Properties

Label 1323.2.i.d.1097.7
Level $1323$
Weight $2$
Character 1323.1097
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(521,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.7
Character \(\chi\) \(=\) 1323.1097
Dual form 1323.2.i.d.521.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.86894i q^{2} -1.49292 q^{4} +(1.25287 + 2.17003i) q^{5} -0.947692i q^{8} +(4.05565 - 2.34153i) q^{10} +(-4.85803 - 2.80479i) q^{11} +(-0.384312 - 0.221883i) q^{13} -4.75703 q^{16} +(-1.53885 - 2.66536i) q^{17} +(2.22932 + 1.28710i) q^{19} +(-1.87044 - 3.23969i) q^{20} +(-5.24197 + 9.07935i) q^{22} +(6.83476 - 3.94605i) q^{23} +(-0.639351 + 1.10739i) q^{25} +(-0.414685 + 0.718255i) q^{26} +(-2.71041 + 1.56485i) q^{29} -10.4669i q^{31} +6.99520i q^{32} +(-4.98140 + 2.87601i) q^{34} +(0.708168 - 1.22658i) q^{37} +(2.40550 - 4.16645i) q^{38} +(2.05652 - 1.18733i) q^{40} +(1.64665 - 2.85208i) q^{41} +(-4.75676 - 8.23894i) q^{43} +(7.25268 + 4.18733i) q^{44} +(-7.37492 - 12.7737i) q^{46} +2.14380 q^{47} +(2.06964 + 1.19491i) q^{50} +(0.573749 + 0.331254i) q^{52} +(-4.20379 + 2.42706i) q^{53} -14.0561i q^{55} +(2.92461 + 5.06558i) q^{58} +7.30991 q^{59} -8.55576i q^{61} -19.5619 q^{62} +3.55953 q^{64} -1.11196i q^{65} -1.86888 q^{67} +(2.29739 + 3.97919i) q^{68} -2.95338i q^{71} +(-7.37804 + 4.25971i) q^{73} +(-2.29241 - 1.32352i) q^{74} +(-3.32820 - 1.92154i) q^{76} -0.574261 q^{79} +(-5.95992 - 10.3229i) q^{80} +(-5.33036 - 3.07748i) q^{82} +(4.23521 + 7.33560i) q^{83} +(3.85595 - 6.67870i) q^{85} +(-15.3981 + 8.89008i) q^{86} +(-2.65807 + 4.60392i) q^{88} +(3.78929 - 6.56325i) q^{89} +(-10.2038 + 5.89115i) q^{92} -4.00663i q^{94} +6.45024i q^{95} +(3.22662 - 1.86289i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 24 q^{11} + 48 q^{16} - 48 q^{23} - 24 q^{25} + 96 q^{44} - 48 q^{50} + 48 q^{53} - 48 q^{64} - 168 q^{74} + 48 q^{79} - 24 q^{85} + 24 q^{86} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.86894i 1.32154i −0.750589 0.660769i \(-0.770230\pi\)
0.750589 0.660769i \(-0.229770\pi\)
\(3\) 0 0
\(4\) −1.49292 −0.746462
\(5\) 1.25287 + 2.17003i 0.560299 + 0.970467i 0.997470 + 0.0710881i \(0.0226472\pi\)
−0.437171 + 0.899378i \(0.644020\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.947692i 0.335060i
\(9\) 0 0
\(10\) 4.05565 2.34153i 1.28251 0.740457i
\(11\) −4.85803 2.80479i −1.46475 0.845675i −0.465527 0.885034i \(-0.654135\pi\)
−0.999225 + 0.0393590i \(0.987468\pi\)
\(12\) 0 0
\(13\) −0.384312 0.221883i −0.106589 0.0615392i 0.445758 0.895154i \(-0.352934\pi\)
−0.552347 + 0.833614i \(0.686268\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.75703 −1.18926
\(17\) −1.53885 2.66536i −0.373226 0.646446i 0.616834 0.787093i \(-0.288415\pi\)
−0.990060 + 0.140647i \(0.955082\pi\)
\(18\) 0 0
\(19\) 2.22932 + 1.28710i 0.511440 + 0.295280i 0.733425 0.679770i \(-0.237920\pi\)
−0.221985 + 0.975050i \(0.571254\pi\)
\(20\) −1.87044 3.23969i −0.418242 0.724417i
\(21\) 0 0
\(22\) −5.24197 + 9.07935i −1.11759 + 1.93572i
\(23\) 6.83476 3.94605i 1.42515 0.822808i 0.428413 0.903583i \(-0.359073\pi\)
0.996732 + 0.0807749i \(0.0257395\pi\)
\(24\) 0 0
\(25\) −0.639351 + 1.10739i −0.127870 + 0.221478i
\(26\) −0.414685 + 0.718255i −0.0813264 + 0.140861i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.71041 + 1.56485i −0.503310 + 0.290586i −0.730079 0.683362i \(-0.760517\pi\)
0.226770 + 0.973948i \(0.427184\pi\)
\(30\) 0 0
\(31\) 10.4669i 1.87990i −0.341306 0.939952i \(-0.610869\pi\)
0.341306 0.939952i \(-0.389131\pi\)
\(32\) 6.99520i 1.23659i
\(33\) 0 0
\(34\) −4.98140 + 2.87601i −0.854303 + 0.493232i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.708168 1.22658i 0.116422 0.201649i −0.801925 0.597424i \(-0.796191\pi\)
0.918347 + 0.395775i \(0.129524\pi\)
\(38\) 2.40550 4.16645i 0.390224 0.675887i
\(39\) 0 0
\(40\) 2.05652 1.18733i 0.325164 0.187734i
\(41\) 1.64665 2.85208i 0.257163 0.445420i −0.708318 0.705894i \(-0.750545\pi\)
0.965481 + 0.260474i \(0.0838788\pi\)
\(42\) 0 0
\(43\) −4.75676 8.23894i −0.725398 1.25643i −0.958810 0.284049i \(-0.908322\pi\)
0.233411 0.972378i \(-0.425011\pi\)
\(44\) 7.25268 + 4.18733i 1.09338 + 0.631264i
\(45\) 0 0
\(46\) −7.37492 12.7737i −1.08737 1.88338i
\(47\) 2.14380 0.312706 0.156353 0.987701i \(-0.450026\pi\)
0.156353 + 0.987701i \(0.450026\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.06964 + 1.19491i 0.292691 + 0.168985i
\(51\) 0 0
\(52\) 0.573749 + 0.331254i 0.0795647 + 0.0459367i
\(53\) −4.20379 + 2.42706i −0.577435 + 0.333382i −0.760113 0.649791i \(-0.774857\pi\)
0.182678 + 0.983173i \(0.441523\pi\)
\(54\) 0 0
\(55\) 14.0561i 1.89532i
\(56\) 0 0
\(57\) 0 0
\(58\) 2.92461 + 5.06558i 0.384020 + 0.665143i
\(59\) 7.30991 0.951669 0.475835 0.879535i \(-0.342146\pi\)
0.475835 + 0.879535i \(0.342146\pi\)
\(60\) 0 0
\(61\) 8.55576i 1.09545i −0.836658 0.547726i \(-0.815494\pi\)
0.836658 0.547726i \(-0.184506\pi\)
\(62\) −19.5619 −2.48437
\(63\) 0 0
\(64\) 3.55953 0.444941
\(65\) 1.11196i 0.137921i
\(66\) 0 0
\(67\) −1.86888 −0.228321 −0.114160 0.993462i \(-0.536418\pi\)
−0.114160 + 0.993462i \(0.536418\pi\)
\(68\) 2.29739 + 3.97919i 0.278599 + 0.482548i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.95338i 0.350501i −0.984524 0.175251i \(-0.943926\pi\)
0.984524 0.175251i \(-0.0560736\pi\)
\(72\) 0 0
\(73\) −7.37804 + 4.25971i −0.863534 + 0.498562i −0.865194 0.501437i \(-0.832805\pi\)
0.00165984 + 0.999999i \(0.499472\pi\)
\(74\) −2.29241 1.32352i −0.266487 0.153856i
\(75\) 0 0
\(76\) −3.32820 1.92154i −0.381771 0.220415i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.574261 −0.0646094 −0.0323047 0.999478i \(-0.510285\pi\)
−0.0323047 + 0.999478i \(0.510285\pi\)
\(80\) −5.95992 10.3229i −0.666339 1.15413i
\(81\) 0 0
\(82\) −5.33036 3.07748i −0.588639 0.339851i
\(83\) 4.23521 + 7.33560i 0.464875 + 0.805186i 0.999196 0.0400951i \(-0.0127661\pi\)
−0.534321 + 0.845281i \(0.679433\pi\)
\(84\) 0 0
\(85\) 3.85595 6.67870i 0.418236 0.724406i
\(86\) −15.3981 + 8.89008i −1.66042 + 0.958642i
\(87\) 0 0
\(88\) −2.65807 + 4.60392i −0.283352 + 0.490779i
\(89\) 3.78929 6.56325i 0.401664 0.695703i −0.592263 0.805745i \(-0.701765\pi\)
0.993927 + 0.110042i \(0.0350986\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −10.2038 + 5.89115i −1.06382 + 0.614195i
\(93\) 0 0
\(94\) 4.00663i 0.413252i
\(95\) 6.45024i 0.661781i
\(96\) 0 0
\(97\) 3.22662 1.86289i 0.327614 0.189148i −0.327167 0.944966i \(-0.606094\pi\)
0.654781 + 0.755818i \(0.272761\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.954503 1.65325i 0.0954503 0.165325i
\(101\) −3.76725 + 6.52506i −0.374855 + 0.649268i −0.990305 0.138908i \(-0.955641\pi\)
0.615450 + 0.788176i \(0.288974\pi\)
\(102\) 0 0
\(103\) −12.4045 + 7.16173i −1.22225 + 0.705666i −0.965397 0.260784i \(-0.916019\pi\)
−0.256853 + 0.966451i \(0.582685\pi\)
\(104\) −0.210276 + 0.364210i −0.0206193 + 0.0357137i
\(105\) 0 0
\(106\) 4.53602 + 7.85662i 0.440577 + 0.763102i
\(107\) 11.6798 + 6.74331i 1.12912 + 0.651900i 0.943715 0.330761i \(-0.107305\pi\)
0.185410 + 0.982661i \(0.440639\pi\)
\(108\) 0 0
\(109\) 0.459348 + 0.795613i 0.0439975 + 0.0762059i 0.887186 0.461413i \(-0.152657\pi\)
−0.843188 + 0.537619i \(0.819324\pi\)
\(110\) −26.2700 −2.50474
\(111\) 0 0
\(112\) 0 0
\(113\) −4.10412 2.36952i −0.386083 0.222905i 0.294378 0.955689i \(-0.404887\pi\)
−0.680462 + 0.732784i \(0.738221\pi\)
\(114\) 0 0
\(115\) 17.1261 + 9.88775i 1.59702 + 0.922037i
\(116\) 4.04643 2.33621i 0.375702 0.216912i
\(117\) 0 0
\(118\) 13.6618i 1.25767i
\(119\) 0 0
\(120\) 0 0
\(121\) 10.2337 + 17.7252i 0.930332 + 1.61138i
\(122\) −15.9902 −1.44768
\(123\) 0 0
\(124\) 15.6262i 1.40328i
\(125\) 9.32458 0.834016
\(126\) 0 0
\(127\) 7.37245 0.654200 0.327100 0.944990i \(-0.393929\pi\)
0.327100 + 0.944990i \(0.393929\pi\)
\(128\) 7.33786i 0.648581i
\(129\) 0 0
\(130\) −2.07818 −0.182268
\(131\) 3.93150 + 6.80955i 0.343497 + 0.594953i 0.985079 0.172100i \(-0.0550553\pi\)
−0.641583 + 0.767054i \(0.721722\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.49283i 0.301734i
\(135\) 0 0
\(136\) −2.52594 + 1.45835i −0.216598 + 0.125053i
\(137\) −10.0198 5.78491i −0.856046 0.494238i 0.00664016 0.999978i \(-0.497886\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(138\) 0 0
\(139\) 16.9741 + 9.79999i 1.43972 + 0.831224i 0.997830 0.0658437i \(-0.0209739\pi\)
0.441893 + 0.897068i \(0.354307\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.51968 −0.463201
\(143\) 1.24467 + 2.15583i 0.104084 + 0.180279i
\(144\) 0 0
\(145\) −6.79156 3.92111i −0.564008 0.325630i
\(146\) 7.96114 + 13.7891i 0.658868 + 1.14119i
\(147\) 0 0
\(148\) −1.05724 + 1.83120i −0.0869047 + 0.150523i
\(149\) −13.6315 + 7.87012i −1.11673 + 0.644746i −0.940565 0.339615i \(-0.889703\pi\)
−0.176167 + 0.984360i \(0.556370\pi\)
\(150\) 0 0
\(151\) 0.991353 1.71707i 0.0806752 0.139734i −0.822865 0.568237i \(-0.807626\pi\)
0.903540 + 0.428503i \(0.140959\pi\)
\(152\) 1.21977 2.11270i 0.0989364 0.171363i
\(153\) 0 0
\(154\) 0 0
\(155\) 22.7134 13.1136i 1.82438 1.05331i
\(156\) 0 0
\(157\) 8.39224i 0.669774i 0.942258 + 0.334887i \(0.108698\pi\)
−0.942258 + 0.334887i \(0.891302\pi\)
\(158\) 1.07326i 0.0853837i
\(159\) 0 0
\(160\) −15.1798 + 8.76405i −1.20007 + 0.692859i
\(161\) 0 0
\(162\) 0 0
\(163\) 0.537054 0.930204i 0.0420653 0.0728592i −0.844226 0.535987i \(-0.819940\pi\)
0.886291 + 0.463128i \(0.153273\pi\)
\(164\) −2.45832 + 4.25794i −0.191963 + 0.332489i
\(165\) 0 0
\(166\) 13.7098 7.91534i 1.06408 0.614349i
\(167\) −3.99731 + 6.92354i −0.309321 + 0.535760i −0.978214 0.207599i \(-0.933435\pi\)
0.668893 + 0.743359i \(0.266768\pi\)
\(168\) 0 0
\(169\) −6.40154 11.0878i −0.492426 0.852907i
\(170\) −12.4821 7.20652i −0.957330 0.552715i
\(171\) 0 0
\(172\) 7.10148 + 12.3001i 0.541483 + 0.937875i
\(173\) 1.00349 0.0762938 0.0381469 0.999272i \(-0.487855\pi\)
0.0381469 + 0.999272i \(0.487855\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 23.1098 + 13.3424i 1.74197 + 1.00572i
\(177\) 0 0
\(178\) −12.2663 7.08195i −0.919398 0.530814i
\(179\) 1.27773 0.737695i 0.0955017 0.0551379i −0.451489 0.892277i \(-0.649107\pi\)
0.546990 + 0.837139i \(0.315773\pi\)
\(180\) 0 0
\(181\) 15.0440i 1.11821i 0.829096 + 0.559106i \(0.188855\pi\)
−0.829096 + 0.559106i \(0.811145\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.73964 6.47724i −0.275690 0.477509i
\(185\) 3.54896 0.260925
\(186\) 0 0
\(187\) 17.2646i 1.26251i
\(188\) −3.20054 −0.233423
\(189\) 0 0
\(190\) 12.0551 0.874568
\(191\) 13.2237i 0.956836i −0.878132 0.478418i \(-0.841210\pi\)
0.878132 0.478418i \(-0.158790\pi\)
\(192\) 0 0
\(193\) −1.55571 −0.111982 −0.0559912 0.998431i \(-0.517832\pi\)
−0.0559912 + 0.998431i \(0.517832\pi\)
\(194\) −3.48163 6.03035i −0.249966 0.432954i
\(195\) 0 0
\(196\) 0 0
\(197\) 4.96185i 0.353517i −0.984254 0.176759i \(-0.943439\pi\)
0.984254 0.176759i \(-0.0565612\pi\)
\(198\) 0 0
\(199\) −9.69273 + 5.59610i −0.687100 + 0.396697i −0.802525 0.596619i \(-0.796510\pi\)
0.115425 + 0.993316i \(0.463177\pi\)
\(200\) 1.04946 + 0.605908i 0.0742083 + 0.0428442i
\(201\) 0 0
\(202\) 12.1949 + 7.04074i 0.858032 + 0.495385i
\(203\) 0 0
\(204\) 0 0
\(205\) 8.25213 0.576354
\(206\) 13.3848 + 23.1832i 0.932565 + 1.61525i
\(207\) 0 0
\(208\) 1.82818 + 1.05550i 0.126762 + 0.0731859i
\(209\) −7.22006 12.5055i −0.499422 0.865024i
\(210\) 0 0
\(211\) 7.68026 13.3026i 0.528731 0.915789i −0.470708 0.882289i \(-0.656001\pi\)
0.999439 0.0334999i \(-0.0106654\pi\)
\(212\) 6.27594 3.62342i 0.431033 0.248857i
\(213\) 0 0
\(214\) 12.6028 21.8287i 0.861511 1.49218i
\(215\) 11.9192 20.6446i 0.812880 1.40795i
\(216\) 0 0
\(217\) 0 0
\(218\) 1.48695 0.858492i 0.100709 0.0581444i
\(219\) 0 0
\(220\) 20.9847i 1.41479i
\(221\) 1.36578i 0.0918721i
\(222\) 0 0
\(223\) −2.76845 + 1.59837i −0.185389 + 0.107034i −0.589822 0.807533i \(-0.700802\pi\)
0.404433 + 0.914568i \(0.367469\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4.42848 + 7.67035i −0.294578 + 0.510224i
\(227\) 7.33494 12.7045i 0.486837 0.843227i −0.513048 0.858360i \(-0.671484\pi\)
0.999885 + 0.0151329i \(0.00481714\pi\)
\(228\) 0 0
\(229\) −2.92550 + 1.68904i −0.193322 + 0.111615i −0.593537 0.804807i \(-0.702269\pi\)
0.400215 + 0.916421i \(0.368936\pi\)
\(230\) 18.4796 32.0076i 1.21851 2.11052i
\(231\) 0 0
\(232\) 1.48300 + 2.56863i 0.0973637 + 0.168639i
\(233\) 4.22628 + 2.44005i 0.276873 + 0.159853i 0.632007 0.774963i \(-0.282231\pi\)
−0.355134 + 0.934815i \(0.615565\pi\)
\(234\) 0 0
\(235\) 2.68590 + 4.65211i 0.175209 + 0.303470i
\(236\) −10.9131 −0.710385
\(237\) 0 0
\(238\) 0 0
\(239\) −13.6253 7.86657i −0.881347 0.508846i −0.0102448 0.999948i \(-0.503261\pi\)
−0.871102 + 0.491101i \(0.836594\pi\)
\(240\) 0 0
\(241\) 0.666305 + 0.384691i 0.0429205 + 0.0247801i 0.521307 0.853369i \(-0.325445\pi\)
−0.478386 + 0.878150i \(0.658778\pi\)
\(242\) 33.1273 19.1260i 2.12950 1.22947i
\(243\) 0 0
\(244\) 12.7731i 0.817714i
\(245\) 0 0
\(246\) 0 0
\(247\) −0.571169 0.989293i −0.0363426 0.0629472i
\(248\) −9.91936 −0.629880
\(249\) 0 0
\(250\) 17.4271i 1.10218i
\(251\) −1.14544 −0.0722996 −0.0361498 0.999346i \(-0.511509\pi\)
−0.0361498 + 0.999346i \(0.511509\pi\)
\(252\) 0 0
\(253\) −44.2713 −2.78331
\(254\) 13.7787i 0.864549i
\(255\) 0 0
\(256\) 20.8331 1.30207
\(257\) 14.4917 + 25.1004i 0.903969 + 1.56572i 0.822295 + 0.569061i \(0.192693\pi\)
0.0816738 + 0.996659i \(0.473973\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.66007i 0.102953i
\(261\) 0 0
\(262\) 12.7266 7.34772i 0.786254 0.453944i
\(263\) 11.8643 + 6.84988i 0.731586 + 0.422381i 0.819002 0.573790i \(-0.194528\pi\)
−0.0874160 + 0.996172i \(0.527861\pi\)
\(264\) 0 0
\(265\) −10.5336 6.08156i −0.647072 0.373587i
\(266\) 0 0
\(267\) 0 0
\(268\) 2.79010 0.170433
\(269\) 5.23973 + 9.07548i 0.319472 + 0.553342i 0.980378 0.197127i \(-0.0631611\pi\)
−0.660906 + 0.750469i \(0.729828\pi\)
\(270\) 0 0
\(271\) 5.66907 + 3.27304i 0.344371 + 0.198823i 0.662203 0.749324i \(-0.269621\pi\)
−0.317832 + 0.948147i \(0.602955\pi\)
\(272\) 7.32034 + 12.6792i 0.443861 + 0.768790i
\(273\) 0 0
\(274\) −10.8116 + 18.7263i −0.653155 + 1.13130i
\(275\) 6.21198 3.58649i 0.374596 0.216273i
\(276\) 0 0
\(277\) −11.2156 + 19.4261i −0.673883 + 1.16720i 0.302911 + 0.953019i \(0.402041\pi\)
−0.976794 + 0.214181i \(0.931292\pi\)
\(278\) 18.3156 31.7235i 1.09849 1.90265i
\(279\) 0 0
\(280\) 0 0
\(281\) −19.3552 + 11.1747i −1.15463 + 0.666627i −0.950012 0.312214i \(-0.898929\pi\)
−0.204621 + 0.978841i \(0.565596\pi\)
\(282\) 0 0
\(283\) 18.9713i 1.12772i −0.825869 0.563862i \(-0.809315\pi\)
0.825869 0.563862i \(-0.190685\pi\)
\(284\) 4.40917i 0.261636i
\(285\) 0 0
\(286\) 4.02910 2.32620i 0.238246 0.137551i
\(287\) 0 0
\(288\) 0 0
\(289\) 3.76389 6.51924i 0.221405 0.383485i
\(290\) −7.32830 + 12.6930i −0.430333 + 0.745358i
\(291\) 0 0
\(292\) 11.0149 6.35943i 0.644596 0.372158i
\(293\) 4.41136 7.64069i 0.257714 0.446374i −0.707915 0.706298i \(-0.750364\pi\)
0.965629 + 0.259924i \(0.0836974\pi\)
\(294\) 0 0
\(295\) 9.15835 + 15.8627i 0.533220 + 0.923563i
\(296\) −1.16242 0.671125i −0.0675644 0.0390083i
\(297\) 0 0
\(298\) 14.7088 + 25.4763i 0.852056 + 1.47580i
\(299\) −3.50224 −0.202540
\(300\) 0 0
\(301\) 0 0
\(302\) −3.20910 1.85278i −0.184663 0.106615i
\(303\) 0 0
\(304\) −10.6049 6.12275i −0.608233 0.351164i
\(305\) 18.5662 10.7192i 1.06310 0.613781i
\(306\) 0 0
\(307\) 28.7533i 1.64104i 0.571620 + 0.820519i \(0.306315\pi\)
−0.571620 + 0.820519i \(0.693685\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −24.5085 42.4499i −1.39199 2.41099i
\(311\) 13.2859 0.753373 0.376687 0.926341i \(-0.377063\pi\)
0.376687 + 0.926341i \(0.377063\pi\)
\(312\) 0 0
\(313\) 31.5495i 1.78329i −0.452740 0.891643i \(-0.649553\pi\)
0.452740 0.891643i \(-0.350447\pi\)
\(314\) 15.6846 0.885132
\(315\) 0 0
\(316\) 0.857328 0.0482285
\(317\) 20.0709i 1.12729i −0.826016 0.563646i \(-0.809398\pi\)
0.826016 0.563646i \(-0.190602\pi\)
\(318\) 0 0
\(319\) 17.5563 0.982965
\(320\) 4.45961 + 7.72428i 0.249300 + 0.431800i
\(321\) 0 0
\(322\) 0 0
\(323\) 7.92259i 0.440824i
\(324\) 0 0
\(325\) 0.491421 0.283722i 0.0272591 0.0157381i
\(326\) −1.73849 1.00372i −0.0962862 0.0555909i
\(327\) 0 0
\(328\) −2.70289 1.56052i −0.149242 0.0861651i
\(329\) 0 0
\(330\) 0 0
\(331\) 1.24791 0.0685915 0.0342958 0.999412i \(-0.489081\pi\)
0.0342958 + 0.999412i \(0.489081\pi\)
\(332\) −6.32285 10.9515i −0.347011 0.601041i
\(333\) 0 0
\(334\) 12.9397 + 7.47072i 0.708027 + 0.408780i
\(335\) −2.34146 4.05553i −0.127928 0.221577i
\(336\) 0 0
\(337\) 6.58745 11.4098i 0.358842 0.621532i −0.628926 0.777465i \(-0.716505\pi\)
0.987768 + 0.155933i \(0.0498385\pi\)
\(338\) −20.7224 + 11.9641i −1.12715 + 0.650759i
\(339\) 0 0
\(340\) −5.75664 + 9.97079i −0.312198 + 0.540742i
\(341\) −29.3573 + 50.8484i −1.58979 + 2.75359i
\(342\) 0 0
\(343\) 0 0
\(344\) −7.80798 + 4.50794i −0.420978 + 0.243052i
\(345\) 0 0
\(346\) 1.87545i 0.100825i
\(347\) 27.0675i 1.45306i −0.687136 0.726529i \(-0.741132\pi\)
0.687136 0.726529i \(-0.258868\pi\)
\(348\) 0 0
\(349\) 30.3413 17.5176i 1.62413 0.937694i 0.638336 0.769758i \(-0.279623\pi\)
0.985798 0.167936i \(-0.0537101\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 19.6200 33.9829i 1.04575 1.81129i
\(353\) −1.26256 + 2.18682i −0.0671992 + 0.116392i −0.897667 0.440674i \(-0.854740\pi\)
0.830468 + 0.557066i \(0.188073\pi\)
\(354\) 0 0
\(355\) 6.40892 3.70019i 0.340150 0.196386i
\(356\) −5.65713 + 9.79843i −0.299827 + 0.519316i
\(357\) 0 0
\(358\) −1.37871 2.38799i −0.0728669 0.126209i
\(359\) 6.29395 + 3.63381i 0.332182 + 0.191785i 0.656809 0.754057i \(-0.271906\pi\)
−0.324628 + 0.945842i \(0.605239\pi\)
\(360\) 0 0
\(361\) −6.18677 10.7158i −0.325619 0.563989i
\(362\) 28.1163 1.47776
\(363\) 0 0
\(364\) 0 0
\(365\) −18.4874 10.6737i −0.967675 0.558688i
\(366\) 0 0
\(367\) 11.6714 + 6.73848i 0.609242 + 0.351746i 0.772669 0.634809i \(-0.218921\pi\)
−0.163427 + 0.986555i \(0.552255\pi\)
\(368\) −32.5131 + 18.7715i −1.69486 + 0.978530i
\(369\) 0 0
\(370\) 6.63278i 0.344822i
\(371\) 0 0
\(372\) 0 0
\(373\) −11.8820 20.5801i −0.615224 1.06560i −0.990345 0.138624i \(-0.955732\pi\)
0.375121 0.926976i \(-0.377601\pi\)
\(374\) 32.2664 1.66846
\(375\) 0 0
\(376\) 2.03166i 0.104775i
\(377\) 1.38886 0.0715297
\(378\) 0 0
\(379\) 21.2283 1.09042 0.545211 0.838299i \(-0.316449\pi\)
0.545211 + 0.838299i \(0.316449\pi\)
\(380\) 9.62972i 0.493994i
\(381\) 0 0
\(382\) −24.7143 −1.26450
\(383\) −6.47930 11.2225i −0.331077 0.573442i 0.651646 0.758523i \(-0.274079\pi\)
−0.982723 + 0.185081i \(0.940745\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.90752i 0.147989i
\(387\) 0 0
\(388\) −4.81710 + 2.78116i −0.244551 + 0.141192i
\(389\) 9.48037 + 5.47350i 0.480674 + 0.277517i 0.720697 0.693250i \(-0.243822\pi\)
−0.240023 + 0.970767i \(0.577155\pi\)
\(390\) 0 0
\(391\) −21.0353 12.1447i −1.06380 0.614186i
\(392\) 0 0
\(393\) 0 0
\(394\) −9.27338 −0.467186
\(395\) −0.719472 1.24616i −0.0362006 0.0627012i
\(396\) 0 0
\(397\) 25.8856 + 14.9451i 1.29916 + 0.750071i 0.980259 0.197717i \(-0.0633528\pi\)
0.318901 + 0.947788i \(0.396686\pi\)
\(398\) 10.4588 + 18.1151i 0.524250 + 0.908028i
\(399\) 0 0
\(400\) 3.04141 5.26788i 0.152071 0.263394i
\(401\) 16.6233 9.59744i 0.830126 0.479273i −0.0237698 0.999717i \(-0.507567\pi\)
0.853896 + 0.520444i \(0.174234\pi\)
\(402\) 0 0
\(403\) −2.32242 + 4.02254i −0.115688 + 0.200377i
\(404\) 5.62421 9.74142i 0.279815 0.484654i
\(405\) 0 0
\(406\) 0 0
\(407\) −6.88060 + 3.97252i −0.341059 + 0.196910i
\(408\) 0 0
\(409\) 28.8372i 1.42591i 0.701212 + 0.712953i \(0.252643\pi\)
−0.701212 + 0.712953i \(0.747357\pi\)
\(410\) 15.4227i 0.761673i
\(411\) 0 0
\(412\) 18.5190 10.6919i 0.912363 0.526753i
\(413\) 0 0
\(414\) 0 0
\(415\) −10.6123 + 18.3811i −0.520938 + 0.902290i
\(416\) 1.55211 2.68834i 0.0760986 0.131807i
\(417\) 0 0
\(418\) −23.3720 + 13.4938i −1.14316 + 0.660005i
\(419\) −5.06390 + 8.77094i −0.247388 + 0.428488i −0.962800 0.270214i \(-0.912906\pi\)
0.715412 + 0.698702i \(0.246239\pi\)
\(420\) 0 0
\(421\) 12.7094 + 22.0134i 0.619419 + 1.07287i 0.989592 + 0.143902i \(0.0459651\pi\)
−0.370173 + 0.928963i \(0.620702\pi\)
\(422\) −24.8617 14.3539i −1.21025 0.698738i
\(423\) 0 0
\(424\) 2.30010 + 3.98390i 0.111703 + 0.193475i
\(425\) 3.93546 0.190898
\(426\) 0 0
\(427\) 0 0
\(428\) −17.4370 10.0673i −0.842849 0.486619i
\(429\) 0 0
\(430\) −38.5834 22.2762i −1.86066 1.07425i
\(431\) 9.39066 5.42170i 0.452332 0.261154i −0.256482 0.966549i \(-0.582564\pi\)
0.708815 + 0.705395i \(0.249230\pi\)
\(432\) 0 0
\(433\) 13.0519i 0.627233i −0.949550 0.313616i \(-0.898459\pi\)
0.949550 0.313616i \(-0.101541\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.685771 1.18779i −0.0328425 0.0568849i
\(437\) 20.3158 0.971835
\(438\) 0 0
\(439\) 31.9547i 1.52511i 0.646922 + 0.762557i \(0.276056\pi\)
−0.646922 + 0.762557i \(0.723944\pi\)
\(440\) −13.3208 −0.635046
\(441\) 0 0
\(442\) 2.55255 0.121412
\(443\) 24.7969i 1.17814i −0.808083 0.589068i \(-0.799495\pi\)
0.808083 0.589068i \(-0.200505\pi\)
\(444\) 0 0
\(445\) 18.9899 0.900208
\(446\) 2.98724 + 5.17406i 0.141450 + 0.244999i
\(447\) 0 0
\(448\) 0 0
\(449\) 13.7710i 0.649892i 0.945733 + 0.324946i \(0.105346\pi\)
−0.945733 + 0.324946i \(0.894654\pi\)
\(450\) 0 0
\(451\) −15.9989 + 9.23700i −0.753361 + 0.434953i
\(452\) 6.12715 + 3.53751i 0.288197 + 0.166390i
\(453\) 0 0
\(454\) −23.7439 13.7085i −1.11436 0.643374i
\(455\) 0 0
\(456\) 0 0
\(457\) 27.3107 1.27754 0.638771 0.769397i \(-0.279443\pi\)
0.638771 + 0.769397i \(0.279443\pi\)
\(458\) 3.15670 + 5.46757i 0.147503 + 0.255483i
\(459\) 0 0
\(460\) −25.5680 14.7617i −1.19211 0.688266i
\(461\) 5.51822 + 9.55784i 0.257009 + 0.445153i 0.965439 0.260628i \(-0.0839296\pi\)
−0.708430 + 0.705781i \(0.750596\pi\)
\(462\) 0 0
\(463\) −12.2346 + 21.1910i −0.568591 + 0.984829i 0.428115 + 0.903724i \(0.359178\pi\)
−0.996706 + 0.0811042i \(0.974155\pi\)
\(464\) 12.8935 7.44405i 0.598564 0.345581i
\(465\) 0 0
\(466\) 4.56029 7.89866i 0.211251 0.365898i
\(467\) 7.95241 13.7740i 0.367994 0.637384i −0.621258 0.783606i \(-0.713378\pi\)
0.989252 + 0.146222i \(0.0467114\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 8.69451 5.01978i 0.401048 0.231545i
\(471\) 0 0
\(472\) 6.92754i 0.318866i
\(473\) 53.3667i 2.45380i
\(474\) 0 0
\(475\) −2.85063 + 1.64581i −0.130796 + 0.0755151i
\(476\) 0 0
\(477\) 0 0
\(478\) −14.7021 + 25.4648i −0.672459 + 1.16473i
\(479\) 6.92685 11.9976i 0.316496 0.548187i −0.663259 0.748390i \(-0.730827\pi\)
0.979754 + 0.200204i \(0.0641604\pi\)
\(480\) 0 0
\(481\) −0.544315 + 0.314261i −0.0248186 + 0.0143290i
\(482\) 0.718964 1.24528i 0.0327479 0.0567210i
\(483\) 0 0
\(484\) −15.2781 26.4624i −0.694458 1.20284i
\(485\) 8.08506 + 4.66791i 0.367123 + 0.211959i
\(486\) 0 0
\(487\) −14.3993 24.9404i −0.652496 1.13016i −0.982515 0.186182i \(-0.940389\pi\)
0.330020 0.943974i \(-0.392945\pi\)
\(488\) −8.10822 −0.367042
\(489\) 0 0
\(490\) 0 0
\(491\) 33.5627 + 19.3774i 1.51466 + 0.874492i 0.999852 + 0.0171884i \(0.00547151\pi\)
0.514812 + 0.857303i \(0.327862\pi\)
\(492\) 0 0
\(493\) 8.34181 + 4.81615i 0.375696 + 0.216908i
\(494\) −1.84893 + 1.06748i −0.0831872 + 0.0480281i
\(495\) 0 0
\(496\) 49.7911i 2.23569i
\(497\) 0 0
\(498\) 0 0
\(499\) 1.73333 + 3.00222i 0.0775946 + 0.134398i 0.902212 0.431294i \(-0.141943\pi\)
−0.824617 + 0.565691i \(0.808609\pi\)
\(500\) −13.9209 −0.622561
\(501\) 0 0
\(502\) 2.14076i 0.0955467i
\(503\) 28.2202 1.25828 0.629138 0.777293i \(-0.283408\pi\)
0.629138 + 0.777293i \(0.283408\pi\)
\(504\) 0 0
\(505\) −18.8794 −0.840124
\(506\) 82.7403i 3.67825i
\(507\) 0 0
\(508\) −11.0065 −0.488335
\(509\) −17.9062 31.0144i −0.793678 1.37469i −0.923675 0.383176i \(-0.874830\pi\)
0.129997 0.991514i \(-0.458503\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 24.2599i 1.07215i
\(513\) 0 0
\(514\) 46.9111 27.0841i 2.06916 1.19463i
\(515\) −31.0823 17.9454i −1.36965 0.790768i
\(516\) 0 0
\(517\) −10.4147 6.01291i −0.458036 0.264447i
\(518\) 0 0
\(519\) 0 0
\(520\) −1.05379 −0.0462119
\(521\) −13.4608 23.3148i −0.589729 1.02144i −0.994268 0.106920i \(-0.965901\pi\)
0.404538 0.914521i \(-0.367432\pi\)
\(522\) 0 0
\(523\) 7.82181 + 4.51593i 0.342024 + 0.197468i 0.661167 0.750239i \(-0.270062\pi\)
−0.319143 + 0.947707i \(0.603395\pi\)
\(524\) −5.86943 10.1662i −0.256407 0.444110i
\(525\) 0 0
\(526\) 12.8020 22.1737i 0.558193 0.966819i
\(527\) −27.8980 + 16.1069i −1.21526 + 0.701629i
\(528\) 0 0
\(529\) 19.6426 34.0220i 0.854026 1.47922i
\(530\) −11.3661 + 19.6866i −0.493710 + 0.855131i
\(531\) 0 0
\(532\) 0 0
\(533\) −1.26565 + 0.730726i −0.0548216 + 0.0316513i
\(534\) 0 0
\(535\) 33.7939i 1.46104i
\(536\) 1.77113i 0.0765010i
\(537\) 0 0
\(538\) 16.9615 9.79273i 0.731262 0.422195i
\(539\) 0 0
\(540\) 0 0
\(541\) −5.66792 + 9.81713i −0.243683 + 0.422071i −0.961760 0.273892i \(-0.911689\pi\)
0.718078 + 0.695963i \(0.245022\pi\)
\(542\) 6.11710 10.5951i 0.262752 0.455100i
\(543\) 0 0
\(544\) 18.6447 10.7646i 0.799387 0.461526i
\(545\) −1.15100 + 1.99360i −0.0493035 + 0.0853962i
\(546\) 0 0
\(547\) 19.4246 + 33.6444i 0.830537 + 1.43853i 0.897613 + 0.440784i \(0.145300\pi\)
−0.0670762 + 0.997748i \(0.521367\pi\)
\(548\) 14.9587 + 8.63644i 0.639006 + 0.368930i
\(549\) 0 0
\(550\) −6.70292 11.6098i −0.285813 0.495043i
\(551\) −8.05647 −0.343217
\(552\) 0 0
\(553\) 0 0
\(554\) 36.3061 + 20.9613i 1.54250 + 0.890562i
\(555\) 0 0
\(556\) −25.3410 14.6306i −1.07470 0.620478i
\(557\) 6.29167 3.63249i 0.266586 0.153914i −0.360749 0.932663i \(-0.617479\pi\)
0.627335 + 0.778749i \(0.284146\pi\)
\(558\) 0 0
\(559\) 4.22177i 0.178562i
\(560\) 0 0
\(561\) 0 0
\(562\) 20.8848 + 36.1736i 0.880973 + 1.52589i
\(563\) −23.0818 −0.972780 −0.486390 0.873742i \(-0.661687\pi\)
−0.486390 + 0.873742i \(0.661687\pi\)
\(564\) 0 0
\(565\) 11.8748i 0.499575i
\(566\) −35.4561 −1.49033
\(567\) 0 0
\(568\) −2.79889 −0.117439
\(569\) 17.9535i 0.752651i 0.926487 + 0.376326i \(0.122813\pi\)
−0.926487 + 0.376326i \(0.877187\pi\)
\(570\) 0 0
\(571\) −14.0847 −0.589425 −0.294713 0.955586i \(-0.595224\pi\)
−0.294713 + 0.955586i \(0.595224\pi\)
\(572\) −1.85819 3.21849i −0.0776950 0.134572i
\(573\) 0 0
\(574\) 0 0
\(575\) 10.0916i 0.420851i
\(576\) 0 0
\(577\) 26.0392 15.0337i 1.08403 0.625862i 0.152046 0.988373i \(-0.451414\pi\)
0.931979 + 0.362511i \(0.118081\pi\)
\(578\) −12.1841 7.03447i −0.506790 0.292595i
\(579\) 0 0
\(580\) 10.1393 + 5.85392i 0.421011 + 0.243071i
\(581\) 0 0
\(582\) 0 0
\(583\) 27.2295 1.12773
\(584\) 4.03690 + 6.99211i 0.167048 + 0.289336i
\(585\) 0 0
\(586\) −14.2800 8.24455i −0.589900 0.340579i
\(587\) −18.0979 31.3465i −0.746981 1.29381i −0.949264 0.314481i \(-0.898169\pi\)
0.202283 0.979327i \(-0.435164\pi\)
\(588\) 0 0
\(589\) 13.4719 23.3339i 0.555098 0.961459i
\(590\) 29.6464 17.1164i 1.22052 0.704670i
\(591\) 0 0
\(592\) −3.36877 + 5.83489i −0.138456 + 0.239812i
\(593\) −1.02158 + 1.76943i −0.0419514 + 0.0726620i −0.886239 0.463229i \(-0.846691\pi\)
0.844287 + 0.535891i \(0.180024\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20.3507 11.7495i 0.833598 0.481278i
\(597\) 0 0
\(598\) 6.54547i 0.267664i
\(599\) 18.2296i 0.744840i −0.928064 0.372420i \(-0.878528\pi\)
0.928064 0.372420i \(-0.121472\pi\)
\(600\) 0 0
\(601\) −32.1713 + 18.5741i −1.31230 + 0.757654i −0.982476 0.186390i \(-0.940321\pi\)
−0.329820 + 0.944044i \(0.606988\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.48002 + 2.56346i −0.0602210 + 0.104306i
\(605\) −25.6428 + 44.4146i −1.04253 + 1.80571i
\(606\) 0 0
\(607\) −17.1730 + 9.91482i −0.697030 + 0.402430i −0.806240 0.591588i \(-0.798501\pi\)
0.109211 + 0.994019i \(0.465168\pi\)
\(608\) −9.00349 + 15.5945i −0.365140 + 0.632440i
\(609\) 0 0
\(610\) −20.0336 34.6991i −0.811135 1.40493i
\(611\) −0.823890 0.475673i −0.0333310 0.0192437i
\(612\) 0 0
\(613\) 6.34412 + 10.9883i 0.256237 + 0.443815i 0.965231 0.261400i \(-0.0841840\pi\)
−0.708994 + 0.705214i \(0.750851\pi\)
\(614\) 53.7381 2.16869
\(615\) 0 0
\(616\) 0 0
\(617\) −4.37247 2.52445i −0.176029 0.101630i 0.409397 0.912357i \(-0.365739\pi\)
−0.585426 + 0.810726i \(0.699073\pi\)
\(618\) 0 0
\(619\) −0.231999 0.133945i −0.00932485 0.00538370i 0.495330 0.868705i \(-0.335047\pi\)
−0.504655 + 0.863321i \(0.668380\pi\)
\(620\) −33.9094 + 19.5776i −1.36183 + 0.786255i
\(621\) 0 0
\(622\) 24.8305i 0.995611i
\(623\) 0 0
\(624\) 0 0
\(625\) 14.8792 + 25.7716i 0.595169 + 1.03086i
\(626\) −58.9641 −2.35668
\(627\) 0 0
\(628\) 12.5290i 0.499961i
\(629\) −4.35905 −0.173807
\(630\) 0 0
\(631\) 37.7899 1.50439 0.752197 0.658938i \(-0.228994\pi\)
0.752197 + 0.658938i \(0.228994\pi\)
\(632\) 0.544222i 0.0216480i
\(633\) 0 0
\(634\) −37.5112 −1.48976
\(635\) 9.23671 + 15.9984i 0.366547 + 0.634879i
\(636\) 0 0
\(637\) 0 0
\(638\) 32.8117i 1.29903i
\(639\) 0 0
\(640\) −15.9234 + 9.19336i −0.629426 + 0.363400i
\(641\) 29.7991 + 17.2045i 1.17699 + 0.679537i 0.955317 0.295583i \(-0.0955140\pi\)
0.221676 + 0.975120i \(0.428847\pi\)
\(642\) 0 0
\(643\) 0.676278 + 0.390449i 0.0266698 + 0.0153978i 0.513276 0.858224i \(-0.328432\pi\)
−0.486606 + 0.873622i \(0.661765\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −14.8068 −0.582566
\(647\) −9.82182 17.0119i −0.386136 0.668807i 0.605790 0.795624i \(-0.292857\pi\)
−0.991926 + 0.126818i \(0.959524\pi\)
\(648\) 0 0
\(649\) −35.5118 20.5027i −1.39396 0.804803i
\(650\) −0.530259 0.918435i −0.0207985 0.0360240i
\(651\) 0 0
\(652\) −0.801781 + 1.38872i −0.0314001 + 0.0543867i
\(653\) 2.77600 1.60272i 0.108633 0.0627194i −0.444699 0.895680i \(-0.646689\pi\)
0.553332 + 0.832961i \(0.313356\pi\)
\(654\) 0 0
\(655\) −9.85129 + 17.0629i −0.384922 + 0.666704i
\(656\) −7.83315 + 13.5674i −0.305833 + 0.529719i
\(657\) 0 0
\(658\) 0 0
\(659\) 24.2959 14.0273i 0.946435 0.546425i 0.0544636 0.998516i \(-0.482655\pi\)
0.891972 + 0.452091i \(0.149322\pi\)
\(660\) 0 0
\(661\) 32.3882i 1.25976i −0.776694 0.629878i \(-0.783105\pi\)
0.776694 0.629878i \(-0.216895\pi\)
\(662\) 2.33227i 0.0906463i
\(663\) 0 0
\(664\) 6.95189 4.01367i 0.269785 0.155761i
\(665\) 0 0
\(666\) 0 0
\(667\) −12.3500 + 21.3908i −0.478193 + 0.828255i
\(668\) 5.96768 10.3363i 0.230897 0.399925i
\(669\) 0 0
\(670\) −7.57953 + 4.37605i −0.292823 + 0.169061i
\(671\) −23.9971 + 41.5641i −0.926397 + 1.60457i
\(672\) 0 0
\(673\) −10.3088 17.8554i −0.397375 0.688273i 0.596026 0.802965i \(-0.296745\pi\)
−0.993401 + 0.114692i \(0.963412\pi\)
\(674\) −21.3242 12.3115i −0.821378 0.474223i
\(675\) 0 0
\(676\) 9.55701 + 16.5532i 0.367577 + 0.636663i
\(677\) −50.3311 −1.93438 −0.967190 0.254053i \(-0.918236\pi\)
−0.967190 + 0.254053i \(0.918236\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.32935 3.65425i −0.242719 0.140134i
\(681\) 0 0
\(682\) 95.0324 + 54.8670i 3.63898 + 2.10097i
\(683\) −11.9031 + 6.87227i −0.455460 + 0.262960i −0.710133 0.704067i \(-0.751365\pi\)
0.254673 + 0.967027i \(0.418032\pi\)
\(684\) 0 0
\(685\) 28.9909i 1.10769i
\(686\) 0 0
\(687\) 0 0
\(688\) 22.6280 + 39.1929i 0.862685 + 1.49421i
\(689\) 2.15409 0.0820643
\(690\) 0 0
\(691\) 29.3673i 1.11719i 0.829442 + 0.558593i \(0.188658\pi\)
−0.829442 + 0.558593i \(0.811342\pi\)
\(692\) −1.49813 −0.0569504
\(693\) 0 0
\(694\) −50.5874 −1.92027
\(695\) 49.1123i 1.86294i
\(696\) 0 0
\(697\) −10.1358 −0.383920
\(698\) −32.7392 56.7060i −1.23920 2.14635i
\(699\) 0 0
\(700\) 0 0
\(701\) 44.2011i 1.66945i 0.550666 + 0.834726i \(0.314374\pi\)
−0.550666 + 0.834726i \(0.685626\pi\)
\(702\) 0 0
\(703\) 3.15746 1.82296i 0.119086 0.0687542i
\(704\) −17.2923 9.98371i −0.651728 0.376275i
\(705\) 0 0
\(706\) 4.08702 + 2.35964i 0.153817 + 0.0888063i
\(707\) 0 0
\(708\) 0 0
\(709\) −11.3326 −0.425604 −0.212802 0.977095i \(-0.568259\pi\)
−0.212802 + 0.977095i \(0.568259\pi\)
\(710\) −6.91542 11.9779i −0.259531 0.449521i
\(711\) 0 0
\(712\) −6.21994 3.59108i −0.233102 0.134581i
\(713\) −41.3028 71.5385i −1.54680 2.67914i
\(714\) 0 0
\(715\) −3.11881 + 5.40193i −0.116637 + 0.202021i
\(716\) −1.90755 + 1.10132i −0.0712884 + 0.0411584i
\(717\) 0 0
\(718\) 6.79136 11.7630i 0.253451 0.438991i
\(719\) −18.0647 + 31.2890i −0.673700 + 1.16688i 0.303147 + 0.952944i \(0.401963\pi\)
−0.976847 + 0.213939i \(0.931371\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −20.0271 + 11.5627i −0.745333 + 0.430318i
\(723\) 0 0
\(724\) 22.4596i 0.834703i
\(725\) 4.00197i 0.148629i
\(726\) 0 0
\(727\) −6.20547 + 3.58273i −0.230148 + 0.132876i −0.610640 0.791908i \(-0.709088\pi\)
0.380492 + 0.924784i \(0.375755\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −19.9485 + 34.5518i −0.738327 + 1.27882i
\(731\) −14.6399 + 25.3570i −0.541475 + 0.937862i
\(732\) 0 0
\(733\) −41.4391 + 23.9249i −1.53059 + 0.883685i −0.531253 + 0.847213i \(0.678279\pi\)
−0.999335 + 0.0364726i \(0.988388\pi\)
\(734\) 12.5938 21.8131i 0.464846 0.805136i
\(735\) 0 0
\(736\) 27.6034 + 47.8105i 1.01747 + 1.76232i
\(737\) 9.07910 + 5.24182i 0.334433 + 0.193085i
\(738\) 0 0
\(739\) −7.67416 13.2920i −0.282299 0.488956i 0.689652 0.724141i \(-0.257764\pi\)
−0.971951 + 0.235185i \(0.924430\pi\)
\(740\) −5.29833 −0.194771
\(741\) 0 0
\(742\) 0 0
\(743\) −34.9422 20.1739i −1.28191 0.740109i −0.304709 0.952445i \(-0.598559\pi\)
−0.977197 + 0.212337i \(0.931893\pi\)
\(744\) 0 0
\(745\) −34.1568 19.7204i −1.25141 0.722501i
\(746\) −38.4630 + 22.2066i −1.40823 + 0.813042i
\(747\) 0 0
\(748\) 25.7747i 0.942417i
\(749\) 0 0
\(750\) 0 0
\(751\) −16.9449 29.3494i −0.618327 1.07097i −0.989791 0.142527i \(-0.954477\pi\)
0.371463 0.928448i \(-0.378856\pi\)
\(752\) −10.1981 −0.371887
\(753\) 0 0
\(754\) 2.59568i 0.0945293i
\(755\) 4.96814 0.180809
\(756\) 0 0
\(757\) −5.73237 −0.208346 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(758\) 39.6743i 1.44103i
\(759\) 0 0
\(760\) 6.11284 0.221736
\(761\) −13.2666 22.9784i −0.480914 0.832968i 0.518846 0.854868i \(-0.326362\pi\)
−0.999760 + 0.0218999i \(0.993028\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 19.7420i 0.714242i
\(765\) 0 0
\(766\) −20.9741 + 12.1094i −0.757825 + 0.437531i
\(767\) −2.80929 1.62194i −0.101438 0.0585650i
\(768\) 0 0
\(769\) 23.3944 + 13.5068i 0.843623 + 0.487066i 0.858494 0.512823i \(-0.171400\pi\)
−0.0148711 + 0.999889i \(0.504734\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.32256 0.0835906
\(773\) −11.3009 19.5737i −0.406464 0.704016i 0.588027 0.808841i \(-0.299905\pi\)
−0.994491 + 0.104826i \(0.966572\pi\)
\(774\) 0 0
\(775\) 11.5909 + 6.69201i 0.416357 + 0.240384i
\(776\) −1.76545 3.05784i −0.0633758 0.109770i
\(777\) 0 0
\(778\) 10.2296 17.7182i 0.366750 0.635229i
\(779\) 7.34180 4.23879i 0.263047 0.151870i
\(780\) 0 0
\(781\) −8.28359 + 14.3476i −0.296410 + 0.513398i
\(782\) −22.6978 + 39.3137i −0.811670 + 1.40585i
\(783\) 0 0
\(784\) 0 0
\(785\) −18.2114 + 10.5144i −0.649993 + 0.375274i
\(786\) 0 0
\(787\) 26.1960i 0.933787i −0.884314 0.466893i \(-0.845373\pi\)
0.884314 0.466893i \(-0.154627\pi\)
\(788\) 7.40767i 0.263887i
\(789\) 0 0
\(790\) −2.32900 + 1.34465i −0.0828620 + 0.0478404i
\(791\) 0 0
\(792\) 0 0
\(793\) −1.89838 + 3.28808i −0.0674133 + 0.116763i
\(794\) 27.9314 48.3785i 0.991247 1.71689i
\(795\) 0 0
\(796\) 14.4705 8.35456i 0.512894 0.296120i
\(797\) 5.96560 10.3327i 0.211312 0.366004i −0.740813 0.671711i \(-0.765560\pi\)
0.952126 + 0.305707i \(0.0988929\pi\)
\(798\) 0 0
\(799\) −3.29899 5.71402i −0.116710 0.202147i
\(800\) −7.74640 4.47239i −0.273877 0.158123i
\(801\) 0 0
\(802\) −17.9370 31.0678i −0.633378 1.09704i
\(803\) 47.7904 1.68648
\(804\) 0 0
\(805\) 0 0
\(806\) 7.51788 + 4.34045i 0.264806 + 0.152886i
\(807\) 0 0
\(808\) 6.18375 + 3.57019i 0.217543 + 0.125599i
\(809\) −22.9399 + 13.2443i −0.806522 + 0.465646i −0.845747 0.533585i \(-0.820845\pi\)
0.0392244 + 0.999230i \(0.487511\pi\)
\(810\) 0 0
\(811\) 13.7419i 0.482544i 0.970458 + 0.241272i \(0.0775646\pi\)
−0.970458 + 0.241272i \(0.922435\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 7.42439 + 12.8594i 0.260225 + 0.450722i
\(815\) 2.69143 0.0942766
\(816\) 0 0
\(817\) 24.4896i 0.856783i
\(818\) 53.8949 1.88439
\(819\) 0 0
\(820\) −12.3198 −0.430226
\(821\) 13.5669i 0.473489i 0.971572 + 0.236744i \(0.0760804\pi\)
−0.971572 + 0.236744i \(0.923920\pi\)
\(822\) 0 0
\(823\) 14.6971 0.512310 0.256155 0.966636i \(-0.417544\pi\)
0.256155 + 0.966636i \(0.417544\pi\)
\(824\) 6.78711 + 11.7556i 0.236440 + 0.409527i
\(825\) 0 0
\(826\) 0 0
\(827\) 40.8787i 1.42149i 0.703449 + 0.710746i \(0.251642\pi\)
−0.703449 + 0.710746i \(0.748358\pi\)
\(828\) 0 0
\(829\) −17.7189 + 10.2300i −0.615402 + 0.355302i −0.775077 0.631867i \(-0.782289\pi\)
0.159675 + 0.987170i \(0.448955\pi\)
\(830\) 34.3530 + 19.8337i 1.19241 + 0.688439i
\(831\) 0 0
\(832\) −1.36797 0.789798i −0.0474258 0.0273813i
\(833\) 0 0
\(834\) 0 0
\(835\) −20.0324 −0.693249
\(836\) 10.7790 + 18.6698i 0.372800 + 0.645708i
\(837\) 0 0
\(838\) 16.3923 + 9.46412i 0.566264 + 0.326932i
\(839\) 27.3475 + 47.3673i 0.944141 + 1.63530i 0.757462 + 0.652880i \(0.226439\pi\)
0.186680 + 0.982421i \(0.440227\pi\)
\(840\) 0 0
\(841\) −9.60247 + 16.6320i −0.331120 + 0.573516i
\(842\) 41.1416 23.7531i 1.41783 0.818586i
\(843\) 0 0
\(844\) −11.4661 + 19.8598i −0.394678 + 0.683602i
\(845\) 16.0405 27.7830i 0.551812 0.955766i
\(846\) 0 0
\(847\) 0 0
\(848\) 19.9975 11.5456i 0.686718 0.396477i
\(849\) 0 0
\(850\) 7.35513i 0.252279i
\(851\) 11.1779i 0.383172i
\(852\) 0 0
\(853\) −11.0684 + 6.39037i −0.378976 + 0.218802i −0.677373 0.735640i \(-0.736882\pi\)
0.298396 + 0.954442i \(0.403548\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 6.39058 11.0688i 0.218426 0.378324i
\(857\) 9.16200 15.8691i 0.312968 0.542077i −0.666035 0.745920i \(-0.732010\pi\)
0.979003 + 0.203844i \(0.0653434\pi\)
\(858\) 0 0
\(859\) 33.4579 19.3169i 1.14157 0.659085i 0.194750 0.980853i \(-0.437610\pi\)
0.946819 + 0.321768i \(0.104277\pi\)
\(860\) −17.7944 + 30.8208i −0.606784 + 1.05098i
\(861\) 0 0
\(862\) −10.1328 17.5505i −0.345125 0.597774i
\(863\) 14.4626 + 8.35001i 0.492314 + 0.284238i 0.725534 0.688186i \(-0.241593\pi\)
−0.233220 + 0.972424i \(0.574926\pi\)
\(864\) 0 0
\(865\) 1.25724 + 2.17760i 0.0427473 + 0.0740405i
\(866\) −24.3931 −0.828912
\(867\) 0 0
\(868\) 0 0
\(869\) 2.78978 + 1.61068i 0.0946367 + 0.0546385i
\(870\) 0 0
\(871\) 0.718235 + 0.414673i 0.0243365 + 0.0140507i
\(872\) 0.753996 0.435320i 0.0255335 0.0147418i
\(873\) 0 0
\(874\) 37.9689i 1.28432i
\(875\) 0 0
\(876\) 0 0
\(877\) −16.7617 29.0321i −0.566002 0.980345i −0.996956 0.0779707i \(-0.975156\pi\)
0.430953 0.902374i \(-0.358177\pi\)
\(878\) 59.7213 2.01549
\(879\) 0 0
\(880\) 66.8652i 2.25403i
\(881\) −28.6657 −0.965771 −0.482885 0.875684i \(-0.660411\pi\)
−0.482885 + 0.875684i \(0.660411\pi\)
\(882\) 0 0
\(883\) −38.2091 −1.28584 −0.642919 0.765935i \(-0.722277\pi\)
−0.642919 + 0.765935i \(0.722277\pi\)
\(884\) 2.03900i 0.0685790i
\(885\) 0 0
\(886\) −46.3439 −1.55695
\(887\) 17.5914 + 30.4692i 0.590662 + 1.02306i 0.994143 + 0.108069i \(0.0344666\pi\)
−0.403481 + 0.914988i \(0.632200\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 35.4910i 1.18966i
\(891\) 0 0
\(892\) 4.13309 2.38624i 0.138386 0.0798972i
\(893\) 4.77921 + 2.75928i 0.159930 + 0.0923358i
\(894\) 0 0
\(895\) 3.20164 + 1.84847i 0.107019 + 0.0617875i
\(896\) 0 0
\(897\) 0 0
\(898\) 25.7371 0.858857
\(899\) 16.3791 + 28.3695i 0.546274 + 0.946174i
\(900\) 0 0
\(901\) 12.9380 + 7.46975i 0.431027 + 0.248854i
\(902\) 17.2634 + 29.9010i 0.574807 + 0.995595i
\(903\) 0 0
\(904\) −2.24557 + 3.88944i −0.0746866 + 0.129361i
\(905\) −32.6459 + 18.8481i −1.08519 + 0.626533i
\(906\) 0 0
\(907\) 21.2977 36.8887i 0.707179 1.22487i −0.258720 0.965952i \(-0.583301\pi\)
0.965899 0.258918i \(-0.0833660\pi\)
\(908\) −10.9505 + 18.9669i −0.363406 + 0.629437i
\(909\) 0 0
\(910\) 0 0
\(911\) 43.5221 25.1275i 1.44195 0.832510i 0.443970 0.896042i \(-0.353570\pi\)
0.997980 + 0.0635313i \(0.0202363\pi\)
\(912\) 0 0
\(913\) 47.5154i 1.57253i
\(914\) 51.0420i 1.68832i
\(915\) 0 0
\(916\) 4.36754 2.52160i 0.144308 0.0833161i
\(917\) 0 0
\(918\) 0 0
\(919\) 29.3486 50.8333i 0.968121 1.67684i 0.267137 0.963658i \(-0.413922\pi\)
0.700984 0.713177i \(-0.252744\pi\)
\(920\) 9.37054 16.2303i 0.308938 0.535096i
\(921\) 0 0
\(922\) 17.8630 10.3132i 0.588287 0.339647i
\(923\) −0.655304 + 1.13502i −0.0215696 + 0.0373596i
\(924\) 0 0
\(925\) 0.905536 + 1.56843i 0.0297738 + 0.0515698i
\(926\) 39.6046 + 22.8657i 1.30149 + 0.751415i
\(927\) 0 0
\(928\) −10.9465 18.9598i −0.359335 0.622387i
\(929\) 14.3823 0.471868 0.235934 0.971769i \(-0.424185\pi\)
0.235934 + 0.971769i \(0.424185\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −6.30952 3.64281i −0.206675 0.119324i
\(933\) 0 0
\(934\) −25.7427 14.8626i −0.842327 0.486318i
\(935\) −37.4646 + 21.6302i −1.22522 + 0.707384i
\(936\) 0 0
\(937\) 44.2981i 1.44716i −0.690243 0.723578i \(-0.742496\pi\)
0.690243 0.723578i \(-0.257504\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.00985 6.94526i −0.130787 0.226529i
\(941\) 14.8880 0.485335 0.242667 0.970110i \(-0.421978\pi\)
0.242667 + 0.970110i \(0.421978\pi\)
\(942\) 0 0
\(943\) 25.9910i 0.846384i
\(944\) −34.7734 −1.13178
\(945\) 0 0
\(946\) 99.7390 3.24280
\(947\) 41.9552i 1.36336i −0.731650 0.681681i \(-0.761249\pi\)
0.731650 0.681681i \(-0.238751\pi\)
\(948\) 0 0
\(949\) 3.78063 0.122724
\(950\) 3.07592 + 5.32765i 0.0997960 + 0.172852i
\(951\) 0 0
\(952\) 0 0
\(953\) 13.9821i 0.452926i −0.974020 0.226463i \(-0.927284\pi\)
0.974020 0.226463i \(-0.0727162\pi\)
\(954\) 0 0
\(955\) 28.6959 16.5676i 0.928578 0.536115i
\(956\) 20.3415 + 11.7442i 0.657892 + 0.379834i
\(957\) 0 0
\(958\) −22.4228 12.9458i −0.724449 0.418261i
\(959\) 0 0
\(960\) 0 0
\(961\) −78.5553 −2.53404
\(962\) 0.587333 + 1.01729i 0.0189364 + 0.0327988i
\(963\) 0 0
\(964\) −0.994743 0.574315i −0.0320385 0.0184974i
\(965\) −1.94910 3.37593i −0.0627436 0.108675i
\(966\) 0 0
\(967\) −11.5757 + 20.0497i −0.372249 + 0.644754i −0.989911 0.141690i \(-0.954746\pi\)
0.617662 + 0.786443i \(0.288080\pi\)
\(968\) 16.7980 9.69835i 0.539909 0.311717i
\(969\) 0 0
\(970\) 8.72403 15.1105i 0.280112 0.485168i
\(971\) 21.6869 37.5628i 0.695965 1.20545i −0.273890 0.961761i \(-0.588310\pi\)
0.969854 0.243685i \(-0.0783564\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −46.6120 + 26.9114i −1.49354 + 0.862298i
\(975\) 0 0
\(976\) 40.7000i 1.30277i
\(977\) 12.0331i 0.384974i −0.981300 0.192487i \(-0.938345\pi\)
0.981300 0.192487i \(-0.0616553\pi\)
\(978\) 0 0
\(979\) −36.8170 + 21.2563i −1.17668 + 0.679355i
\(980\) 0 0
\(981\) 0 0
\(982\) 36.2152 62.7266i 1.15567 2.00169i
\(983\) 3.14829 5.45300i 0.100415 0.173924i −0.811441 0.584435i \(-0.801316\pi\)
0.911856 + 0.410511i \(0.134650\pi\)
\(984\) 0 0
\(985\) 10.7674 6.21654i 0.343077 0.198075i
\(986\) 9.00108 15.5903i 0.286653 0.496497i
\(987\) 0 0
\(988\) 0.852712 + 1.47694i 0.0271284 + 0.0469877i
\(989\) −65.0225 37.5408i −2.06760 1.19373i
\(990\) 0 0
\(991\) −16.7814 29.0662i −0.533078 0.923317i −0.999254 0.0386256i \(-0.987702\pi\)
0.466176 0.884692i \(-0.345631\pi\)
\(992\) 73.2178 2.32467
\(993\) 0 0
\(994\) 0 0
\(995\) −24.2874 14.0223i −0.769963 0.444538i
\(996\) 0 0
\(997\) −9.74838 5.62823i −0.308734 0.178248i 0.337626 0.941280i \(-0.390376\pi\)
−0.646360 + 0.763033i \(0.723710\pi\)
\(998\) 5.61096 3.23949i 0.177612 0.102544i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.i.d.1097.7 48
3.2 odd 2 441.2.i.d.68.20 48
7.2 even 3 1323.2.o.e.881.6 48
7.3 odd 6 1323.2.s.d.962.20 48
7.4 even 3 1323.2.s.d.962.19 48
7.5 odd 6 1323.2.o.e.881.5 48
7.6 odd 2 inner 1323.2.i.d.1097.22 48
9.2 odd 6 1323.2.s.d.656.20 48
9.7 even 3 441.2.s.d.362.6 48
21.2 odd 6 441.2.o.e.293.19 yes 48
21.5 even 6 441.2.o.e.293.20 yes 48
21.11 odd 6 441.2.s.d.374.5 48
21.17 even 6 441.2.s.d.374.6 48
21.20 even 2 441.2.i.d.68.19 48
63.2 odd 6 1323.2.o.e.440.5 48
63.11 odd 6 inner 1323.2.i.d.521.22 48
63.16 even 3 441.2.o.e.146.20 yes 48
63.20 even 6 1323.2.s.d.656.19 48
63.25 even 3 441.2.i.d.227.5 48
63.34 odd 6 441.2.s.d.362.5 48
63.38 even 6 inner 1323.2.i.d.521.7 48
63.47 even 6 1323.2.o.e.440.6 48
63.52 odd 6 441.2.i.d.227.6 48
63.61 odd 6 441.2.o.e.146.19 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.19 48 21.20 even 2
441.2.i.d.68.20 48 3.2 odd 2
441.2.i.d.227.5 48 63.25 even 3
441.2.i.d.227.6 48 63.52 odd 6
441.2.o.e.146.19 48 63.61 odd 6
441.2.o.e.146.20 yes 48 63.16 even 3
441.2.o.e.293.19 yes 48 21.2 odd 6
441.2.o.e.293.20 yes 48 21.5 even 6
441.2.s.d.362.5 48 63.34 odd 6
441.2.s.d.362.6 48 9.7 even 3
441.2.s.d.374.5 48 21.11 odd 6
441.2.s.d.374.6 48 21.17 even 6
1323.2.i.d.521.7 48 63.38 even 6 inner
1323.2.i.d.521.22 48 63.11 odd 6 inner
1323.2.i.d.1097.7 48 1.1 even 1 trivial
1323.2.i.d.1097.22 48 7.6 odd 2 inner
1323.2.o.e.440.5 48 63.2 odd 6
1323.2.o.e.440.6 48 63.47 even 6
1323.2.o.e.881.5 48 7.5 odd 6
1323.2.o.e.881.6 48 7.2 even 3
1323.2.s.d.656.19 48 63.20 even 6
1323.2.s.d.656.20 48 9.2 odd 6
1323.2.s.d.962.19 48 7.4 even 3
1323.2.s.d.962.20 48 7.3 odd 6