.12760i −0.591373 0.174735i
\(559\) 1.44600 0.0611595
\(560\) 0 0
\(561\) −24.8078 −1.04738
\(562\) −23.1294 6.83414i −0.975656 0.288281i
\(563\) 5.87645 3.39277i 0.247663 0.142988i −0.371031 0.928621i \(-0.620996\pi\)
0.618694 + 0.785632i \(0.287662\pi\)
\(564\) 34.9325 + 22.6179i 1.47092 + 0.952387i
\(565\) 6.22466 + 10.6059i 0.261873 + 0.446193i
\(566\) −10.2555 + 2.46952i −0.431073 + 0.103801i
\(567\) 0 0
\(568\) 25.6509 21.9986i 1.07629 0.923042i
\(569\) 21.9309 37.9854i 0.919390 1.59243i 0.119046 0.992889i \(-0.462016\pi\)
0.800344 0.599541i \(-0.204650\pi\)
\(570\) 4.19202 + 16.8787i 0.175584 + 0.706969i
\(571\) 13.5004 7.79447i 0.564975 0.326188i −0.190165 0.981752i \(-0.560902\pi\)
0.755140 + 0.655564i \(0.227569\pi\)
\(572\) 5.08608 + 0.259614i 0.212660 + 0.0108550i
\(573\) −42.6429 −1.78143
\(574\) 0 0
\(575\) −15.4741 25.9396i −0.645313 1.08176i
\(576\) 9.74043 + 7.82206i 0.405851 + 0.325919i
\(577\) 18.0457 + 31.2561i 0.751254 + 1.30121i 0.947215 + 0.320599i \(0.103884\pi\)
−0.195961 + 0.980612i \(0.562783\pi\)
\(578\) 8.00430 7.60615i 0.332935 0.316374i
\(579\) −5.87302 + 10.1724i −0.244075 + 0.422750i
\(580\) −2.50893 0.110119i −0.104177 0.00457242i
\(581\) 0 0
\(582\) 43.8780 10.5657i 1.81880 0.437964i
\(583\) −10.0138 + 17.3444i −0.414730 + 0.718333i
\(584\) 9.35091 26.5784i 0.386943 1.09982i
\(585\) 0.0272110 + 3.81252i 0.00112504 + 0.157628i
\(586\) 19.6161 + 5.79604i 0.810333 + 0.239432i
\(587\) 2.80928i 0.115951i −0.998318 0.0579757i \(-0.981535\pi\)
0.998318 0.0579757i \(-0.0184646\pi\)
\(588\) 0 0
\(589\) 16.9848 0.699848
\(590\) −31.4295 32.6055i −1.29393 1.34235i
\(591\) −17.6191 30.5171i −0.724752 1.25531i
\(592\) −2.23996 + 21.8843i −0.0920617 + 0.899439i
\(593\) −3.10353 + 5.37547i −0.127447 + 0.220744i −0.922687 0.385551i \(-0.874011\pi\)
0.795240 + 0.606295i \(0.207345\pi\)
\(594\) 2.37201 + 9.85061i 0.0973247 + 0.404176i
\(595\) 0 0
\(596\) 3.56155 1.82081i 0.145887 0.0745832i
\(597\) 33.9262 + 19.5873i 1.38851 + 0.801655i
\(598\) −6.76206 + 6.42570i −0.276521 + 0.262767i
\(599\) −15.5200 + 8.96050i −0.634131 + 0.366116i −0.782350 0.622839i \(-0.785979\pi\)
0.148219 + 0.988955i \(0.452646\pi\)
\(600\) 22.6446 19.9883i 0.924462 0.816020i
\(601\) 42.2309i 1.72263i −0.508068 0.861317i \(-0.669640\pi\)
0.508068 0.861317i \(-0.330360\pi\)
\(602\) 0 0
\(603\) 7.36520 0.299934
\(604\) −9.88949 0.504799i −0.402398 0.0205400i
\(605\) −0.0887570 12.4357i −0.00360849 0.505583i
\(606\) −33.0848 + 31.4391i −1.34398 + 1.27713i
\(607\) −38.9423 22.4833i −1.58062 0.912570i −0.994769 0.102149i \(-0.967428\pi\)
−0.585848 0.810421i \(-0.699239\pi\)
\(608\) −13.4765 5.52855i −0.546546 0.224212i
\(609\) 0 0
\(610\) −1.88435 0.542182i −0.0762949 0.0219523i
\(611\) −9.21257 5.31888i −0.372701 0.215179i
\(612\) 13.0573 + 8.45431i 0.527812 + 0.341745i
\(613\) 41.3637 23.8813i 1.67066 0.964557i 0.703394 0.710800i \(-0.251667\pi\)
0.967268 0.253757i \(-0.0816664\pi\)
\(614\) 5.56973 18.8502i 0.224776 0.760731i
\(615\) 35.2381 + 20.0108i 1.42094 + 0.806913i
\(616\) 0 0
\(617\) 14.7647i 0.594404i −0.954815 0.297202i \(-0.903946\pi\)
0.954815 0.297202i \(-0.0960535\pi\)
\(618\) 15.8473 + 4.68246i 0.637472 + 0.188356i
\(619\) 13.0336 + 22.5748i 0.523863 + 0.907357i 0.999614 + 0.0277772i \(0.00884289\pi\)
−0.475751 + 0.879580i \(0.657824\pi\)
\(620\) −13.6148 26.1685i −0.546784 1.05095i
\(621\) −16.0725 9.27944i −0.644965 0.372371i
\(622\) 0.478739 + 1.98813i 0.0191957 + 0.0797168i
\(623\) 0 0
\(624\) −7.56155 5.46242i −0.302704 0.218672i
\(625\) −13.1129 21.2850i −0.524517 0.851400i
\(626\) 7.34488 6.97953i 0.293560 0.278958i
\(627\) 6.41273 + 11.1072i 0.256100 + 0.443578i
\(628\) 0.396488 7.76757i 0.0158216 0.309960i
\(629\) 27.3924i 1.09220i
\(630\) 0 0
\(631\) 33.9582i 1.35186i 0.736968 + 0.675928i \(0.236257\pi\)
−0.736968 + 0.675928i \(0.763743\pi\)
\(632\) −5.54347 29.5731i −0.220508 1.17635i
\(633\) −0.306579 0.531010i −0.0121854 0.0211057i
\(634\) −23.7796 25.0244i −0.944409 0.993845i
\(635\) 10.2155 5.99554i 0.405390 0.237926i
\(636\) 32.6631 16.6987i 1.29518 0.662147i
\(637\) 0 0
\(638\) −1.80054 + 0.433567i −0.0712842 + 0.0171651i
\(639\) 16.1569 + 9.32819i 0.639157 + 0.369018i
\(640\) 2.28479 + 25.1948i 0.0903143 + 0.995913i
\(641\) −19.9309 34.5213i −0.787222 1.36351i −0.927663 0.373419i \(-0.878185\pi\)
0.140441 0.990089i \(-0.455148\pi\)
\(642\) −8.57066 + 29.0065i −0.338257 + 1.14480i
\(643\) 36.8341i 1.45260i 0.687380 + 0.726298i \(0.258761\pi\)
−0.687380 + 0.726298i \(0.741239\pi\)
\(644\) 0 0
\(645\) 3.12311 5.49966i 0.122972 0.216549i
\(646\) −17.3945 5.13962i −0.684378 0.202216i
\(647\) −31.6716 + 18.2856i −1.24514 + 0.718881i −0.970136 0.242563i \(-0.922012\pi\)
−0.275002 + 0.961444i \(0.588679\pi\)
\(648\) 10.5569 30.0062i 0.414714 1.17875i
\(649\) −28.9230 16.6987i −1.13533 0.655481i
\(650\) −5.52042 + 5.39785i −0.216529 + 0.211721i
\(651\) 0 0
\(652\) −20.4810 + 10.4707i −0.802097 + 0.410064i
\(653\) −14.2885 8.24948i −0.559153 0.322827i 0.193652 0.981070i \(-0.437967\pi\)
−0.752806 + 0.658243i \(0.771300\pi\)
\(654\) −9.49090 9.98771i −0.371123 0.390550i
\(655\) −0.0410947 5.75775i −0.00160570 0.224974i
\(656\) −30.9691 + 13.8894i −1.20914 + 0.542290i
\(657\) 15.5554 0.606873
\(658\) 0 0
\(659\) 42.8381i 1.66874i 0.551207 + 0.834368i \(0.314167\pi\)
−0.551207 + 0.834368i \(0.685833\pi\)
\(660\) 11.9724 18.7834i 0.466025 0.731143i
\(661\) 1.30941 0.755989i 0.0509302 0.0294046i −0.474319 0.880353i \(-0.657306\pi\)
0.525249 + 0.850949i \(0.323972\pi\)
\(662\) 8.09124 + 8.51478i 0.314475 + 0.330936i
\(663\) −10.0592 5.80766i −0.390666 0.225551i
\(664\) 8.28954 7.10923i 0.321696 0.275892i
\(665\) 0 0
\(666\) −11.8078 + 2.84329i −0.457542 + 0.110175i
\(667\) 1.69614 2.93780i 0.0656748 0.113752i
\(668\) 0.732091 1.13069i 0.0283255 0.0437476i
\(669\) −0.157671 0.273094i −0.00609590 0.0105584i
\(670\) 10.3512 + 10.7385i 0.399901 + 0.414864i
\(671\) −1.44600 −0.0558224
\(672\) 0 0
\(673\) 14.0877i 0.543039i 0.962433 + 0.271520i \(0.0875262\pi\)
−0.962433 + 0.271520i \(0.912474\pi\)
\(674\) 12.2572 41.4831i 0.472128 1.59787i
\(675\) −13.4113 7.48985i −0.516202 0.288284i
\(676\) −19.8231 12.8350i −0.762428 0.493653i
\(677\) 23.2659 40.2976i 0.894179 1.54876i 0.0593624 0.998236i \(-0.481093\pi\)
0.834817 0.550528i \(-0.185573\pi\)
\(678\) −3.88884 16.1498i −0.149350 0.620230i
\(679\) 0 0
\(680\) 6.02460 + 30.9195i 0.231033 + 1.18571i
\(681\) −10.8423 + 18.7795i −0.415479 + 0.719631i
\(682\) −14.9850 15.7695i −0.573807 0.603844i
\(683\) −10.0953 17.4856i −0.386287 0.669069i 0.605660 0.795724i \(-0.292909\pi\)
−0.991947 + 0.126655i \(0.959576\pi\)
\(684\) 0.409964 8.03158i 0.0156754 0.307095i
\(685\) −3.41011 + 6.00505i −0.130293 + 0.229441i
\(686\) 0 0
\(687\) 20.1907 0.770322
\(688\) 2.16773 + 4.83338i 0.0826440 + 0.184271i
\(689\) −8.12090 + 4.68860i −0.309381 + 0.178621i
\(690\) 9.83435 + 39.5968i 0.374387 + 1.50742i
\(691\) 18.9066 32.7472i 0.719240 1.24576i −0.242061 0.970261i \(-0.577823\pi\)
0.961301 0.275500i \(-0.0888433\pi\)
\(692\) 19.6836 10.0630i 0.748258 0.382539i
\(693\) 0 0
\(694\) 0.438447 + 1.82081i 0.0166432 + 0.0691169i
\(695\) −7.75438 + 4.55109i −0.294140 + 0.172633i
\(696\) 3.20001 + 1.12584i 0.121296 + 0.0426749i
\(697\) −36.6008 + 21.1315i −1.38635 + 0.800412i
\(698\) −7.54616 + 25.5392i −0.285626 + 0.966672i
\(699\) 23.4921 0.888553
\(700\) 0 0
\(701\) −30.6695 −1.15837 −0.579186 0.815196i \(-0.696629\pi\)
−0.579186 + 0.815196i \(0.696629\pi\)
\(702\) −1.34428 + 4.54957i −0.0507366 + 0.171713i
\(703\) 12.2644 7.08084i 0.462559 0.267059i
\(704\) 6.75686 + 17.3898i 0.254659 + 0.655403i
\(705\) −40.1270 + 23.5508i −1.51127 + 0.886974i
\(706\) −5.35302 22.2303i −0.201464 0.836650i
\(707\) 0 0
\(708\) 27.8462 + 54.4679i 1.04652 + 2.04703i
\(709\) −15.4039 + 26.6803i −0.578505 + 1.00200i 0.417146 + 0.908839i \(0.363030\pi\)
−0.995651 + 0.0931605i \(0.970303\pi\)
\(710\) 9.10665 + 36.6668i 0.341767 + 1.37608i
\(711\) 14.3859 8.30571i 0.539514 0.311489i
\(712\) −1.47393 7.86305i −0.0552379 0.294680i
\(713\) 39.8459 1.49224
\(714\) 0 0
\(715\) −2.81164 + 4.95118i −0.105150 + 0.185164i
\(716\) 16.5898 + 0.846811i 0.619991 + 0.0316468i
\(717\) −2.49037 4.31345i −0.0930046 0.161089i
\(718\) 10.0834 + 10.6112i 0.376309 + 0.396007i
\(719\) −13.5981 + 23.5525i −0.507122 + 0.878361i 0.492844 + 0.870118i \(0.335957\pi\)
−0.999966 + 0.00824342i \(0.997376\pi\)
\(720\) −12.7028 + 5.80637i −0.473406 + 0.216391i
\(721\) 0 0
\(722\) −4.09519 17.0067i −0.152407 0.632926i
\(723\) −17.1702 + 29.7397i −0.638567 + 1.10603i
\(724\) 3.74849 5.78939i 0.139311 0.215161i
\(725\) 1.36903 2.45139i 0.0508445 0.0910422i
\(726\) −4.76004 + 16.1099i −0.176662 + 0.597893i
\(727\) 32.8255i 1.21743i −0.793389 0.608715i \(-0.791685\pi\)
0.793389 0.608715i \(-0.208315\pi\)
\(728\) 0 0
\(729\) −2.12311 −0.0786335
\(730\) 21.8618 + 22.6798i 0.809141 + 0.839417i
\(731\) 3.29801 + 5.71233i 0.121981 + 0.211278i
\(732\) 2.22327 + 1.43952i 0.0821746 + 0.0532060i
\(733\) −12.2125 + 21.1526i −0.451078 + 0.781290i −0.998453 0.0555970i \(-0.982294\pi\)
0.547375 + 0.836887i \(0.315627\pi\)
\(734\) 32.1431 7.74001i 1.18642 0.285689i
\(735\) 0 0
\(736\) −31.6155 12.9698i −1.16536 0.478073i
\(737\) 9.52568 + 5.49966i 0.350883 + 0.202582i
\(738\) −12.9081 13.5837i −0.475152 0.500025i
\(739\) −42.9091 + 24.7736i −1.57844 + 0.911311i −0.583360 + 0.812214i \(0.698262\pi\)
−0.995078 + 0.0990973i \(0.968404\pi\)
\(740\) −20.7404 13.2198i −0.762431 0.485968i
\(741\) 6.00505i 0.220601i
\(742\) 0 0
\(743\) −9.43318 −0.346070 −0.173035 0.984916i \(-0.555357\pi\)
−0.173035 + 0.984916i \(0.555357\pi\)
\(744\) 7.34126 + 39.1638i 0.269144 + 1.43581i
\(745\) 0.0319181 + 4.47202i 0.00116939 + 0.163842i
\(746\) −11.3748 11.9703i −0.416463 0.438263i
\(747\) 5.22138 + 3.01457i 0.191040 + 0.110297i
\(748\) 10.5746 + 20.6843i 0.386647 + 0.756293i
\(749\) 0 0
\(750\) 8.60679 + 32.6544i 0.314276 + 1.19237i
\(751\) −32.5624 18.7999i −1.18822 0.686019i −0.230318 0.973115i \(-0.573977\pi\)
−0.957902 + 0.287096i \(0.907310\pi\)
\(752\) 3.96802 38.7673i 0.144699 1.41370i
\(753\) −16.9631 + 9.79366i −0.618170 + 0.356901i
\(754\) −0.831593 0.245714i −0.0302848 0.00894838i
\(755\) 5.46702 9.62719i 0.198965 0.350369i
\(756\) 0 0
\(757\) 25.7640i 0.936409i 0.883620 + 0.468204i \(0.155099\pi\)
−0.883620 + 0.468204i \(0.844901\pi\)
\(758\) −9.98520 + 33.7938i −0.362679 + 1.22745i
\(759\) 15.0441 + 26.0571i 0.546065 + 0.945812i
\(760\) 12.2862 10.6900i 0.445669 0.387767i
\(761\) 37.3454 + 21.5614i 1.35377 + 0.781600i 0.988775 0.149409i \(-0.0477372\pi\)
0.364996 + 0.931009i \(0.381070\pi\)
\(762\) −15.5554 + 3.74571i −0.563512 + 0.135693i
\(763\) 0 0
\(764\) 18.1771 + 35.5549i 0.657624 + 1.28633i
\(765\) −14.9990 + 8.80299i −0.542289 + 0.318273i
\(766\) −18.1819 19.1336i −0.656937 0.691325i
\(767\) −7.81855 13.5421i −0.282312 0.488978i
\(768\) 6.92289 33.4639i 0.249808 1.20752i
\(769\) 14.4903i 0.522535i −0.965266 0.261267i \(-0.915860\pi\)
0.965266 0.261267i \(-0.0841404\pi\)
\(770\) 0 0
\(771\) 13.9923i 0.503920i
\(772\) 10.9850 + 0.560719i 0.395359 + 0.0201807i
\(773\) −7.84490 13.5878i −0.282161 0.488718i 0.689756 0.724042i \(-0.257718\pi\)
−0.971917 + 0.235325i \(0.924385\pi\)
\(774\) −2.12003 + 2.01458i −0.0762029 + 0.0724124i
\(775\) 32.9768 0.470753i 1.18456 0.0169099i
\(776\) −27.5131 32.0810i −0.987663 1.15164i
\(777\) 0 0
\(778\) −3.95003 16.4039i −0.141616 0.588109i
\(779\) 18.9224 + 10.9248i 0.677965 + 0.391423i
\(780\) 9.25195 4.81356i 0.331273 0.172353i
\(781\) 13.9309 + 24.1290i 0.498486 + 0.863403i
\(782\) −40.8070 12.0574i −1.45925 0.431172i
\(783\) 1.72521i 0.0616538i
\(784\) 0 0
\(785\) 7.56155 + 4.29400i 0.269883 + 0.153259i
\(786\) −2.20391 + 7.45890i −0.0786109 + 0.266050i
\(787\) 28.4557 16.4289i 1.01434 0.585628i 0.101878 0.994797i \(-0.467515\pi\)
0.912459 + 0.409169i \(0.134181\pi\)
\(788\) −17.9343 + 27.6988i −0.638883 + 0.986729i
\(789\) −43.6199 25.1840i −1.55291 0.896573i
\(790\) 32.3280 + 9.30172i 1.15018 + 0.330940i
\(791\) 0 0
\(792\) −7.81855 + 6.70531i −0.277820 + 0.238263i
\(793\) −0.586333 0.338519i −0.0208213 0.0120212i
\(794\) 21.5438 20.4722i 0.764562 0.726531i
\(795\) 0.292722 + 41.0131i 0.0103818 + 1.45458i
\(796\) 1.87007 36.6365i 0.0662829 1.29854i
\(797\) 2.04937 0.0725925 0.0362963 0.999341i \(-0.488444\pi\)
0.0362963 + 0.999341i \(0.488444\pi\)
\(798\) 0 0
\(799\) 48.5247i 1.71668i
\(800\) −26.3185 10.3604i −0.930499 0.366295i
\(801\) 3.82501 2.20837i 0.135150 0.0780289i
\(802\) 13.7767 13.0914i 0.486473 0.462275i
\(803\) 20.1183 + 11.6153i 0.709960 + 0.409896i
\(804\) −9.17104 17.9388i −0.323438 0.632653i
\(805\) 0 0
\(806\) −2.38447 9.90237i −0.0839894 0.348796i
\(807\) 1.03399 1.79092i 0.0363981 0.0630433i
\(808\) 40.3162 + 14.1842i 1.41832 + 0.498999i
\(809\) 13.5270 + 23.4294i 0.475584 + 0.823735i 0.999609 0.0279678i \(-0.00890360\pi\)
−0.524025 + 0.851703i \(0.675570\pi\)
\(810\) 24.6813 + 25.6048i 0.867213 + 0.899661i
\(811\) −9.17104 −0.322039 −0.161019 0.986951i \(-0.551478\pi\)
−0.161019 + 0.986951i \(0.551478\pi\)
\(812\) 0 0
\(813\) 14.0877i 0.494076i
\(814\) −17.3945 5.13962i −0.609677 0.180144i
\(815\) −0.183547 25.7167i −0.00642938 0.900817i
\(816\) 4.33266 42.3299i 0.151673 1.48184i
\(817\) 1.70505 2.95324i 0.0596522 0.103321i
\(818\) −41.5510 + 10.0054i −1.45280 + 0.349830i
\(819\) 0 0
\(820\) 1.66393 37.9108i 0.0581071 1.32390i
\(821\) 17.9654 31.1170i 0.626998 1.08599i −0.361153 0.932507i \(-0.617617\pi\)
0.988151 0.153486i \(-0.0490499\pi\)
\(822\) 6.76206 6.42570i 0.235854 0.224122i
\(823\) 11.4196 + 19.7794i 0.398064 + 0.689466i 0.993487 0.113946i \(-0.0363490\pi\)
−0.595423 + 0.803412i \(0.703016\pi\)
\(824\) −2.85096 15.2092i −0.0993180 0.529837i
\(825\) 12.7584 + 21.3873i 0.444191 + 0.744610i
\(826\) 0 0
\(827\) −4.71659 −0.164012 −0.0820059 0.996632i \(-0.526133\pi\)
−0.0820059 + 0.996632i \(0.526133\pi\)
\(828\) 0.961762 18.8418i 0.0334235 0.654799i
\(829\) −37.5809 + 21.6973i −1.30524 + 0.753579i −0.981297 0.192498i \(-0.938341\pi\)
−0.323940 + 0.946077i \(0.605008\pi\)
\(830\) 2.94297 + 11.8495i 0.102152 + 0.411303i
\(831\) 20.9171 36.2295i 0.725606 1.25679i
\(832\) −1.33126 + 8.63312i −0.0461533 + 0.299300i
\(833\) 0 0
\(834\) 11.8078 2.84329i 0.408869 0.0984550i
\(835\) 0.762285 + 1.29882i 0.0263800 + 0.0449475i
\(836\) 6.52746 10.0814i 0.225757 0.348673i
\(837\) 17.5494 10.1322i 0.606598 0.350219i
\(838\) 30.3299 + 8.96170i 1.04773 + 0.309577i
\(839\) −32.3461 −1.11671 −0.558356 0.829601i \(-0.688568\pi\)
−0.558356 + 0.829601i \(0.688568\pi\)
\(840\) 0 0
\(841\) −28.6847 −0.989126
\(842\) −17.0366 5.03387i −0.587120 0.173479i
\(843\) −31.5437 + 18.2118i −1.08642 + 0.627246i
\(844\) −0.312064 + 0.481970i −0.0107417 + 0.0165901i
\(845\) 22.7708 13.3643i 0.783341 0.459747i
\(846\) 20.9171 5.03680i 0.719144 0.173169i
\(847\) 0 0
\(848\) −27.8462 20.1159i −0.956242 0.690784i
\(849\) −7.96543 + 13.7965i −0.273373 + 0.473496i
\(850\) −33.9146 9.49669i −1.16326 0.325734i
\(851\) 28.7718 16.6114i 0.986286 0.569432i
\(852\) 2.60158 50.9674i 0.0891286 1.74611i
\(853\) −2.93137 −0.100368 −0.0501840 0.998740i \(-0.515981\pi\)
−0.0501840 + 0.998740i \(0.515981\pi\)
\(854\) 0 0
\(855\) 7.81855 + 4.43994i 0.267389 + 0.151843i
\(856\) 27.8385 5.21833i 0.951500 0.178359i
\(857\) −2.79695 4.84446i −0.0955419 0.165483i 0.814293 0.580454i \(-0.197125\pi\)
−0.909835 + 0.414971i \(0.863792\pi\)
\(858\) 5.57534 5.29801i 0.190339 0.180871i
\(859\) −4.58552 + 7.94235i −0.156456 + 0.270990i −0.933588 0.358348i \(-0.883340\pi\)
0.777132 + 0.629337i \(0.216674\pi\)
\(860\) −5.91678 0.259692i −0.201761 0.00885542i
\(861\) 0 0
\(862\) −16.0318 + 3.86043i −0.546046 + 0.131487i
\(863\) 15.3926 26.6607i 0.523969 0.907541i −0.475642 0.879639i \(-0.657784\pi\)
0.999611 0.0279016i \(-0.00888250\pi\)
\(864\) −17.2225 + 2.32699i −0.585922 + 0.0791659i
\(865\) 0.176401 + 24.7155i 0.00599782 + 0.840351i
\(866\) −12.2117 3.60823i −0.414969 0.122613i
\(867\) 16.6757i 0.566335i
\(868\) 0 0
\(869\) 24.8078 0.841546
\(870\) −2.73063 + 2.63214i −0.0925769 + 0.0892379i
\(871\) 2.57501 + 4.46005i 0.0872509 + 0.151123i
\(872\) −4.28196 + 12.1707i −0.145005 + 0.412153i
\(873\) 11.6665 20.2070i 0.394852 0.683904i
\(874\) 5.15002 + 21.3873i 0.174202 + 0.723436i
\(875\) 0 0
\(876\) −19.3693 37.8869i −0.654429 1.28008i
\(877\) −4.76284 2.74983i −0.160830 0.0928551i 0.417425 0.908711i \(-0.362933\pi\)
−0.578255 + 0.815856i \(0.696266\pi\)
\(878\) 32.3279 30.7199i 1.09101 1.03674i
\(879\) 26.7522 15.4454i 0.902330 0.520960i
\(880\) −20.7647 1.97572i −0.699978 0.0666014i
\(881\) 30.7645i 1.03648i 0.855234 + 0.518241i \(0.173413\pi\)
−0.855234 + 0.518241i \(0.826587\pi\)
\(882\) 0 0
\(883\) 48.4902 1.63183 0.815913 0.578175i \(-0.196235\pi\)
0.815913 + 0.578175i \(0.196235\pi\)
\(884\) −0.554478 + 10.8628i −0.0186491 + 0.365354i
\(885\) −68.3920 + 0.488133i −2.29897 + 0.0164084i
\(886\) 17.9836 17.0891i 0.604171 0.574119i
\(887\) −27.5169 15.8869i −0.923927 0.533429i −0.0390409 0.999238i \(-0.512430\pi\)
−0.884886 + 0.465808i \(0.845764\pi\)
\(888\) 21.6280 + 25.2188i 0.725788 + 0.846287i
\(889\) 0 0
\(890\) 8.59554 + 2.47319i 0.288123 + 0.0829016i
\(891\) 22.7130 + 13.1134i 0.760914 + 0.439314i
\(892\) −0.160492 + 0.247873i −0.00537366 + 0.00829940i
\(893\) −21.7260 + 12.5435i −0.727031 + 0.419752i
\(894\) 1.71177 5.79330i 0.0572501 0.193757i
\(895\) −9.17104 + 16.1498i −0.306554 + 0.539829i
\(896\) 0 0
\(897\) 14.0877i 0.470373i
\(898\) −8.56517 2.53079i −0.285824 0.0844534i
\(899\) 1.85201 + 3.20777i 0.0617680 + 0.106985i
\(900\) 0.573358 15.6050i 0.0191119 0.520167i
\(901\) −37.0439 21.3873i −1.23411 0.712514i
\(902\) −6.55137 27.2069i −0.218137 0.905891i
\(903\) 0 0
\(904\) −11.8078 + 10.1265i −0.392720 + 0.336803i
\(905\) 3.90309 + 6.65028i 0.129743 + 0.221063i
\(906\) −10.8408 + 10.3016i −0.360162 + 0.342247i
\(907\) −26.8937 46.5813i −0.892991 1.54671i −0.836271 0.548316i \(-0.815269\pi\)
−0.0567196 0.998390i \(-0.518064\pi\)
\(908\) 20.2797 + 1.03516i 0.673005 + 0.0343529i
\(909\) 23.5957i 0.782619i
\(910\) 0 0
\(911\) 56.0950i 1.85851i −0.369438 0.929255i \(-0.620450\pi\)
0.369438 0.929255i \(-0.379550\pi\)
\(912\) −20.0723 + 9.00228i −0.664661 + 0.298095i
\(913\) 4.50200 + 7.79769i 0.148994 + 0.258066i
\(914\) −10.0557 10.5821i −0.332614 0.350025i
\(915\) −2.55388 + 1.49889i −0.0844286 + 0.0495516i
\(916\) −8.60654 16.8346i −0.284368 0.556232i
\(917\) 0 0
\(918\) −21.0387 + 5.06609i −0.694382 + 0.167206i
\(919\) −33.9452 19.5983i −1.11975 0.646487i −0.178411 0.983956i \(-0.557096\pi\)
−0.941337 + 0.337469i \(0.890429\pi\)
\(920\) 28.8231 25.0784i 0.950270 0.826809i
\(921\) −14.8423 25.7077i −0.489071 0.847096i
\(922\) 8.46172 28.6378i 0.278672 0.943135i
\(923\) 13.0452i 0.429389i
\(924\) 0 0
\(925\) 23.6155 14.0877i 0.776474 0.463199i
\(926\) 32.9929 + 9.74855i 1.08422 + 0.320357i
\(927\) 7.39856 4.27156i 0.243000 0.140296i
\(928\) −0.425339 3.14802i −0.0139624 0.103339i
\(929\) 25.0980 + 14.4903i 0.823438 + 0.475412i 0.851601 0.524191i \(-0.175632\pi\)
−0.0281624 + 0.999603i \(0.508966\pi\)
\(930\) −42.8121 12.3183i −1.40387 0.403934i
\(931\) 0 0
\(932\) −10.0138 19.5873i −0.328013 0.641604i
\(933\) 2.67459 + 1.54417i 0.0875620 + 0.0505540i
\(934\) −22.5992 23.7822i −0.739470 0.778178i
\(935\) −25.9720 + 0.185369i −0.849375 + 0.00606223i
\(936\) −4.74006 + 0.888525i −0.154934 + 0.0290423i
\(937\) 49.4631 1.61589 0.807944 0.589259i \(-0.200580\pi\)
0.807944 + 0.589259i \(0.200580\pi\)
\(938\) 0 0
\(939\) 15.3019i 0.499357i
\(940\) 36.7409 + 23.4184i 1.19836 + 0.763823i
\(941\) −7.58391 + 4.37857i −0.247228 + 0.142737i −0.618494 0.785789i \(-0.712257\pi\)
0.371266 + 0.928527i \(0.378924\pi\)
\(942\) −8.09124 8.51478i −0.263627 0.277427i
\(943\) 44.3913 + 25.6294i 1.44558 + 0.834606i
\(944\) 33.5446 46.4354i 1.09179 1.51134i
\(945\) 0 0
\(946\) −4.24621 + 1.02248i −0.138056 + 0.0332437i
\(947\) 26.3131 45.5756i 0.855060 1.48101i −0.0215294 0.999768i \(-0.506854\pi\)
0.876589 0.481239i \(-0.159813\pi\)
\(948\) −38.1427 24.6964i −1.23882 0.802103i
\(949\) 5.43845 + 9.41967i 0.176539 + 0.305775i
\(950\) 4.51487 + 17.6394i 0.146482 + 0.572299i
\(951\) −52.1342 −1.69057
\(952\) 0 0
\(953\) 31.2637i 1.01273i −0.862319 0.506365i \(-0.830989\pi\)
0.862319 0.506365i \(-0.169011\pi\)
\(954\) 5.37412 18.1881i 0.173994 0.588863i
\(955\) −44.6441 + 0.318637i −1.44465 + 0.0103109i
\(956\) −2.53493 + 3.91509i −0.0819854 + 0.126623i
\(957\) −1.39847 + 2.42223i −0.0452062 + 0.0782995i
\(958\) −9.96148 41.3686i −0.321841 1.33656i
\(959\) 0 0
\(960\) 29.9595 + 23.7092i 0.966938 + 0.765212i
\(961\) −6.25379 + 10.8319i −0.201735 + 0.349415i
\(962\) −5.84999 6.15621i −0.188611 0.198484i
\(963\) 7.81855 + 13.5421i 0.251949 + 0.436389i
\(964\) 32.1155 + 1.63930i 1.03437 + 0.0527984i
\(965\) −6.07263 + 10.6937i −0.195485 + 0.344241i
\(966\) 0 0
\(967\) −16.2177 −0.521527 −0.260764 0.965403i \(-0.583974\pi\)
−0.260764 + 0.965403i \(0.583974\pi\)
\(968\) 15.4612 2.89820i 0.496940 0.0931516i
\(969\) −23.7225 + 13.6962i −0.762076 + 0.439985i
\(970\) 45.8582 11.3895i 1.47242 0.365693i
\(971\) −18.1836 + 31.4949i −0.583539 + 1.01072i 0.411517 + 0.911402i \(0.364999\pi\)
−0.995056 + 0.0993168i \(0.968334\pi\)
\(972\) −13.4765 26.3605i −0.432260 0.845513i
\(973\) 0 0
\(974\) 0.384472 + 1.59666i 0.0123193 + 0.0511602i
\(975\) 0.166436 + 11.6591i 0.00533023 + 0.373388i
\(976\) 0.252544 2.46734i 0.00808373 0.0789777i
\(977\) 12.2003 7.04383i 0.390321 0.225352i −0.291978 0.956425i \(-0.594313\pi\)
0.682299 + 0.731073i \(0.260980\pi\)
\(978\) −9.84365 + 33.3148i −0.314765 + 1.06529i
\(979\) 6.59603 0.210810
\(980\) 0 0
\(981\) −7.12311 −0.227423
\(982\) −5.72226 + 19.3664i −0.182605 + 0.618006i
\(983\) 38.7426 22.3680i 1.23570 0.713430i 0.267485 0.963562i \(-0.413807\pi\)
0.968212 + 0.250132i \(0.0804741\pi\)
\(984\) −17.0119 + 48.3534i −0.542319 + 1.54145i
\(985\) −18.6740 31.8176i −0.595002 1.01379i
\(986\) −0.926004 3.84556i −0.0294900 0.122468i
\(987\) 0 0
\(988\) 5.00691 2.55973i 0.159291 0.0814359i
\(989\) 4.00000 6.92820i 0.127193 0.220304i
\(990\) −2.77576 11.1763i −0.0882195 0.355205i
\(991\) 0.497251 0.287088i 0.0157957 0.00911966i −0.492081 0.870549i \(-0.663764\pi\)
0.507877 + 0.861430i \(0.330430\pi\)
\(992\) 29.5248 22.8151i 0.937413 0.724380i
\(993\) 17.7392 0.562935
\(994\) 0 0
\(995\) 35.6647 + 20.2530i 1.13065 + 0.642065i
\(996\) 0.840744 16.4710i 0.0266400 0.521903i
\(997\) −23.8790 41.3597i −0.756256 1.30987i −0.944748 0.327799i \(-0.893693\pi\)
0.188492 0.982075i \(-0.439640\pi\)
\(998\) −24.9901 26.2983i −0.791048 0.832457i
\(999\) 8.44804 14.6324i 0.267284 0.462950i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.s.f.19.1 32
4.3 odd 2 inner 980.2.s.f.19.6 32
5.4 even 2 inner 980.2.s.f.19.16 32
7.2 even 3 140.2.c.b.139.11 yes 16
7.3 odd 6 inner 980.2.s.f.619.11 32
7.4 even 3 inner 980.2.s.f.619.12 32
7.5 odd 6 140.2.c.b.139.12 yes 16
7.6 odd 2 inner 980.2.s.f.19.2 32
20.19 odd 2 inner 980.2.s.f.19.11 32
28.3 even 6 inner 980.2.s.f.619.16 32
28.11 odd 6 inner 980.2.s.f.619.15 32
28.19 even 6 140.2.c.b.139.7 yes 16
28.23 odd 6 140.2.c.b.139.8 yes 16
28.27 even 2 inner 980.2.s.f.19.5 32
35.2 odd 12 700.2.g.l.251.3 16
35.4 even 6 inner 980.2.s.f.619.5 32
35.9 even 6 140.2.c.b.139.6 yes 16
35.12 even 12 700.2.g.l.251.4 16
35.19 odd 6 140.2.c.b.139.5 16
35.23 odd 12 700.2.g.l.251.14 16
35.24 odd 6 inner 980.2.s.f.619.6 32
35.33 even 12 700.2.g.l.251.13 16
35.34 odd 2 inner 980.2.s.f.19.15 32
56.5 odd 6 2240.2.e.f.2239.4 16
56.19 even 6 2240.2.e.f.2239.16 16
56.37 even 6 2240.2.e.f.2239.13 16
56.51 odd 6 2240.2.e.f.2239.1 16
140.19 even 6 140.2.c.b.139.10 yes 16
140.23 even 12 700.2.g.l.251.15 16
140.39 odd 6 inner 980.2.s.f.619.2 32
140.47 odd 12 700.2.g.l.251.1 16
140.59 even 6 inner 980.2.s.f.619.1 32
140.79 odd 6 140.2.c.b.139.9 yes 16
140.103 odd 12 700.2.g.l.251.16 16
140.107 even 12 700.2.g.l.251.2 16
140.139 even 2 inner 980.2.s.f.19.12 32
280.19 even 6 2240.2.e.f.2239.2 16
280.149 even 6 2240.2.e.f.2239.3 16
280.219 odd 6 2240.2.e.f.2239.15 16
280.229 odd 6 2240.2.e.f.2239.14 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.c.b.139.5 16 35.19 odd 6
140.2.c.b.139.6 yes 16 35.9 even 6
140.2.c.b.139.7 yes 16 28.19 even 6
140.2.c.b.139.8 yes 16 28.23 odd 6
140.2.c.b.139.9 yes 16 140.79 odd 6
140.2.c.b.139.10 yes 16 140.19 even 6
140.2.c.b.139.11 yes 16 7.2 even 3
140.2.c.b.139.12 yes 16 7.5 odd 6
700.2.g.l.251.1 16 140.47 odd 12
700.2.g.l.251.2 16 140.107 even 12
700.2.g.l.251.3 16 35.2 odd 12
700.2.g.l.251.4 16 35.12 even 12
700.2.g.l.251.13 16 35.33 even 12
700.2.g.l.251.14 16 35.23 odd 12
700.2.g.l.251.15 16 140.23 even 12
700.2.g.l.251.16 16 140.103 odd 12
980.2.s.f.19.1 32 1.1 even 1 trivial
980.2.s.f.19.2 32 7.6 odd 2 inner
980.2.s.f.19.5 32 28.27 even 2 inner
980.2.s.f.19.6 32 4.3 odd 2 inner
980.2.s.f.19.11 32 20.19 odd 2 inner
980.2.s.f.19.12 32 140.139 even 2 inner
980.2.s.f.19.15 32 35.34 odd 2 inner
980.2.s.f.19.16 32 5.4 even 2 inner
980.2.s.f.619.1 32 140.59 even 6 inner
980.2.s.f.619.2 32 140.39 odd 6 inner
980.2.s.f.619.5 32 35.4 even 6 inner
980.2.s.f.619.6 32 35.24 odd 6 inner
980.2.s.f.619.11 32 7.3 odd 6 inner
980.2.s.f.619.12 32 7.4 even 3 inner
980.2.s.f.619.15 32 28.11 odd 6 inner
980.2.s.f.619.16 32 28.3 even 6 inner
2240.2.e.f.2239.1 16 56.51 odd 6
2240.2.e.f.2239.2 16 280.19 even 6
2240.2.e.f.2239.3 16 280.149 even 6
2240.2.e.f.2239.4 16 56.5 odd 6
2240.2.e.f.2239.13 16 56.37 even 6
2240.2.e.f.2239.14 16 280.229 odd 6
2240.2.e.f.2239.15 16 280.219 odd 6
2240.2.e.f.2239.16 16 56.19 even 6