Properties

Label 700.2.g.l.251.4
Level $700$
Weight $2$
Character 700.251
Analytic conductor $5.590$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(251,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 17x^{12} - 104x^{10} + 713x^{8} + 238x^{6} + 1004x^{4} - 152x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.4
Root \(0.409646 + 0.286988i\) of defining polynomial
Character \(\chi\) \(=\) 700.251
Dual form 700.2.g.l.251.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37491 + 0.331077i) q^{2} +2.13578 q^{3} +(1.78078 - 0.910404i) q^{4} +(-2.93651 + 0.707107i) q^{6} +(-1.19935 + 2.35829i) q^{7} +(-2.14700 + 1.84130i) q^{8} +1.56155 q^{9} +2.33205i q^{11} +(3.80335 - 1.94442i) q^{12} +1.09190i q^{13} +(0.868230 - 3.63953i) q^{14} +(2.34233 - 3.24245i) q^{16} +4.98074i q^{17} +(-2.14700 + 0.516994i) q^{18} -2.57501 q^{19} +(-2.56155 + 5.03680i) q^{21} +(-0.772087 - 3.20636i) q^{22} +6.04090i q^{23} +(-4.58552 + 3.93261i) q^{24} +(-0.361501 - 1.50126i) q^{26} -3.07221 q^{27} +(0.0112214 + 5.29149i) q^{28} -0.561553 q^{29} +6.59603 q^{31} +(-2.14700 + 5.23358i) q^{32} +4.98074i q^{33} +(-1.64901 - 6.84809i) q^{34} +(2.78078 - 1.42164i) q^{36} +5.49966 q^{37} +(3.54042 - 0.852526i) q^{38} +2.33205i q^{39} -8.48528i q^{41} +(1.85435 - 7.77323i) q^{42} -1.32431i q^{43} +(2.12311 + 4.15286i) q^{44} +(-2.00000 - 8.30571i) q^{46} +9.74247 q^{47} +(5.00270 - 6.92516i) q^{48} +(-4.12311 - 5.65685i) q^{49} +10.6378i q^{51} +(0.994066 + 1.94442i) q^{52} -8.58800 q^{53} +(4.22402 - 1.01714i) q^{54} +(-1.76732 - 7.27163i) q^{56} -5.49966 q^{57} +(0.772087 - 0.185917i) q^{58} +14.3211 q^{59} -0.620058i q^{61} +(-9.06897 + 2.18379i) q^{62} +(-1.87285 + 3.68260i) q^{63} +(1.21922 - 7.90655i) q^{64} +(-1.64901 - 6.84809i) q^{66} -4.71659i q^{67} +(4.53448 + 8.86958i) q^{68} +12.9020i q^{69} +11.9473i q^{71} +(-3.35265 + 2.87529i) q^{72} -9.96148i q^{73} +(-7.56155 + 1.82081i) q^{74} +(-4.58552 + 2.34430i) q^{76} +(-5.49966 - 2.79695i) q^{77} +(-0.772087 - 3.20636i) q^{78} +10.6378i q^{79} -11.2462 q^{81} +(2.80928 + 11.6665i) q^{82} -3.86098 q^{83} +(0.0239665 + 11.3015i) q^{84} +(0.438447 + 1.82081i) q^{86} -1.19935 q^{87} +(-4.29400 - 5.00691i) q^{88} -2.82843i q^{89} +(-2.57501 - 1.30957i) q^{91} +(5.49966 + 10.7575i) q^{92} +14.0877 q^{93} +(-13.3951 + 3.22550i) q^{94} +(-4.58552 + 11.1778i) q^{96} -14.9422i q^{97} +(7.54177 + 6.41262i) q^{98} +3.64162i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{4} - 8 q^{9} + 4 q^{14} - 12 q^{16} - 8 q^{21} + 24 q^{29} + 28 q^{36} - 32 q^{44} - 32 q^{46} - 20 q^{56} + 36 q^{64} - 88 q^{74} - 48 q^{81} - 40 q^{84} + 40 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37491 + 0.331077i −0.972211 + 0.234107i
\(3\) 2.13578 1.23309 0.616546 0.787319i \(-0.288531\pi\)
0.616546 + 0.787319i \(0.288531\pi\)
\(4\) 1.78078 0.910404i 0.890388 0.455202i
\(5\) 0 0
\(6\) −2.93651 + 0.707107i −1.19883 + 0.288675i
\(7\) −1.19935 + 2.35829i −0.453313 + 0.891352i
\(8\) −2.14700 + 1.84130i −0.759079 + 0.650998i
\(9\) 1.56155 0.520518
\(10\) 0 0
\(11\) 2.33205i 0.703139i 0.936162 + 0.351569i \(0.114352\pi\)
−0.936162 + 0.351569i \(0.885648\pi\)
\(12\) 3.80335 1.94442i 1.09793 0.561306i
\(13\) 1.09190i 0.302837i 0.988470 + 0.151419i \(0.0483842\pi\)
−0.988470 + 0.151419i \(0.951616\pi\)
\(14\) 0.868230 3.63953i 0.232044 0.972705i
\(15\) 0 0
\(16\) 2.34233 3.24245i 0.585582 0.810613i
\(17\) 4.98074i 1.20801i 0.796982 + 0.604003i \(0.206429\pi\)
−0.796982 + 0.604003i \(0.793571\pi\)
\(18\) −2.14700 + 0.516994i −0.506053 + 0.121857i
\(19\) −2.57501 −0.590748 −0.295374 0.955382i \(-0.595444\pi\)
−0.295374 + 0.955382i \(0.595444\pi\)
\(20\) 0 0
\(21\) −2.56155 + 5.03680i −0.558977 + 1.09912i
\(22\) −0.772087 3.20636i −0.164609 0.683599i
\(23\) 6.04090i 1.25961i 0.776752 + 0.629807i \(0.216866\pi\)
−0.776752 + 0.629807i \(0.783134\pi\)
\(24\) −4.58552 + 3.93261i −0.936015 + 0.802741i
\(25\) 0 0
\(26\) −0.361501 1.50126i −0.0708962 0.294422i
\(27\) −3.07221 −0.591246
\(28\) 0.0112214 + 5.29149i 0.00212065 + 0.999998i
\(29\) −0.561553 −0.104278 −0.0521389 0.998640i \(-0.516604\pi\)
−0.0521389 + 0.998640i \(0.516604\pi\)
\(30\) 0 0
\(31\) 6.59603 1.18468 0.592341 0.805688i \(-0.298204\pi\)
0.592341 + 0.805688i \(0.298204\pi\)
\(32\) −2.14700 + 5.23358i −0.379540 + 0.925175i
\(33\) 4.98074i 0.867035i
\(34\) −1.64901 6.84809i −0.282802 1.17444i
\(35\) 0 0
\(36\) 2.78078 1.42164i 0.463463 0.236941i
\(37\) 5.49966 0.904138 0.452069 0.891983i \(-0.350686\pi\)
0.452069 + 0.891983i \(0.350686\pi\)
\(38\) 3.54042 0.852526i 0.574332 0.138298i
\(39\) 2.33205i 0.373427i
\(40\) 0 0
\(41\) 8.48528i 1.32518i −0.748983 0.662589i \(-0.769458\pi\)
0.748983 0.662589i \(-0.230542\pi\)
\(42\) 1.85435 7.77323i 0.286132 1.19944i
\(43\) 1.32431i 0.201955i −0.994889 0.100977i \(-0.967803\pi\)
0.994889 0.100977i \(-0.0321970\pi\)
\(44\) 2.12311 + 4.15286i 0.320070 + 0.626067i
\(45\) 0 0
\(46\) −2.00000 8.30571i −0.294884 1.22461i
\(47\) 9.74247 1.42109 0.710543 0.703654i \(-0.248450\pi\)
0.710543 + 0.703654i \(0.248450\pi\)
\(48\) 5.00270 6.92516i 0.722077 0.999561i
\(49\) −4.12311 5.65685i −0.589015 0.808122i
\(50\) 0 0
\(51\) 10.6378i 1.48958i
\(52\) 0.994066 + 1.94442i 0.137852 + 0.269643i
\(53\) −8.58800 −1.17965 −0.589826 0.807530i \(-0.700804\pi\)
−0.589826 + 0.807530i \(0.700804\pi\)
\(54\) 4.22402 1.01714i 0.574816 0.138415i
\(55\) 0 0
\(56\) −1.76732 7.27163i −0.236168 0.971712i
\(57\) −5.49966 −0.728447
\(58\) 0.772087 0.185917i 0.101380 0.0244121i
\(59\) 14.3211 1.86444 0.932222 0.361888i \(-0.117868\pi\)
0.932222 + 0.361888i \(0.117868\pi\)
\(60\) 0 0
\(61\) 0.620058i 0.0793903i −0.999212 0.0396951i \(-0.987361\pi\)
0.999212 0.0396951i \(-0.0126387\pi\)
\(62\) −9.06897 + 2.18379i −1.15176 + 0.277342i
\(63\) −1.87285 + 3.68260i −0.235957 + 0.463964i
\(64\) 1.21922 7.90655i 0.152403 0.988318i
\(65\) 0 0
\(66\) −1.64901 6.84809i −0.202979 0.842941i
\(67\) 4.71659i 0.576223i −0.957597 0.288112i \(-0.906973\pi\)
0.957597 0.288112i \(-0.0930274\pi\)
\(68\) 4.53448 + 8.86958i 0.549887 + 1.07559i
\(69\) 12.9020i 1.55322i
\(70\) 0 0
\(71\) 11.9473i 1.41789i 0.705265 + 0.708943i \(0.250828\pi\)
−0.705265 + 0.708943i \(0.749172\pi\)
\(72\) −3.35265 + 2.87529i −0.395114 + 0.338856i
\(73\) 9.96148i 1.16590i −0.812507 0.582951i \(-0.801898\pi\)
0.812507 0.582951i \(-0.198102\pi\)
\(74\) −7.56155 + 1.82081i −0.879013 + 0.211665i
\(75\) 0 0
\(76\) −4.58552 + 2.34430i −0.525995 + 0.268910i
\(77\) −5.49966 2.79695i −0.626744 0.318742i
\(78\) −0.772087 3.20636i −0.0874216 0.363049i
\(79\) 10.6378i 1.19684i 0.801182 + 0.598421i \(0.204205\pi\)
−0.801182 + 0.598421i \(0.795795\pi\)
\(80\) 0 0
\(81\) −11.2462 −1.24958
\(82\) 2.80928 + 11.6665i 0.310233 + 1.28835i
\(83\) −3.86098 −0.423798 −0.211899 0.977292i \(-0.567965\pi\)
−0.211899 + 0.977292i \(0.567965\pi\)
\(84\) 0.0239665 + 11.3015i 0.00261496 + 1.23309i
\(85\) 0 0
\(86\) 0.438447 + 1.82081i 0.0472790 + 0.196343i
\(87\) −1.19935 −0.128584
\(88\) −4.29400 5.00691i −0.457742 0.533738i
\(89\) 2.82843i 0.299813i −0.988700 0.149906i \(-0.952103\pi\)
0.988700 0.149906i \(-0.0478972\pi\)
\(90\) 0 0
\(91\) −2.57501 1.30957i −0.269935 0.137280i
\(92\) 5.49966 + 10.7575i 0.573379 + 1.12155i
\(93\) 14.0877 1.46082
\(94\) −13.3951 + 3.22550i −1.38159 + 0.332685i
\(95\) 0 0
\(96\) −4.58552 + 11.1778i −0.468008 + 1.14083i
\(97\) 14.9422i 1.51715i −0.651584 0.758576i \(-0.725895\pi\)
0.651584 0.758576i \(-0.274105\pi\)
\(98\) 7.54177 + 6.41262i 0.761834 + 0.647773i
\(99\) 3.64162i 0.365996i
\(100\) 0 0
\(101\) 15.1104i 1.50354i 0.659425 + 0.751770i \(0.270800\pi\)
−0.659425 + 0.751770i \(0.729200\pi\)
\(102\) −3.52191 14.6260i −0.348722 1.44819i
\(103\) 5.47091 0.539065 0.269532 0.962991i \(-0.413131\pi\)
0.269532 + 0.962991i \(0.413131\pi\)
\(104\) −2.01051 2.34430i −0.197147 0.229878i
\(105\) 0 0
\(106\) 11.8078 2.84329i 1.14687 0.276165i
\(107\) 10.0138i 0.968072i 0.875048 + 0.484036i \(0.160830\pi\)
−0.875048 + 0.484036i \(0.839170\pi\)
\(108\) −5.47091 + 2.79695i −0.526439 + 0.269136i
\(109\) −4.56155 −0.436918 −0.218459 0.975846i \(-0.570103\pi\)
−0.218459 + 0.975846i \(0.570103\pi\)
\(110\) 0 0
\(111\) 11.7460 1.11489
\(112\) 4.83738 + 9.41275i 0.457089 + 0.889421i
\(113\) −5.49966 −0.517364 −0.258682 0.965963i \(-0.583288\pi\)
−0.258682 + 0.965963i \(0.583288\pi\)
\(114\) 7.56155 1.82081i 0.708204 0.170534i
\(115\) 0 0
\(116\) −1.00000 + 0.511240i −0.0928477 + 0.0474674i
\(117\) 1.70505i 0.157632i
\(118\) −19.6902 + 4.74137i −1.81263 + 0.436478i
\(119\) −11.7460 5.97366i −1.07676 0.547605i
\(120\) 0 0
\(121\) 5.56155 0.505596
\(122\) 0.205287 + 0.852526i 0.0185858 + 0.0771841i
\(123\) 18.1227i 1.63407i
\(124\) 11.7460 6.00505i 1.05483 0.539269i
\(125\) 0 0
\(126\) 1.35579 5.68332i 0.120783 0.506310i
\(127\) 5.29723i 0.470053i −0.971989 0.235026i \(-0.924482\pi\)
0.971989 0.235026i \(-0.0755177\pi\)
\(128\) 0.941346 + 11.2745i 0.0832041 + 0.996533i
\(129\) 2.82843i 0.249029i
\(130\) 0 0
\(131\) −2.57501 −0.224980 −0.112490 0.993653i \(-0.535883\pi\)
−0.112490 + 0.993653i \(0.535883\pi\)
\(132\) 4.53448 + 8.86958i 0.394676 + 0.771998i
\(133\) 3.08835 6.07263i 0.267794 0.526564i
\(134\) 1.56155 + 6.48490i 0.134898 + 0.560210i
\(135\) 0 0
\(136\) −9.17104 10.6937i −0.786410 0.916973i
\(137\) −3.08835 −0.263855 −0.131928 0.991259i \(-0.542117\pi\)
−0.131928 + 0.991259i \(0.542117\pi\)
\(138\) −4.27156 17.7392i −0.363619 1.51006i
\(139\) 4.02102 0.341058 0.170529 0.985353i \(-0.445452\pi\)
0.170529 + 0.985353i \(0.445452\pi\)
\(140\) 0 0
\(141\) 20.8078 1.75233
\(142\) −3.95548 16.4265i −0.331937 1.37849i
\(143\) −2.54635 −0.212937
\(144\) 3.65767 5.06326i 0.304806 0.421938i
\(145\) 0 0
\(146\) 3.29801 + 13.6962i 0.272946 + 1.13350i
\(147\) −8.80604 12.0818i −0.726310 0.996489i
\(148\) 9.79366 5.00691i 0.805034 0.411565i
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 4.95118i 0.402922i −0.979497 0.201461i \(-0.935431\pi\)
0.979497 0.201461i \(-0.0645689\pi\)
\(152\) 5.52855 4.74137i 0.448425 0.384576i
\(153\) 7.77769i 0.628789i
\(154\) 8.48756 + 2.02475i 0.683947 + 0.163159i
\(155\) 0 0
\(156\) 2.12311 + 4.15286i 0.169984 + 0.332495i
\(157\) 3.88884i 0.310364i −0.987886 0.155182i \(-0.950404\pi\)
0.987886 0.155182i \(-0.0495963\pi\)
\(158\) −3.52191 14.6260i −0.280188 1.16358i
\(159\) −18.3421 −1.45462
\(160\) 0 0
\(161\) −14.2462 7.24517i −1.12276 0.570999i
\(162\) 15.4626 3.72336i 1.21485 0.292535i
\(163\) 11.5012i 0.900840i −0.892817 0.450420i \(-0.851274\pi\)
0.892817 0.450420i \(-0.148726\pi\)
\(164\) −7.72503 15.1104i −0.603224 1.17992i
\(165\) 0 0
\(166\) 5.30852 1.27828i 0.412021 0.0992139i
\(167\) −0.673500 −0.0521170 −0.0260585 0.999660i \(-0.508296\pi\)
−0.0260585 + 0.999660i \(0.508296\pi\)
\(168\) −3.77460 15.5306i −0.291217 1.19821i
\(169\) 11.8078 0.908290
\(170\) 0 0
\(171\) −4.02102 −0.307495
\(172\) −1.20565 2.35829i −0.0919303 0.179818i
\(173\) 11.0534i 0.840372i −0.907438 0.420186i \(-0.861965\pi\)
0.907438 0.420186i \(-0.138035\pi\)
\(174\) 1.64901 0.397078i 0.125011 0.0301024i
\(175\) 0 0
\(176\) 7.56155 + 5.46242i 0.569973 + 0.411746i
\(177\) 30.5866 2.29903
\(178\) 0.936426 + 3.88884i 0.0701881 + 0.291481i
\(179\) 8.30571i 0.620798i −0.950606 0.310399i \(-0.899537\pi\)
0.950606 0.310399i \(-0.100463\pi\)
\(180\) 0 0
\(181\) 3.44849i 0.256324i 0.991753 + 0.128162i \(0.0409077\pi\)
−0.991753 + 0.128162i \(0.959092\pi\)
\(182\) 3.97399 + 0.948017i 0.294571 + 0.0702717i
\(183\) 1.32431i 0.0978956i
\(184\) −11.1231 12.9698i −0.820006 0.956147i
\(185\) 0 0
\(186\) −19.3693 + 4.66410i −1.42023 + 0.341988i
\(187\) −11.6153 −0.849396
\(188\) 17.3492 8.86958i 1.26532 0.646881i
\(189\) 3.68466 7.24517i 0.268019 0.527008i
\(190\) 0 0
\(191\) 19.9660i 1.44469i −0.691535 0.722343i \(-0.743065\pi\)
0.691535 0.722343i \(-0.256935\pi\)
\(192\) 2.60399 16.8866i 0.187927 1.21869i
\(193\) 5.49966 0.395874 0.197937 0.980215i \(-0.436576\pi\)
0.197937 + 0.980215i \(0.436576\pi\)
\(194\) 4.94702 + 20.5443i 0.355175 + 1.47499i
\(195\) 0 0
\(196\) −12.4924 6.31990i −0.892311 0.451421i
\(197\) −16.4990 −1.17550 −0.587751 0.809042i \(-0.699987\pi\)
−0.587751 + 0.809042i \(0.699987\pi\)
\(198\) −1.20565 5.00691i −0.0856821 0.355825i
\(199\) 18.3421 1.30024 0.650118 0.759834i \(-0.274720\pi\)
0.650118 + 0.759834i \(0.274720\pi\)
\(200\) 0 0
\(201\) 10.0736i 0.710536i
\(202\) −5.00270 20.7755i −0.351989 1.46176i
\(203\) 0.673500 1.32431i 0.0472704 0.0929481i
\(204\) 9.68466 + 18.9435i 0.678062 + 1.32631i
\(205\) 0 0
\(206\) −7.52203 + 1.81129i −0.524085 + 0.126199i
\(207\) 9.43318i 0.655651i
\(208\) 3.54042 + 2.55758i 0.245484 + 0.177336i
\(209\) 6.00505i 0.415378i
\(210\) 0 0
\(211\) 0.287088i 0.0197640i 0.999951 + 0.00988198i \(0.00314558\pi\)
−0.999951 + 0.00988198i \(0.996854\pi\)
\(212\) −15.2933 + 7.81855i −1.05035 + 0.536980i
\(213\) 25.5169i 1.74839i
\(214\) −3.31534 13.7681i −0.226632 0.941170i
\(215\) 0 0
\(216\) 6.59603 5.65685i 0.448803 0.384900i
\(217\) −7.91096 + 15.5554i −0.537031 + 1.05597i
\(218\) 6.27174 1.51022i 0.424776 0.102285i
\(219\) 21.2755i 1.43767i
\(220\) 0 0
\(221\) −5.43845 −0.365830
\(222\) −16.1498 + 3.88884i −1.08390 + 0.261002i
\(223\) −0.147647 −0.00988718 −0.00494359 0.999988i \(-0.501574\pi\)
−0.00494359 + 0.999988i \(0.501574\pi\)
\(224\) −9.76732 11.3402i −0.652606 0.757697i
\(225\) 0 0
\(226\) 7.56155 1.82081i 0.502987 0.121118i
\(227\) 10.1530 0.673881 0.336941 0.941526i \(-0.390608\pi\)
0.336941 + 0.941526i \(0.390608\pi\)
\(228\) −9.79366 + 5.00691i −0.648601 + 0.331591i
\(229\) 9.45353i 0.624707i 0.949966 + 0.312354i \(0.101117\pi\)
−0.949966 + 0.312354i \(0.898883\pi\)
\(230\) 0 0
\(231\) −11.7460 5.97366i −0.772833 0.393038i
\(232\) 1.20565 1.03399i 0.0791551 0.0678846i
\(233\) 10.9993 0.720589 0.360294 0.932839i \(-0.382676\pi\)
0.360294 + 0.932839i \(0.382676\pi\)
\(234\) −0.564503 2.34430i −0.0369027 0.153252i
\(235\) 0 0
\(236\) 25.5026 13.0380i 1.66008 0.848698i
\(237\) 22.7199i 1.47582i
\(238\) 18.1275 + 4.32443i 1.17503 + 0.280311i
\(239\) 2.33205i 0.150848i −0.997152 0.0754238i \(-0.975969\pi\)
0.997152 0.0754238i \(-0.0240310\pi\)
\(240\) 0 0
\(241\) 16.0786i 1.03572i −0.855466 0.517858i \(-0.826729\pi\)
0.855466 0.517858i \(-0.173271\pi\)
\(242\) −7.64666 + 1.84130i −0.491546 + 0.118363i
\(243\) −14.8028 −0.949601
\(244\) −0.564503 1.10418i −0.0361386 0.0706882i
\(245\) 0 0
\(246\) 6.00000 + 24.9171i 0.382546 + 1.58866i
\(247\) 2.81164i 0.178901i
\(248\) −14.1617 + 12.1453i −0.899267 + 0.771225i
\(249\) −8.24621 −0.522582
\(250\) 0 0
\(251\) −9.17104 −0.578871 −0.289435 0.957198i \(-0.593468\pi\)
−0.289435 + 0.957198i \(0.593468\pi\)
\(252\) 0.0175229 + 8.26294i 0.00110384 + 0.520516i
\(253\) −14.0877 −0.885683
\(254\) 1.75379 + 7.28323i 0.110042 + 0.456991i
\(255\) 0 0
\(256\) −5.02699 15.1898i −0.314187 0.949361i
\(257\) 6.55137i 0.408663i 0.978902 + 0.204332i \(0.0655021\pi\)
−0.978902 + 0.204332i \(0.934498\pi\)
\(258\) 0.936426 + 3.88884i 0.0582994 + 0.242109i
\(259\) −6.59603 + 12.9698i −0.409857 + 0.805905i
\(260\) 0 0
\(261\) −0.876894 −0.0542784
\(262\) 3.54042 0.852526i 0.218728 0.0526693i
\(263\) 23.5829i 1.45419i 0.686539 + 0.727093i \(0.259129\pi\)
−0.686539 + 0.727093i \(0.740871\pi\)
\(264\) −9.17104 10.6937i −0.564438 0.658149i
\(265\) 0 0
\(266\) −2.23570 + 9.37183i −0.137080 + 0.574624i
\(267\) 6.04090i 0.369697i
\(268\) −4.29400 8.39919i −0.262298 0.513062i
\(269\) 0.968253i 0.0590354i −0.999564 0.0295177i \(-0.990603\pi\)
0.999564 0.0295177i \(-0.00939715\pi\)
\(270\) 0 0
\(271\) −6.59603 −0.400680 −0.200340 0.979726i \(-0.564205\pi\)
−0.200340 + 0.979726i \(0.564205\pi\)
\(272\) 16.1498 + 11.6665i 0.979226 + 0.707387i
\(273\) −5.49966 2.79695i −0.332854 0.169279i
\(274\) 4.24621 1.02248i 0.256523 0.0617703i
\(275\) 0 0
\(276\) 11.7460 + 22.9756i 0.707029 + 1.38297i
\(277\) 19.5873 1.17689 0.588444 0.808538i \(-0.299741\pi\)
0.588444 + 0.808538i \(0.299741\pi\)
\(278\) −5.52855 + 1.33126i −0.331580 + 0.0798440i
\(279\) 10.3000 0.616648
\(280\) 0 0
\(281\) 17.0540 1.01735 0.508677 0.860957i \(-0.330135\pi\)
0.508677 + 0.860957i \(0.330135\pi\)
\(282\) −28.6089 + 6.88897i −1.70363 + 0.410232i
\(283\) −7.45904 −0.443394 −0.221697 0.975116i \(-0.571160\pi\)
−0.221697 + 0.975116i \(0.571160\pi\)
\(284\) 10.8769 + 21.2755i 0.645425 + 1.26247i
\(285\) 0 0
\(286\) 3.50102 0.843038i 0.207019 0.0498499i
\(287\) 20.0108 + 10.1768i 1.18120 + 0.600720i
\(288\) −3.35265 + 8.17252i −0.197557 + 0.481570i
\(289\) −7.80776 −0.459280
\(290\) 0 0
\(291\) 31.9133i 1.87079i
\(292\) −9.06897 17.7392i −0.530721 1.03811i
\(293\) 14.4635i 0.844965i −0.906371 0.422483i \(-0.861159\pi\)
0.906371 0.422483i \(-0.138841\pi\)
\(294\) 16.1076 + 13.6959i 0.939411 + 0.798764i
\(295\) 0 0
\(296\) −11.8078 + 10.1265i −0.686312 + 0.588592i
\(297\) 7.16453i 0.415728i
\(298\) −2.74983 + 0.662153i −0.159293 + 0.0383575i
\(299\) −6.59603 −0.381458
\(300\) 0 0
\(301\) 3.12311 + 1.58831i 0.180013 + 0.0915487i
\(302\) 1.63922 + 6.80745i 0.0943266 + 0.391725i
\(303\) 32.2725i 1.85400i
\(304\) −6.03152 + 8.34935i −0.345932 + 0.478868i
\(305\) 0 0
\(306\) −2.57501 10.6937i −0.147204 0.611315i
\(307\) 13.8987 0.793243 0.396622 0.917982i \(-0.370182\pi\)
0.396622 + 0.917982i \(0.370182\pi\)
\(308\) −12.3400 + 0.0261689i −0.703137 + 0.00149111i
\(309\) 11.6847 0.664717
\(310\) 0 0
\(311\) −1.44600 −0.0819954 −0.0409977 0.999159i \(-0.513054\pi\)
−0.0409977 + 0.999159i \(0.513054\pi\)
\(312\) −4.29400 5.00691i −0.243100 0.283460i
\(313\) 7.16453i 0.404963i 0.979286 + 0.202482i \(0.0649006\pi\)
−0.979286 + 0.202482i \(0.935099\pi\)
\(314\) 1.28751 + 5.34683i 0.0726581 + 0.301739i
\(315\) 0 0
\(316\) 9.68466 + 18.9435i 0.544805 + 1.06565i
\(317\) 24.4099 1.37100 0.685499 0.728073i \(-0.259584\pi\)
0.685499 + 0.728073i \(0.259584\pi\)
\(318\) 25.2188 6.07263i 1.41420 0.340536i
\(319\) 1.30957i 0.0733217i
\(320\) 0 0
\(321\) 21.3873i 1.19372i
\(322\) 21.9860 + 5.24489i 1.22523 + 0.292286i
\(323\) 12.8255i 0.713628i
\(324\) −20.0270 + 10.2386i −1.11261 + 0.568811i
\(325\) 0 0
\(326\) 3.80776 + 15.8131i 0.210893 + 0.875806i
\(327\) −9.74247 −0.538760
\(328\) 15.6240 + 18.2179i 0.862689 + 1.00592i
\(329\) −11.6847 + 22.9756i −0.644196 + 1.26669i
\(330\) 0 0
\(331\) 8.30571i 0.456523i 0.973600 + 0.228262i \(0.0733041\pi\)
−0.973600 + 0.228262i \(0.926696\pi\)
\(332\) −6.87555 + 3.51506i −0.377345 + 0.192914i
\(333\) 8.58800 0.470620
\(334\) 0.926004 0.222980i 0.0506687 0.0122009i
\(335\) 0 0
\(336\) 10.3316 + 20.1035i 0.563633 + 1.09674i
\(337\) −30.5866 −1.66616 −0.833080 0.553153i \(-0.813425\pi\)
−0.833080 + 0.553153i \(0.813425\pi\)
\(338\) −16.2347 + 3.90928i −0.883049 + 0.212637i
\(339\) −11.7460 −0.637958
\(340\) 0 0
\(341\) 15.3823i 0.832996i
\(342\) 5.52855 1.33126i 0.298950 0.0719866i
\(343\) 18.2856 2.93893i 0.987329 0.158687i
\(344\) 2.43845 + 2.84329i 0.131472 + 0.153300i
\(345\) 0 0
\(346\) 3.65951 + 15.1974i 0.196737 + 0.817019i
\(347\) 1.32431i 0.0710925i 0.999368 + 0.0355463i \(0.0113171\pi\)
−0.999368 + 0.0355463i \(0.988683\pi\)
\(348\) −2.13578 + 1.09190i −0.114490 + 0.0585317i
\(349\) 18.8307i 1.00799i −0.863708 0.503993i \(-0.831864\pi\)
0.863708 0.503993i \(-0.168136\pi\)
\(350\) 0 0
\(351\) 3.35453i 0.179051i
\(352\) −12.2050 5.00691i −0.650527 0.266869i
\(353\) 16.1685i 0.860564i −0.902694 0.430282i \(-0.858414\pi\)
0.902694 0.430282i \(-0.141586\pi\)
\(354\) −42.0540 + 10.1265i −2.23514 + 0.538218i
\(355\) 0 0
\(356\) −2.57501 5.03680i −0.136475 0.266950i
\(357\) −25.0870 12.7584i −1.32774 0.675248i
\(358\) 2.74983 + 11.4196i 0.145333 + 0.603547i
\(359\) 10.3507i 0.546288i −0.961973 0.273144i \(-0.911937\pi\)
0.961973 0.273144i \(-0.0880635\pi\)
\(360\) 0 0
\(361\) −12.3693 −0.651017
\(362\) −1.14171 4.74137i −0.0600071 0.249201i
\(363\) 11.8782 0.623446
\(364\) −5.77776 + 0.0122526i −0.302837 + 0.000642213i
\(365\) 0 0
\(366\) 0.438447 + 1.82081i 0.0229180 + 0.0951752i
\(367\) −23.3783 −1.22034 −0.610168 0.792272i \(-0.708898\pi\)
−0.610168 + 0.792272i \(0.708898\pi\)
\(368\) 19.5873 + 14.1498i 1.02106 + 0.737608i
\(369\) 13.2502i 0.689779i
\(370\) 0 0
\(371\) 10.3000 20.2530i 0.534752 1.05149i
\(372\) 25.0870 12.8255i 1.30070 0.664969i
\(373\) −11.6763 −0.604578 −0.302289 0.953216i \(-0.597751\pi\)
−0.302289 + 0.953216i \(0.597751\pi\)
\(374\) 15.9701 3.84556i 0.825793 0.198849i
\(375\) 0 0
\(376\) −20.9171 + 17.9388i −1.07872 + 0.925124i
\(377\) 0.613157i 0.0315792i
\(378\) −2.66738 + 11.1814i −0.137195 + 0.575108i
\(379\) 24.9171i 1.27991i 0.768414 + 0.639954i \(0.221046\pi\)
−0.768414 + 0.639954i \(0.778954\pi\)
\(380\) 0 0
\(381\) 11.3137i 0.579619i
\(382\) 6.61026 + 27.4515i 0.338210 + 1.40454i
\(383\) 18.6638 0.953675 0.476838 0.878991i \(-0.341783\pi\)
0.476838 + 0.878991i \(0.341783\pi\)
\(384\) 2.01051 + 24.0798i 0.102598 + 1.22882i
\(385\) 0 0
\(386\) −7.56155 + 1.82081i −0.384873 + 0.0926767i
\(387\) 2.06798i 0.105121i
\(388\) −13.6035 26.6087i −0.690611 1.35085i
\(389\) 11.9309 0.604919 0.302460 0.953162i \(-0.402192\pi\)
0.302460 + 0.953162i \(0.402192\pi\)
\(390\) 0 0
\(391\) −30.0881 −1.52162
\(392\) 19.2683 + 4.55339i 0.973195 + 0.229981i
\(393\) −5.49966 −0.277421
\(394\) 22.6847 5.46242i 1.14284 0.275193i
\(395\) 0 0
\(396\) 3.31534 + 6.48490i 0.166602 + 0.325879i
\(397\) 21.0149i 1.05471i −0.849647 0.527353i \(-0.823185\pi\)
0.849647 0.527353i \(-0.176815\pi\)
\(398\) −25.2188 + 6.07263i −1.26410 + 0.304394i
\(399\) 6.59603 12.9698i 0.330214 0.649303i
\(400\) 0 0
\(401\) 13.4384 0.671084 0.335542 0.942025i \(-0.391081\pi\)
0.335542 + 0.942025i \(0.391081\pi\)
\(402\) 3.33513 + 13.8503i 0.166341 + 0.690791i
\(403\) 7.20217i 0.358766i
\(404\) 13.7566 + 26.9082i 0.684414 + 1.33873i
\(405\) 0 0
\(406\) −0.487557 + 2.04379i −0.0241971 + 0.101432i
\(407\) 12.8255i 0.635734i
\(408\) −19.5873 22.8393i −0.969717 1.13071i
\(409\) 30.2208i 1.49432i 0.664643 + 0.747161i \(0.268583\pi\)
−0.664643 + 0.747161i \(0.731417\pi\)
\(410\) 0 0
\(411\) −6.59603 −0.325358
\(412\) 9.74247 4.98074i 0.479977 0.245383i
\(413\) −17.1760 + 33.7733i −0.845176 + 1.66187i
\(414\) −3.12311 12.9698i −0.153492 0.637431i
\(415\) 0 0
\(416\) −5.71453 2.34430i −0.280178 0.114939i
\(417\) 8.58800 0.420556
\(418\) 1.98813 + 8.25643i 0.0972427 + 0.403835i
\(419\) −22.3631 −1.09251 −0.546254 0.837619i \(-0.683947\pi\)
−0.546254 + 0.837619i \(0.683947\pi\)
\(420\) 0 0
\(421\) 12.5616 0.612213 0.306106 0.951997i \(-0.400974\pi\)
0.306106 + 0.951997i \(0.400974\pi\)
\(422\) −0.0950482 0.394722i −0.00462688 0.0192147i
\(423\) 15.2134 0.739700
\(424\) 18.4384 15.8131i 0.895450 0.767952i
\(425\) 0 0
\(426\) −8.44804 35.0835i −0.409309 1.69980i
\(427\) 1.46228 + 0.743668i 0.0707647 + 0.0359886i
\(428\) 9.11662 + 17.8324i 0.440668 + 0.861960i
\(429\) −5.43845 −0.262571
\(430\) 0 0
\(431\) 11.6602i 0.561654i 0.959758 + 0.280827i \(0.0906087\pi\)
−0.959758 + 0.280827i \(0.909391\pi\)
\(432\) −7.19612 + 9.96148i −0.346223 + 0.479272i
\(433\) 9.00400i 0.432705i 0.976315 + 0.216352i \(0.0694160\pi\)
−0.976315 + 0.216352i \(0.930584\pi\)
\(434\) 5.72687 24.0064i 0.274899 1.15235i
\(435\) 0 0
\(436\) −8.12311 + 4.15286i −0.389026 + 0.198886i
\(437\) 15.5554i 0.744114i
\(438\) 7.04383 + 29.2520i 0.336567 + 1.39771i
\(439\) 31.5341 1.50504 0.752521 0.658568i \(-0.228838\pi\)
0.752521 + 0.658568i \(0.228838\pi\)
\(440\) 0 0
\(441\) −6.43845 8.83348i −0.306593 0.420642i
\(442\) 7.47740 1.80054i 0.355663 0.0856431i
\(443\) 17.5420i 0.833448i −0.909033 0.416724i \(-0.863178\pi\)
0.909033 0.416724i \(-0.136822\pi\)
\(444\) 20.9171 10.6937i 0.992681 0.507498i
\(445\) 0 0
\(446\) 0.203002 0.0488825i 0.00961242 0.00231465i
\(447\) 4.27156 0.202038
\(448\) 17.1837 + 12.3580i 0.811853 + 0.583862i
\(449\) −6.31534 −0.298039 −0.149020 0.988834i \(-0.547612\pi\)
−0.149020 + 0.988834i \(0.547612\pi\)
\(450\) 0 0
\(451\) 19.7881 0.931784
\(452\) −9.79366 + 5.00691i −0.460655 + 0.235505i
\(453\) 10.5746i 0.496840i
\(454\) −13.9596 + 3.36144i −0.655155 + 0.157760i
\(455\) 0 0
\(456\) 11.8078 10.1265i 0.552949 0.474218i
\(457\) 10.3223 0.482856 0.241428 0.970419i \(-0.422384\pi\)
0.241428 + 0.970419i \(0.422384\pi\)
\(458\) −3.12985 12.9978i −0.146248 0.607347i
\(459\) 15.3019i 0.714229i
\(460\) 0 0
\(461\) 21.1154i 0.983444i −0.870752 0.491722i \(-0.836368\pi\)
0.870752 0.491722i \(-0.163632\pi\)
\(462\) 18.1275 + 4.32443i 0.843370 + 0.201191i
\(463\) 24.3266i 1.13055i 0.824901 + 0.565277i \(0.191231\pi\)
−0.824901 + 0.565277i \(0.808769\pi\)
\(464\) −1.31534 + 1.82081i −0.0610632 + 0.0845289i
\(465\) 0 0
\(466\) −15.1231 + 3.64162i −0.700564 + 0.168695i
\(467\) −23.1983 −1.07349 −0.536744 0.843745i \(-0.680346\pi\)
−0.536744 + 0.843745i \(0.680346\pi\)
\(468\) 1.55229 + 3.03632i 0.0717545 + 0.140354i
\(469\) 11.1231 + 5.65685i 0.513617 + 0.261209i
\(470\) 0 0
\(471\) 8.30571i 0.382707i
\(472\) −30.7473 + 26.3694i −1.41526 + 1.21375i
\(473\) 3.08835 0.142002
\(474\) −7.52203 31.2379i −0.345498 1.43480i
\(475\) 0 0
\(476\) −26.3555 + 0.0558911i −1.20800 + 0.00256176i
\(477\) −13.4106 −0.614030
\(478\) 0.772087 + 3.20636i 0.0353144 + 0.146656i
\(479\) −30.0881 −1.37476 −0.687381 0.726297i \(-0.741240\pi\)
−0.687381 + 0.726297i \(0.741240\pi\)
\(480\) 0 0
\(481\) 6.00505i 0.273807i
\(482\) 5.32326 + 22.1067i 0.242468 + 1.00693i
\(483\) −30.4268 15.4741i −1.38447 0.704095i
\(484\) 9.90388 5.06326i 0.450176 0.230148i
\(485\) 0 0
\(486\) 20.3526 4.90086i 0.923212 0.222308i
\(487\) 1.16128i 0.0526225i 0.999654 + 0.0263112i \(0.00837610\pi\)
−0.999654 + 0.0263112i \(0.991624\pi\)
\(488\) 1.14171 + 1.33126i 0.0516829 + 0.0602635i
\(489\) 24.5639i 1.11082i
\(490\) 0 0
\(491\) 14.2794i 0.644419i −0.946668 0.322210i \(-0.895574\pi\)
0.946668 0.322210i \(-0.104426\pi\)
\(492\) −16.4990 32.2725i −0.743831 1.45495i
\(493\) 2.79695i 0.125968i
\(494\) 0.930870 + 3.86577i 0.0418818 + 0.173929i
\(495\) 0 0
\(496\) 15.4501 21.3873i 0.693729 0.960318i
\(497\) −28.1753 14.3291i −1.26384 0.642746i
\(498\) 11.3378 2.73013i 0.508060 0.122340i
\(499\) 25.6525i 1.14836i 0.818727 + 0.574182i \(0.194680\pi\)
−0.818727 + 0.574182i \(0.805320\pi\)
\(500\) 0 0
\(501\) −1.43845 −0.0642651
\(502\) 12.6094 3.03632i 0.562785 0.135517i
\(503\) 18.8114 0.838761 0.419380 0.907811i \(-0.362247\pi\)
0.419380 + 0.907811i \(0.362247\pi\)
\(504\) −2.75976 11.3550i −0.122929 0.505793i
\(505\) 0 0
\(506\) 19.3693 4.66410i 0.861071 0.207344i
\(507\) 25.2188 1.12001
\(508\) −4.82262 9.43318i −0.213969 0.418530i
\(509\) 28.0124i 1.24163i −0.783958 0.620814i \(-0.786802\pi\)
0.783958 0.620814i \(-0.213198\pi\)
\(510\) 0 0
\(511\) 23.4921 + 11.9473i 1.03923 + 0.528519i
\(512\) 11.9407 + 19.2203i 0.527707 + 0.849426i
\(513\) 7.91096 0.349278
\(514\) −2.16901 9.00757i −0.0956708 0.397307i
\(515\) 0 0
\(516\) −2.57501 5.03680i −0.113359 0.221733i
\(517\) 22.7199i 0.999220i
\(518\) 4.77497 20.0162i 0.209800 0.879460i
\(519\) 23.6076i 1.03626i
\(520\) 0 0
\(521\) 2.82843i 0.123916i −0.998079 0.0619578i \(-0.980266\pi\)
0.998079 0.0619578i \(-0.0197344\pi\)
\(522\) 1.20565 0.290319i 0.0527701 0.0127069i
\(523\) −20.9472 −0.915958 −0.457979 0.888963i \(-0.651426\pi\)
−0.457979 + 0.888963i \(0.651426\pi\)
\(524\) −4.58552 + 2.34430i −0.200319 + 0.102411i
\(525\) 0 0
\(526\) −7.80776 32.4245i −0.340435 1.41378i
\(527\) 32.8531i 1.43110i
\(528\) 16.1498 + 11.6665i 0.702830 + 0.507721i
\(529\) −13.4924 −0.586627
\(530\) 0 0
\(531\) 22.3631 0.970476
\(532\) −0.0288954 13.6256i −0.00125277 0.590747i
\(533\) 9.26504 0.401313
\(534\) 2.00000 + 8.30571i 0.0865485 + 0.359423i
\(535\) 0 0
\(536\) 8.68466 + 10.1265i 0.375120 + 0.437399i
\(537\) 17.7392i 0.765502i
\(538\) 0.320566 + 1.33126i 0.0138206 + 0.0573949i
\(539\) 13.1921 9.61528i 0.568222 0.414159i
\(540\) 0 0
\(541\) −19.4384 −0.835724 −0.417862 0.908510i \(-0.637220\pi\)
−0.417862 + 0.908510i \(0.637220\pi\)
\(542\) 9.06897 2.18379i 0.389546 0.0938019i
\(543\) 7.36520i 0.316071i
\(544\) −26.0671 10.6937i −1.11762 0.458486i
\(545\) 0 0
\(546\) 8.48756 + 2.02475i 0.363234 + 0.0866515i
\(547\) 33.4337i 1.42952i −0.699368 0.714762i \(-0.746535\pi\)
0.699368 0.714762i \(-0.253465\pi\)
\(548\) −5.49966 + 2.81164i −0.234934 + 0.120107i
\(549\) 0.968253i 0.0413240i
\(550\) 0 0
\(551\) 1.44600 0.0616019
\(552\) −23.7565 27.7006i −1.01114 1.17902i
\(553\) −25.0870 12.7584i −1.06681 0.542543i
\(554\) −26.9309 + 6.48490i −1.14418 + 0.275517i
\(555\) 0 0
\(556\) 7.16053 3.66075i 0.303674 0.155250i
\(557\) −8.58800 −0.363885 −0.181943 0.983309i \(-0.558239\pi\)
−0.181943 + 0.983309i \(0.558239\pi\)
\(558\) −14.1617 + 3.41011i −0.599512 + 0.144361i
\(559\) 1.44600 0.0611595
\(560\) 0 0
\(561\) −24.8078 −1.04738
\(562\) −23.4477 + 5.64617i −0.989084 + 0.238169i
\(563\) −6.78554 −0.285977 −0.142988 0.989724i \(-0.545671\pi\)
−0.142988 + 0.989724i \(0.545671\pi\)
\(564\) 37.0540 18.9435i 1.56025 0.797664i
\(565\) 0 0
\(566\) 10.2555 2.46952i 0.431073 0.103801i
\(567\) 13.4882 26.5219i 0.566450 1.11381i
\(568\) −21.9986 25.6509i −0.923042 1.07629i
\(569\) 43.8617 1.83878 0.919390 0.393347i \(-0.128683\pi\)
0.919390 + 0.393347i \(0.128683\pi\)
\(570\) 0 0
\(571\) 15.5889i 0.652377i 0.945305 + 0.326188i \(0.105764\pi\)
−0.945305 + 0.326188i \(0.894236\pi\)
\(572\) −4.53448 + 2.31821i −0.189596 + 0.0969292i
\(573\) 42.6429i 1.78143i
\(574\) −30.8824 7.36718i −1.28901 0.307500i
\(575\) 0 0
\(576\) 1.90388 12.3465i 0.0793284 0.514437i
\(577\) 36.0915i 1.50251i 0.660013 + 0.751254i \(0.270551\pi\)
−0.660013 + 0.751254i \(0.729449\pi\)
\(578\) 10.7350 2.58497i 0.446517 0.107521i
\(579\) 11.7460 0.488149
\(580\) 0 0
\(581\) 4.63068 9.10534i 0.192113 0.377753i
\(582\) 10.5657 + 43.8780i 0.437964 + 1.81880i
\(583\) 20.0276i 0.829460i
\(584\) 18.3421 + 21.3873i 0.759001 + 0.885013i
\(585\) 0 0
\(586\) 4.78852 + 19.8860i 0.197812 + 0.821485i
\(587\) −2.80928 −0.115951 −0.0579757 0.998318i \(-0.518465\pi\)
−0.0579757 + 0.998318i \(0.518465\pi\)
\(588\) −26.6809 13.4979i −1.10030 0.556645i
\(589\) −16.9848 −0.699848
\(590\) 0 0
\(591\) −35.2381 −1.44950
\(592\) 12.8820 17.8324i 0.529447 0.732906i
\(593\) 6.20705i 0.254893i 0.991845 + 0.127447i \(0.0406781\pi\)
−0.991845 + 0.127447i \(0.959322\pi\)
\(594\) 2.37201 + 9.85061i 0.0973247 + 0.404176i
\(595\) 0 0
\(596\) 3.56155 1.82081i 0.145887 0.0745832i
\(597\) 39.1746 1.60331
\(598\) 9.06897 2.18379i 0.370858 0.0893019i
\(599\) 17.9210i 0.732232i 0.930569 + 0.366116i \(0.119313\pi\)
−0.930569 + 0.366116i \(0.880687\pi\)
\(600\) 0 0
\(601\) 42.2309i 1.72263i 0.508068 + 0.861317i \(0.330360\pi\)
−0.508068 + 0.861317i \(0.669640\pi\)
\(602\) −4.81985 1.14980i −0.196443 0.0468625i
\(603\) 7.36520i 0.299934i
\(604\) −4.50758 8.81695i −0.183411 0.358757i
\(605\) 0 0
\(606\) −10.6847 44.3718i −0.434035 1.80248i
\(607\) 44.9666 1.82514 0.912570 0.408921i \(-0.134095\pi\)
0.912570 + 0.408921i \(0.134095\pi\)
\(608\) 5.52855 13.4765i 0.224212 0.546546i
\(609\) 1.43845 2.82843i 0.0582888 0.114614i
\(610\) 0 0
\(611\) 10.6378i 0.430358i
\(612\) 7.08084 + 13.8503i 0.286226 + 0.559866i
\(613\) 47.7626 1.92911 0.964557 0.263874i \(-0.0850002\pi\)
0.964557 + 0.263874i \(0.0850002\pi\)
\(614\) −19.1096 + 4.60155i −0.771200 + 0.185704i
\(615\) 0 0
\(616\) 16.9578 4.12147i 0.683249 0.166059i
\(617\) 14.7647 0.594404 0.297202 0.954815i \(-0.403946\pi\)
0.297202 + 0.954815i \(0.403946\pi\)
\(618\) −16.0654 + 3.86852i −0.646245 + 0.155615i
\(619\) −26.0671 −1.04773 −0.523863 0.851803i \(-0.675510\pi\)
−0.523863 + 0.851803i \(0.675510\pi\)
\(620\) 0 0
\(621\) 18.5589i 0.744742i
\(622\) 1.98813 0.478739i 0.0797168 0.0191957i
\(623\) 6.67026 + 3.39228i 0.267238 + 0.135909i
\(624\) 7.56155 + 5.46242i 0.302704 + 0.218672i
\(625\) 0 0
\(626\) −2.37201 9.85061i −0.0948046 0.393710i
\(627\) 12.8255i 0.512200i
\(628\) −3.54042 6.92516i −0.141278 0.276344i
\(629\) 27.3924i 1.09220i
\(630\) 0 0
\(631\) 33.9582i 1.35186i 0.736968 + 0.675928i \(0.236257\pi\)
−0.736968 + 0.675928i \(0.763743\pi\)
\(632\) −19.5873 22.8393i −0.779142 0.908498i
\(633\) 0.613157i 0.0243708i
\(634\) −33.5616 + 8.08156i −1.33290 + 0.320960i
\(635\) 0 0
\(636\) −32.6631 + 16.6987i −1.29518 + 0.662147i
\(637\) 6.17669 4.50200i 0.244730 0.178376i
\(638\) 0.433567 + 1.80054i 0.0171651 + 0.0712842i
\(639\) 18.6564i 0.738035i
\(640\) 0 0
\(641\) 39.8617 1.57444 0.787222 0.616670i \(-0.211519\pi\)
0.787222 + 0.616670i \(0.211519\pi\)
\(642\) −7.08084 29.4057i −0.279458 1.16055i
\(643\) −36.8341 −1.45260 −0.726298 0.687380i \(-0.758761\pi\)
−0.726298 + 0.687380i \(0.758761\pi\)
\(644\) −31.9653 + 0.0677876i −1.25961 + 0.00267121i
\(645\) 0 0
\(646\) 4.24621 + 17.6339i 0.167065 + 0.693797i
\(647\) −36.5712 −1.43776 −0.718881 0.695134i \(-0.755345\pi\)
−0.718881 + 0.695134i \(0.755345\pi\)
\(648\) 24.1456 20.7077i 0.948530 0.813474i
\(649\) 33.3974i 1.31096i
\(650\) 0 0
\(651\) −16.8961 + 33.2228i −0.662209 + 1.30211i
\(652\) −10.4707 20.4810i −0.410064 0.802097i
\(653\) 16.4990 0.645654 0.322827 0.946458i \(-0.395367\pi\)
0.322827 + 0.946458i \(0.395367\pi\)
\(654\) 13.3951 3.22550i 0.523788 0.126127i
\(655\) 0 0
\(656\) −27.5131 19.8753i −1.07421 0.776001i
\(657\) 15.5554i 0.606873i
\(658\) 8.45871 35.4580i 0.329755 1.38230i
\(659\) 42.8381i 1.66874i −0.551207 0.834368i \(-0.685833\pi\)
0.551207 0.834368i \(-0.314167\pi\)
\(660\) 0 0
\(661\) 1.51198i 0.0588092i −0.999568 0.0294046i \(-0.990639\pi\)
0.999568 0.0294046i \(-0.00936112\pi\)
\(662\) −2.74983 11.4196i −0.106875 0.443837i
\(663\) −11.6153 −0.451102
\(664\) 8.28954 7.10923i 0.321696 0.275892i
\(665\) 0 0
\(666\) −11.8078 + 2.84329i −0.457542 + 0.110175i
\(667\) 3.39228i 0.131350i
\(668\) −1.19935 + 0.613157i −0.0464044 + 0.0237238i
\(669\) −0.315342 −0.0121918
\(670\) 0 0
\(671\) 1.44600 0.0558224
\(672\) −20.8608 24.2201i −0.804724 0.934311i
\(673\) 14.0877 0.543039 0.271520 0.962433i \(-0.412474\pi\)
0.271520 + 0.962433i \(0.412474\pi\)
\(674\) 42.0540 10.1265i 1.61986 0.390059i
\(675\) 0 0
\(676\) 21.0270 10.7498i 0.808730 0.413455i
\(677\) 46.5317i 1.78836i 0.447709 + 0.894179i \(0.352240\pi\)
−0.447709 + 0.894179i \(0.647760\pi\)
\(678\) 16.1498 3.88884i 0.620230 0.149350i
\(679\) 35.2381 + 17.9210i 1.35232 + 0.687745i
\(680\) 0 0
\(681\) 21.6847 0.830958
\(682\) −5.09271 21.1493i −0.195010 0.809847i
\(683\) 20.1907i 0.772574i −0.922379 0.386287i \(-0.873757\pi\)
0.922379 0.386287i \(-0.126243\pi\)
\(684\) −7.16053 + 3.66075i −0.273790 + 0.139972i
\(685\) 0 0
\(686\) −24.1681 + 10.0947i −0.922742 + 0.385418i
\(687\) 20.1907i 0.770322i
\(688\) −4.29400 3.10196i −0.163707 0.118261i
\(689\) 9.37720i 0.357243i
\(690\) 0 0
\(691\) 37.8132 1.43848 0.719240 0.694761i \(-0.244490\pi\)
0.719240 + 0.694761i \(0.244490\pi\)
\(692\) −10.0630 19.6836i −0.382539 0.748258i
\(693\) −8.58800 4.36758i −0.326231 0.165911i
\(694\) −0.438447 1.82081i −0.0166432 0.0691169i
\(695\) 0 0
\(696\) 2.57501 2.20837i 0.0976056 0.0837080i
\(697\) 42.2630 1.60082
\(698\) 6.23442 + 25.8906i 0.235976 + 0.979975i
\(699\) 23.4921 0.888553
\(700\) 0 0
\(701\) −30.6695 −1.15837 −0.579186 0.815196i \(-0.696629\pi\)
−0.579186 + 0.815196i \(0.696629\pi\)
\(702\) 1.11061 + 4.61219i 0.0419171 + 0.174076i
\(703\) −14.1617 −0.534118
\(704\) 18.4384 + 2.84329i 0.694925 + 0.107160i
\(705\) 0 0
\(706\) 5.35302 + 22.2303i 0.201464 + 0.836650i
\(707\) −35.6347 18.1227i −1.34018 0.681574i
\(708\) 54.4679 27.8462i 2.04703 1.04652i
\(709\) −30.8078 −1.15701 −0.578505 0.815679i \(-0.696364\pi\)
−0.578505 + 0.815679i \(0.696364\pi\)
\(710\) 0 0
\(711\) 16.6114i 0.622977i
\(712\) 5.20798 + 6.07263i 0.195177 + 0.227582i
\(713\) 39.8459i 1.49224i
\(714\) 38.7164 + 9.23603i 1.44893 + 0.345650i
\(715\) 0 0
\(716\) −7.56155 14.7906i −0.282588 0.552751i
\(717\) 4.98074i 0.186009i
\(718\) 3.42687 + 14.2313i 0.127890 + 0.531107i
\(719\) 27.1961 1.01424 0.507122 0.861874i \(-0.330709\pi\)
0.507122 + 0.861874i \(0.330709\pi\)
\(720\) 0 0
\(721\) −6.56155 + 12.9020i −0.244365 + 0.480496i
\(722\) 17.0067 4.09519i 0.632926 0.152407i
\(723\) 34.3404i 1.27713i
\(724\) 3.13951 + 6.14098i 0.116679 + 0.228228i
\(725\) 0 0
\(726\) −16.3316 + 3.93261i −0.606121 + 0.145953i
\(727\) −32.8255 −1.21743 −0.608715 0.793389i \(-0.708315\pi\)
−0.608715 + 0.793389i \(0.708315\pi\)
\(728\) 7.93986 1.92973i 0.294271 0.0715204i
\(729\) 2.12311 0.0786335
\(730\) 0 0
\(731\) 6.59603 0.243963
\(732\) −1.20565 2.35829i −0.0445623 0.0871651i
\(733\) 24.4250i 0.902156i 0.892484 + 0.451078i \(0.148960\pi\)
−0.892484 + 0.451078i \(0.851040\pi\)
\(734\) 32.1431 7.74001i 1.18642 0.285689i
\(735\) 0 0
\(736\) −31.6155 12.9698i −1.16536 0.478073i
\(737\) 10.9993 0.405165
\(738\) 4.38684 + 18.2179i 0.161482 + 0.670610i
\(739\) 49.5472i 1.82262i 0.411718 + 0.911311i \(0.364929\pi\)
−0.411718 + 0.911311i \(0.635071\pi\)
\(740\) 0 0
\(741\) 6.00505i 0.220601i
\(742\) −7.45637 + 31.2563i −0.273732 + 1.14745i
\(743\) 9.43318i 0.346070i 0.984916 + 0.173035i \(0.0553573\pi\)
−0.984916 + 0.173035i \(0.944643\pi\)
\(744\) −30.2462 + 25.9396i −1.10888 + 0.950992i
\(745\) 0 0
\(746\) 16.0540 3.86577i 0.587778 0.141536i
\(747\) −6.02913 −0.220594
\(748\) −20.6843 + 10.5746i −0.756293 + 0.386647i
\(749\) −23.6155 12.0101i −0.862893 0.438839i
\(750\) 0 0
\(751\) 37.5999i 1.37204i 0.727584 + 0.686019i \(0.240643\pi\)
−0.727584 + 0.686019i \(0.759357\pi\)
\(752\) 22.8201 31.5895i 0.832162 1.15195i
\(753\) −19.5873 −0.713801
\(754\) 0.203002 + 0.843038i 0.00739290 + 0.0307016i
\(755\) 0 0
\(756\) −0.0344746 16.2565i −0.00125383 0.591245i
\(757\) −25.7640 −0.936409 −0.468204 0.883620i \(-0.655099\pi\)
−0.468204 + 0.883620i \(0.655099\pi\)
\(758\) −8.24948 34.2589i −0.299635 1.24434i
\(759\) −30.0881 −1.09213
\(760\) 0 0
\(761\) 43.1228i 1.56320i 0.623780 + 0.781600i \(0.285596\pi\)
−0.623780 + 0.781600i \(0.714404\pi\)
\(762\) 3.74571 + 15.5554i 0.135693 + 0.563512i
\(763\) 5.47091 10.7575i 0.198060 0.389447i
\(764\) −18.1771 35.5549i −0.657624 1.28633i
\(765\) 0 0
\(766\) −25.6611 + 6.17915i −0.927173 + 0.223262i
\(767\) 15.6371i 0.564623i
\(768\) −10.7365 32.4420i −0.387421 1.17065i
\(769\) 14.4903i 0.522535i −0.965266 0.261267i \(-0.915860\pi\)
0.965266 0.261267i \(-0.0841404\pi\)
\(770\) 0 0
\(771\) 13.9923i 0.503920i
\(772\) 9.79366 5.00691i 0.352481 0.180203i
\(773\) 15.6898i 0.564323i 0.959367 + 0.282161i \(0.0910513\pi\)
−0.959367 + 0.282161i \(0.908949\pi\)
\(774\) 0.684658 + 2.84329i 0.0246095 + 0.102200i
\(775\) 0 0
\(776\) 27.5131 + 32.0810i 0.987663 + 1.15164i
\(777\) −14.0877 + 27.7006i −0.505392 + 0.993755i
\(778\) −16.4039 + 3.95003i −0.588109 + 0.141616i
\(779\) 21.8497i 0.782847i
\(780\) 0 0
\(781\) −27.8617 −0.996971
\(782\) 41.3686 9.96148i 1.47934 0.356222i
\(783\) 1.72521 0.0616538
\(784\) −27.9997 + 0.118756i −0.999991 + 0.00424130i
\(785\) 0 0
\(786\) 7.56155 1.82081i 0.269712 0.0649461i
\(787\) 32.8578 1.17126 0.585628 0.810580i \(-0.300848\pi\)
0.585628 + 0.810580i \(0.300848\pi\)
\(788\) −29.3810 + 15.0207i −1.04665 + 0.535091i
\(789\) 50.3680i 1.79315i
\(790\) 0 0
\(791\) 6.59603 12.9698i 0.234528 0.461153i
\(792\) −6.70531 7.81855i −0.238263 0.277820i
\(793\) 0.677039 0.0240423
\(794\) 6.95753 + 28.8936i 0.246913 + 1.02540i
\(795\) 0 0
\(796\) 32.6631 16.6987i 1.15771 0.591870i
\(797\) 2.04937i 0.0725925i −0.999341 0.0362963i \(-0.988444\pi\)
0.999341 0.0362963i \(-0.0115560\pi\)
\(798\) −4.77497 + 20.0162i −0.169032 + 0.708564i
\(799\) 48.5247i 1.71668i
\(800\) 0 0
\(801\) 4.41674i 0.156058i
\(802\) −18.4767 + 4.44916i −0.652435 + 0.157105i
\(803\) 23.2306 0.819792
\(804\) −9.17104 17.9388i −0.323438 0.632653i
\(805\) 0 0
\(806\) −2.38447 9.90237i −0.0839894 0.348796i
\(807\) 2.06798i 0.0727962i
\(808\) −27.8228 32.4420i −0.978802 1.14131i
\(809\) 27.0540 0.951167 0.475584 0.879671i \(-0.342237\pi\)
0.475584 + 0.879671i \(0.342237\pi\)
\(810\) 0 0
\(811\) 9.17104 0.322039 0.161019 0.986951i \(-0.448522\pi\)
0.161019 + 0.986951i \(0.448522\pi\)
\(812\) −0.00630143 2.97145i −0.000221137 0.104278i
\(813\) −14.0877 −0.494076
\(814\) −4.24621 17.6339i −0.148830 0.618068i
\(815\) 0 0
\(816\) 34.4924 + 24.9171i 1.20748 + 0.872274i
\(817\) 3.41011i 0.119304i
\(818\) −10.0054 41.5510i −0.349830 1.45280i
\(819\) −4.02102 2.04496i −0.140506 0.0714567i
\(820\) 0 0
\(821\) −35.9309 −1.25400 −0.626998 0.779021i \(-0.715717\pi\)
−0.626998 + 0.779021i \(0.715717\pi\)
\(822\) 9.06897 2.18379i 0.316317 0.0761685i
\(823\) 22.8393i 0.796127i 0.917358 + 0.398064i \(0.130318\pi\)
−0.917358 + 0.398064i \(0.869682\pi\)
\(824\) −11.7460 + 10.0736i −0.409193 + 0.350930i
\(825\) 0 0
\(826\) 12.4340 52.1219i 0.432634 1.81355i
\(827\) 4.71659i 0.164012i −0.996632 0.0820059i \(-0.973867\pi\)
0.996632 0.0820059i \(-0.0261326\pi\)
\(828\) 8.58800 + 16.7984i 0.298454 + 0.583784i
\(829\) 43.3947i 1.50716i −0.657357 0.753579i \(-0.728326\pi\)
0.657357 0.753579i \(-0.271674\pi\)
\(830\) 0 0
\(831\) 41.8342 1.45121
\(832\) 8.63312 + 1.33126i 0.299300 + 0.0461533i
\(833\) 28.1753 20.5361i 0.976217 0.711534i
\(834\) −11.8078 + 2.84329i −0.408869 + 0.0984550i
\(835\) 0 0
\(836\) −5.46702 10.6937i −0.189081 0.369848i
\(837\) −20.2644 −0.700438
\(838\) 30.7473 7.40390i 1.06215 0.255763i
\(839\) −32.3461 −1.11671 −0.558356 0.829601i \(-0.688568\pi\)
−0.558356 + 0.829601i \(0.688568\pi\)
\(840\) 0 0
\(841\) −28.6847 −0.989126
\(842\) −17.2711 + 4.15884i −0.595200 + 0.143323i
\(843\) 36.4235 1.25449
\(844\) 0.261366 + 0.511240i 0.00899660 + 0.0175976i
\(845\) 0 0
\(846\) −20.9171 + 5.03680i −0.719144 + 0.173169i
\(847\) −6.67026 + 13.1158i −0.229193 + 0.450664i
\(848\) −20.1159 + 27.8462i −0.690784 + 0.956242i
\(849\) −15.9309 −0.546746
\(850\) 0 0
\(851\) 33.2228i 1.13886i
\(852\) 23.2306 + 45.4398i 0.795869 + 1.55674i
\(853\) 2.93137i 0.100368i −0.998740 0.0501840i \(-0.984019\pi\)
0.998740 0.0501840i \(-0.0159808\pi\)
\(854\) −2.25672 0.538353i −0.0772233 0.0184221i
\(855\) 0 0
\(856\) −18.4384 21.4997i −0.630213 0.734844i
\(857\) 5.59390i 0.191084i −0.995425 0.0955419i \(-0.969542\pi\)
0.995425 0.0955419i \(-0.0304584\pi\)
\(858\) 7.47740 1.80054i 0.255274 0.0614695i
\(859\) 9.17104 0.312912 0.156456 0.987685i \(-0.449993\pi\)
0.156456 + 0.987685i \(0.449993\pi\)
\(860\) 0 0
\(861\) 42.7386 + 21.7355i 1.45653 + 0.740744i
\(862\) −3.86043 16.0318i −0.131487 0.546046i
\(863\) 30.7851i 1.04794i 0.851737 + 0.523969i \(0.175549\pi\)
−0.851737 + 0.523969i \(0.824451\pi\)
\(864\) 6.59603 16.0786i 0.224401 0.547007i
\(865\) 0 0
\(866\) −2.98102 12.3797i −0.101299 0.420680i
\(867\) −16.6757 −0.566335
\(868\) 0.0740170 + 34.9028i 0.00251230 + 1.18468i
\(869\) −24.8078 −0.841546
\(870\) 0 0
\(871\) 5.15002 0.174502
\(872\) 9.79366 8.39919i 0.331655 0.284432i
\(873\) 23.3331i 0.789705i
\(874\) 5.15002 + 21.3873i 0.174202 + 0.723436i
\(875\) 0 0
\(876\) −19.3693 37.8869i −0.654429 1.28008i
\(877\) −5.49966 −0.185710 −0.0928551 0.995680i \(-0.529599\pi\)
−0.0928551 + 0.995680i \(0.529599\pi\)
\(878\) −43.3567 + 10.4402i −1.46322 + 0.352340i
\(879\) 30.8908i 1.04192i
\(880\) 0 0
\(881\) 30.7645i 1.03648i −0.855234 0.518241i \(-0.826587\pi\)
0.855234 0.518241i \(-0.173413\pi\)
\(882\) 11.7769 + 10.0136i 0.396548 + 0.337177i
\(883\) 48.4902i 1.63183i −0.578175 0.815913i \(-0.696235\pi\)
0.578175 0.815913i \(-0.303765\pi\)
\(884\) −9.68466 + 4.95118i −0.325730 + 0.166526i
\(885\) 0 0
\(886\) 5.80776 + 24.1188i 0.195116 + 0.810287i
\(887\) 31.7738 1.06686 0.533429 0.845845i \(-0.320903\pi\)
0.533429 + 0.845845i \(0.320903\pi\)
\(888\) −25.2188 + 21.6280i −0.846287 + 0.725788i
\(889\) 12.4924 + 6.35324i 0.418982 + 0.213081i
\(890\) 0 0
\(891\) 26.2267i 0.878628i
\(892\) −0.262926 + 0.134418i −0.00880343 + 0.00450066i
\(893\) −25.0870 −0.839503
\(894\) −5.87302 + 1.41421i −0.196423 + 0.0472984i
\(895\) 0 0
\(896\) −27.7175 11.3021i −0.925978 0.377577i
\(897\) −14.0877 −0.470373
\(898\) 8.68305 2.09086i 0.289757 0.0697730i
\(899\) −3.70402 −0.123536
\(900\) 0 0
\(901\) 42.7746i 1.42503i
\(902\) −27.2069 + 6.55137i −0.905891 + 0.218137i
\(903\) 6.67026 + 3.39228i 0.221972 + 0.112888i
\(904\) 11.8078 10.1265i 0.392720 0.336803i
\(905\) 0 0
\(906\) 3.50102 + 14.5392i 0.116313 + 0.483033i
\(907\) 53.7874i 1.78598i 0.450074 + 0.892991i \(0.351397\pi\)
−0.450074 + 0.892991i \(0.648603\pi\)
\(908\) 18.0803 9.24337i 0.600016 0.306752i
\(909\) 23.5957i 0.782619i
\(910\) 0 0
\(911\) 56.0950i 1.85851i −0.369438 0.929255i \(-0.620450\pi\)
0.369438 0.929255i \(-0.379550\pi\)
\(912\) −12.8820 + 17.8324i −0.426566 + 0.590489i
\(913\) 9.00400i 0.297989i
\(914\) −14.1922 + 3.41746i −0.469437 + 0.113040i
\(915\) 0 0
\(916\) 8.60654 + 16.8346i 0.284368 + 0.556232i
\(917\) 3.08835 6.07263i 0.101986 0.200536i
\(918\) 5.06609 + 21.0387i 0.167206 + 0.694382i
\(919\) 39.1965i 1.29297i −0.762925 0.646487i \(-0.776238\pi\)
0.762925 0.646487i \(-0.223762\pi\)
\(920\) 0 0
\(921\) 29.6847 0.978143
\(922\) 6.99083 + 29.0319i 0.230231 + 0.956115i
\(923\) −13.0452 −0.429389
\(924\) −26.3555 + 0.0558911i −0.867033 + 0.00183868i
\(925\) 0 0
\(926\) −8.05398 33.4470i −0.264670 1.09914i
\(927\) 8.54312 0.280593
\(928\) 1.20565 2.93893i 0.0395775 0.0964752i
\(929\) 28.9807i 0.950825i −0.879763 0.475412i \(-0.842299\pi\)
0.879763 0.475412i \(-0.157701\pi\)
\(930\) 0 0
\(931\) 10.6170 + 14.5665i 0.347960 + 0.477397i
\(932\) 19.5873 10.0138i 0.641604 0.328013i
\(933\) −3.08835 −0.101108
\(934\) 31.8956 7.68041i 1.04366 0.251311i
\(935\) 0 0
\(936\) −3.13951 3.66075i −0.102618 0.119655i
\(937\) 49.4631i 1.61589i −0.589259 0.807944i \(-0.700580\pi\)
0.589259 0.807944i \(-0.299420\pi\)
\(938\) −17.1662 4.09509i −0.560495 0.133709i
\(939\) 15.3019i 0.499357i
\(940\) 0 0
\(941\) 8.75714i 0.285475i 0.989761 + 0.142737i \(0.0455904\pi\)
−0.989761 + 0.142737i \(0.954410\pi\)
\(942\) 2.74983 + 11.4196i 0.0895942 + 0.372072i
\(943\) 51.2587 1.66921
\(944\) 33.5446 46.4354i 1.09179 1.51134i
\(945\) 0 0
\(946\) −4.24621 + 1.02248i −0.138056 + 0.0332437i
\(947\) 52.6261i 1.71012i −0.518529 0.855060i \(-0.673520\pi\)
0.518529 0.855060i \(-0.326480\pi\)
\(948\) 20.6843 + 40.4591i 0.671795 + 1.31405i
\(949\) 10.8769 0.353079
\(950\) 0 0
\(951\) 52.1342 1.69057
\(952\) 36.2181 8.80255i 1.17383 0.285292i
\(953\) −31.2637 −1.01273 −0.506365 0.862319i \(-0.669011\pi\)
−0.506365 + 0.862319i \(0.669011\pi\)
\(954\) 18.4384 4.43994i 0.596967 0.143748i
\(955\) 0 0
\(956\) −2.12311 4.15286i −0.0686661 0.134313i
\(957\) 2.79695i 0.0904125i
\(958\) 41.3686 9.96148i 1.33656 0.321841i
\(959\) 3.70402 7.28323i 0.119609 0.235188i
\(960\) 0 0
\(961\) 12.5076 0.403470
\(962\) −1.98813 8.25643i −0.0641000 0.266198i
\(963\) 15.6371i 0.503899i
\(964\) −14.6381 28.6325i −0.471460 0.922190i
\(965\) 0 0
\(966\) 46.9573 + 11.2019i 1.51083 + 0.360416i
\(967\) 16.2177i 0.521527i −0.965403 0.260764i \(-0.916026\pi\)
0.965403 0.260764i \(-0.0839743\pi\)
\(968\) −11.9407 + 10.2405i −0.383787 + 0.329142i
\(969\) 27.3924i 0.879969i
\(970\) 0 0
\(971\) −36.3672 −1.16708 −0.583539 0.812085i \(-0.698332\pi\)
−0.583539 + 0.812085i \(0.698332\pi\)
\(972\) −26.3605 + 13.4765i −0.845513 + 0.432260i
\(973\) −4.82262 + 9.48274i −0.154606 + 0.304003i
\(974\) −0.384472 1.59666i −0.0123193 0.0511602i
\(975\) 0 0
\(976\) −2.01051 1.45238i −0.0643548 0.0464895i
\(977\) −14.0877 −0.450704 −0.225352 0.974277i \(-0.572353\pi\)
−0.225352 + 0.974277i \(0.572353\pi\)
\(978\) 8.13254 + 33.7733i 0.260050 + 1.07995i
\(979\) 6.59603 0.210810
\(980\) 0 0
\(981\) −7.12311 −0.227423
\(982\) 4.72757 + 19.6329i 0.150863 + 0.626511i
\(983\) −44.7361 −1.42686 −0.713430 0.700727i \(-0.752859\pi\)
−0.713430 + 0.700727i \(0.752859\pi\)
\(984\) 33.3693 + 38.9094i 1.06377 + 1.24039i
\(985\) 0 0
\(986\) 0.926004 + 3.84556i 0.0294900 + 0.122468i
\(987\) −24.9559 + 49.0708i −0.794353 + 1.56194i
\(988\) −2.55973 5.00691i −0.0814359 0.159291i
\(989\) 8.00000 0.254385
\(990\) 0 0
\(991\) 0.574176i 0.0182393i 0.999958 + 0.00911966i \(0.00290292\pi\)
−0.999958 + 0.00911966i \(0.997097\pi\)
\(992\) −14.1617 + 34.5209i −0.449634 + 1.09604i
\(993\) 17.7392i 0.562935i
\(994\) 43.4827 + 10.3730i 1.37919 + 0.329013i
\(995\) 0 0
\(996\) −14.6847 + 7.50738i −0.465301 + 0.237881i
\(997\) 47.7580i 1.51251i −0.654276 0.756256i \(-0.727027\pi\)
0.654276 0.756256i \(-0.272973\pi\)
\(998\) −8.49295 35.2700i −0.268840 1.11645i
\(999\) −16.8961 −0.534568
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.g.l.251.4 16
4.3 odd 2 inner 700.2.g.l.251.1 16
5.2 odd 4 140.2.c.b.139.5 16
5.3 odd 4 140.2.c.b.139.12 yes 16
5.4 even 2 inner 700.2.g.l.251.13 16
7.6 odd 2 inner 700.2.g.l.251.3 16
20.3 even 4 140.2.c.b.139.7 yes 16
20.7 even 4 140.2.c.b.139.10 yes 16
20.19 odd 2 inner 700.2.g.l.251.16 16
28.27 even 2 inner 700.2.g.l.251.2 16
35.2 odd 12 980.2.s.f.619.6 32
35.3 even 12 980.2.s.f.19.1 32
35.12 even 12 980.2.s.f.619.5 32
35.13 even 4 140.2.c.b.139.11 yes 16
35.17 even 12 980.2.s.f.19.16 32
35.18 odd 12 980.2.s.f.19.2 32
35.23 odd 12 980.2.s.f.619.11 32
35.27 even 4 140.2.c.b.139.6 yes 16
35.32 odd 12 980.2.s.f.19.15 32
35.33 even 12 980.2.s.f.619.12 32
35.34 odd 2 inner 700.2.g.l.251.14 16
40.3 even 4 2240.2.e.f.2239.16 16
40.13 odd 4 2240.2.e.f.2239.4 16
40.27 even 4 2240.2.e.f.2239.2 16
40.37 odd 4 2240.2.e.f.2239.14 16
140.3 odd 12 980.2.s.f.19.6 32
140.23 even 12 980.2.s.f.619.16 32
140.27 odd 4 140.2.c.b.139.9 yes 16
140.47 odd 12 980.2.s.f.619.2 32
140.67 even 12 980.2.s.f.19.12 32
140.83 odd 4 140.2.c.b.139.8 yes 16
140.87 odd 12 980.2.s.f.19.11 32
140.103 odd 12 980.2.s.f.619.15 32
140.107 even 12 980.2.s.f.619.1 32
140.123 even 12 980.2.s.f.19.5 32
140.139 even 2 inner 700.2.g.l.251.15 16
280.13 even 4 2240.2.e.f.2239.13 16
280.27 odd 4 2240.2.e.f.2239.15 16
280.83 odd 4 2240.2.e.f.2239.1 16
280.237 even 4 2240.2.e.f.2239.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.c.b.139.5 16 5.2 odd 4
140.2.c.b.139.6 yes 16 35.27 even 4
140.2.c.b.139.7 yes 16 20.3 even 4
140.2.c.b.139.8 yes 16 140.83 odd 4
140.2.c.b.139.9 yes 16 140.27 odd 4
140.2.c.b.139.10 yes 16 20.7 even 4
140.2.c.b.139.11 yes 16 35.13 even 4
140.2.c.b.139.12 yes 16 5.3 odd 4
700.2.g.l.251.1 16 4.3 odd 2 inner
700.2.g.l.251.2 16 28.27 even 2 inner
700.2.g.l.251.3 16 7.6 odd 2 inner
700.2.g.l.251.4 16 1.1 even 1 trivial
700.2.g.l.251.13 16 5.4 even 2 inner
700.2.g.l.251.14 16 35.34 odd 2 inner
700.2.g.l.251.15 16 140.139 even 2 inner
700.2.g.l.251.16 16 20.19 odd 2 inner
980.2.s.f.19.1 32 35.3 even 12
980.2.s.f.19.2 32 35.18 odd 12
980.2.s.f.19.5 32 140.123 even 12
980.2.s.f.19.6 32 140.3 odd 12
980.2.s.f.19.11 32 140.87 odd 12
980.2.s.f.19.12 32 140.67 even 12
980.2.s.f.19.15 32 35.32 odd 12
980.2.s.f.19.16 32 35.17 even 12
980.2.s.f.619.1 32 140.107 even 12
980.2.s.f.619.2 32 140.47 odd 12
980.2.s.f.619.5 32 35.12 even 12
980.2.s.f.619.6 32 35.2 odd 12
980.2.s.f.619.11 32 35.23 odd 12
980.2.s.f.619.12 32 35.33 even 12
980.2.s.f.619.15 32 140.103 odd 12
980.2.s.f.619.16 32 140.23 even 12
2240.2.e.f.2239.1 16 280.83 odd 4
2240.2.e.f.2239.2 16 40.27 even 4
2240.2.e.f.2239.3 16 280.237 even 4
2240.2.e.f.2239.4 16 40.13 odd 4
2240.2.e.f.2239.13 16 280.13 even 4
2240.2.e.f.2239.14 16 40.37 odd 4
2240.2.e.f.2239.15 16 280.27 odd 4
2240.2.e.f.2239.16 16 40.3 even 4