Properties

Label 980.2
Level 980
Weight 2
Dimension 14191
Nonzero newspaces 24
Newform subspaces 108
Sturm bound 112896
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newform subspaces: \( 108 \)
Sturm bound: \(112896\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(980))\).

Total New Old
Modular forms 29424 14775 14649
Cusp forms 27025 14191 12834
Eisenstein series 2399 584 1815

Trace form

\( 14191q - 32q^{2} - 6q^{3} - 30q^{4} - 101q^{5} - 78q^{6} - 8q^{7} - 38q^{8} - 51q^{9} + O(q^{10}) \) \( 14191q - 32q^{2} - 6q^{3} - 30q^{4} - 101q^{5} - 78q^{6} - 8q^{7} - 38q^{8} - 51q^{9} - 21q^{10} + 12q^{11} + 30q^{12} - 20q^{13} - 12q^{14} + 14q^{15} - 50q^{16} - 72q^{17} - 12q^{18} - 43q^{20} - 194q^{21} - 102q^{22} - 6q^{23} - 66q^{24} - 33q^{25} - 122q^{26} + 36q^{27} - 84q^{28} - 6q^{29} - 51q^{30} + 72q^{31} - 22q^{32} + 120q^{33} - 42q^{34} + 51q^{35} - 90q^{36} + 108q^{37} + 54q^{38} + 206q^{39} - 19q^{40} + 14q^{41} - 6q^{42} + 90q^{43} + 54q^{44} + 116q^{45} - 30q^{46} + 138q^{47} - 60q^{48} + 76q^{49} - 110q^{50} + 168q^{51} - 118q^{52} - 24q^{53} - 234q^{54} + 21q^{55} - 132q^{56} - 216q^{57} - 226q^{58} - 36q^{59} - 303q^{60} - 244q^{61} - 234q^{62} - 60q^{63} - 282q^{64} - 210q^{65} - 390q^{66} - 162q^{67} - 294q^{68} - 264q^{69} - 225q^{70} - 108q^{71} - 450q^{72} - 124q^{73} - 330q^{74} - 192q^{75} - 366q^{76} - 90q^{77} - 438q^{78} - 132q^{79} - 350q^{80} - 357q^{81} - 404q^{82} - 162q^{83} - 588q^{84} - 270q^{85} - 540q^{86} - 300q^{87} - 600q^{88} + 66q^{89} - 576q^{90} - 136q^{91} - 348q^{92} - 312q^{93} - 516q^{94} + 34q^{95} - 888q^{96} - 196q^{97} - 648q^{98} - 96q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(980))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
980.2.a \(\chi_{980}(1, \cdot)\) 980.2.a.a 1 1
980.2.a.b 1
980.2.a.c 1
980.2.a.d 1
980.2.a.e 1
980.2.a.f 1
980.2.a.g 1
980.2.a.h 1
980.2.a.i 1
980.2.a.j 2
980.2.a.k 2
980.2.c \(\chi_{980}(979, \cdot)\) 980.2.c.a 8 1
980.2.c.b 8
980.2.c.c 16
980.2.c.d 32
980.2.c.e 48
980.2.e \(\chi_{980}(589, \cdot)\) 980.2.e.a 2 1
980.2.e.b 2
980.2.e.c 4
980.2.e.d 4
980.2.e.e 4
980.2.e.f 4
980.2.g \(\chi_{980}(391, \cdot)\) 980.2.g.a 32 1
980.2.g.b 48
980.2.i \(\chi_{980}(361, \cdot)\) 980.2.i.a 2 2
980.2.i.b 2
980.2.i.c 2
980.2.i.d 2
980.2.i.e 2
980.2.i.f 2
980.2.i.g 2
980.2.i.h 2
980.2.i.i 2
980.2.i.j 2
980.2.i.k 4
980.2.i.l 4
980.2.k \(\chi_{980}(687, \cdot)\) 980.2.k.a 2 2
980.2.k.b 2
980.2.k.c 2
980.2.k.d 4
980.2.k.e 4
980.2.k.f 4
980.2.k.g 4
980.2.k.h 8
980.2.k.i 32
980.2.k.j 36
980.2.k.k 36
980.2.k.l 36
980.2.k.m 56
980.2.m \(\chi_{980}(97, \cdot)\) 980.2.m.a 16 2
980.2.m.b 24
980.2.o \(\chi_{980}(31, \cdot)\) 980.2.o.a 4 2
980.2.o.b 4
980.2.o.c 4
980.2.o.d 4
980.2.o.e 16
980.2.o.f 32
980.2.o.g 96
980.2.q \(\chi_{980}(569, \cdot)\) 980.2.q.a 4 2
980.2.q.b 4
980.2.q.c 4
980.2.q.d 4
980.2.q.e 4
980.2.q.f 4
980.2.q.g 4
980.2.q.h 4
980.2.q.i 8
980.2.s \(\chi_{980}(19, \cdot)\) 980.2.s.a 8 2
980.2.s.b 8
980.2.s.c 16
980.2.s.d 32
980.2.s.e 32
980.2.s.f 32
980.2.s.g 96
980.2.u \(\chi_{980}(141, \cdot)\) 980.2.u.a 54 6
980.2.u.b 66
980.2.v \(\chi_{980}(117, \cdot)\) 980.2.v.a 16 4
980.2.v.b 16
980.2.v.c 48
980.2.x \(\chi_{980}(67, \cdot)\) 980.2.x.a 4 4
980.2.x.b 4
980.2.x.c 4
980.2.x.d 4
980.2.x.e 8
980.2.x.f 8
980.2.x.g 8
980.2.x.h 8
980.2.x.i 8
980.2.x.j 64
980.2.x.k 72
980.2.x.l 72
980.2.x.m 72
980.2.x.n 112
980.2.bb \(\chi_{980}(111, \cdot)\) 980.2.bb.a 672 6
980.2.bd \(\chi_{980}(29, \cdot)\) 980.2.bd.a 168 6
980.2.bf \(\chi_{980}(139, \cdot)\) 980.2.bf.a 24 6
980.2.bf.b 960
980.2.bg \(\chi_{980}(81, \cdot)\) 980.2.bg.a 12 12
980.2.bg.b 84
980.2.bg.c 120
980.2.bi \(\chi_{980}(13, \cdot)\) 980.2.bi.a 336 12
980.2.bk \(\chi_{980}(43, \cdot)\) 980.2.bk.a 1968 12
980.2.bl \(\chi_{980}(59, \cdot)\) 980.2.bl.a 48 12
980.2.bl.b 1920
980.2.bn \(\chi_{980}(9, \cdot)\) 980.2.bn.a 336 12
980.2.bp \(\chi_{980}(131, \cdot)\) 980.2.bp.a 1344 12
980.2.bs \(\chi_{980}(23, \cdot)\) 980.2.bs.a 3936 24
980.2.bu \(\chi_{980}(17, \cdot)\) 980.2.bu.a 672 24

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(980))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(980)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(245))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(490))\)\(^{\oplus 2}\)