Properties

Label 980.2.s.f.619.16
Level $980$
Weight $2$
Character 980.619
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(19,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,12,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 619.16
Character \(\chi\) \(=\) 980.619
Dual form 980.2.s.f.19.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35625 - 0.400736i) q^{2} +(1.84964 + 1.06789i) q^{3} +(1.67882 - 1.08700i) q^{4} +(0.0159590 + 2.23601i) q^{5} +(2.93651 + 0.707107i) q^{6} +(1.84130 - 2.14700i) q^{8} +(0.780776 + 1.35234i) q^{9} +(0.917695 + 3.02619i) q^{10} +(2.01961 + 1.16602i) q^{11} +(4.26600 - 0.217754i) q^{12} -1.09190 q^{13} +(-2.35829 + 4.15286i) q^{15} +(1.63688 - 3.64974i) q^{16} +(-2.49037 + 4.31345i) q^{17} +(1.60086 + 1.52123i) q^{18} +(1.28751 + 2.23003i) q^{19} +(2.45733 + 3.73652i) q^{20} +(3.20636 + 0.772087i) q^{22} +(-3.02045 - 5.23157i) q^{23} +(5.69850 - 2.00487i) q^{24} +(-4.99949 + 0.0713692i) q^{25} +(-1.48088 + 0.437562i) q^{26} -3.07221i q^{27} +0.561553 q^{29} +(-1.53423 + 6.57736i) q^{30} +(3.29801 - 5.71233i) q^{31} +(0.757434 - 5.60592i) q^{32} +(2.49037 + 4.31345i) q^{33} +(-1.64901 + 6.84809i) q^{34} +(2.78078 + 1.42164i) q^{36} +(-4.76284 + 2.74983i) q^{37} +(2.63983 + 2.50852i) q^{38} +(-2.01961 - 1.16602i) q^{39} +(4.83010 + 4.08290i) q^{40} -8.48528i q^{41} -1.32431 q^{43} +(4.65803 - 0.237764i) q^{44} +(-3.01140 + 1.76741i) q^{45} +(-6.19296 - 5.88491i) q^{46} +(8.43723 - 4.87123i) q^{47} +(6.92516 - 5.00270i) q^{48} +(-6.75195 + 2.10027i) q^{50} +(-9.21257 + 5.31888i) q^{51} +(-1.83310 + 1.18689i) q^{52} +(7.43743 + 4.29400i) q^{53} +(-1.23114 - 4.16667i) q^{54} +(-2.57501 + 4.53448i) q^{55} +5.49966i q^{57} +(0.761605 - 0.225034i) q^{58} +(-7.16053 + 12.4024i) q^{59} +(0.554981 + 9.53536i) q^{60} +(-0.536986 + 0.310029i) q^{61} +(2.18379 - 9.06897i) q^{62} +(-1.21922 - 7.90655i) q^{64} +(-0.0174256 - 2.44149i) q^{65} +(5.10611 + 4.85213i) q^{66} +(-2.35829 + 4.08469i) q^{67} +(0.507812 + 9.94853i) q^{68} -12.9020i q^{69} -11.9473i q^{71} +(4.34113 + 0.813745i) q^{72} +(-4.98074 + 8.62689i) q^{73} +(-5.35764 + 5.63809i) q^{74} +(-9.32347 - 5.20690i) q^{75} +(4.58552 + 2.34430i) q^{76} +(-3.20636 - 0.772087i) q^{78} +(9.21257 - 5.31888i) q^{79} +(8.18699 + 3.60184i) q^{80} +(5.62311 - 9.73950i) q^{81} +(-3.40036 - 11.5082i) q^{82} +3.86098i q^{83} +(-9.68466 - 5.49966i) q^{85} +(-1.79609 + 0.530698i) q^{86} +(1.03867 + 0.599676i) q^{87} +(6.22217 - 2.18911i) q^{88} +(2.44949 - 1.41421i) q^{89} +(-3.37594 + 3.60382i) q^{90} +(-10.7575 - 5.49966i) q^{92} +(12.2003 - 7.04383i) q^{93} +(9.49090 - 9.98771i) q^{94} +(-4.96581 + 2.91447i) q^{95} +(7.38748 - 9.56006i) q^{96} -14.9422 q^{97} +3.64162i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 12 q^{4} - 8 q^{9} + 12 q^{16} - 8 q^{25} - 48 q^{29} + 4 q^{30} + 56 q^{36} - 32 q^{44} + 32 q^{46} - 24 q^{50} - 44 q^{60} - 72 q^{64} + 32 q^{65} - 88 q^{74} + 48 q^{81} - 112 q^{85} - 40 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35625 0.400736i 0.959013 0.283363i
\(3\) 1.84964 + 1.06789i 1.06789 + 0.616546i 0.927604 0.373565i \(-0.121865\pi\)
0.140285 + 0.990111i \(0.455198\pi\)
\(4\) 1.67882 1.08700i 0.839411 0.543498i
\(5\) 0.0159590 + 2.23601i 0.00713710 + 0.999975i
\(6\) 2.93651 + 0.707107i 1.19883 + 0.288675i
\(7\) 0 0
\(8\) 1.84130 2.14700i 0.650998 0.759079i
\(9\) 0.780776 + 1.35234i 0.260259 + 0.450781i
\(10\) 0.917695 + 3.02619i 0.290201 + 0.956966i
\(11\) 2.01961 + 1.16602i 0.608936 + 0.351569i 0.772549 0.634955i \(-0.218981\pi\)
−0.163613 + 0.986525i \(0.552315\pi\)
\(12\) 4.26600 0.217754i 1.23149 0.0628601i
\(13\) −1.09190 −0.302837 −0.151419 0.988470i \(-0.548384\pi\)
−0.151419 + 0.988470i \(0.548384\pi\)
\(14\) 0 0
\(15\) −2.35829 + 4.15286i −0.608909 + 1.07226i
\(16\) 1.63688 3.64974i 0.409220 0.912436i
\(17\) −2.49037 + 4.31345i −0.604003 + 1.04616i 0.388205 + 0.921573i \(0.373095\pi\)
−0.992208 + 0.124591i \(0.960238\pi\)
\(18\) 1.60086 + 1.52123i 0.377326 + 0.358557i
\(19\) 1.28751 + 2.23003i 0.295374 + 0.511603i 0.975072 0.221889i \(-0.0712224\pi\)
−0.679698 + 0.733492i \(0.737889\pi\)
\(20\) 2.45733 + 3.73652i 0.549475 + 0.835510i
\(21\) 0 0
\(22\) 3.20636 + 0.772087i 0.683599 + 0.164609i
\(23\) −3.02045 5.23157i −0.629807 1.09086i −0.987590 0.157053i \(-0.949801\pi\)
0.357783 0.933805i \(-0.383533\pi\)
\(24\) 5.69850 2.00487i 1.16320 0.409242i
\(25\) −4.99949 + 0.0713692i −0.999898 + 0.0142738i
\(26\) −1.48088 + 0.437562i −0.290425 + 0.0858130i
\(27\) 3.07221i 0.591246i
\(28\) 0 0
\(29\) 0.561553 0.104278 0.0521389 0.998640i \(-0.483396\pi\)
0.0521389 + 0.998640i \(0.483396\pi\)
\(30\) −1.53423 + 6.57736i −0.280112 + 1.20086i
\(31\) 3.29801 5.71233i 0.592341 1.02596i −0.401576 0.915826i \(-0.631537\pi\)
0.993916 0.110138i \(-0.0351294\pi\)
\(32\) 0.757434 5.60592i 0.133897 0.990995i
\(33\) 2.49037 + 4.31345i 0.433518 + 0.750875i
\(34\) −1.64901 + 6.84809i −0.282802 + 1.17444i
\(35\) 0 0
\(36\) 2.78078 + 1.42164i 0.463463 + 0.236941i
\(37\) −4.76284 + 2.74983i −0.783006 + 0.452069i −0.837495 0.546446i \(-0.815981\pi\)
0.0544884 + 0.998514i \(0.482647\pi\)
\(38\) 2.63983 + 2.50852i 0.428237 + 0.406935i
\(39\) −2.01961 1.16602i −0.323397 0.186713i
\(40\) 4.83010 + 4.08290i 0.763706 + 0.645564i
\(41\) 8.48528i 1.32518i −0.748983 0.662589i \(-0.769458\pi\)
0.748983 0.662589i \(-0.230542\pi\)
\(42\) 0 0
\(43\) −1.32431 −0.201955 −0.100977 0.994889i \(-0.532197\pi\)
−0.100977 + 0.994889i \(0.532197\pi\)
\(44\) 4.65803 0.237764i 0.702225 0.0358443i
\(45\) −3.01140 + 1.76741i −0.448912 + 0.263469i
\(46\) −6.19296 5.88491i −0.913102 0.867682i
\(47\) 8.43723 4.87123i 1.23070 0.710543i 0.263521 0.964654i \(-0.415116\pi\)
0.967175 + 0.254111i \(0.0817829\pi\)
\(48\) 6.92516 5.00270i 0.999561 0.722077i
\(49\) 0 0
\(50\) −6.75195 + 2.10027i −0.954870 + 0.297023i
\(51\) −9.21257 + 5.31888i −1.29002 + 0.744792i
\(52\) −1.83310 + 1.18689i −0.254205 + 0.164591i
\(53\) 7.43743 + 4.29400i 1.02161 + 0.589826i 0.914570 0.404428i \(-0.132529\pi\)
0.107040 + 0.994255i \(0.465863\pi\)
\(54\) −1.23114 4.16667i −0.167537 0.567013i
\(55\) −2.57501 + 4.53448i −0.347214 + 0.611430i
\(56\) 0 0
\(57\) 5.49966i 0.728447i
\(58\) 0.761605 0.225034i 0.100004 0.0295485i
\(59\) −7.16053 + 12.4024i −0.932222 + 1.61466i −0.152707 + 0.988272i \(0.548799\pi\)
−0.779515 + 0.626384i \(0.784534\pi\)
\(60\) 0.554981 + 9.53536i 0.0716478 + 1.23101i
\(61\) −0.536986 + 0.310029i −0.0687540 + 0.0396951i −0.533983 0.845495i \(-0.679305\pi\)
0.465229 + 0.885190i \(0.345972\pi\)
\(62\) 2.18379 9.06897i 0.277342 1.15176i
\(63\) 0 0
\(64\) −1.21922 7.90655i −0.152403 0.988318i
\(65\) −0.0174256 2.44149i −0.00216138 0.302830i
\(66\) 5.10611 + 4.85213i 0.628519 + 0.597255i
\(67\) −2.35829 + 4.08469i −0.288112 + 0.499024i −0.973359 0.229287i \(-0.926361\pi\)
0.685247 + 0.728310i \(0.259694\pi\)
\(68\) 0.507812 + 9.94853i 0.0615813 + 1.20644i
\(69\) 12.9020i 1.55322i
\(70\) 0 0
\(71\) 11.9473i 1.41789i −0.705265 0.708943i \(-0.749172\pi\)
0.705265 0.708943i \(-0.250828\pi\)
\(72\) 4.34113 + 0.813745i 0.511607 + 0.0959008i
\(73\) −4.98074 + 8.62689i −0.582951 + 1.00970i 0.412176 + 0.911104i \(0.364769\pi\)
−0.995127 + 0.0985973i \(0.968564\pi\)
\(74\) −5.35764 + 5.63809i −0.622813 + 0.655415i
\(75\) −9.32347 5.20690i −1.07658 0.601241i
\(76\) 4.58552 + 2.34430i 0.525995 + 0.268910i
\(77\) 0 0
\(78\) −3.20636 0.772087i −0.363049 0.0874216i
\(79\) 9.21257 5.31888i 1.03650 0.598421i 0.117657 0.993054i \(-0.462462\pi\)
0.918839 + 0.394634i \(0.129128\pi\)
\(80\) 8.18699 + 3.60184i 0.915333 + 0.402698i
\(81\) 5.62311 9.73950i 0.624790 1.08217i
\(82\) −3.40036 11.5082i −0.375507 1.27086i
\(83\) 3.86098i 0.423798i 0.977292 + 0.211899i \(0.0679648\pi\)
−0.977292 + 0.211899i \(0.932035\pi\)
\(84\) 0 0
\(85\) −9.68466 5.49966i −1.05045 0.596521i
\(86\) −1.79609 + 0.530698i −0.193677 + 0.0572266i
\(87\) 1.03867 + 0.599676i 0.111357 + 0.0642921i
\(88\) 6.22217 2.18911i 0.663285 0.233360i
\(89\) 2.44949 1.41421i 0.259645 0.149906i −0.364527 0.931193i \(-0.618769\pi\)
0.624173 + 0.781286i \(0.285436\pi\)
\(90\) −3.37594 + 3.60382i −0.355855 + 0.379876i
\(91\) 0 0
\(92\) −10.7575 5.49966i −1.12155 0.573379i
\(93\) 12.2003 7.04383i 1.26511 0.730411i
\(94\) 9.49090 9.98771i 0.978911 1.03015i
\(95\) −4.96581 + 2.91447i −0.509482 + 0.299018i
\(96\) 7.38748 9.56006i 0.753981 0.975720i
\(97\) −14.9422 −1.51715 −0.758576 0.651584i \(-0.774105\pi\)
−0.758576 + 0.651584i \(0.774105\pi\)
\(98\) 0 0
\(99\) 3.64162i 0.365996i
\(100\) −8.31567 + 5.55424i −0.831567 + 0.555424i
\(101\) −13.0860 7.55519i −1.30210 0.751770i −0.321339 0.946964i \(-0.604133\pi\)
−0.980765 + 0.195194i \(0.937466\pi\)
\(102\) −10.3631 + 10.9055i −1.02610 + 1.07981i
\(103\) −4.73795 + 2.73546i −0.466844 + 0.269532i −0.714918 0.699209i \(-0.753536\pi\)
0.248074 + 0.968741i \(0.420202\pi\)
\(104\) −2.01051 + 2.34430i −0.197147 + 0.229878i
\(105\) 0 0
\(106\) 11.8078 + 2.84329i 1.14687 + 0.276165i
\(107\) 5.00691 + 8.67222i 0.484036 + 0.838375i 0.999832 0.0183365i \(-0.00583701\pi\)
−0.515796 + 0.856712i \(0.672504\pi\)
\(108\) −3.33947 5.15768i −0.321341 0.496298i
\(109\) −2.28078 + 3.95042i −0.218459 + 0.378382i −0.954337 0.298732i \(-0.903436\pi\)
0.735878 + 0.677114i \(0.236770\pi\)
\(110\) −1.67522 + 7.18179i −0.159726 + 0.684757i
\(111\) −11.7460 −1.11489
\(112\) 0 0
\(113\) 5.49966i 0.517364i −0.965963 0.258682i \(-0.916712\pi\)
0.965963 0.258682i \(-0.0832882\pi\)
\(114\) 2.20391 + 7.45890i 0.206415 + 0.698590i
\(115\) 11.6496 6.83725i 1.08633 0.637576i
\(116\) 0.942747 0.610405i 0.0875318 0.0566747i
\(117\) −0.852526 1.47662i −0.0788161 0.136513i
\(118\) −4.74137 + 19.6902i −0.436478 + 1.81263i
\(119\) 0 0
\(120\) 4.57385 + 12.7099i 0.417534 + 1.16025i
\(121\) −2.78078 4.81645i −0.252798 0.437859i
\(122\) −0.604047 + 0.635666i −0.0546878 + 0.0575505i
\(123\) 9.06134 15.6947i 0.817034 1.41514i
\(124\) −0.672500 13.1749i −0.0603922 1.18314i
\(125\) −0.239369 11.1778i −0.0214098 0.999771i
\(126\) 0 0
\(127\) 5.29723 0.470053 0.235026 0.971989i \(-0.424482\pi\)
0.235026 + 0.971989i \(0.424482\pi\)
\(128\) −4.82201 10.2347i −0.426209 0.904625i
\(129\) −2.44949 1.41421i −0.215666 0.124515i
\(130\) −1.00203 3.30429i −0.0878836 0.289805i
\(131\) −1.28751 2.23003i −0.112490 0.194838i 0.804284 0.594246i \(-0.202549\pi\)
−0.916774 + 0.399407i \(0.869216\pi\)
\(132\) 8.86958 + 4.53448i 0.771998 + 0.394676i
\(133\) 0 0
\(134\) −1.56155 + 6.48490i −0.134898 + 0.560210i
\(135\) 6.86949 0.0490294i 0.591231 0.00421978i
\(136\) 4.67545 + 13.2892i 0.400917 + 1.13954i
\(137\) −2.67459 1.54417i −0.228505 0.131928i 0.381377 0.924420i \(-0.375450\pi\)
−0.609882 + 0.792492i \(0.708783\pi\)
\(138\) −5.17030 17.4983i −0.440126 1.48956i
\(139\) 4.02102 0.341058 0.170529 0.985353i \(-0.445452\pi\)
0.170529 + 0.985353i \(0.445452\pi\)
\(140\) 0 0
\(141\) 20.8078 1.75233
\(142\) −4.78773 16.2035i −0.401777 1.35977i
\(143\) −2.20521 1.27318i −0.184409 0.106468i
\(144\) 6.21375 0.636006i 0.517812 0.0530005i
\(145\) 0.00896184 + 1.25564i 0.000744240 + 0.104275i
\(146\) −3.29801 + 13.6962i −0.272946 + 1.13350i
\(147\) 0 0
\(148\) −5.00691 + 9.79366i −0.411565 + 0.805034i
\(149\) 1.00000 + 1.73205i 0.0819232 + 0.141895i 0.904076 0.427372i \(-0.140560\pi\)
−0.822153 + 0.569267i \(0.807227\pi\)
\(150\) −14.7315 3.32560i −1.20282 0.271534i
\(151\) −4.28785 2.47559i −0.348940 0.201461i 0.315278 0.948999i \(-0.397902\pi\)
−0.664218 + 0.747539i \(0.731236\pi\)
\(152\) 7.15855 + 1.34187i 0.580635 + 0.108840i
\(153\) −7.77769 −0.628789
\(154\) 0 0
\(155\) 12.8255 + 7.28323i 1.03017 + 0.585003i
\(156\) −4.65803 + 0.237764i −0.372941 + 0.0190364i
\(157\) 1.94442 3.36784i 0.155182 0.268783i −0.777943 0.628334i \(-0.783737\pi\)
0.933125 + 0.359552i \(0.117070\pi\)
\(158\) 10.3631 10.9055i 0.824442 0.867598i
\(159\) 9.17104 + 15.8847i 0.727311 + 1.25974i
\(160\) 12.5470 + 1.60417i 0.991926 + 0.126820i
\(161\) 0 0
\(162\) 3.72336 15.4626i 0.292535 1.21485i
\(163\) 5.75058 + 9.96029i 0.450420 + 0.780150i 0.998412 0.0563333i \(-0.0179410\pi\)
−0.547992 + 0.836484i \(0.684608\pi\)
\(164\) −9.22346 14.2453i −0.720232 1.11237i
\(165\) −9.60517 + 5.63733i −0.747762 + 0.438866i
\(166\) 1.54724 + 5.23646i 0.120089 + 0.406428i
\(167\) 0.673500i 0.0521170i −0.999660 0.0260585i \(-0.991704\pi\)
0.999660 0.0260585i \(-0.00829562\pi\)
\(168\) 0 0
\(169\) −11.8078 −0.908290
\(170\) −15.3387 3.57791i −1.17643 0.274413i
\(171\) −2.01051 + 3.48230i −0.153747 + 0.266298i
\(172\) −2.22327 + 1.43952i −0.169523 + 0.109762i
\(173\) −5.52669 9.57250i −0.420186 0.727784i 0.575771 0.817611i \(-0.304702\pi\)
−0.995957 + 0.0898270i \(0.971369\pi\)
\(174\) 1.64901 + 0.397078i 0.125011 + 0.0301024i
\(175\) 0 0
\(176\) 7.56155 5.46242i 0.569973 0.411746i
\(177\) −26.4888 + 15.2933i −1.99102 + 1.14952i
\(178\) 2.75539 2.89962i 0.206525 0.217336i
\(179\) 7.19296 + 4.15286i 0.537627 + 0.310399i 0.744117 0.668050i \(-0.232871\pi\)
−0.206490 + 0.978449i \(0.566204\pi\)
\(180\) −3.13443 + 6.24053i −0.233627 + 0.465142i
\(181\) 3.44849i 0.256324i 0.991753 + 0.128162i \(0.0409077\pi\)
−0.991753 + 0.128162i \(0.959092\pi\)
\(182\) 0 0
\(183\) −1.32431 −0.0978956
\(184\) −16.7937 3.14799i −1.23805 0.232073i
\(185\) −6.22466 10.6059i −0.457646 0.779760i
\(186\) 13.7239 14.4423i 1.00628 1.05896i
\(187\) −10.0592 + 5.80766i −0.735599 + 0.424698i
\(188\) 8.86958 17.3492i 0.646881 1.26532i
\(189\) 0 0
\(190\) −5.56695 + 5.94272i −0.403869 + 0.431130i
\(191\) 17.2910 9.98298i 1.25113 0.722343i 0.279800 0.960058i \(-0.409732\pi\)
0.971335 + 0.237716i \(0.0763987\pi\)
\(192\) 6.18820 15.9263i 0.446595 1.14938i
\(193\) −4.76284 2.74983i −0.342837 0.197937i 0.318689 0.947859i \(-0.396757\pi\)
−0.661526 + 0.749922i \(0.730091\pi\)
\(194\) −20.2654 + 5.98789i −1.45497 + 0.429905i
\(195\) 2.57501 4.53448i 0.184400 0.324721i
\(196\) 0 0
\(197\) 16.4990i 1.17550i 0.809042 + 0.587751i \(0.199987\pi\)
−0.809042 + 0.587751i \(0.800013\pi\)
\(198\) 1.45933 + 4.93894i 0.103710 + 0.350995i
\(199\) −9.17104 + 15.8847i −0.650118 + 1.12604i 0.332976 + 0.942935i \(0.391947\pi\)
−0.983094 + 0.183102i \(0.941386\pi\)
\(200\) −9.05234 + 10.8653i −0.640097 + 0.768294i
\(201\) −8.72399 + 5.03680i −0.615343 + 0.355268i
\(202\) −20.7755 5.00270i −1.46176 0.351989i
\(203\) 0 0
\(204\) −9.68466 + 18.9435i −0.678062 + 1.32631i
\(205\) 18.9732 0.135417i 1.32514 0.00945793i
\(206\) −5.32964 + 5.60862i −0.371334 + 0.390771i
\(207\) 4.71659 8.16937i 0.327826 0.567811i
\(208\) −1.78730 + 3.98514i −0.123927 + 0.276320i
\(209\) 6.00505i 0.415378i
\(210\) 0 0
\(211\) 0.287088i 0.0197640i −0.999951 0.00988198i \(-0.996854\pi\)
0.999951 0.00988198i \(-0.00314558\pi\)
\(212\) 17.1537 0.875592i 1.17812 0.0601359i
\(213\) 12.7584 22.0982i 0.874193 1.51415i
\(214\) 10.2659 + 9.75524i 0.701761 + 0.666854i
\(215\) −0.0211347 2.96116i −0.00144137 0.201950i
\(216\) −6.59603 5.65685i −0.448803 0.384900i
\(217\) 0 0
\(218\) −1.51022 + 6.27174i −0.102285 + 0.424776i
\(219\) −18.4251 + 10.6378i −1.24506 + 0.718833i
\(220\) 0.605982 + 10.4116i 0.0408553 + 0.701951i
\(221\) 2.71922 4.70983i 0.182915 0.316818i
\(222\) −15.9306 + 4.70707i −1.06919 + 0.315918i
\(223\) 0.147647i 0.00988718i 0.999988 + 0.00494359i \(0.00157360\pi\)
−0.999988 + 0.00494359i \(0.998426\pi\)
\(224\) 0 0
\(225\) −4.00000 6.70531i −0.266667 0.447021i
\(226\) −2.20391 7.45890i −0.146602 0.496159i
\(227\) −8.79279 5.07652i −0.583598 0.336941i 0.178964 0.983856i \(-0.442725\pi\)
−0.762562 + 0.646915i \(0.776059\pi\)
\(228\) 5.97810 + 9.23294i 0.395909 + 0.611466i
\(229\) −8.18700 + 4.72677i −0.541012 + 0.312354i −0.745489 0.666518i \(-0.767784\pi\)
0.204477 + 0.978871i \(0.434451\pi\)
\(230\) 13.0599 13.9414i 0.861143 0.919271i
\(231\) 0 0
\(232\) 1.03399 1.20565i 0.0678846 0.0791551i
\(233\) 9.52568 5.49966i 0.624048 0.360294i −0.154395 0.988009i \(-0.549343\pi\)
0.778443 + 0.627715i \(0.216010\pi\)
\(234\) −1.74797 1.66102i −0.114269 0.108585i
\(235\) 11.0268 + 18.7880i 0.719308 + 1.22559i
\(236\) 1.46011 + 28.6049i 0.0950449 + 1.86202i
\(237\) 22.7199 1.47582
\(238\) 0 0
\(239\) 2.33205i 0.150848i −0.997152 0.0754238i \(-0.975969\pi\)
0.997152 0.0754238i \(-0.0240310\pi\)
\(240\) 11.2966 + 15.4049i 0.729193 + 0.994382i
\(241\) 13.9245 + 8.03932i 0.896957 + 0.517858i 0.876212 0.481927i \(-0.160063\pi\)
0.0207451 + 0.999785i \(0.493396\pi\)
\(242\) −5.70155 5.41794i −0.366509 0.348278i
\(243\) 12.8196 7.40140i 0.822378 0.474800i
\(244\) −0.564503 + 1.10418i −0.0361386 + 0.0706882i
\(245\) 0 0
\(246\) 6.00000 24.9171i 0.382546 1.58866i
\(247\) −1.40582 2.43495i −0.0894503 0.154932i
\(248\) −6.19174 17.5989i −0.393176 1.11753i
\(249\) −4.12311 + 7.14143i −0.261291 + 0.452570i
\(250\) −4.80398 15.0639i −0.303831 0.952726i
\(251\) 9.17104 0.578871 0.289435 0.957198i \(-0.406532\pi\)
0.289435 + 0.957198i \(0.406532\pi\)
\(252\) 0 0
\(253\) 14.0877i 0.885683i
\(254\) 7.18436 2.12279i 0.450787 0.133196i
\(255\) −12.0401 20.5145i −0.753980 1.28467i
\(256\) −10.6412 11.9484i −0.665078 0.746774i
\(257\) −3.27569 5.67366i −0.204332 0.353913i 0.745588 0.666407i \(-0.232169\pi\)
−0.949920 + 0.312494i \(0.898835\pi\)
\(258\) −3.88884 0.936426i −0.242109 0.0582994i
\(259\) 0 0
\(260\) −2.68314 4.07988i −0.166402 0.253024i
\(261\) 0.438447 + 0.759413i 0.0271392 + 0.0470065i
\(262\) −2.63983 2.50852i −0.163089 0.154977i
\(263\) −11.7915 + 20.4234i −0.727093 + 1.25936i 0.231013 + 0.972951i \(0.425796\pi\)
−0.958107 + 0.286412i \(0.907537\pi\)
\(264\) 13.8465 + 2.59553i 0.852193 + 0.159744i
\(265\) −9.48274 + 16.6987i −0.582520 + 1.02579i
\(266\) 0 0
\(267\) 6.04090 0.369697
\(268\) 0.480881 + 9.42091i 0.0293745 + 0.575474i
\(269\) −0.838532 0.484127i −0.0511262 0.0295177i 0.474219 0.880407i \(-0.342730\pi\)
−0.525345 + 0.850889i \(0.676064\pi\)
\(270\) 9.29708 2.81935i 0.565802 0.171580i
\(271\) −3.29801 5.71233i −0.200340 0.346999i 0.748298 0.663363i \(-0.230871\pi\)
−0.948638 + 0.316364i \(0.897538\pi\)
\(272\) 11.6665 + 16.1498i 0.707387 + 0.979226i
\(273\) 0 0
\(274\) −4.24621 1.02248i −0.256523 0.0617703i
\(275\) −10.1803 5.68539i −0.613892 0.342842i
\(276\) −14.0244 21.6602i −0.844172 1.30379i
\(277\) 16.9631 + 9.79366i 1.01921 + 0.588444i 0.913876 0.405993i \(-0.133074\pi\)
0.105338 + 0.994436i \(0.466407\pi\)
\(278\) 5.45350 1.61137i 0.327079 0.0966433i
\(279\) 10.3000 0.616648
\(280\) 0 0
\(281\) 17.0540 1.01735 0.508677 0.860957i \(-0.330135\pi\)
0.508677 + 0.860957i \(0.330135\pi\)
\(282\) 28.2205 8.33842i 1.68051 0.496546i
\(283\) −6.45972 3.72952i −0.383991 0.221697i 0.295563 0.955323i \(-0.404493\pi\)
−0.679553 + 0.733626i \(0.737826\pi\)
\(284\) −12.9867 20.0574i −0.770618 1.19019i
\(285\) −12.2973 + 0.0877692i −0.728429 + 0.00519900i
\(286\) −3.50102 0.843038i −0.207019 0.0498499i
\(287\) 0 0
\(288\) 8.17252 3.35265i 0.481570 0.197557i
\(289\) −3.90388 6.76172i −0.229640 0.397748i
\(290\) 0.515334 + 1.69937i 0.0302615 + 0.0997902i
\(291\) −27.6377 15.9566i −1.62015 0.935395i
\(292\) 1.01562 + 19.8971i 0.0594350 + 1.16439i
\(293\) 14.4635 0.844965 0.422483 0.906371i \(-0.361159\pi\)
0.422483 + 0.906371i \(0.361159\pi\)
\(294\) 0 0
\(295\) −27.8462 15.8131i −1.62127 0.920674i
\(296\) −2.86594 + 15.2891i −0.166579 + 0.888660i
\(297\) 3.58227 6.20467i 0.207864 0.360031i
\(298\) 2.05034 + 1.94836i 0.118773 + 0.112865i
\(299\) 3.29801 + 5.71233i 0.190729 + 0.330352i
\(300\) −21.3123 + 1.39312i −1.23047 + 0.0804318i
\(301\) 0 0
\(302\) −6.80745 1.63922i −0.391725 0.0943266i
\(303\) −16.1362 27.9488i −0.927002 1.60561i
\(304\) 10.2465 1.04878i 0.587678 0.0601516i
\(305\) −0.701798 1.19576i −0.0401848 0.0684689i
\(306\) −10.5485 + 3.11680i −0.603016 + 0.178176i
\(307\) 13.8987i 0.793243i 0.917982 + 0.396622i \(0.129818\pi\)
−0.917982 + 0.396622i \(0.870182\pi\)
\(308\) 0 0
\(309\) −11.6847 −0.664717
\(310\) 20.3132 + 4.73825i 1.15371 + 0.269114i
\(311\) −0.723002 + 1.25228i −0.0409977 + 0.0710101i −0.885796 0.464075i \(-0.846387\pi\)
0.844798 + 0.535085i \(0.179720\pi\)
\(312\) −6.22217 + 2.18911i −0.352261 + 0.123934i
\(313\) 3.58227 + 6.20467i 0.202482 + 0.350708i 0.949327 0.314289i \(-0.101766\pi\)
−0.746846 + 0.664997i \(0.768433\pi\)
\(314\) 1.28751 5.34683i 0.0726581 0.301739i
\(315\) 0 0
\(316\) 9.68466 18.9435i 0.544805 1.06565i
\(317\) −21.1396 + 12.2050i −1.18732 + 0.685499i −0.957696 0.287781i \(-0.907083\pi\)
−0.229623 + 0.973280i \(0.573749\pi\)
\(318\) 18.8038 + 17.8684i 1.05446 + 1.00201i
\(319\) 1.13412 + 0.654784i 0.0634985 + 0.0366609i
\(320\) 17.6597 2.85238i 0.987206 0.159453i
\(321\) 21.3873i 1.19372i
\(322\) 0 0
\(323\) −12.8255 −0.713628
\(324\) −1.14661 22.4632i −0.0637006 1.24795i
\(325\) 5.45892 0.0779277i 0.302806 0.00432265i
\(326\) 11.7907 + 11.2042i 0.653024 + 0.620541i
\(327\) −8.43723 + 4.87123i −0.466580 + 0.269380i
\(328\) −18.2179 15.6240i −1.00592 0.862689i
\(329\) 0 0
\(330\) −10.7679 + 11.4948i −0.592754 + 0.632766i
\(331\) −7.19296 + 4.15286i −0.395361 + 0.228262i −0.684480 0.729031i \(-0.739971\pi\)
0.289120 + 0.957293i \(0.406637\pi\)
\(332\) 4.19687 + 6.48190i 0.230333 + 0.355741i
\(333\) −7.43743 4.29400i −0.407569 0.235310i
\(334\) −0.269896 0.913433i −0.0147680 0.0499809i
\(335\) −9.17104 5.20798i −0.501067 0.284543i
\(336\) 0 0
\(337\) 30.5866i 1.66616i 0.553153 + 0.833080i \(0.313425\pi\)
−0.553153 + 0.833080i \(0.686575\pi\)
\(338\) −16.0143 + 4.73180i −0.871061 + 0.257376i
\(339\) 5.87302 10.1724i 0.318979 0.552488i
\(340\) −22.2369 + 1.29424i −1.20597 + 0.0701902i
\(341\) 13.3214 7.69113i 0.721395 0.416498i
\(342\) −1.33126 + 5.52855i −0.0719866 + 0.298950i
\(343\) 0 0
\(344\) −2.43845 + 2.84329i −0.131472 + 0.153300i
\(345\) 28.8491 0.205904i 1.55318 0.0110855i
\(346\) −11.3316 10.7680i −0.609191 0.578889i
\(347\) 0.662153 1.14688i 0.0355463 0.0615679i −0.847705 0.530468i \(-0.822016\pi\)
0.883251 + 0.468900i \(0.155350\pi\)
\(348\) 2.39559 0.122280i 0.128417 0.00655491i
\(349\) 18.8307i 1.00799i 0.863708 + 0.503993i \(0.168136\pi\)
−0.863708 + 0.503993i \(0.831864\pi\)
\(350\) 0 0
\(351\) 3.35453i 0.179051i
\(352\) 8.06636 10.4386i 0.429938 0.556379i
\(353\) −8.08427 + 14.0024i −0.430282 + 0.745270i −0.996897 0.0787120i \(-0.974919\pi\)
0.566615 + 0.823982i \(0.308253\pi\)
\(354\) −29.7968 + 31.3566i −1.58368 + 1.66658i
\(355\) 26.7144 0.190668i 1.41785 0.0101196i
\(356\) 2.57501 5.03680i 0.136475 0.266950i
\(357\) 0 0
\(358\) 11.4196 + 2.74983i 0.603547 + 0.145333i
\(359\) −8.96394 + 5.17534i −0.473099 + 0.273144i −0.717536 0.696521i \(-0.754730\pi\)
0.244437 + 0.969665i \(0.421397\pi\)
\(360\) −1.75026 + 9.71980i −0.0922470 + 0.512278i
\(361\) 6.18466 10.7121i 0.325508 0.563797i
\(362\) 1.38193 + 4.67700i 0.0726328 + 0.245818i
\(363\) 11.8782i 0.623446i
\(364\) 0 0
\(365\) −19.3693 10.9993i −1.01384 0.575730i
\(366\) −1.79609 + 0.530698i −0.0938831 + 0.0277400i
\(367\) 20.2462 + 11.6891i 1.05684 + 0.610168i 0.924557 0.381043i \(-0.124435\pi\)
0.132286 + 0.991212i \(0.457768\pi\)
\(368\) −24.0380 + 2.46040i −1.25307 + 0.128257i
\(369\) 11.4750 6.62511i 0.597366 0.344889i
\(370\) −12.6923 11.8898i −0.659843 0.618120i
\(371\) 0 0
\(372\) 12.8255 25.0870i 0.664969 1.30070i
\(373\) −10.1120 + 5.83817i −0.523580 + 0.302289i −0.738398 0.674365i \(-0.764418\pi\)
0.214818 + 0.976654i \(0.431084\pi\)
\(374\) −11.3154 + 11.9077i −0.585105 + 0.615733i
\(375\) 11.4939 20.9305i 0.593542 1.08084i
\(376\) 5.07693 27.0841i 0.261822 1.39676i
\(377\) −0.613157 −0.0315792
\(378\) 0 0
\(379\) 24.9171i 1.27991i 0.768414 + 0.639954i \(0.221046\pi\)
−0.768414 + 0.639954i \(0.778954\pi\)
\(380\) −5.16870 + 10.2907i −0.265149 + 0.527901i
\(381\) 9.79796 + 5.65685i 0.501965 + 0.289809i
\(382\) 19.4504 20.4685i 0.995168 1.04726i
\(383\) −16.1633 + 9.33190i −0.825907 + 0.476838i −0.852449 0.522810i \(-0.824884\pi\)
0.0265422 + 0.999648i \(0.491550\pi\)
\(384\) 2.01051 24.0798i 0.102598 1.22882i
\(385\) 0 0
\(386\) −7.56155 1.82081i −0.384873 0.0926767i
\(387\) −1.03399 1.79092i −0.0525605 0.0910375i
\(388\) −25.0853 + 16.2421i −1.27351 + 0.824569i
\(389\) 5.96543 10.3324i 0.302460 0.523875i −0.674233 0.738519i \(-0.735526\pi\)
0.976692 + 0.214643i \(0.0688589\pi\)
\(390\) 1.67522 7.18179i 0.0848283 0.363664i
\(391\) 30.0881 1.52162
\(392\) 0 0
\(393\) 5.49966i 0.277421i
\(394\) 6.61173 + 22.3767i 0.333094 + 1.12732i
\(395\) 12.0401 + 20.5145i 0.605803 + 1.03220i
\(396\) 3.95842 + 6.11362i 0.198918 + 0.307221i
\(397\) 10.5074 + 18.1994i 0.527353 + 0.913402i 0.999492 + 0.0318775i \(0.0101486\pi\)
−0.472139 + 0.881524i \(0.656518\pi\)
\(398\) −6.07263 + 25.2188i −0.304394 + 1.26410i
\(399\) 0 0
\(400\) −7.92309 + 18.3637i −0.396155 + 0.918184i
\(401\) −6.71922 11.6380i −0.335542 0.581176i 0.648047 0.761601i \(-0.275586\pi\)
−0.983589 + 0.180425i \(0.942253\pi\)
\(402\) −9.81347 + 10.3272i −0.489451 + 0.515072i
\(403\) −3.60109 + 6.23726i −0.179383 + 0.310700i
\(404\) −30.1815 + 1.54058i −1.50158 + 0.0766469i
\(405\) 21.8674 + 12.4179i 1.08660 + 0.617050i
\(406\) 0 0
\(407\) −12.8255 −0.635734
\(408\) −5.54347 + 29.5731i −0.274443 + 1.46408i
\(409\) 26.1720 + 15.1104i 1.29412 + 0.747161i 0.979382 0.202018i \(-0.0647499\pi\)
0.314738 + 0.949178i \(0.398083\pi\)
\(410\) 25.6781 7.78690i 1.26815 0.384567i
\(411\) −3.29801 5.71233i −0.162679 0.281768i
\(412\) −4.98074 + 9.74247i −0.245383 + 0.479977i
\(413\) 0 0
\(414\) 3.12311 12.9698i 0.153492 0.637431i
\(415\) −8.63320 + 0.0616176i −0.423787 + 0.00302469i
\(416\) −0.827039 + 6.12107i −0.0405489 + 0.300110i
\(417\) 7.43743 + 4.29400i 0.364212 + 0.210278i
\(418\) 2.40644 + 8.14434i 0.117703 + 0.398353i
\(419\) −22.3631 −1.09251 −0.546254 0.837619i \(-0.683947\pi\)
−0.546254 + 0.837619i \(0.683947\pi\)
\(420\) 0 0
\(421\) 12.5616 0.612213 0.306106 0.951997i \(-0.400974\pi\)
0.306106 + 0.951997i \(0.400974\pi\)
\(422\) −0.115047 0.389363i −0.00560038 0.0189539i
\(423\) 13.1752 + 7.60669i 0.640599 + 0.369850i
\(424\) 22.9138 8.06162i 1.11279 0.391507i
\(425\) 12.1427 21.7428i 0.589009 1.05468i
\(426\) 8.44804 35.0835i 0.409309 1.69980i
\(427\) 0 0
\(428\) 17.8324 + 9.11662i 0.861960 + 0.440668i
\(429\) −2.71922 4.70983i −0.131285 0.227393i
\(430\) −1.21531 4.00761i −0.0586074 0.193264i
\(431\) 10.0981 + 5.83012i 0.486407 + 0.280827i 0.723083 0.690762i \(-0.242725\pi\)
−0.236676 + 0.971589i \(0.576058\pi\)
\(432\) −11.2128 5.02884i −0.539474 0.241950i
\(433\) −9.00400 −0.432705 −0.216352 0.976315i \(-0.569416\pi\)
−0.216352 + 0.976315i \(0.569416\pi\)
\(434\) 0 0
\(435\) −1.32431 + 2.33205i −0.0634957 + 0.111813i
\(436\) 0.465074 + 9.11124i 0.0222730 + 0.436349i
\(437\) 7.77769 13.4713i 0.372057 0.644422i
\(438\) −20.7261 + 21.8111i −0.990333 + 1.04217i
\(439\) −15.7671 27.3094i −0.752521 1.30340i −0.946597 0.322418i \(-0.895504\pi\)
0.194076 0.980986i \(-0.437829\pi\)
\(440\) 4.99417 + 13.8779i 0.238088 + 0.661603i
\(441\) 0 0
\(442\) 1.80054 7.47740i 0.0856431 0.355663i
\(443\) 8.77102 + 15.1919i 0.416724 + 0.721787i 0.995608 0.0936230i \(-0.0298448\pi\)
−0.578884 + 0.815410i \(0.696512\pi\)
\(444\) −19.7195 + 12.7679i −0.935847 + 0.605938i
\(445\) 3.20129 + 5.45452i 0.151756 + 0.258569i
\(446\) 0.0591675 + 0.200246i 0.00280166 + 0.00948193i
\(447\) 4.27156i 0.202038i
\(448\) 0 0
\(449\) 6.31534 0.298039 0.149020 0.988834i \(-0.452388\pi\)
0.149020 + 0.988834i \(0.452388\pi\)
\(450\) −8.11205 7.49112i −0.382406 0.353135i
\(451\) 9.89404 17.1370i 0.465892 0.806949i
\(452\) −5.97810 9.23294i −0.281186 0.434281i
\(453\) −5.28732 9.15790i −0.248420 0.430276i
\(454\) −13.9596 3.36144i −0.655155 0.157760i
\(455\) 0 0
\(456\) 11.8078 + 10.1265i 0.552949 + 0.474218i
\(457\) −8.93935 + 5.16114i −0.418165 + 0.241428i −0.694292 0.719693i \(-0.744282\pi\)
0.276127 + 0.961121i \(0.410949\pi\)
\(458\) −9.20942 + 9.69150i −0.430328 + 0.452854i
\(459\) 13.2518 + 7.65093i 0.618541 + 0.357115i
\(460\) 12.1256 24.1416i 0.565360 1.12561i
\(461\) 21.1154i 0.983444i −0.870752 0.491722i \(-0.836368\pi\)
0.870752 0.491722i \(-0.163632\pi\)
\(462\) 0 0
\(463\) 24.3266 1.13055 0.565277 0.824901i \(-0.308769\pi\)
0.565277 + 0.824901i \(0.308769\pi\)
\(464\) 0.919195 2.04952i 0.0426726 0.0951467i
\(465\) 15.9448 + 27.1675i 0.739422 + 1.25986i
\(466\) 10.7153 11.2762i 0.496376 0.522359i
\(467\) −20.0903 + 11.5991i −0.929668 + 0.536744i −0.886707 0.462333i \(-0.847013\pi\)
−0.0429615 + 0.999077i \(0.513679\pi\)
\(468\) −3.03632 1.55229i −0.140354 0.0717545i
\(469\) 0 0
\(470\) 22.4841 + 21.0624i 1.03711 + 0.971534i
\(471\) 7.19296 4.15286i 0.331434 0.191353i
\(472\) 13.4433 + 38.2102i 0.618777 + 1.75877i
\(473\) −2.67459 1.54417i −0.122978 0.0710012i
\(474\) 30.8138 9.10469i 1.41533 0.418192i
\(475\) −6.59603 11.0571i −0.302646 0.507335i
\(476\) 0 0
\(477\) 13.4106i 0.614030i
\(478\) −0.934536 3.16284i −0.0427447 0.144665i
\(479\) 15.0441 26.0571i 0.687381 1.19058i −0.285301 0.958438i \(-0.592094\pi\)
0.972682 0.232141i \(-0.0745730\pi\)
\(480\) 21.4943 + 16.3659i 0.981076 + 0.746998i
\(481\) 5.20053 3.00252i 0.237124 0.136903i
\(482\) 22.1067 + 5.32326i 1.00693 + 0.242468i
\(483\) 0 0
\(484\) −9.90388 5.06326i −0.450176 0.230148i
\(485\) −0.238463 33.4110i −0.0108281 1.51711i
\(486\) 14.4206 15.1754i 0.654130 0.688371i
\(487\) 0.580639 1.00570i 0.0263112 0.0455724i −0.852570 0.522613i \(-0.824957\pi\)
0.878881 + 0.477041i \(0.158291\pi\)
\(488\) −0.323120 + 1.72377i −0.0146270 + 0.0780312i
\(489\) 24.5639i 1.11082i
\(490\) 0 0
\(491\) 14.2794i 0.644419i 0.946668 + 0.322210i \(0.104426\pi\)
−0.946668 + 0.322210i \(0.895574\pi\)
\(492\) −1.84770 36.1982i −0.0833009 1.63194i
\(493\) −1.39847 + 2.42223i −0.0629841 + 0.109092i
\(494\) −2.88242 2.73904i −0.129686 0.123235i
\(495\) −8.14269 + 0.0581167i −0.365987 + 0.00261215i
\(496\) −15.4501 21.3873i −0.693729 0.960318i
\(497\) 0 0
\(498\) −2.73013 + 11.3378i −0.122340 + 0.508060i
\(499\) 22.2157 12.8263i 0.994513 0.574182i 0.0878928 0.996130i \(-0.471987\pi\)
0.906620 + 0.421948i \(0.138653\pi\)
\(500\) −12.5521 18.5053i −0.561345 0.827582i
\(501\) 0.719224 1.24573i 0.0321325 0.0556552i
\(502\) 12.4382 3.67517i 0.555144 0.164031i
\(503\) 18.8114i 0.838761i −0.907811 0.419380i \(-0.862247\pi\)
0.907811 0.419380i \(-0.137753\pi\)
\(504\) 0 0
\(505\) 16.6847 29.3810i 0.742458 1.30744i
\(506\) −5.64543 19.1064i −0.250970 0.849382i
\(507\) −21.8401 12.6094i −0.969953 0.560003i
\(508\) 8.89310 5.75806i 0.394567 0.255473i
\(509\) 24.2595 14.0062i 1.07528 0.620814i 0.145662 0.989334i \(-0.453469\pi\)
0.929620 + 0.368520i \(0.120136\pi\)
\(510\) −24.5503 22.9979i −1.08710 1.01836i
\(511\) 0 0
\(512\) −19.2203 11.9407i −0.849426 0.527707i
\(513\) 6.85110 3.95548i 0.302483 0.174639i
\(514\) −6.71628 6.38220i −0.296243 0.281507i
\(515\) −6.19212 10.5504i −0.272857 0.464908i
\(516\) −5.64950 + 0.288373i −0.248705 + 0.0126949i
\(517\) 22.7199 0.999220
\(518\) 0 0
\(519\) 23.6076i 1.03626i
\(520\) −5.27397 4.45811i −0.231279 0.195501i
\(521\) 2.44949 + 1.41421i 0.107314 + 0.0619578i 0.552696 0.833383i \(-0.313599\pi\)
−0.445382 + 0.895340i \(0.646932\pi\)
\(522\) 0.898968 + 0.854251i 0.0393467 + 0.0373896i
\(523\) 18.1408 10.4736i 0.793243 0.457979i −0.0478601 0.998854i \(-0.515240\pi\)
0.841103 + 0.540875i \(0.181907\pi\)
\(524\) −4.58552 2.34430i −0.200319 0.102411i
\(525\) 0 0
\(526\) −7.80776 + 32.4245i −0.340435 + 1.41378i
\(527\) 16.4265 + 28.4516i 0.715552 + 1.23937i
\(528\) 19.8194 2.02861i 0.862529 0.0882839i
\(529\) −6.74621 + 11.6848i −0.293314 + 0.508034i
\(530\) −6.16918 + 26.4477i −0.267972 + 1.14881i
\(531\) −22.3631 −0.970476
\(532\) 0 0
\(533\) 9.26504i 0.401313i
\(534\) 8.19296 2.42080i 0.354544 0.104758i
\(535\) −19.3113 + 11.3339i −0.834899 + 0.490007i
\(536\) 4.42749 + 12.5844i 0.191239 + 0.543563i
\(537\) 8.86958 + 15.3626i 0.382751 + 0.662944i
\(538\) −1.33126 0.320566i −0.0573949 0.0138206i
\(539\) 0 0
\(540\) 11.4793 7.54941i 0.493992 0.324875i
\(541\) 9.71922 + 16.8342i 0.417862 + 0.723758i 0.995724 0.0923761i \(-0.0294462\pi\)
−0.577862 + 0.816134i \(0.696113\pi\)
\(542\) −6.76206 6.42570i −0.290455 0.276008i
\(543\) −3.68260 + 6.37845i −0.158036 + 0.273726i
\(544\) 22.2945 + 17.2280i 0.955870 + 0.738642i
\(545\) −8.86958 5.03680i −0.379931 0.215753i
\(546\) 0 0
\(547\) 33.4337 1.42952 0.714762 0.699368i \(-0.246535\pi\)
0.714762 + 0.699368i \(0.246535\pi\)
\(548\) −6.16866 + 0.314873i −0.263512 + 0.0134507i
\(549\) −0.838532 0.484127i −0.0357877 0.0206620i
\(550\) −16.0853 3.63120i −0.685879 0.154835i
\(551\) 0.723002 + 1.25228i 0.0308009 + 0.0533488i
\(552\) −27.7006 23.7565i −1.17902 1.01114i
\(553\) 0 0
\(554\) 26.9309 + 6.48490i 1.14418 + 0.275517i
\(555\) −0.187456 26.2643i −0.00795705 1.11486i
\(556\) 6.75057 4.37083i 0.286288 0.185364i
\(557\) −7.43743 4.29400i −0.315134 0.181943i 0.334088 0.942542i \(-0.391572\pi\)
−0.649222 + 0.760599i \(0.724905\pi\)
\(558\) 13.9694 4.12760i 0.591373 0.174735i
\(559\) 1.44600 0.0611595
\(560\) 0 0
\(561\) −24.8078 −1.04738
\(562\) 23.1294 6.83414i 0.975656 0.288281i
\(563\) −5.87645 3.39277i −0.247663 0.142988i 0.371031 0.928621i \(-0.379004\pi\)
−0.618694 + 0.785632i \(0.712338\pi\)
\(564\) 34.9325 22.6179i 1.47092 0.952387i
\(565\) 12.2973 0.0877692i 0.517351 0.00369248i
\(566\) −10.2555 2.46952i −0.431073 0.103801i
\(567\) 0 0
\(568\) −25.6509 21.9986i −1.07629 0.923042i
\(569\) 21.9309 + 37.9854i 0.919390 + 1.59243i 0.800344 + 0.599541i \(0.204650\pi\)
0.119046 + 0.992889i \(0.462016\pi\)
\(570\) −16.6430 + 5.04700i −0.697099 + 0.211396i
\(571\) 13.5004 + 7.79447i 0.564975 + 0.326188i 0.755140 0.655564i \(-0.227569\pi\)
−0.190165 + 0.981752i \(0.560902\pi\)
\(572\) −5.08608 + 0.259614i −0.212660 + 0.0108550i
\(573\) 42.6429 1.78143
\(574\) 0 0
\(575\) 15.4741 + 25.9396i 0.645313 + 1.08176i
\(576\) 9.74043 7.82206i 0.405851 0.325919i
\(577\) −18.0457 + 31.2561i −0.751254 + 1.30121i 0.195961 + 0.980612i \(0.437217\pi\)
−0.947215 + 0.320599i \(0.896116\pi\)
\(578\) −8.00430 7.60615i −0.332935 0.316374i
\(579\) −5.87302 10.1724i −0.244075 0.422750i
\(580\) 1.37992 + 2.09825i 0.0572980 + 0.0871251i
\(581\) 0 0
\(582\) −43.8780 10.5657i −1.81880 0.437964i
\(583\) 10.0138 + 17.3444i 0.414730 + 0.718333i
\(584\) 9.35091 + 26.5784i 0.386943 + 1.09982i
\(585\) 3.28813 1.92982i 0.135947 0.0797884i
\(586\) 19.6161 5.79604i 0.810333 0.239432i
\(587\) 2.80928i 0.115951i −0.998318 0.0579757i \(-0.981535\pi\)
0.998318 0.0579757i \(-0.0184646\pi\)
\(588\) 0 0
\(589\) 16.9848 0.699848
\(590\) −44.1032 10.2875i −1.81570 0.423530i
\(591\) −17.6191 + 30.5171i −0.724752 + 1.25531i
\(592\) 2.23996 + 21.8843i 0.0920617 + 0.899439i
\(593\) 3.10353 + 5.37547i 0.127447 + 0.220744i 0.922687 0.385551i \(-0.125989\pi\)
−0.795240 + 0.606295i \(0.792655\pi\)
\(594\) 2.37201 9.85061i 0.0973247 0.404176i
\(595\) 0 0
\(596\) 3.56155 + 1.82081i 0.145887 + 0.0745832i
\(597\) −33.9262 + 19.5873i −1.38851 + 0.801655i
\(598\) 6.76206 + 6.42570i 0.276521 + 0.262767i
\(599\) −15.5200 8.96050i −0.634131 0.366116i 0.148219 0.988955i \(-0.452646\pi\)
−0.782350 + 0.622839i \(0.785979\pi\)
\(600\) −28.3465 + 10.4300i −1.15724 + 0.425804i
\(601\) 42.2309i 1.72263i 0.508068 + 0.861317i \(0.330360\pi\)
−0.508068 + 0.861317i \(0.669640\pi\)
\(602\) 0 0
\(603\) −7.36520 −0.299934
\(604\) −9.88949 + 0.504799i −0.402398 + 0.0205400i
\(605\) 10.7252 6.29471i 0.436043 0.255916i
\(606\) −33.0848 31.4391i −1.34398 1.27713i
\(607\) 38.9423 22.4833i 1.58062 0.912570i 0.585848 0.810421i \(-0.300761\pi\)
0.994769 0.102149i \(-0.0325719\pi\)
\(608\) 13.4765 5.52855i 0.546546 0.224212i
\(609\) 0 0
\(610\) −1.43100 1.34051i −0.0579393 0.0542757i
\(611\) −9.21257 + 5.31888i −0.372701 + 0.215179i
\(612\) −13.0573 + 8.45431i −0.527812 + 0.341745i
\(613\) −41.3637 23.8813i −1.67066 0.964557i −0.967268 0.253757i \(-0.918334\pi\)
−0.703394 0.710800i \(-0.748333\pi\)
\(614\) 5.56973 + 18.8502i 0.224776 + 0.760731i
\(615\) 35.2381 + 20.0108i 1.42094 + 0.806913i
\(616\) 0 0
\(617\) 14.7647i 0.594404i −0.954815 0.297202i \(-0.903946\pi\)
0.954815 0.297202i \(-0.0960535\pi\)
\(618\) −15.8473 + 4.68246i −0.637472 + 0.188356i
\(619\) 13.0336 22.5748i 0.523863 0.907357i −0.475751 0.879580i \(-0.657824\pi\)
0.999614 0.0277772i \(-0.00884289\pi\)
\(620\) 29.4485 1.71398i 1.18268 0.0688349i
\(621\) −16.0725 + 9.27944i −0.644965 + 0.372371i
\(622\) −0.478739 + 1.98813i −0.0191957 + 0.0797168i
\(623\) 0 0
\(624\) −7.56155 + 5.46242i −0.302704 + 0.218672i
\(625\) 24.9898 0.713619i 0.999593 0.0285448i
\(626\) 7.34488 + 6.97953i 0.293560 + 0.278958i
\(627\) −6.41273 + 11.1072i −0.256100 + 0.443578i
\(628\) −0.396488 7.76757i −0.0158216 0.309960i
\(629\) 27.3924i 1.09220i
\(630\) 0 0
\(631\) 33.9582i 1.35186i −0.736968 0.675928i \(-0.763743\pi\)
0.736968 0.675928i \(-0.236257\pi\)
\(632\) 5.54347 29.5731i 0.220508 1.17635i
\(633\) 0.306579 0.531010i 0.0121854 0.0211057i
\(634\) −23.7796 + 25.0244i −0.944409 + 0.993845i
\(635\) 0.0845386 + 11.8447i 0.00335481 + 0.470041i
\(636\) 32.6631 + 16.6987i 1.29518 + 0.662147i
\(637\) 0 0
\(638\) 1.80054 + 0.433567i 0.0712842 + 0.0171651i
\(639\) 16.1569 9.32819i 0.639157 0.369018i
\(640\) 22.8079 10.9454i 0.901560 0.432655i
\(641\) −19.9309 + 34.5213i −0.787222 + 1.36351i 0.140441 + 0.990089i \(0.455148\pi\)
−0.927663 + 0.373419i \(0.878185\pi\)
\(642\) 8.57066 + 29.0065i 0.338257 + 1.14480i
\(643\) 36.8341i 1.45260i 0.687380 + 0.726298i \(0.258761\pi\)
−0.687380 + 0.726298i \(0.741239\pi\)
\(644\) 0 0
\(645\) 3.12311 5.49966i 0.122972 0.216549i
\(646\) −17.3945 + 5.13962i −0.684378 + 0.202216i
\(647\) 31.6716 + 18.2856i 1.24514 + 0.718881i 0.970136 0.242563i \(-0.0779881\pi\)
0.275002 + 0.961444i \(0.411321\pi\)
\(648\) −10.5569 30.0062i −0.414714 1.17875i
\(649\) −28.9230 + 16.6987i −1.13533 + 0.655481i
\(650\) 7.37243 2.29328i 0.289170 0.0899497i
\(651\) 0 0
\(652\) 20.4810 + 10.4707i 0.802097 + 0.410064i
\(653\) 14.2885 8.24948i 0.559153 0.322827i −0.193652 0.981070i \(-0.562033\pi\)
0.752806 + 0.658243i \(0.228700\pi\)
\(654\) −9.49090 + 9.98771i −0.371123 + 0.390550i
\(655\) 4.96581 2.91447i 0.194030 0.113878i
\(656\) −30.9691 13.8894i −1.20914 0.542290i
\(657\) −15.5554 −0.606873
\(658\) 0 0
\(659\) 42.8381i 1.66874i −0.551207 0.834368i \(-0.685833\pi\)
0.551207 0.834368i \(-0.314167\pi\)
\(660\) −9.99761 + 19.9049i −0.389156 + 0.774795i
\(661\) 1.30941 + 0.755989i 0.0509302 + 0.0294046i 0.525249 0.850949i \(-0.323972\pi\)
−0.474319 + 0.880353i \(0.657306\pi\)
\(662\) −8.09124 + 8.51478i −0.314475 + 0.330936i
\(663\) 10.0592 5.80766i 0.390666 0.225551i
\(664\) 8.28954 + 7.10923i 0.321696 + 0.275892i
\(665\) 0 0
\(666\) −11.8078 2.84329i −0.457542 0.110175i
\(667\) −1.69614 2.93780i −0.0656748 0.113752i
\(668\) −0.732091 1.13069i −0.0283255 0.0437476i
\(669\) −0.157671 + 0.273094i −0.00609590 + 0.0105584i
\(670\) −14.5252 3.38816i −0.561159 0.130896i
\(671\) −1.44600 −0.0558224
\(672\) 0 0
\(673\) 14.0877i 0.543039i 0.962433 + 0.271520i \(0.0875262\pi\)
−0.962433 + 0.271520i \(0.912474\pi\)
\(674\) 12.2572 + 41.4831i 0.472128 + 1.59787i
\(675\) 0.219261 + 15.3595i 0.00843935 + 0.591186i
\(676\) −19.8231 + 12.8350i −0.762428 + 0.493653i
\(677\) −23.2659 40.2976i −0.894179 1.54876i −0.834817 0.550528i \(-0.814427\pi\)
−0.0593624 0.998236i \(-0.518907\pi\)
\(678\) 3.88884 16.1498i 0.149350 0.620230i
\(679\) 0 0
\(680\) −29.6401 + 10.6664i −1.13665 + 0.409040i
\(681\) −10.8423 18.7795i −0.415479 0.719631i
\(682\) 14.9850 15.7695i 0.573807 0.603844i
\(683\) 10.0953 17.4856i 0.386287 0.669069i −0.605660 0.795724i \(-0.707091\pi\)
0.991947 + 0.126655i \(0.0404241\pi\)
\(684\) 0.409964 + 8.03158i 0.0156754 + 0.307095i
\(685\) 3.41011 6.00505i 0.130293 0.229441i
\(686\) 0 0
\(687\) −20.1907 −0.770322
\(688\) −2.16773 + 4.83338i −0.0826440 + 0.184271i
\(689\) −8.12090 4.68860i −0.309381 0.178621i
\(690\) 39.0440 11.8401i 1.48638 0.450745i
\(691\) 18.9066 + 32.7472i 0.719240 + 1.24576i 0.961301 + 0.275500i \(0.0888433\pi\)
−0.242061 + 0.970261i \(0.577823\pi\)
\(692\) −19.6836 10.0630i −0.748258 0.382539i
\(693\) 0 0
\(694\) 0.438447 1.82081i 0.0166432 0.0691169i
\(695\) 0.0641715 + 8.99104i 0.00243417 + 0.341049i
\(696\) 3.20001 1.12584i 0.121296 0.0426749i
\(697\) 36.6008 + 21.1315i 1.38635 + 0.800412i
\(698\) 7.54616 + 25.5392i 0.285626 + 0.966672i
\(699\) 23.4921 0.888553
\(700\) 0 0
\(701\) −30.6695 −1.15837 −0.579186 0.815196i \(-0.696629\pi\)
−0.579186 + 0.815196i \(0.696629\pi\)
\(702\) 1.34428 + 4.54957i 0.0507366 + 0.171713i
\(703\) −12.2644 7.08084i −0.462559 0.267059i
\(704\) 6.75686 17.3898i 0.254659 0.655403i
\(705\) 0.332072 + 46.5264i 0.0125065 + 1.75229i
\(706\) −5.35302 + 22.2303i −0.201464 + 0.836650i
\(707\) 0 0
\(708\) −27.8462 + 54.4679i −1.04652 + 2.04703i
\(709\) −15.4039 26.6803i −0.578505 1.00200i −0.995651 0.0931605i \(-0.970303\pi\)
0.417146 0.908839i \(-0.363030\pi\)
\(710\) 36.1549 10.9640i 1.35687 0.411472i
\(711\) 14.3859 + 8.30571i 0.539514 + 0.311489i
\(712\) 1.47393 7.86305i 0.0552379 0.294680i
\(713\) −39.8459 −1.49224
\(714\) 0 0
\(715\) 2.81164 4.95118i 0.105150 0.185164i
\(716\) 16.5898 0.846811i 0.619991 0.0316468i
\(717\) 2.49037 4.31345i 0.0930046 0.161089i
\(718\) −10.0834 + 10.6112i −0.376309 + 0.396007i
\(719\) −13.5981 23.5525i −0.507122 0.878361i −0.999966 0.00824342i \(-0.997376\pi\)
0.492844 0.870118i \(-0.335957\pi\)
\(720\) 1.52128 + 13.8839i 0.0566948 + 0.517421i
\(721\) 0 0
\(722\) 4.09519 17.0067i 0.152407 0.632926i
\(723\) 17.1702 + 29.7397i 0.638567 + 1.10603i
\(724\) 3.74849 + 5.78939i 0.139311 + 0.215161i
\(725\) −2.80748 + 0.0400776i −0.104267 + 0.00148844i
\(726\) −4.76004 16.1099i −0.176662 0.597893i
\(727\) 32.8255i 1.21743i −0.793389 0.608715i \(-0.791685\pi\)
0.793389 0.608715i \(-0.208315\pi\)
\(728\) 0 0
\(729\) −2.12311 −0.0786335
\(730\) −30.6774 7.15582i −1.13542 0.264849i
\(731\) 3.29801 5.71233i 0.121981 0.211278i
\(732\) −2.22327 + 1.43952i −0.0821746 + 0.0532060i
\(733\) 12.2125 + 21.1526i 0.451078 + 0.781290i 0.998453 0.0555970i \(-0.0177062\pi\)
−0.547375 + 0.836887i \(0.684373\pi\)
\(734\) 32.1431 + 7.74001i 1.18642 + 0.285689i
\(735\) 0 0
\(736\) −31.6155 + 12.9698i −1.16536 + 0.478073i
\(737\) −9.52568 + 5.49966i −0.350883 + 0.202582i
\(738\) 12.9081 13.5837i 0.475152 0.500025i
\(739\) −42.9091 24.7736i −1.57844 0.911311i −0.995078 0.0990973i \(-0.968404\pi\)
−0.583360 0.812214i \(-0.698262\pi\)
\(740\) −21.9786 11.0392i −0.807951 0.405809i
\(741\) 6.00505i 0.220601i
\(742\) 0 0
\(743\) 9.43318 0.346070 0.173035 0.984916i \(-0.444643\pi\)
0.173035 + 0.984916i \(0.444643\pi\)
\(744\) 7.34126 39.1638i 0.269144 1.43581i
\(745\) −3.85693 + 2.26365i −0.141307 + 0.0829338i
\(746\) −11.3748 + 11.9703i −0.416463 + 0.438263i
\(747\) −5.22138 + 3.01457i −0.191040 + 0.110297i
\(748\) −10.5746 + 20.6843i −0.386647 + 0.756293i
\(749\) 0 0
\(750\) 7.20097 32.9929i 0.262942 1.20473i
\(751\) −32.5624 + 18.7999i −1.18822 + 0.686019i −0.957902 0.287096i \(-0.907310\pi\)
−0.230318 + 0.973115i \(0.573977\pi\)
\(752\) −3.96802 38.7673i −0.144699 1.41370i
\(753\) 16.9631 + 9.79366i 0.618170 + 0.356901i
\(754\) −0.831593 + 0.245714i −0.0302848 + 0.00894838i
\(755\) 5.46702 9.62719i 0.198965 0.350369i
\(756\) 0 0
\(757\) 25.7640i 0.936409i 0.883620 + 0.468204i \(0.155099\pi\)
−0.883620 + 0.468204i \(0.844901\pi\)
\(758\) 9.98520 + 33.7938i 0.362679 + 1.22745i
\(759\) 15.0441 26.0571i 0.546065 0.945812i
\(760\) −2.88620 + 16.0280i −0.104693 + 0.581397i
\(761\) 37.3454 21.5614i 1.35377 0.781600i 0.364996 0.931009i \(-0.381070\pi\)
0.988775 + 0.149409i \(0.0477372\pi\)
\(762\) 15.5554 + 3.74571i 0.563512 + 0.135693i
\(763\) 0 0
\(764\) 18.1771 35.5549i 0.657624 1.28633i
\(765\) −0.124124 17.3910i −0.00448773 0.628773i
\(766\) −18.1819 + 19.1336i −0.656937 + 0.691325i
\(767\) 7.81855 13.5421i 0.282312 0.488978i
\(768\) −6.92289 33.4639i −0.249808 1.20752i
\(769\) 14.4903i 0.522535i 0.965266 + 0.261267i \(0.0841404\pi\)
−0.965266 + 0.261267i \(0.915860\pi\)
\(770\) 0 0
\(771\) 13.9923i 0.503920i
\(772\) −10.9850 + 0.560719i −0.395359 + 0.0201807i
\(773\) 7.84490 13.5878i 0.282161 0.488718i −0.689756 0.724042i \(-0.742282\pi\)
0.971917 + 0.235325i \(0.0756153\pi\)
\(774\) −2.12003 2.01458i −0.0762029 0.0724124i
\(775\) −16.0807 + 28.7941i −0.577636 + 1.03431i
\(776\) −27.5131 + 32.0810i −0.987663 + 1.15164i
\(777\) 0 0
\(778\) 3.95003 16.4039i 0.141616 0.588109i
\(779\) 18.9224 10.9248i 0.677965 0.391423i
\(780\) −0.605982 10.4116i −0.0216976 0.372796i
\(781\) 13.9309 24.1290i 0.498486 0.863403i
\(782\) 40.8070 12.0574i 1.45925 0.431172i
\(783\) 1.72521i 0.0616538i
\(784\) 0 0
\(785\) 7.56155 + 4.29400i 0.269883 + 0.153259i
\(786\) −2.20391 7.45890i −0.0786109 0.266050i
\(787\) −28.4557 16.4289i −1.01434 0.585628i −0.101878 0.994797i \(-0.532485\pi\)
−0.912459 + 0.409169i \(0.865819\pi\)
\(788\) 17.9343 + 27.6988i 0.638883 + 0.986729i
\(789\) −43.6199 + 25.1840i −1.55291 + 0.896573i
\(790\) 24.5503 + 22.9979i 0.873460 + 0.818228i
\(791\) 0 0
\(792\) 7.81855 + 6.70531i 0.277820 + 0.238263i
\(793\) 0.586333 0.338519i 0.0208213 0.0120212i
\(794\) 21.5438 + 20.4722i 0.764562 + 0.726531i
\(795\) −35.3720 + 20.7600i −1.25452 + 0.736283i
\(796\) 1.87007 + 36.6365i 0.0662829 + 1.29854i
\(797\) −2.04937 −0.0725925 −0.0362963 0.999341i \(-0.511556\pi\)
−0.0362963 + 0.999341i \(0.511556\pi\)
\(798\) 0 0
\(799\) 48.5247i 1.71668i
\(800\) −3.38670 + 28.0808i −0.119738 + 0.992806i
\(801\) 3.82501 + 2.20837i 0.135150 + 0.0780289i
\(802\) −13.7767 13.0914i −0.486473 0.462275i
\(803\) −20.1183 + 11.6153i −0.709960 + 0.409896i
\(804\) −9.17104 + 17.9388i −0.323438 + 0.632653i
\(805\) 0 0
\(806\) −2.38447 + 9.90237i −0.0839894 + 0.348796i
\(807\) −1.03399 1.79092i −0.0363981 0.0630433i
\(808\) −40.3162 + 14.1842i −1.41832 + 0.498999i
\(809\) 13.5270 23.4294i 0.475584 0.823735i −0.524025 0.851703i \(-0.675570\pi\)
0.999609 + 0.0279678i \(0.00890360\pi\)
\(810\) 34.6339 + 8.07870i 1.21691 + 0.283857i
\(811\) −9.17104 −0.322039 −0.161019 0.986951i \(-0.551478\pi\)
−0.161019 + 0.986951i \(0.551478\pi\)
\(812\) 0 0
\(813\) 14.0877i 0.494076i
\(814\) −17.3945 + 5.13962i −0.609677 + 0.180144i
\(815\) −22.1795 + 13.0173i −0.776916 + 0.455976i
\(816\) 4.33266 + 42.3299i 0.151673 + 1.48184i
\(817\) −1.70505 2.95324i −0.0596522 0.103321i
\(818\) 41.5510 + 10.0054i 1.45280 + 0.349830i
\(819\) 0 0
\(820\) 31.7054 20.8511i 1.10720 0.728152i
\(821\) 17.9654 + 31.1170i 0.626998 + 1.08599i 0.988151 + 0.153486i \(0.0490499\pi\)
−0.361153 + 0.932507i \(0.617617\pi\)
\(822\) −6.76206 6.42570i −0.235854 0.224122i
\(823\) −11.4196 + 19.7794i −0.398064 + 0.689466i −0.993487 0.113946i \(-0.963651\pi\)
0.595423 + 0.803412i \(0.296984\pi\)
\(824\) −2.85096 + 15.2092i −0.0993180 + 0.529837i
\(825\) −12.7584 21.3873i −0.444191 0.744610i
\(826\) 0 0
\(827\) 4.71659 0.164012 0.0820059 0.996632i \(-0.473867\pi\)
0.0820059 + 0.996632i \(0.473867\pi\)
\(828\) −0.961762 18.8418i −0.0334235 0.654799i
\(829\) −37.5809 21.6973i −1.30524 0.753579i −0.323940 0.946077i \(-0.605008\pi\)
−0.981297 + 0.192498i \(0.938341\pi\)
\(830\) −11.6841 + 3.54321i −0.405560 + 0.122986i
\(831\) 20.9171 + 36.2295i 0.725606 + 1.25679i
\(832\) 1.33126 + 8.63312i 0.0461533 + 0.299300i
\(833\) 0 0
\(834\) 11.8078 + 2.84329i 0.408869 + 0.0984550i
\(835\) 1.50595 0.0107484i 0.0521157 0.000371964i
\(836\) 6.52746 + 10.0814i 0.225757 + 0.348673i
\(837\) −17.5494 10.1322i −0.606598 0.350219i
\(838\) −30.3299 + 8.96170i −1.04773 + 0.309577i
\(839\) −32.3461 −1.11671 −0.558356 0.829601i \(-0.688568\pi\)
−0.558356 + 0.829601i \(0.688568\pi\)
\(840\) 0 0
\(841\) −28.6847 −0.989126
\(842\) 17.0366 5.03387i 0.587120 0.173479i
\(843\) 31.5437 + 18.2118i 1.08642 + 0.627246i
\(844\) −0.312064 0.481970i −0.0107417 0.0165901i
\(845\) −0.188441 26.4023i −0.00648255 0.908266i
\(846\) 20.9171 + 5.03680i 0.719144 + 0.173169i
\(847\) 0 0
\(848\) 27.8462 20.1159i 0.956242 0.690784i
\(849\) −7.96543 13.7965i −0.273373 0.473496i
\(850\) 7.75545 34.3546i 0.266010 1.17835i
\(851\) 28.7718 + 16.6114i 0.986286 + 0.569432i
\(852\) −2.60158 50.9674i −0.0891286 1.74611i
\(853\) 2.93137 0.100368 0.0501840 0.998740i \(-0.484019\pi\)
0.0501840 + 0.998740i \(0.484019\pi\)
\(854\) 0 0
\(855\) −7.81855 4.43994i −0.267389 0.151843i
\(856\) 27.8385 + 5.21833i 0.951500 + 0.178359i
\(857\) 2.79695 4.84446i 0.0955419 0.165483i −0.814293 0.580454i \(-0.802875\pi\)
0.909835 + 0.414971i \(0.136208\pi\)
\(858\) −5.57534 5.29801i −0.190339 0.180871i
\(859\) −4.58552 7.94235i −0.156456 0.270990i 0.777132 0.629337i \(-0.216674\pi\)
−0.933588 + 0.358348i \(0.883340\pi\)
\(860\) −3.25425 4.94829i −0.110969 0.168735i
\(861\) 0 0
\(862\) 16.0318 + 3.86043i 0.546046 + 0.131487i
\(863\) −15.3926 26.6607i −0.523969 0.907541i −0.999611 0.0279016i \(-0.991118\pi\)
0.475642 0.879639i \(-0.342216\pi\)
\(864\) −17.2225 2.32699i −0.585922 0.0791659i
\(865\) 21.3160 12.5105i 0.724766 0.425370i
\(866\) −12.2117 + 3.60823i −0.414969 + 0.122613i
\(867\) 16.6757i 0.566335i
\(868\) 0 0
\(869\) 24.8078 0.841546
\(870\) −0.861554 + 3.69353i −0.0292094 + 0.125223i
\(871\) 2.57501 4.46005i 0.0872509 0.151123i
\(872\) 4.28196 + 12.1707i 0.145005 + 0.412153i
\(873\) −11.6665 20.2070i −0.394852 0.683904i
\(874\) 5.15002 21.3873i 0.174202 0.723436i
\(875\) 0 0
\(876\) −19.3693 + 37.8869i −0.654429 + 1.28008i
\(877\) 4.76284 2.74983i 0.160830 0.0928551i −0.417425 0.908711i \(-0.637067\pi\)
0.578255 + 0.815856i \(0.303734\pi\)
\(878\) −32.3279 30.7199i −1.09101 1.03674i
\(879\) 26.7522 + 15.4454i 0.902330 + 0.520960i
\(880\) 12.3347 + 16.8205i 0.415803 + 0.567020i
\(881\) 30.7645i 1.03648i −0.855234 0.518241i \(-0.826587\pi\)
0.855234 0.518241i \(-0.173413\pi\)
\(882\) 0 0
\(883\) −48.4902 −1.63183 −0.815913 0.578175i \(-0.803765\pi\)
−0.815913 + 0.578175i \(0.803765\pi\)
\(884\) −0.554478 10.8628i −0.0186491 0.365354i
\(885\) −34.6188 58.9852i −1.16370 1.98276i
\(886\) 17.9836 + 17.0891i 0.604171 + 0.574119i
\(887\) 27.5169 15.8869i 0.923927 0.533429i 0.0390409 0.999238i \(-0.487570\pi\)
0.884886 + 0.465808i \(0.154236\pi\)
\(888\) −21.6280 + 25.2188i −0.725788 + 0.846287i
\(889\) 0 0
\(890\) 6.52757 + 6.11481i 0.218804 + 0.204969i
\(891\) 22.7130 13.1134i 0.760914 0.439314i
\(892\) 0.160492 + 0.247873i 0.00537366 + 0.00829940i
\(893\) 21.7260 + 12.5435i 0.727031 + 0.419752i
\(894\) 1.71177 + 5.79330i 0.0572501 + 0.193757i
\(895\) −9.17104 + 16.1498i −0.306554 + 0.539829i
\(896\) 0 0
\(897\) 14.0877i 0.470373i
\(898\) 8.56517 2.53079i 0.285824 0.0844534i
\(899\) 1.85201 3.20777i 0.0617680 0.106985i
\(900\) −14.0039 6.90903i −0.466798 0.230301i
\(901\) −37.0439 + 21.3873i −1.23411 + 0.712514i
\(902\) 6.55137 27.2069i 0.218137 0.905891i
\(903\) 0 0
\(904\) −11.8078 10.1265i −0.392720 0.336803i
\(905\) −7.71085 + 0.0550345i −0.256317 + 0.00182941i
\(906\) −10.8408 10.3016i −0.360162 0.342247i
\(907\) 26.8937 46.5813i 0.892991 1.54671i 0.0567196 0.998390i \(-0.481936\pi\)
0.836271 0.548316i \(-0.184731\pi\)
\(908\) −20.2797 + 1.03516i −0.673005 + 0.0343529i
\(909\) 23.5957i 0.782619i
\(910\) 0 0
\(911\) 56.0950i 1.85851i 0.369438 + 0.929255i \(0.379550\pi\)
−0.369438 + 0.929255i \(0.620450\pi\)
\(912\) 20.0723 + 9.00228i 0.664661 + 0.298095i
\(913\) −4.50200 + 7.79769i −0.148994 + 0.258066i
\(914\) −10.0557 + 10.5821i −0.332614 + 0.350025i
\(915\) −0.0211347 2.96116i −0.000698690 0.0978931i
\(916\) −8.60654 + 16.8346i −0.284368 + 0.556232i
\(917\) 0 0
\(918\) 21.0387 + 5.06609i 0.694382 + 0.167206i
\(919\) −33.9452 + 19.5983i −1.11975 + 0.646487i −0.941337 0.337469i \(-0.890429\pi\)
−0.178411 + 0.983956i \(0.557096\pi\)
\(920\) 6.77092 37.6012i 0.223231 1.23968i
\(921\) −14.8423 + 25.7077i −0.489071 + 0.847096i
\(922\) −8.46172 28.6378i −0.278672 0.943135i
\(923\) 13.0452i 0.429389i
\(924\) 0 0
\(925\) 23.6155 14.0877i 0.776474 0.463199i
\(926\) 32.9929 9.74855i 1.08422 0.320357i
\(927\) −7.39856 4.27156i −0.243000 0.140296i
\(928\) 0.425339 3.14802i 0.0139624 0.103339i
\(929\) 25.0980 14.4903i 0.823438 0.475412i −0.0281624 0.999603i \(-0.508966\pi\)
0.851601 + 0.524191i \(0.175632\pi\)
\(930\) 32.5121 + 30.4563i 1.06611 + 0.998700i
\(931\) 0 0
\(932\) 10.0138 19.5873i 0.328013 0.641604i
\(933\) −2.67459 + 1.54417i −0.0875620 + 0.0505540i
\(934\) −22.5992 + 23.7822i −0.739470 + 0.778178i
\(935\) −13.1465 22.3997i −0.429937 0.732549i
\(936\) −4.74006 0.888525i −0.154934 0.0290423i
\(937\) −49.4631 −1.61589 −0.807944 0.589259i \(-0.799420\pi\)
−0.807944 + 0.589259i \(0.799420\pi\)
\(938\) 0 0
\(939\) 15.3019i 0.499357i
\(940\) 38.9345 + 19.5556i 1.26990 + 0.637834i
\(941\) −7.58391 4.37857i −0.247228 0.142737i 0.371266 0.928527i \(-0.378924\pi\)
−0.618494 + 0.785789i \(0.712257\pi\)
\(942\) 8.09124 8.51478i 0.263627 0.277427i
\(943\) −44.3913 + 25.6294i −1.44558 + 0.834606i
\(944\) 33.5446 + 46.4354i 1.09179 + 1.51134i
\(945\) 0 0
\(946\) −4.24621 1.02248i −0.138056 0.0332437i
\(947\) −26.3131 45.5756i −0.855060 1.48101i −0.876589 0.481239i \(-0.840187\pi\)
0.0215294 0.999768i \(-0.493146\pi\)
\(948\) 38.1427 24.6964i 1.23882 0.802103i
\(949\) 5.43845 9.41967i 0.176539 0.305775i
\(950\) −13.3768 12.3529i −0.434002 0.400781i
\(951\) −52.1342 −1.69057
\(952\) 0 0
\(953\) 31.2637i 1.01273i −0.862319 0.506365i \(-0.830989\pi\)
0.862319 0.506365i \(-0.169011\pi\)
\(954\) 5.37412 + 18.1881i 0.173994 + 0.588863i
\(955\) 22.5980 + 38.5036i 0.731254 + 1.24595i
\(956\) −2.53493 3.91509i −0.0819854 0.126623i
\(957\) 1.39847 + 2.42223i 0.0452062 + 0.0782995i
\(958\) 9.96148 41.3686i 0.321841 1.33656i
\(959\) 0 0
\(960\) 35.7100 + 13.5827i 1.15254 + 0.438380i
\(961\) −6.25379 10.8319i −0.201735 0.349415i
\(962\) 5.84999 6.15621i 0.188611 0.198484i
\(963\) −7.81855 + 13.5421i −0.251949 + 0.436389i
\(964\) 32.1155 1.63930i 1.03437 0.0527984i
\(965\) 6.07263 10.6937i 0.195485 0.344241i
\(966\) 0 0
\(967\) 16.2177 0.521527 0.260764 0.965403i \(-0.416026\pi\)
0.260764 + 0.965403i \(0.416026\pi\)
\(968\) −15.4612 2.89820i −0.496940 0.0931516i
\(969\) −23.7225 13.6962i −0.762076 0.439985i
\(970\) −13.7124 45.2180i −0.440278 1.45186i
\(971\) −18.1836 31.4949i −0.583539 1.01072i −0.995056 0.0993168i \(-0.968334\pi\)
0.411517 0.911402i \(-0.364999\pi\)
\(972\) 13.4765 26.3605i 0.432260 0.845513i
\(973\) 0 0
\(974\) 0.384472 1.59666i 0.0123193 0.0511602i
\(975\) 10.1803 + 5.68539i 0.326029 + 0.182078i
\(976\) 0.252544 + 2.46734i 0.00808373 + 0.0789777i
\(977\) −12.2003 7.04383i −0.390321 0.225352i 0.291978 0.956425i \(-0.405687\pi\)
−0.682299 + 0.731073i \(0.739020\pi\)
\(978\) 9.84365 + 33.3148i 0.314765 + 1.06529i
\(979\) 6.59603 0.210810
\(980\) 0 0
\(981\) −7.12311 −0.227423
\(982\) 5.72226 + 19.3664i 0.182605 + 0.618006i
\(983\) −38.7426 22.3680i −1.23570 0.713430i −0.267485 0.963562i \(-0.586193\pi\)
−0.968212 + 0.250132i \(0.919526\pi\)
\(984\) −17.0119 48.3534i −0.542319 1.54145i
\(985\) −36.8919 + 0.263308i −1.17547 + 0.00838968i
\(986\) −0.926004 + 3.84556i −0.0294900 + 0.122468i
\(987\) 0 0
\(988\) −5.00691 2.55973i −0.159291 0.0814359i
\(989\) 4.00000 + 6.92820i 0.127193 + 0.220304i
\(990\) −11.0202 + 3.34189i −0.350246 + 0.106212i
\(991\) 0.497251 + 0.287088i 0.0157957 + 0.00911966i 0.507877 0.861430i \(-0.330430\pi\)
−0.492081 + 0.870549i \(0.663764\pi\)
\(992\) −29.5248 22.8151i −0.937413 0.724380i
\(993\) −17.7392 −0.562935
\(994\) 0 0
\(995\) −35.6647 20.2530i −1.13065 0.642065i
\(996\) 0.840744 + 16.4710i 0.0266400 + 0.521903i
\(997\) 23.8790 41.3597i 0.756256 1.30987i −0.188492 0.982075i \(-0.560360\pi\)
0.944748 0.327799i \(-0.106307\pi\)
\(998\) 24.9901 26.2983i 0.791048 0.832457i
\(999\) 8.44804 + 14.6324i 0.267284 + 0.462950i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.s.f.619.16 32
4.3 odd 2 inner 980.2.s.f.619.11 32
5.4 even 2 inner 980.2.s.f.619.1 32
7.2 even 3 inner 980.2.s.f.19.5 32
7.3 odd 6 140.2.c.b.139.8 yes 16
7.4 even 3 140.2.c.b.139.7 yes 16
7.5 odd 6 inner 980.2.s.f.19.6 32
7.6 odd 2 inner 980.2.s.f.619.15 32
20.19 odd 2 inner 980.2.s.f.619.6 32
28.3 even 6 140.2.c.b.139.11 yes 16
28.11 odd 6 140.2.c.b.139.12 yes 16
28.19 even 6 inner 980.2.s.f.19.1 32
28.23 odd 6 inner 980.2.s.f.19.2 32
28.27 even 2 inner 980.2.s.f.619.12 32
35.3 even 12 700.2.g.l.251.15 16
35.4 even 6 140.2.c.b.139.10 yes 16
35.9 even 6 inner 980.2.s.f.19.12 32
35.17 even 12 700.2.g.l.251.2 16
35.18 odd 12 700.2.g.l.251.16 16
35.19 odd 6 inner 980.2.s.f.19.11 32
35.24 odd 6 140.2.c.b.139.9 yes 16
35.32 odd 12 700.2.g.l.251.1 16
35.34 odd 2 inner 980.2.s.f.619.2 32
56.3 even 6 2240.2.e.f.2239.13 16
56.11 odd 6 2240.2.e.f.2239.4 16
56.45 odd 6 2240.2.e.f.2239.1 16
56.53 even 6 2240.2.e.f.2239.16 16
140.3 odd 12 700.2.g.l.251.14 16
140.19 even 6 inner 980.2.s.f.19.16 32
140.39 odd 6 140.2.c.b.139.5 16
140.59 even 6 140.2.c.b.139.6 yes 16
140.67 even 12 700.2.g.l.251.4 16
140.79 odd 6 inner 980.2.s.f.19.15 32
140.87 odd 12 700.2.g.l.251.3 16
140.123 even 12 700.2.g.l.251.13 16
140.139 even 2 inner 980.2.s.f.619.5 32
280.59 even 6 2240.2.e.f.2239.3 16
280.109 even 6 2240.2.e.f.2239.2 16
280.179 odd 6 2240.2.e.f.2239.14 16
280.269 odd 6 2240.2.e.f.2239.15 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.c.b.139.5 16 140.39 odd 6
140.2.c.b.139.6 yes 16 140.59 even 6
140.2.c.b.139.7 yes 16 7.4 even 3
140.2.c.b.139.8 yes 16 7.3 odd 6
140.2.c.b.139.9 yes 16 35.24 odd 6
140.2.c.b.139.10 yes 16 35.4 even 6
140.2.c.b.139.11 yes 16 28.3 even 6
140.2.c.b.139.12 yes 16 28.11 odd 6
700.2.g.l.251.1 16 35.32 odd 12
700.2.g.l.251.2 16 35.17 even 12
700.2.g.l.251.3 16 140.87 odd 12
700.2.g.l.251.4 16 140.67 even 12
700.2.g.l.251.13 16 140.123 even 12
700.2.g.l.251.14 16 140.3 odd 12
700.2.g.l.251.15 16 35.3 even 12
700.2.g.l.251.16 16 35.18 odd 12
980.2.s.f.19.1 32 28.19 even 6 inner
980.2.s.f.19.2 32 28.23 odd 6 inner
980.2.s.f.19.5 32 7.2 even 3 inner
980.2.s.f.19.6 32 7.5 odd 6 inner
980.2.s.f.19.11 32 35.19 odd 6 inner
980.2.s.f.19.12 32 35.9 even 6 inner
980.2.s.f.19.15 32 140.79 odd 6 inner
980.2.s.f.19.16 32 140.19 even 6 inner
980.2.s.f.619.1 32 5.4 even 2 inner
980.2.s.f.619.2 32 35.34 odd 2 inner
980.2.s.f.619.5 32 140.139 even 2 inner
980.2.s.f.619.6 32 20.19 odd 2 inner
980.2.s.f.619.11 32 4.3 odd 2 inner
980.2.s.f.619.12 32 28.27 even 2 inner
980.2.s.f.619.15 32 7.6 odd 2 inner
980.2.s.f.619.16 32 1.1 even 1 trivial
2240.2.e.f.2239.1 16 56.45 odd 6
2240.2.e.f.2239.2 16 280.109 even 6
2240.2.e.f.2239.3 16 280.59 even 6
2240.2.e.f.2239.4 16 56.11 odd 6
2240.2.e.f.2239.13 16 56.3 even 6
2240.2.e.f.2239.14 16 280.179 odd 6
2240.2.e.f.2239.15 16 280.269 odd 6
2240.2.e.f.2239.16 16 56.53 even 6