Properties

Label 1323.2.i
Level $1323$
Weight $2$
Character orbit 1323.i
Rep. character $\chi_{1323}(521,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $72$
Newform subspaces $4$
Sturm bound $336$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.i (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(336\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1323, [\chi])\).

Total New Old
Modular forms 384 88 296
Cusp forms 288 72 216
Eisenstein series 96 16 80

Trace form

\( 72 q - 62 q^{4} - 3 q^{5} + 6 q^{10} - 15 q^{11} + 3 q^{13} + 46 q^{16} + 9 q^{17} + 6 q^{19} + 6 q^{20} - 8 q^{22} - 18 q^{23} - 21 q^{25} - 6 q^{26} - 6 q^{29} - 6 q^{34} + q^{37} + 27 q^{38} - 24 q^{40}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1323.2.i.a 1323.i 63.i $2$ $10.564$ \(\Q(\sqrt{-3}) \) None 63.2.i.a \(0\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+2\zeta_{6})q^{2}-q^{4}+(-3+3\zeta_{6})q^{5}+\cdots\)
1323.2.i.b 1323.i 63.i $10$ $10.564$ 10.0.\(\cdots\).1 None 63.2.i.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{3}-\beta _{5})q^{2}+(-1-2\beta _{2}-\beta _{4}+\cdots)q^{4}+\cdots\)
1323.2.i.c 1323.i 63.i $12$ $10.564$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 63.2.o.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{3}-\beta _{5})q^{2}+(-\beta _{1}+\beta _{3}-\beta _{4}+\cdots)q^{4}+\cdots\)
1323.2.i.d 1323.i 63.i $48$ $10.564$ None 441.2.o.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1323, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)