Properties

Label 441.2.i.d.68.20
Level $441$
Weight $2$
Character 441.68
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(68,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 68.20
Character \(\chi\) \(=\) 441.68
Dual form 441.2.i.d.227.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.86894i q^{2} +(1.72324 + 0.174470i) q^{3} -1.49292 q^{4} +(-1.25287 - 2.17003i) q^{5} +(-0.326074 + 3.22063i) q^{6} +0.947692i q^{8} +(2.93912 + 0.601309i) q^{9} +(4.05565 - 2.34153i) q^{10} +(4.85803 + 2.80479i) q^{11} +(-2.57267 - 0.260471i) q^{12} +(-0.384312 - 0.221883i) q^{13} +(-1.78039 - 3.95807i) q^{15} -4.75703 q^{16} +(1.53885 + 2.66536i) q^{17} +(-1.12381 + 5.49303i) q^{18} +(2.22932 + 1.28710i) q^{19} +(1.87044 + 3.23969i) q^{20} +(-5.24197 + 9.07935i) q^{22} +(-6.83476 + 3.94605i) q^{23} +(-0.165344 + 1.63310i) q^{24} +(-0.639351 + 1.10739i) q^{25} +(0.414685 - 0.718255i) q^{26} +(4.95990 + 1.54899i) q^{27} +(2.71041 - 1.56485i) q^{29} +(7.39739 - 3.32743i) q^{30} -10.4669i q^{31} -6.99520i q^{32} +(7.88221 + 5.68091i) q^{33} +(-4.98140 + 2.87601i) q^{34} +(-4.38788 - 0.897709i) q^{36} +(0.708168 - 1.22658i) q^{37} +(-2.40550 + 4.16645i) q^{38} +(-0.623551 - 0.449409i) q^{39} +(2.05652 - 1.18733i) q^{40} +(-1.64665 + 2.85208i) q^{41} +(-4.75676 - 8.23894i) q^{43} +(-7.25268 - 4.18733i) q^{44} +(-2.37747 - 7.13134i) q^{45} +(-7.37492 - 12.7737i) q^{46} -2.14380 q^{47} +(-8.19750 - 0.829960i) q^{48} +(-2.06964 - 1.19491i) q^{50} +(2.18678 + 4.86155i) q^{51} +(0.573749 + 0.331254i) q^{52} +(4.20379 - 2.42706i) q^{53} +(-2.89496 + 9.26974i) q^{54} -14.0561i q^{55} +(3.61709 + 2.60693i) q^{57} +(2.92461 + 5.06558i) q^{58} -7.30991 q^{59} +(2.65798 + 5.90910i) q^{60} -8.55576i q^{61} +19.5619 q^{62} +3.55953 q^{64} +1.11196i q^{65} +(-10.6173 + 14.7314i) q^{66} -1.86888 q^{67} +(-2.29739 - 3.97919i) q^{68} +(-12.4664 + 5.60753i) q^{69} +2.95338i q^{71} +(-0.569856 + 2.78538i) q^{72} +(-7.37804 + 4.25971i) q^{73} +(2.29241 + 1.32352i) q^{74} +(-1.29496 + 1.79675i) q^{75} +(-3.32820 - 1.92154i) q^{76} +(0.839916 - 1.16538i) q^{78} -0.574261 q^{79} +(5.95992 + 10.3229i) q^{80} +(8.27686 + 3.53464i) q^{81} +(-5.33036 - 3.07748i) q^{82} +(-4.23521 - 7.33560i) q^{83} +(3.85595 - 6.67870i) q^{85} +(15.3981 - 8.89008i) q^{86} +(4.94370 - 2.22373i) q^{87} +(-2.65807 + 4.60392i) q^{88} +(-3.78929 + 6.56325i) q^{89} +(13.3280 - 4.44334i) q^{90} +(10.2038 - 5.89115i) q^{92} +(1.82616 - 18.0369i) q^{93} -4.00663i q^{94} -6.45024i q^{95} +(1.22045 - 12.0544i) q^{96} +(3.22662 - 1.86289i) q^{97} +(12.5918 + 11.1648i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 8 q^{9} + 24 q^{11} - 40 q^{15} + 48 q^{16} - 16 q^{18} + 48 q^{23} - 24 q^{25} - 24 q^{30} - 8 q^{36} - 56 q^{39} - 96 q^{44} + 48 q^{50} - 24 q^{51} - 48 q^{53} + 80 q^{57} + 168 q^{60}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.86894i 1.32154i 0.750589 + 0.660769i \(0.229770\pi\)
−0.750589 + 0.660769i \(0.770230\pi\)
\(3\) 1.72324 + 0.174470i 0.994914 + 0.100730i
\(4\) −1.49292 −0.746462
\(5\) −1.25287 2.17003i −0.560299 0.970467i −0.997470 0.0710881i \(-0.977353\pi\)
0.437171 0.899378i \(-0.355980\pi\)
\(6\) −0.326074 + 3.22063i −0.133119 + 1.31482i
\(7\) 0 0
\(8\) 0.947692i 0.335060i
\(9\) 2.93912 + 0.601309i 0.979707 + 0.200436i
\(10\) 4.05565 2.34153i 1.28251 0.740457i
\(11\) 4.85803 + 2.80479i 1.46475 + 0.845675i 0.999225 0.0393590i \(-0.0125316\pi\)
0.465527 + 0.885034i \(0.345865\pi\)
\(12\) −2.57267 0.260471i −0.742666 0.0751915i
\(13\) −0.384312 0.221883i −0.106589 0.0615392i 0.445758 0.895154i \(-0.352934\pi\)
−0.552347 + 0.833614i \(0.686268\pi\)
\(14\) 0 0
\(15\) −1.78039 3.95807i −0.459694 1.02197i
\(16\) −4.75703 −1.18926
\(17\) 1.53885 + 2.66536i 0.373226 + 0.646446i 0.990060 0.140647i \(-0.0449184\pi\)
−0.616834 + 0.787093i \(0.711585\pi\)
\(18\) −1.12381 + 5.49303i −0.264884 + 1.29472i
\(19\) 2.22932 + 1.28710i 0.511440 + 0.295280i 0.733425 0.679770i \(-0.237920\pi\)
−0.221985 + 0.975050i \(0.571254\pi\)
\(20\) 1.87044 + 3.23969i 0.418242 + 0.724417i
\(21\) 0 0
\(22\) −5.24197 + 9.07935i −1.11759 + 1.93572i
\(23\) −6.83476 + 3.94605i −1.42515 + 0.822808i −0.996732 0.0807749i \(-0.974261\pi\)
−0.428413 + 0.903583i \(0.640927\pi\)
\(24\) −0.165344 + 1.63310i −0.0337507 + 0.333355i
\(25\) −0.639351 + 1.10739i −0.127870 + 0.221478i
\(26\) 0.414685 0.718255i 0.0813264 0.140861i
\(27\) 4.95990 + 1.54899i 0.954534 + 0.298103i
\(28\) 0 0
\(29\) 2.71041 1.56485i 0.503310 0.290586i −0.226770 0.973948i \(-0.572816\pi\)
0.730079 + 0.683362i \(0.239483\pi\)
\(30\) 7.39739 3.32743i 1.35057 0.607503i
\(31\) 10.4669i 1.87990i −0.341306 0.939952i \(-0.610869\pi\)
0.341306 0.939952i \(-0.389131\pi\)
\(32\) 6.99520i 1.23659i
\(33\) 7.88221 + 5.68091i 1.37212 + 0.988919i
\(34\) −4.98140 + 2.87601i −0.854303 + 0.493232i
\(35\) 0 0
\(36\) −4.38788 0.897709i −0.731314 0.149618i
\(37\) 0.708168 1.22658i 0.116422 0.201649i −0.801925 0.597424i \(-0.796191\pi\)
0.918347 + 0.395775i \(0.129524\pi\)
\(38\) −2.40550 + 4.16645i −0.390224 + 0.675887i
\(39\) −0.623551 0.449409i −0.0998480 0.0719630i
\(40\) 2.05652 1.18733i 0.325164 0.187734i
\(41\) −1.64665 + 2.85208i −0.257163 + 0.445420i −0.965481 0.260474i \(-0.916121\pi\)
0.708318 + 0.705894i \(0.249455\pi\)
\(42\) 0 0
\(43\) −4.75676 8.23894i −0.725398 1.25643i −0.958810 0.284049i \(-0.908322\pi\)
0.233411 0.972378i \(-0.425011\pi\)
\(44\) −7.25268 4.18733i −1.09338 0.631264i
\(45\) −2.37747 7.13134i −0.354412 1.06308i
\(46\) −7.37492 12.7737i −1.08737 1.88338i
\(47\) −2.14380 −0.312706 −0.156353 0.987701i \(-0.549974\pi\)
−0.156353 + 0.987701i \(0.549974\pi\)
\(48\) −8.19750 0.829960i −1.18321 0.119794i
\(49\) 0 0
\(50\) −2.06964 1.19491i −0.292691 0.168985i
\(51\) 2.18678 + 4.86155i 0.306211 + 0.680753i
\(52\) 0.573749 + 0.331254i 0.0795647 + 0.0459367i
\(53\) 4.20379 2.42706i 0.577435 0.333382i −0.182678 0.983173i \(-0.558477\pi\)
0.760113 + 0.649791i \(0.225143\pi\)
\(54\) −2.89496 + 9.26974i −0.393955 + 1.26145i
\(55\) 14.0561i 1.89532i
\(56\) 0 0
\(57\) 3.61709 + 2.60693i 0.479095 + 0.345296i
\(58\) 2.92461 + 5.06558i 0.384020 + 0.665143i
\(59\) −7.30991 −0.951669 −0.475835 0.879535i \(-0.657854\pi\)
−0.475835 + 0.879535i \(0.657854\pi\)
\(60\) 2.65798 + 5.90910i 0.343144 + 0.762862i
\(61\) 8.55576i 1.09545i −0.836658 0.547726i \(-0.815494\pi\)
0.836658 0.547726i \(-0.184506\pi\)
\(62\) 19.5619 2.48437
\(63\) 0 0
\(64\) 3.55953 0.444941
\(65\) 1.11196i 0.137921i
\(66\) −10.6173 + 14.7314i −1.30689 + 1.81330i
\(67\) −1.86888 −0.228321 −0.114160 0.993462i \(-0.536418\pi\)
−0.114160 + 0.993462i \(0.536418\pi\)
\(68\) −2.29739 3.97919i −0.278599 0.482548i
\(69\) −12.4664 + 5.60753i −1.50078 + 0.675067i
\(70\) 0 0
\(71\) 2.95338i 0.350501i 0.984524 + 0.175251i \(0.0560736\pi\)
−0.984524 + 0.175251i \(0.943926\pi\)
\(72\) −0.569856 + 2.78538i −0.0671581 + 0.328260i
\(73\) −7.37804 + 4.25971i −0.863534 + 0.498562i −0.865194 0.501437i \(-0.832805\pi\)
0.00165984 + 0.999999i \(0.499472\pi\)
\(74\) 2.29241 + 1.32352i 0.266487 + 0.153856i
\(75\) −1.29496 + 1.79675i −0.149529 + 0.207471i
\(76\) −3.32820 1.92154i −0.381771 0.220415i
\(77\) 0 0
\(78\) 0.839916 1.16538i 0.0951018 0.131953i
\(79\) −0.574261 −0.0646094 −0.0323047 0.999478i \(-0.510285\pi\)
−0.0323047 + 0.999478i \(0.510285\pi\)
\(80\) 5.95992 + 10.3229i 0.666339 + 1.15413i
\(81\) 8.27686 + 3.53464i 0.919651 + 0.392738i
\(82\) −5.33036 3.07748i −0.588639 0.339851i
\(83\) −4.23521 7.33560i −0.464875 0.805186i 0.534321 0.845281i \(-0.320567\pi\)
−0.999196 + 0.0400951i \(0.987234\pi\)
\(84\) 0 0
\(85\) 3.85595 6.67870i 0.418236 0.724406i
\(86\) 15.3981 8.89008i 1.66042 0.958642i
\(87\) 4.94370 2.22373i 0.530021 0.238409i
\(88\) −2.65807 + 4.60392i −0.283352 + 0.490779i
\(89\) −3.78929 + 6.56325i −0.401664 + 0.695703i −0.993927 0.110042i \(-0.964901\pi\)
0.592263 + 0.805745i \(0.298235\pi\)
\(90\) 13.3280 4.44334i 1.40490 0.468369i
\(91\) 0 0
\(92\) 10.2038 5.89115i 1.06382 0.614195i
\(93\) 1.82616 18.0369i 0.189364 1.87034i
\(94\) 4.00663i 0.413252i
\(95\) 6.45024i 0.661781i
\(96\) 1.22045 12.0544i 0.124562 1.23030i
\(97\) 3.22662 1.86289i 0.327614 0.189148i −0.327167 0.944966i \(-0.606094\pi\)
0.654781 + 0.755818i \(0.272761\pi\)
\(98\) 0 0
\(99\) 12.5918 + 11.1648i 1.26552 + 1.12210i
\(100\) 0.954503 1.65325i 0.0954503 0.165325i
\(101\) 3.76725 6.52506i 0.374855 0.649268i −0.615450 0.788176i \(-0.711026\pi\)
0.990305 + 0.138908i \(0.0443592\pi\)
\(102\) −9.08593 + 4.08696i −0.899641 + 0.404669i
\(103\) −12.4045 + 7.16173i −1.22225 + 0.705666i −0.965397 0.260784i \(-0.916019\pi\)
−0.256853 + 0.966451i \(0.582685\pi\)
\(104\) 0.210276 0.364210i 0.0206193 0.0357137i
\(105\) 0 0
\(106\) 4.53602 + 7.85662i 0.440577 + 0.763102i
\(107\) −11.6798 6.74331i −1.12912 0.651900i −0.185410 0.982661i \(-0.559361\pi\)
−0.943715 + 0.330761i \(0.892695\pi\)
\(108\) −7.40476 2.31252i −0.712523 0.222523i
\(109\) 0.459348 + 0.795613i 0.0439975 + 0.0762059i 0.887186 0.461413i \(-0.152657\pi\)
−0.843188 + 0.537619i \(0.819324\pi\)
\(110\) 26.2700 2.50474
\(111\) 1.43435 1.99014i 0.136142 0.188896i
\(112\) 0 0
\(113\) 4.10412 + 2.36952i 0.386083 + 0.222905i 0.680462 0.732784i \(-0.261779\pi\)
−0.294378 + 0.955689i \(0.595113\pi\)
\(114\) −4.87218 + 6.76011i −0.456321 + 0.633142i
\(115\) 17.1261 + 9.88775i 1.59702 + 0.922037i
\(116\) −4.04643 + 2.33621i −0.375702 + 0.216912i
\(117\) −0.996120 0.883231i −0.0920913 0.0816547i
\(118\) 13.6618i 1.25767i
\(119\) 0 0
\(120\) 3.75103 1.68726i 0.342421 0.154025i
\(121\) 10.2337 + 17.7252i 0.930332 + 1.61138i
\(122\) 15.9902 1.44768
\(123\) −3.33518 + 4.62753i −0.300723 + 0.417250i
\(124\) 15.6262i 1.40328i
\(125\) −9.32458 −0.834016
\(126\) 0 0
\(127\) 7.37245 0.654200 0.327100 0.944990i \(-0.393929\pi\)
0.327100 + 0.944990i \(0.393929\pi\)
\(128\) 7.33786i 0.648581i
\(129\) −6.75959 15.0276i −0.595148 1.32311i
\(130\) −2.07818 −0.182268
\(131\) −3.93150 6.80955i −0.343497 0.594953i 0.641583 0.767054i \(-0.278278\pi\)
−0.985079 + 0.172100i \(0.944945\pi\)
\(132\) −11.7675 8.48116i −1.02423 0.738191i
\(133\) 0 0
\(134\) 3.49283i 0.301734i
\(135\) −2.85275 12.7038i −0.245525 1.09337i
\(136\) −2.52594 + 1.45835i −0.216598 + 0.125053i
\(137\) 10.0198 + 5.78491i 0.856046 + 0.494238i 0.862686 0.505740i \(-0.168780\pi\)
−0.00664016 + 0.999978i \(0.502114\pi\)
\(138\) −10.4801 23.2989i −0.892127 1.98334i
\(139\) 16.9741 + 9.79999i 1.43972 + 0.831224i 0.997830 0.0658437i \(-0.0209739\pi\)
0.441893 + 0.897068i \(0.354307\pi\)
\(140\) 0 0
\(141\) −3.69429 0.374030i −0.311115 0.0314990i
\(142\) −5.51968 −0.463201
\(143\) −1.24467 2.15583i −0.104084 0.180279i
\(144\) −13.9815 2.86044i −1.16512 0.238370i
\(145\) −6.79156 3.92111i −0.564008 0.325630i
\(146\) −7.96114 13.7891i −0.658868 1.14119i
\(147\) 0 0
\(148\) −1.05724 + 1.83120i −0.0869047 + 0.150523i
\(149\) 13.6315 7.87012i 1.11673 0.644746i 0.176167 0.984360i \(-0.443630\pi\)
0.940565 + 0.339615i \(0.110297\pi\)
\(150\) −3.35801 2.42020i −0.274181 0.197609i
\(151\) 0.991353 1.71707i 0.0806752 0.139734i −0.822865 0.568237i \(-0.807626\pi\)
0.903540 + 0.428503i \(0.140959\pi\)
\(152\) −1.21977 + 2.11270i −0.0989364 + 0.171363i
\(153\) 2.92015 + 8.75915i 0.236081 + 0.708135i
\(154\) 0 0
\(155\) −22.7134 + 13.1136i −1.82438 + 1.05331i
\(156\) 0.930914 + 0.670933i 0.0745328 + 0.0537176i
\(157\) 8.39224i 0.669774i 0.942258 + 0.334887i \(0.108698\pi\)
−0.942258 + 0.334887i \(0.891302\pi\)
\(158\) 1.07326i 0.0853837i
\(159\) 7.66759 3.44897i 0.608080 0.273521i
\(160\) −15.1798 + 8.76405i −1.20007 + 0.692859i
\(161\) 0 0
\(162\) −6.60602 + 15.4689i −0.519018 + 1.21535i
\(163\) 0.537054 0.930204i 0.0420653 0.0728592i −0.844226 0.535987i \(-0.819940\pi\)
0.886291 + 0.463128i \(0.153273\pi\)
\(164\) 2.45832 4.25794i 0.191963 0.332489i
\(165\) 2.45237 24.2220i 0.190917 1.88568i
\(166\) 13.7098 7.91534i 1.06408 0.614349i
\(167\) 3.99731 6.92354i 0.309321 0.535760i −0.668893 0.743359i \(-0.733232\pi\)
0.978214 + 0.207599i \(0.0665649\pi\)
\(168\) 0 0
\(169\) −6.40154 11.0878i −0.492426 0.852907i
\(170\) 12.4821 + 7.20652i 0.957330 + 0.552715i
\(171\) 5.77828 + 5.12344i 0.441876 + 0.391799i
\(172\) 7.10148 + 12.3001i 0.541483 + 0.937875i
\(173\) −1.00349 −0.0762938 −0.0381469 0.999272i \(-0.512145\pi\)
−0.0381469 + 0.999272i \(0.512145\pi\)
\(174\) 4.15602 + 9.23947i 0.315067 + 0.700442i
\(175\) 0 0
\(176\) −23.1098 13.3424i −1.74197 1.00572i
\(177\) −12.5967 1.27536i −0.946829 0.0958621i
\(178\) −12.2663 7.08195i −0.919398 0.530814i
\(179\) −1.27773 + 0.737695i −0.0955017 + 0.0551379i −0.546990 0.837139i \(-0.684227\pi\)
0.451489 + 0.892277i \(0.350893\pi\)
\(180\) 3.54938 + 10.6465i 0.264555 + 0.793547i
\(181\) 15.0440i 1.11821i 0.829096 + 0.559106i \(0.188855\pi\)
−0.829096 + 0.559106i \(0.811145\pi\)
\(182\) 0 0
\(183\) 1.49273 14.7436i 0.110345 1.08988i
\(184\) −3.73964 6.47724i −0.275690 0.477509i
\(185\) −3.54896 −0.260925
\(186\) 33.7099 + 3.41297i 2.47173 + 0.250251i
\(187\) 17.2646i 1.26251i
\(188\) 3.20054 0.233423
\(189\) 0 0
\(190\) 12.0551 0.874568
\(191\) 13.2237i 0.956836i 0.878132 + 0.478418i \(0.158790\pi\)
−0.878132 + 0.478418i \(0.841210\pi\)
\(192\) 6.13392 + 0.621032i 0.442678 + 0.0448191i
\(193\) −1.55571 −0.111982 −0.0559912 0.998431i \(-0.517832\pi\)
−0.0559912 + 0.998431i \(0.517832\pi\)
\(194\) 3.48163 + 6.03035i 0.249966 + 0.432954i
\(195\) −0.194004 + 1.91617i −0.0138929 + 0.137220i
\(196\) 0 0
\(197\) 4.96185i 0.353517i 0.984254 + 0.176759i \(0.0565612\pi\)
−0.984254 + 0.176759i \(0.943439\pi\)
\(198\) −20.8663 + 23.5333i −1.48290 + 1.67244i
\(199\) −9.69273 + 5.59610i −0.687100 + 0.396697i −0.802525 0.596619i \(-0.796510\pi\)
0.115425 + 0.993316i \(0.463177\pi\)
\(200\) −1.04946 0.605908i −0.0742083 0.0428442i
\(201\) −3.22054 0.326065i −0.227159 0.0229988i
\(202\) 12.1949 + 7.04074i 0.858032 + 0.495385i
\(203\) 0 0
\(204\) −3.26470 7.25793i −0.228575 0.508157i
\(205\) 8.25213 0.576354
\(206\) −13.3848 23.1832i −0.932565 1.61525i
\(207\) −22.4610 + 7.48811i −1.56115 + 0.520460i
\(208\) 1.82818 + 1.05550i 0.126762 + 0.0731859i
\(209\) 7.22006 + 12.5055i 0.499422 + 0.865024i
\(210\) 0 0
\(211\) 7.68026 13.3026i 0.528731 0.915789i −0.470708 0.882289i \(-0.656001\pi\)
0.999439 0.0334999i \(-0.0106654\pi\)
\(212\) −6.27594 + 3.62342i −0.431033 + 0.248857i
\(213\) −0.515277 + 5.08938i −0.0353062 + 0.348719i
\(214\) 12.6028 21.8287i 0.861511 1.49218i
\(215\) −11.9192 + 20.6446i −0.812880 + 1.40795i
\(216\) −1.46796 + 4.70046i −0.0998824 + 0.319826i
\(217\) 0 0
\(218\) −1.48695 + 0.858492i −0.100709 + 0.0581444i
\(219\) −13.4573 + 6.05327i −0.909363 + 0.409042i
\(220\) 20.9847i 1.41479i
\(221\) 1.36578i 0.0918721i
\(222\) 3.71945 + 2.68070i 0.249633 + 0.179917i
\(223\) −2.76845 + 1.59837i −0.185389 + 0.107034i −0.589822 0.807533i \(-0.700802\pi\)
0.404433 + 0.914568i \(0.367469\pi\)
\(224\) 0 0
\(225\) −2.54501 + 2.87030i −0.169668 + 0.191353i
\(226\) −4.42848 + 7.67035i −0.294578 + 0.510224i
\(227\) −7.33494 + 12.7045i −0.486837 + 0.843227i −0.999885 0.0151329i \(-0.995183\pi\)
0.513048 + 0.858360i \(0.328516\pi\)
\(228\) −5.40004 3.89194i −0.357626 0.257750i
\(229\) −2.92550 + 1.68904i −0.193322 + 0.111615i −0.593537 0.804807i \(-0.702269\pi\)
0.400215 + 0.916421i \(0.368936\pi\)
\(230\) −18.4796 + 32.0076i −1.21851 + 2.11052i
\(231\) 0 0
\(232\) 1.48300 + 2.56863i 0.0973637 + 0.168639i
\(233\) −4.22628 2.44005i −0.276873 0.159853i 0.355134 0.934815i \(-0.384435\pi\)
−0.632007 + 0.774963i \(0.717769\pi\)
\(234\) 1.65070 1.86168i 0.107910 0.121702i
\(235\) 2.68590 + 4.65211i 0.175209 + 0.303470i
\(236\) 10.9131 0.710385
\(237\) −0.989589 0.100191i −0.0642807 0.00650813i
\(238\) 0 0
\(239\) 13.6253 + 7.86657i 0.881347 + 0.508846i 0.871102 0.491101i \(-0.163406\pi\)
0.0102448 + 0.999948i \(0.496739\pi\)
\(240\) 8.46934 + 18.8286i 0.546694 + 1.21538i
\(241\) 0.666305 + 0.384691i 0.0429205 + 0.0247801i 0.521307 0.853369i \(-0.325445\pi\)
−0.478386 + 0.878150i \(0.658778\pi\)
\(242\) −33.1273 + 19.1260i −2.12950 + 1.22947i
\(243\) 13.6463 + 7.53510i 0.875412 + 0.483377i
\(244\) 12.7731i 0.817714i
\(245\) 0 0
\(246\) −8.64856 6.23323i −0.551412 0.397416i
\(247\) −0.571169 0.989293i −0.0363426 0.0629472i
\(248\) 9.91936 0.629880
\(249\) −6.01844 13.3799i −0.381403 0.847918i
\(250\) 17.4271i 1.10218i
\(251\) 1.14544 0.0722996 0.0361498 0.999346i \(-0.488491\pi\)
0.0361498 + 0.999346i \(0.488491\pi\)
\(252\) 0 0
\(253\) −44.2713 −2.78331
\(254\) 13.7787i 0.864549i
\(255\) 7.80996 10.8363i 0.489079 0.678593i
\(256\) 20.8331 1.30207
\(257\) −14.4917 25.1004i −0.903969 1.56572i −0.822295 0.569061i \(-0.807307\pi\)
−0.0816738 0.996659i \(-0.526027\pi\)
\(258\) 28.0856 12.6332i 1.74853 0.786511i
\(259\) 0 0
\(260\) 1.66007i 0.102953i
\(261\) 8.90717 2.96950i 0.551340 0.183808i
\(262\) 12.7266 7.34772i 0.786254 0.453944i
\(263\) −11.8643 6.84988i −0.731586 0.422381i 0.0874160 0.996172i \(-0.472139\pi\)
−0.819002 + 0.573790i \(0.805472\pi\)
\(264\) −5.38375 + 7.46991i −0.331347 + 0.459741i
\(265\) −10.5336 6.08156i −0.647072 0.373587i
\(266\) 0 0
\(267\) −7.67496 + 10.6489i −0.469700 + 0.651704i
\(268\) 2.79010 0.170433
\(269\) −5.23973 9.07548i −0.319472 0.553342i 0.660906 0.750469i \(-0.270172\pi\)
−0.980378 + 0.197127i \(0.936839\pi\)
\(270\) 23.7426 5.33160i 1.44493 0.324471i
\(271\) 5.66907 + 3.27304i 0.344371 + 0.198823i 0.662203 0.749324i \(-0.269621\pi\)
−0.317832 + 0.948147i \(0.602955\pi\)
\(272\) −7.32034 12.6792i −0.443861 0.768790i
\(273\) 0 0
\(274\) −10.8116 + 18.7263i −0.653155 + 1.13130i
\(275\) −6.21198 + 3.58649i −0.374596 + 0.216273i
\(276\) 18.6114 8.37162i 1.12027 0.503912i
\(277\) −11.2156 + 19.4261i −0.673883 + 1.16720i 0.302911 + 0.953019i \(0.402041\pi\)
−0.976794 + 0.214181i \(0.931292\pi\)
\(278\) −18.3156 + 31.7235i −1.09849 + 1.90265i
\(279\) 6.29382 30.7634i 0.376801 1.84176i
\(280\) 0 0
\(281\) 19.3552 11.1747i 1.15463 0.666627i 0.204621 0.978841i \(-0.434404\pi\)
0.950012 + 0.312214i \(0.101071\pi\)
\(282\) 0.699038 6.90439i 0.0416271 0.411151i
\(283\) 18.9713i 1.12772i −0.825869 0.563862i \(-0.809315\pi\)
0.825869 0.563862i \(-0.190685\pi\)
\(284\) 4.40917i 0.261636i
\(285\) 1.12538 11.1153i 0.0666615 0.658415i
\(286\) 4.02910 2.32620i 0.238246 0.137551i
\(287\) 0 0
\(288\) 4.20627 20.5597i 0.247857 1.21149i
\(289\) 3.76389 6.51924i 0.221405 0.383485i
\(290\) 7.32830 12.6930i 0.430333 0.745358i
\(291\) 5.88527 2.64726i 0.345000 0.155185i
\(292\) 11.0149 6.35943i 0.644596 0.372158i
\(293\) −4.41136 + 7.64069i −0.257714 + 0.446374i −0.965629 0.259924i \(-0.916303\pi\)
0.707915 + 0.706298i \(0.249636\pi\)
\(294\) 0 0
\(295\) 9.15835 + 15.8627i 0.533220 + 0.923563i
\(296\) 1.16242 + 0.671125i 0.0675644 + 0.0390083i
\(297\) 19.7508 + 21.4365i 1.14606 + 1.24387i
\(298\) 14.7088 + 25.4763i 0.852056 + 1.47580i
\(299\) 3.50224 0.202540
\(300\) 1.93328 2.68241i 0.111618 0.154869i
\(301\) 0 0
\(302\) 3.20910 + 1.85278i 0.184663 + 0.106615i
\(303\) 7.63030 10.5870i 0.438349 0.608206i
\(304\) −10.6049 6.12275i −0.608233 0.351164i
\(305\) −18.5662 + 10.7192i −1.06310 + 0.613781i
\(306\) −16.3703 + 5.45758i −0.935828 + 0.311989i
\(307\) 28.7533i 1.64104i 0.571620 + 0.820519i \(0.306315\pi\)
−0.571620 + 0.820519i \(0.693685\pi\)
\(308\) 0 0
\(309\) −22.6254 + 10.1772i −1.28712 + 0.578959i
\(310\) −24.5085 42.4499i −1.39199 2.41099i
\(311\) −13.2859 −0.753373 −0.376687 0.926341i \(-0.622937\pi\)
−0.376687 + 0.926341i \(0.622937\pi\)
\(312\) 0.425901 0.590934i 0.0241119 0.0334550i
\(313\) 31.5495i 1.78329i −0.452740 0.891643i \(-0.649553\pi\)
0.452740 0.891643i \(-0.350447\pi\)
\(314\) −15.6846 −0.885132
\(315\) 0 0
\(316\) 0.857328 0.0482285
\(317\) 20.0709i 1.12729i 0.826016 + 0.563646i \(0.190602\pi\)
−0.826016 + 0.563646i \(0.809398\pi\)
\(318\) 6.44591 + 14.3302i 0.361469 + 0.803600i
\(319\) 17.5563 0.982965
\(320\) −4.45961 7.72428i −0.249300 0.431800i
\(321\) −18.9505 13.6581i −1.05772 0.762322i
\(322\) 0 0
\(323\) 7.92259i 0.440824i
\(324\) −12.3567 5.27695i −0.686484 0.293164i
\(325\) 0.491421 0.283722i 0.0272591 0.0157381i
\(326\) 1.73849 + 1.00372i 0.0962862 + 0.0555909i
\(327\) 0.652756 + 1.45118i 0.0360975 + 0.0802502i
\(328\) −2.70289 1.56052i −0.149242 0.0861651i
\(329\) 0 0
\(330\) 45.2695 + 4.58333i 2.49200 + 0.252304i
\(331\) 1.24791 0.0685915 0.0342958 0.999412i \(-0.489081\pi\)
0.0342958 + 0.999412i \(0.489081\pi\)
\(332\) 6.32285 + 10.9515i 0.347011 + 0.601041i
\(333\) 2.81895 3.17925i 0.154477 0.174222i
\(334\) 12.9397 + 7.47072i 0.708027 + 0.408780i
\(335\) 2.34146 + 4.05553i 0.127928 + 0.221577i
\(336\) 0 0
\(337\) 6.58745 11.4098i 0.358842 0.621532i −0.628926 0.777465i \(-0.716505\pi\)
0.987768 + 0.155933i \(0.0498385\pi\)
\(338\) 20.7224 11.9641i 1.12715 0.650759i
\(339\) 6.65898 + 4.79930i 0.361666 + 0.260662i
\(340\) −5.75664 + 9.97079i −0.312198 + 0.540742i
\(341\) 29.3573 50.8484i 1.58979 2.75359i
\(342\) −9.57538 + 10.7992i −0.517777 + 0.583956i
\(343\) 0 0
\(344\) 7.80798 4.50794i 0.420978 0.243052i
\(345\) 27.7873 + 20.0270i 1.49602 + 1.07822i
\(346\) 1.87545i 0.100825i
\(347\) 27.0675i 1.45306i 0.687136 + 0.726529i \(0.258868\pi\)
−0.687136 + 0.726529i \(0.741132\pi\)
\(348\) −7.38058 + 3.31987i −0.395640 + 0.177964i
\(349\) 30.3413 17.5176i 1.62413 0.937694i 0.638336 0.769758i \(-0.279623\pi\)
0.985798 0.167936i \(-0.0537101\pi\)
\(350\) 0 0
\(351\) −1.56246 1.69581i −0.0833978 0.0905158i
\(352\) 19.6200 33.9829i 1.04575 1.81129i
\(353\) 1.26256 2.18682i 0.0671992 0.116392i −0.830468 0.557066i \(-0.811927\pi\)
0.897667 + 0.440674i \(0.145260\pi\)
\(354\) 2.38357 23.5425i 0.126685 1.25127i
\(355\) 6.40892 3.70019i 0.340150 0.196386i
\(356\) 5.65713 9.79843i 0.299827 0.519316i
\(357\) 0 0
\(358\) −1.37871 2.38799i −0.0728669 0.126209i
\(359\) −6.29395 3.63381i −0.332182 0.191785i 0.324628 0.945842i \(-0.394761\pi\)
−0.656809 + 0.754057i \(0.728094\pi\)
\(360\) 6.75831 2.25311i 0.356194 0.118749i
\(361\) −6.18677 10.7158i −0.325619 0.563989i
\(362\) −28.1163 −1.47776
\(363\) 14.5425 + 32.3303i 0.763285 + 1.69690i
\(364\) 0 0
\(365\) 18.4874 + 10.6737i 0.967675 + 0.558688i
\(366\) 27.5549 + 2.78981i 1.44032 + 0.145826i
\(367\) 11.6714 + 6.73848i 0.609242 + 0.351746i 0.772669 0.634809i \(-0.218921\pi\)
−0.163427 + 0.986555i \(0.552255\pi\)
\(368\) 32.5131 18.7715i 1.69486 0.978530i
\(369\) −6.55468 + 7.39246i −0.341223 + 0.384836i
\(370\) 6.63278i 0.344822i
\(371\) 0 0
\(372\) −2.72632 + 26.9278i −0.141353 + 1.39614i
\(373\) −11.8820 20.5801i −0.615224 1.06560i −0.990345 0.138624i \(-0.955732\pi\)
0.375121 0.926976i \(-0.377601\pi\)
\(374\) −32.2664 −1.66846
\(375\) −16.0685 1.62686i −0.829774 0.0840108i
\(376\) 2.03166i 0.104775i
\(377\) −1.38886 −0.0715297
\(378\) 0 0
\(379\) 21.2283 1.09042 0.545211 0.838299i \(-0.316449\pi\)
0.545211 + 0.838299i \(0.316449\pi\)
\(380\) 9.62972i 0.493994i
\(381\) 12.7045 + 1.28627i 0.650872 + 0.0658978i
\(382\) −24.7143 −1.26450
\(383\) 6.47930 + 11.2225i 0.331077 + 0.573442i 0.982723 0.185081i \(-0.0592547\pi\)
−0.651646 + 0.758523i \(0.725921\pi\)
\(384\) 1.28024 12.6449i 0.0653319 0.645282i
\(385\) 0 0
\(386\) 2.90752i 0.147989i
\(387\) −9.02653 27.0755i −0.458844 1.37633i
\(388\) −4.81710 + 2.78116i −0.244551 + 0.141192i
\(389\) −9.48037 5.47350i −0.480674 0.277517i 0.240023 0.970767i \(-0.422845\pi\)
−0.720697 + 0.693250i \(0.756178\pi\)
\(390\) −3.58121 0.362581i −0.181341 0.0183600i
\(391\) −21.0353 12.1447i −1.06380 0.614186i
\(392\) 0 0
\(393\) −5.58685 12.4204i −0.281819 0.626528i
\(394\) −9.27338 −0.467186
\(395\) 0.719472 + 1.24616i 0.0362006 + 0.0627012i
\(396\) −18.7986 16.6682i −0.944665 0.837607i
\(397\) 25.8856 + 14.9451i 1.29916 + 0.750071i 0.980259 0.197717i \(-0.0633528\pi\)
0.318901 + 0.947788i \(0.396686\pi\)
\(398\) −10.4588 18.1151i −0.524250 0.908028i
\(399\) 0 0
\(400\) 3.04141 5.26788i 0.152071 0.263394i
\(401\) −16.6233 + 9.59744i −0.830126 + 0.479273i −0.853896 0.520444i \(-0.825766\pi\)
0.0237698 + 0.999717i \(0.492433\pi\)
\(402\) 0.609395 6.01898i 0.0303938 0.300200i
\(403\) −2.32242 + 4.02254i −0.115688 + 0.200377i
\(404\) −5.62421 + 9.74142i −0.279815 + 0.484654i
\(405\) −2.69953 22.3894i −0.134141 1.11254i
\(406\) 0 0
\(407\) 6.88060 3.97252i 0.341059 0.196910i
\(408\) −4.60725 + 2.07239i −0.228093 + 0.102599i
\(409\) 28.8372i 1.42591i 0.701212 + 0.712953i \(0.252643\pi\)
−0.701212 + 0.712953i \(0.747357\pi\)
\(410\) 15.4227i 0.761673i
\(411\) 16.2572 + 11.7170i 0.801907 + 0.577955i
\(412\) 18.5190 10.6919i 0.912363 0.526753i
\(413\) 0 0
\(414\) −13.9948 41.9781i −0.687807 2.06311i
\(415\) −10.6123 + 18.3811i −0.520938 + 0.902290i
\(416\) −1.55211 + 2.68834i −0.0760986 + 0.131807i
\(417\) 27.5406 + 19.8492i 1.34867 + 0.972020i
\(418\) −23.3720 + 13.4938i −1.14316 + 0.660005i
\(419\) 5.06390 8.77094i 0.247388 0.428488i −0.715412 0.698702i \(-0.753761\pi\)
0.962800 + 0.270214i \(0.0870945\pi\)
\(420\) 0 0
\(421\) 12.7094 + 22.0134i 0.619419 + 1.07287i 0.989592 + 0.143902i \(0.0459651\pi\)
−0.370173 + 0.928963i \(0.620702\pi\)
\(422\) 24.8617 + 14.3539i 1.21025 + 0.698738i
\(423\) −6.30089 1.28909i −0.306360 0.0626776i
\(424\) 2.30010 + 3.98390i 0.111703 + 0.193475i
\(425\) −3.93546 −0.190898
\(426\) −9.51173 0.963020i −0.460845 0.0466585i
\(427\) 0 0
\(428\) 17.4370 + 10.0673i 0.842849 + 0.486619i
\(429\) −1.76873 3.93217i −0.0853953 0.189847i
\(430\) −38.5834 22.2762i −1.86066 1.07425i
\(431\) −9.39066 + 5.42170i −0.452332 + 0.261154i −0.708815 0.705395i \(-0.750770\pi\)
0.256482 + 0.966549i \(0.417436\pi\)
\(432\) −23.5944 7.36858i −1.13519 0.354521i
\(433\) 13.0519i 0.627233i −0.949550 0.313616i \(-0.898459\pi\)
0.949550 0.313616i \(-0.101541\pi\)
\(434\) 0 0
\(435\) −11.0194 7.94194i −0.528338 0.380787i
\(436\) −0.685771 1.18779i −0.0328425 0.0568849i
\(437\) −20.3158 −0.971835
\(438\) −11.3132 25.1509i −0.540564 1.20176i
\(439\) 31.9547i 1.52511i 0.646922 + 0.762557i \(0.276056\pi\)
−0.646922 + 0.762557i \(0.723944\pi\)
\(440\) 13.3208 0.635046
\(441\) 0 0
\(442\) 2.55255 0.121412
\(443\) 24.7969i 1.17814i 0.808083 + 0.589068i \(0.200505\pi\)
−0.808083 + 0.589068i \(0.799495\pi\)
\(444\) −2.14137 + 2.97113i −0.101625 + 0.141004i
\(445\) 18.9899 0.900208
\(446\) −2.98724 5.17406i −0.141450 0.244999i
\(447\) 24.8634 11.1838i 1.17600 0.528977i
\(448\) 0 0
\(449\) 13.7710i 0.649892i −0.945733 0.324946i \(-0.894654\pi\)
0.945733 0.324946i \(-0.105346\pi\)
\(450\) −5.36441 4.75647i −0.252881 0.224222i
\(451\) −15.9989 + 9.23700i −0.753361 + 0.434953i
\(452\) −6.12715 3.53751i −0.288197 0.166390i
\(453\) 2.00792 2.78597i 0.0943403 0.130896i
\(454\) −23.7439 13.7085i −1.11436 0.643374i
\(455\) 0 0
\(456\) −2.47056 + 3.42789i −0.115695 + 0.160525i
\(457\) 27.3107 1.27754 0.638771 0.769397i \(-0.279443\pi\)
0.638771 + 0.769397i \(0.279443\pi\)
\(458\) −3.15670 5.46757i −0.147503 0.255483i
\(459\) 3.50392 + 15.6036i 0.163549 + 0.728314i
\(460\) −25.5680 14.7617i −1.19211 0.688266i
\(461\) −5.51822 9.55784i −0.257009 0.445153i 0.708430 0.705781i \(-0.249404\pi\)
−0.965439 + 0.260628i \(0.916070\pi\)
\(462\) 0 0
\(463\) −12.2346 + 21.1910i −0.568591 + 0.984829i 0.428115 + 0.903724i \(0.359178\pi\)
−0.996706 + 0.0811042i \(0.974155\pi\)
\(464\) −12.8935 + 7.44405i −0.598564 + 0.345581i
\(465\) −41.4286 + 18.6351i −1.92121 + 0.864180i
\(466\) 4.56029 7.89866i 0.211251 0.365898i
\(467\) −7.95241 + 13.7740i −0.367994 + 0.637384i −0.989252 0.146222i \(-0.953289\pi\)
0.621258 + 0.783606i \(0.286622\pi\)
\(468\) 1.48713 + 1.31860i 0.0687427 + 0.0609521i
\(469\) 0 0
\(470\) −8.69451 + 5.01978i −0.401048 + 0.231545i
\(471\) −1.46420 + 14.4619i −0.0674667 + 0.666367i
\(472\) 6.92754i 0.318866i
\(473\) 53.3667i 2.45380i
\(474\) 0.187251 1.84948i 0.00860074 0.0849494i
\(475\) −2.85063 + 1.64581i −0.130796 + 0.0755151i
\(476\) 0 0
\(477\) 13.8149 4.60564i 0.632539 0.210878i
\(478\) −14.7021 + 25.4648i −0.672459 + 1.16473i
\(479\) −6.92685 + 11.9976i −0.316496 + 0.548187i −0.979754 0.200204i \(-0.935840\pi\)
0.663259 + 0.748390i \(0.269173\pi\)
\(480\) −27.6875 + 12.4542i −1.26376 + 0.568452i
\(481\) −0.544315 + 0.314261i −0.0248186 + 0.0143290i
\(482\) −0.718964 + 1.24528i −0.0327479 + 0.0567210i
\(483\) 0 0
\(484\) −15.2781 26.4624i −0.694458 1.20284i
\(485\) −8.08506 4.66791i −0.367123 0.211959i
\(486\) −14.0826 + 25.5041i −0.638801 + 1.15689i
\(487\) −14.3993 24.9404i −0.652496 1.13016i −0.982515 0.186182i \(-0.940389\pi\)
0.330020 0.943974i \(-0.392945\pi\)
\(488\) 8.10822 0.367042
\(489\) 1.08777 1.50927i 0.0491905 0.0682514i
\(490\) 0 0
\(491\) −33.5627 19.3774i −1.51466 0.874492i −0.999852 0.0171884i \(-0.994528\pi\)
−0.514812 0.857303i \(-0.672138\pi\)
\(492\) 4.97917 6.90855i 0.224478 0.311462i
\(493\) 8.34181 + 4.81615i 0.375696 + 0.216908i
\(494\) 1.84893 1.06748i 0.0831872 0.0480281i
\(495\) 8.45206 41.3126i 0.379892 1.85686i
\(496\) 49.7911i 2.23569i
\(497\) 0 0
\(498\) 25.0062 11.2481i 1.12056 0.504039i
\(499\) 1.73333 + 3.00222i 0.0775946 + 0.134398i 0.902212 0.431294i \(-0.141943\pi\)
−0.824617 + 0.565691i \(0.808609\pi\)
\(500\) 13.9209 0.622561
\(501\) 8.09628 11.2335i 0.361715 0.501877i
\(502\) 2.14076i 0.0955467i
\(503\) −28.2202 −1.25828 −0.629138 0.777293i \(-0.716592\pi\)
−0.629138 + 0.777293i \(0.716592\pi\)
\(504\) 0 0
\(505\) −18.8794 −0.840124
\(506\) 82.7403i 3.67825i
\(507\) −9.09690 20.2238i −0.404008 0.898171i
\(508\) −11.0065 −0.488335
\(509\) 17.9062 + 31.0144i 0.793678 + 1.37469i 0.923675 + 0.383176i \(0.125170\pi\)
−0.129997 + 0.991514i \(0.541497\pi\)
\(510\) 20.2523 + 14.5963i 0.896786 + 0.646336i
\(511\) 0 0
\(512\) 24.2599i 1.07215i
\(513\) 9.06349 + 9.83706i 0.400163 + 0.434317i
\(514\) 46.9111 27.0841i 2.06916 1.19463i
\(515\) 31.0823 + 17.9454i 1.36965 + 0.790768i
\(516\) 10.0916 + 22.4351i 0.444256 + 0.987649i
\(517\) −10.4147 6.01291i −0.458036 0.264447i
\(518\) 0 0
\(519\) −1.72925 0.175079i −0.0759057 0.00768511i
\(520\) −1.05379 −0.0462119
\(521\) 13.4608 + 23.3148i 0.589729 + 1.02144i 0.994268 + 0.106920i \(0.0340989\pi\)
−0.404538 + 0.914521i \(0.632568\pi\)
\(522\) 5.54981 + 16.6469i 0.242909 + 0.728617i
\(523\) 7.82181 + 4.51593i 0.342024 + 0.197468i 0.661167 0.750239i \(-0.270062\pi\)
−0.319143 + 0.947707i \(0.603395\pi\)
\(524\) 5.86943 + 10.1662i 0.256407 + 0.444110i
\(525\) 0 0
\(526\) 12.8020 22.1737i 0.558193 0.966819i
\(527\) 27.8980 16.1069i 1.21526 0.701629i
\(528\) −37.4959 27.0242i −1.63180 1.17608i
\(529\) 19.6426 34.0220i 0.854026 1.47922i
\(530\) 11.3661 19.6866i 0.493710 0.855131i
\(531\) −21.4847 4.39552i −0.932357 0.190749i
\(532\) 0 0
\(533\) 1.26565 0.730726i 0.0548216 0.0316513i
\(534\) −19.9022 14.3440i −0.861252 0.620726i
\(535\) 33.7939i 1.46104i
\(536\) 1.77113i 0.0765010i
\(537\) −2.33054 + 1.04830i −0.100570 + 0.0452376i
\(538\) 16.9615 9.79273i 0.731262 0.422195i
\(539\) 0 0
\(540\) 4.25893 + 18.9658i 0.183275 + 0.816159i
\(541\) −5.66792 + 9.81713i −0.243683 + 0.422071i −0.961760 0.273892i \(-0.911689\pi\)
0.718078 + 0.695963i \(0.245022\pi\)
\(542\) −6.11710 + 10.5951i −0.262752 + 0.455100i
\(543\) −2.62473 + 25.9244i −0.112638 + 1.11252i
\(544\) 18.6447 10.7646i 0.799387 0.461526i
\(545\) 1.15100 1.99360i 0.0493035 0.0853962i
\(546\) 0 0
\(547\) 19.4246 + 33.6444i 0.830537 + 1.43853i 0.897613 + 0.440784i \(0.145300\pi\)
−0.0670762 + 0.997748i \(0.521367\pi\)
\(548\) −14.9587 8.63644i −0.639006 0.368930i
\(549\) 5.14465 25.1464i 0.219568 1.07322i
\(550\) −6.70292 11.6098i −0.285813 0.495043i
\(551\) 8.05647 0.343217
\(552\) −5.31421 11.8143i −0.226188 0.502850i
\(553\) 0 0
\(554\) −36.3061 20.9613i −1.54250 0.890562i
\(555\) −6.11572 0.619188i −0.259598 0.0262831i
\(556\) −25.3410 14.6306i −1.07470 0.620478i
\(557\) −6.29167 + 3.63249i −0.266586 + 0.153914i −0.627335 0.778749i \(-0.715854\pi\)
0.360749 + 0.932663i \(0.382521\pi\)
\(558\) 57.4948 + 11.7628i 2.43395 + 0.497957i
\(559\) 4.22177i 0.178562i
\(560\) 0 0
\(561\) −3.01216 + 29.7510i −0.127173 + 1.25609i
\(562\) 20.8848 + 36.1736i 0.880973 + 1.52589i
\(563\) 23.0818 0.972780 0.486390 0.873742i \(-0.338313\pi\)
0.486390 + 0.873742i \(0.338313\pi\)
\(564\) 5.51529 + 0.558399i 0.232236 + 0.0235128i
\(565\) 11.8748i 0.499575i
\(566\) 35.4561 1.49033
\(567\) 0 0
\(568\) −2.79889 −0.117439
\(569\) 17.9535i 0.752651i −0.926487 0.376326i \(-0.877187\pi\)
0.926487 0.376326i \(-0.122813\pi\)
\(570\) 20.7738 + 2.10326i 0.870120 + 0.0880957i
\(571\) −14.0847 −0.589425 −0.294713 0.955586i \(-0.595224\pi\)
−0.294713 + 0.955586i \(0.595224\pi\)
\(572\) 1.85819 + 3.21849i 0.0776950 + 0.134572i
\(573\) −2.30715 + 22.7877i −0.0963826 + 0.951969i
\(574\) 0 0
\(575\) 10.0916i 0.420851i
\(576\) 10.4619 + 2.14038i 0.435912 + 0.0891823i
\(577\) 26.0392 15.0337i 1.08403 0.625862i 0.152046 0.988373i \(-0.451414\pi\)
0.931979 + 0.362511i \(0.118081\pi\)
\(578\) 12.1841 + 7.03447i 0.506790 + 0.292595i
\(579\) −2.68086 0.271425i −0.111413 0.0112800i
\(580\) 10.1393 + 5.85392i 0.421011 + 0.243071i
\(581\) 0 0
\(582\) 4.94756 + 10.9992i 0.205083 + 0.455931i
\(583\) 27.2295 1.12773
\(584\) −4.03690 6.99211i −0.167048 0.289336i
\(585\) −0.668631 + 3.26818i −0.0276445 + 0.135123i
\(586\) −14.2800 8.24455i −0.589900 0.340579i
\(587\) 18.0979 + 31.3465i 0.746981 + 1.29381i 0.949264 + 0.314481i \(0.101831\pi\)
−0.202283 + 0.979327i \(0.564836\pi\)
\(588\) 0 0
\(589\) 13.4719 23.3339i 0.555098 0.961459i
\(590\) −29.6464 + 17.1164i −1.22052 + 0.704670i
\(591\) −0.865695 + 8.55046i −0.0356099 + 0.351719i
\(592\) −3.36877 + 5.83489i −0.138456 + 0.239812i
\(593\) 1.02158 1.76943i 0.0419514 0.0726620i −0.844287 0.535891i \(-0.819976\pi\)
0.886239 + 0.463229i \(0.153309\pi\)
\(594\) −40.0635 + 36.9130i −1.64382 + 1.51456i
\(595\) 0 0
\(596\) −20.3507 + 11.7495i −0.833598 + 0.481278i
\(597\) −17.6793 + 7.95234i −0.723564 + 0.325468i
\(598\) 6.54547i 0.267664i
\(599\) 18.2296i 0.744840i 0.928064 + 0.372420i \(0.121472\pi\)
−0.928064 + 0.372420i \(0.878528\pi\)
\(600\) −1.70277 1.22723i −0.0695151 0.0501013i
\(601\) −32.1713 + 18.5741i −1.31230 + 0.757654i −0.982476 0.186390i \(-0.940321\pi\)
−0.329820 + 0.944044i \(0.606988\pi\)
\(602\) 0 0
\(603\) −5.49287 1.12378i −0.223687 0.0457637i
\(604\) −1.48002 + 2.56346i −0.0602210 + 0.104306i
\(605\) 25.6428 44.4146i 1.04253 1.80571i
\(606\) 19.7864 + 14.2606i 0.803768 + 0.579295i
\(607\) −17.1730 + 9.91482i −0.697030 + 0.402430i −0.806240 0.591588i \(-0.798501\pi\)
0.109211 + 0.994019i \(0.465168\pi\)
\(608\) 9.00349 15.5945i 0.365140 0.632440i
\(609\) 0 0
\(610\) −20.0336 34.6991i −0.811135 1.40493i
\(611\) 0.823890 + 0.475673i 0.0333310 + 0.0192437i
\(612\) −4.35957 13.0768i −0.176225 0.528596i
\(613\) 6.34412 + 10.9883i 0.256237 + 0.443815i 0.965231 0.261400i \(-0.0841840\pi\)
−0.708994 + 0.705214i \(0.750851\pi\)
\(614\) −53.7381 −2.16869
\(615\) 14.2204 + 1.43975i 0.573422 + 0.0580564i
\(616\) 0 0
\(617\) 4.37247 + 2.52445i 0.176029 + 0.101630i 0.585426 0.810726i \(-0.300927\pi\)
−0.409397 + 0.912357i \(0.634261\pi\)
\(618\) −19.0205 42.2855i −0.765116 1.70097i
\(619\) −0.231999 0.133945i −0.00932485 0.00538370i 0.495330 0.868705i \(-0.335047\pi\)
−0.504655 + 0.863321i \(0.668380\pi\)
\(620\) 33.9094 19.5776i 1.36183 0.786255i
\(621\) −40.0121 + 8.98505i −1.60563 + 0.360558i
\(622\) 24.8305i 0.995611i
\(623\) 0 0
\(624\) 2.96625 + 2.13785i 0.118745 + 0.0855824i
\(625\) 14.8792 + 25.7716i 0.595169 + 1.03086i
\(626\) 58.9641 2.35668
\(627\) 10.2601 + 22.8097i 0.409747 + 0.910931i
\(628\) 12.5290i 0.499961i
\(629\) 4.35905 0.173807
\(630\) 0 0
\(631\) 37.7899 1.50439 0.752197 0.658938i \(-0.228994\pi\)
0.752197 + 0.658938i \(0.228994\pi\)
\(632\) 0.544222i 0.0216480i
\(633\) 15.5559 21.5836i 0.618290 0.857872i
\(634\) −37.5112 −1.48976
\(635\) −9.23671 15.9984i −0.366547 0.634879i
\(636\) −11.4471 + 5.14905i −0.453908 + 0.204173i
\(637\) 0 0
\(638\) 32.8117i 1.29903i
\(639\) −1.77589 + 8.68033i −0.0702532 + 0.343389i
\(640\) −15.9234 + 9.19336i −0.629426 + 0.363400i
\(641\) −29.7991 17.2045i −1.17699 0.679537i −0.221676 0.975120i \(-0.571153\pi\)
−0.955317 + 0.295583i \(0.904486\pi\)
\(642\) 25.5262 35.4173i 1.00744 1.39781i
\(643\) 0.676278 + 0.390449i 0.0266698 + 0.0153978i 0.513276 0.858224i \(-0.328432\pi\)
−0.486606 + 0.873622i \(0.661765\pi\)
\(644\) 0 0
\(645\) −24.1415 + 33.4961i −0.950569 + 1.31891i
\(646\) −14.8068 −0.582566
\(647\) 9.82182 + 17.0119i 0.386136 + 0.668807i 0.991926 0.126818i \(-0.0404763\pi\)
−0.605790 + 0.795624i \(0.707143\pi\)
\(648\) −3.34975 + 7.84391i −0.131591 + 0.308138i
\(649\) −35.5118 20.5027i −1.39396 0.804803i
\(650\) 0.530259 + 0.918435i 0.0207985 + 0.0360240i
\(651\) 0 0
\(652\) −0.801781 + 1.38872i −0.0314001 + 0.0543867i
\(653\) −2.77600 + 1.60272i −0.108633 + 0.0627194i −0.553332 0.832961i \(-0.686644\pi\)
0.444699 + 0.895680i \(0.353311\pi\)
\(654\) −2.71216 + 1.21996i −0.106054 + 0.0477042i
\(655\) −9.85129 + 17.0629i −0.384922 + 0.666704i
\(656\) 7.83315 13.5674i 0.305833 0.529719i
\(657\) −24.2464 + 8.08333i −0.945940 + 0.315361i
\(658\) 0 0
\(659\) −24.2959 + 14.0273i −0.946435 + 0.546425i −0.891972 0.452091i \(-0.850678\pi\)
−0.0544636 + 0.998516i \(0.517345\pi\)
\(660\) −3.66121 + 36.1617i −0.142512 + 1.40759i
\(661\) 32.3882i 1.25976i −0.776694 0.629878i \(-0.783105\pi\)
0.776694 0.629878i \(-0.216895\pi\)
\(662\) 2.33227i 0.0906463i
\(663\) 0.238287 2.35356i 0.00925432 0.0914048i
\(664\) 6.95189 4.01367i 0.269785 0.155761i
\(665\) 0 0
\(666\) 5.94181 + 5.26843i 0.230240 + 0.204148i
\(667\) −12.3500 + 21.3908i −0.478193 + 0.828255i
\(668\) −5.96768 + 10.3363i −0.230897 + 0.399925i
\(669\) −5.04957 + 2.27136i −0.195228 + 0.0878157i
\(670\) −7.57953 + 4.37605i −0.292823 + 0.169061i
\(671\) 23.9971 41.5641i 0.926397 1.60457i
\(672\) 0 0
\(673\) −10.3088 17.8554i −0.397375 0.688273i 0.596026 0.802965i \(-0.296745\pi\)
−0.993401 + 0.114692i \(0.963412\pi\)
\(674\) 21.3242 + 12.3115i 0.821378 + 0.474223i
\(675\) −4.88645 + 4.50219i −0.188080 + 0.173289i
\(676\) 9.55701 + 16.5532i 0.367577 + 0.636663i
\(677\) 50.3311 1.93438 0.967190 0.254053i \(-0.0817639\pi\)
0.967190 + 0.254053i \(0.0817639\pi\)
\(678\) −8.96958 + 12.4452i −0.344475 + 0.477956i
\(679\) 0 0
\(680\) 6.32935 + 3.65425i 0.242719 + 0.140134i
\(681\) −14.8564 + 20.6132i −0.569300 + 0.789899i
\(682\) 95.0324 + 54.8670i 3.63898 + 2.10097i
\(683\) 11.9031 6.87227i 0.455460 0.262960i −0.254673 0.967027i \(-0.581968\pi\)
0.710133 + 0.704067i \(0.248635\pi\)
\(684\) −8.62654 7.64891i −0.329844 0.292463i
\(685\) 28.9909i 1.10769i
\(686\) 0 0
\(687\) −5.33602 + 2.40020i −0.203582 + 0.0915735i
\(688\) 22.6280 + 39.1929i 0.862685 + 1.49421i
\(689\) −2.15409 −0.0820643
\(690\) −37.4291 + 51.9326i −1.42490 + 1.97704i
\(691\) 29.3673i 1.11719i 0.829442 + 0.558593i \(0.188658\pi\)
−0.829442 + 0.558593i \(0.811342\pi\)
\(692\) 1.49813 0.0569504
\(693\) 0 0
\(694\) −50.5874 −1.92027
\(695\) 49.1123i 1.86294i
\(696\) 2.10742 + 4.68511i 0.0798814 + 0.177589i
\(697\) −10.1358 −0.383920
\(698\) 32.7392 + 56.7060i 1.23920 + 2.14635i
\(699\) −6.85719 4.94215i −0.259363 0.186929i
\(700\) 0 0
\(701\) 44.2011i 1.66945i −0.550666 0.834726i \(-0.685626\pi\)
0.550666 0.834726i \(-0.314374\pi\)
\(702\) 3.16937 2.92013i 0.119620 0.110213i
\(703\) 3.15746 1.82296i 0.119086 0.0687542i
\(704\) 17.2923 + 9.98371i 0.651728 + 0.376275i
\(705\) 3.81680 + 8.48532i 0.143749 + 0.319576i
\(706\) 4.08702 + 2.35964i 0.153817 + 0.0888063i
\(707\) 0 0
\(708\) 18.8060 + 1.90402i 0.706772 + 0.0715575i
\(709\) −11.3326 −0.425604 −0.212802 0.977095i \(-0.568259\pi\)
−0.212802 + 0.977095i \(0.568259\pi\)
\(710\) 6.91542 + 11.9779i 0.259531 + 0.449521i
\(711\) −1.68782 0.345308i −0.0632982 0.0129501i
\(712\) −6.21994 3.59108i −0.233102 0.134581i
\(713\) 41.3028 + 71.5385i 1.54680 + 2.67914i
\(714\) 0 0
\(715\) −3.11881 + 5.40193i −0.116637 + 0.202021i
\(716\) 1.90755 1.10132i 0.0712884 0.0411584i
\(717\) 22.1072 + 15.9332i 0.825608 + 0.595036i
\(718\) 6.79136 11.7630i 0.253451 0.438991i
\(719\) 18.0647 31.2890i 0.673700 1.16688i −0.303147 0.952944i \(-0.598037\pi\)
0.976847 0.213939i \(-0.0686294\pi\)
\(720\) 11.3097 + 33.9240i 0.421487 + 1.26427i
\(721\) 0 0
\(722\) 20.0271 11.5627i 0.745333 0.430318i
\(723\) 1.08109 + 0.779166i 0.0402061 + 0.0289775i
\(724\) 22.4596i 0.834703i
\(725\) 4.00197i 0.148629i
\(726\) −60.4232 + 27.1791i −2.24252 + 1.00871i
\(727\) −6.20547 + 3.58273i −0.230148 + 0.132876i −0.610640 0.791908i \(-0.709088\pi\)
0.380492 + 0.924784i \(0.375755\pi\)
\(728\) 0 0
\(729\) 22.2013 + 15.3657i 0.822269 + 0.569099i
\(730\) −19.9485 + 34.5518i −0.738327 + 1.27882i
\(731\) 14.6399 25.3570i 0.541475 0.937862i
\(732\) −2.22853 + 22.0111i −0.0823687 + 0.813555i
\(733\) −41.4391 + 23.9249i −1.53059 + 0.883685i −0.531253 + 0.847213i \(0.678279\pi\)
−0.999335 + 0.0364726i \(0.988388\pi\)
\(734\) −12.5938 + 21.8131i −0.464846 + 0.805136i
\(735\) 0 0
\(736\) 27.6034 + 47.8105i 1.01747 + 1.76232i
\(737\) −9.07910 5.24182i −0.334433 0.193085i
\(738\) −13.8160 12.2503i −0.508575 0.450939i
\(739\) −7.67416 13.2920i −0.282299 0.488956i 0.689652 0.724141i \(-0.257764\pi\)
−0.971951 + 0.235185i \(0.924430\pi\)
\(740\) 5.29833 0.194771
\(741\) −0.811659 1.80444i −0.0298170 0.0662879i
\(742\) 0 0
\(743\) 34.9422 + 20.1739i 1.28191 + 0.740109i 0.977197 0.212337i \(-0.0681073\pi\)
0.304709 + 0.952445i \(0.401441\pi\)
\(744\) 17.0935 + 1.73063i 0.626677 + 0.0634481i
\(745\) −34.1568 19.7204i −1.25141 0.722501i
\(746\) 38.4630 22.2066i 1.40823 0.813042i
\(747\) −8.03683 24.1069i −0.294052 0.882024i
\(748\) 25.7747i 0.942417i
\(749\) 0 0
\(750\) 3.04050 30.0310i 0.111023 1.09658i
\(751\) −16.9449 29.3494i −0.618327 1.07097i −0.989791 0.142527i \(-0.954477\pi\)
0.371463 0.928448i \(-0.378856\pi\)
\(752\) 10.1981 0.371887
\(753\) 1.97387 + 0.199846i 0.0719319 + 0.00728277i
\(754\) 2.59568i 0.0945293i
\(755\) −4.96814 −0.180809
\(756\) 0 0
\(757\) −5.73237 −0.208346 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(758\) 39.6743i 1.44103i
\(759\) −76.2901 7.72403i −2.76916 0.280364i
\(760\) 6.11284 0.221736
\(761\) 13.2666 + 22.9784i 0.480914 + 0.832968i 0.999760 0.0218999i \(-0.00697151\pi\)
−0.518846 + 0.854868i \(0.673638\pi\)
\(762\) −2.40397 + 23.7439i −0.0870865 + 0.860152i
\(763\) 0 0
\(764\) 19.7420i 0.714242i
\(765\) 15.3490 17.3109i 0.554946 0.625876i
\(766\) −20.9741 + 12.1094i −0.757825 + 0.437531i
\(767\) 2.80929 + 1.62194i 0.101438 + 0.0585650i
\(768\) 35.9004 + 3.63475i 1.29544 + 0.131158i
\(769\) 23.3944 + 13.5068i 0.843623 + 0.487066i 0.858494 0.512823i \(-0.171400\pi\)
−0.0148711 + 0.999889i \(0.504734\pi\)
\(770\) 0 0
\(771\) −20.5935 45.7824i −0.741655 1.64881i
\(772\) 2.32256 0.0835906
\(773\) 11.3009 + 19.5737i 0.406464 + 0.704016i 0.994491 0.104826i \(-0.0334284\pi\)
−0.588027 + 0.808841i \(0.700095\pi\)
\(774\) 50.6024 16.8700i 1.81887 0.606380i
\(775\) 11.5909 + 6.69201i 0.416357 + 0.240384i
\(776\) 1.76545 + 3.05784i 0.0633758 + 0.109770i
\(777\) 0 0
\(778\) 10.2296 17.7182i 0.366750 0.635229i
\(779\) −7.34180 + 4.23879i −0.263047 + 0.151870i
\(780\) 0.289633 2.86070i 0.0103705 0.102430i
\(781\) −8.28359 + 14.3476i −0.296410 + 0.513398i
\(782\) 22.6978 39.3137i 0.811670 1.40585i
\(783\) 15.8673 3.56313i 0.567051 0.127336i
\(784\) 0 0
\(785\) 18.2114 10.5144i 0.649993 0.375274i
\(786\) 23.2130 10.4415i 0.827980 0.372435i
\(787\) 26.1960i 0.933787i −0.884314 0.466893i \(-0.845373\pi\)
0.884314 0.466893i \(-0.154627\pi\)
\(788\) 7.40767i 0.263887i
\(789\) −19.2500 13.8740i −0.685318 0.493926i
\(790\) −2.32900 + 1.34465i −0.0828620 + 0.0478404i
\(791\) 0 0
\(792\) −10.5808 + 11.9331i −0.375971 + 0.424026i
\(793\) −1.89838 + 3.28808i −0.0674133 + 0.116763i
\(794\) −27.9314 + 48.3785i −0.991247 + 1.71689i
\(795\) −17.0908 12.3178i −0.606150 0.436867i
\(796\) 14.4705 8.35456i 0.512894 0.296120i
\(797\) −5.96560 + 10.3327i −0.211312 + 0.366004i −0.952126 0.305707i \(-0.901107\pi\)
0.740813 + 0.671711i \(0.234440\pi\)
\(798\) 0 0
\(799\) −3.29899 5.71402i −0.116710 0.202147i
\(800\) 7.74640 + 4.47239i 0.273877 + 0.158123i
\(801\) −15.0837 + 17.0116i −0.532957 + 0.601077i
\(802\) −17.9370 31.0678i −0.633378 1.09704i
\(803\) −47.7904 −1.68648
\(804\) 4.80802 + 0.486790i 0.169566 + 0.0171678i
\(805\) 0 0
\(806\) −7.51788 4.34045i −0.264806 0.152886i
\(807\) −7.44592 16.5534i −0.262109 0.582708i
\(808\) 6.18375 + 3.57019i 0.217543 + 0.125599i
\(809\) 22.9399 13.2443i 0.806522 0.465646i −0.0392244 0.999230i \(-0.512489\pi\)
0.845747 + 0.533585i \(0.179155\pi\)
\(810\) 41.8445 5.04525i 1.47026 0.177272i
\(811\) 13.7419i 0.482544i 0.970458 + 0.241272i \(0.0775646\pi\)
−0.970458 + 0.241272i \(0.922435\pi\)
\(812\) 0 0
\(813\) 9.19812 + 6.62932i 0.322592 + 0.232500i
\(814\) 7.42439 + 12.8594i 0.260225 + 0.450722i
\(815\) −2.69143 −0.0942766
\(816\) −10.4026 23.1265i −0.364163 0.809590i
\(817\) 24.4896i 0.856783i
\(818\) −53.8949 −1.88439
\(819\) 0 0
\(820\) −12.3198 −0.430226
\(821\) 13.5669i 0.473489i −0.971572 0.236744i \(-0.923920\pi\)
0.971572 0.236744i \(-0.0760804\pi\)
\(822\) −21.8982 + 30.3836i −0.763789 + 1.05975i
\(823\) 14.6971 0.512310 0.256155 0.966636i \(-0.417544\pi\)
0.256155 + 0.966636i \(0.417544\pi\)
\(824\) −6.78711 11.7556i −0.236440 0.409527i
\(825\) −11.3305 + 5.09658i −0.394476 + 0.177440i
\(826\) 0 0
\(827\) 40.8787i 1.42149i −0.703449 0.710746i \(-0.748358\pi\)
0.703449 0.710746i \(-0.251642\pi\)
\(828\) 33.5325 11.1792i 1.16534 0.388504i
\(829\) −17.7189 + 10.2300i −0.615402 + 0.355302i −0.775077 0.631867i \(-0.782289\pi\)
0.159675 + 0.987170i \(0.448955\pi\)
\(830\) −34.3530 19.8337i −1.19241 0.688439i
\(831\) −22.7165 + 31.5190i −0.788028 + 1.09338i
\(832\) −1.36797 0.789798i −0.0474258 0.0273813i
\(833\) 0 0
\(834\) −37.0969 + 51.4717i −1.28456 + 1.78232i
\(835\) −20.0324 −0.693249
\(836\) −10.7790 18.6698i −0.372800 0.645708i
\(837\) 16.2131 51.9146i 0.560406 1.79443i
\(838\) 16.3923 + 9.46412i 0.566264 + 0.326932i
\(839\) −27.3475 47.3673i −0.944141 1.63530i −0.757462 0.652880i \(-0.773561\pi\)
−0.186680 0.982421i \(-0.559773\pi\)
\(840\) 0 0
\(841\) −9.60247 + 16.6320i −0.331120 + 0.573516i
\(842\) −41.1416 + 23.7531i −1.41783 + 0.818586i
\(843\) 35.3033 15.8798i 1.21591 0.546930i
\(844\) −11.4661 + 19.8598i −0.394678 + 0.683602i
\(845\) −16.0405 + 27.7830i −0.551812 + 0.955766i
\(846\) 2.40922 11.7760i 0.0828308 0.404866i
\(847\) 0 0
\(848\) −19.9975 + 11.5456i −0.686718 + 0.396477i
\(849\) 3.30992 32.6921i 0.113596 1.12199i
\(850\) 7.35513i 0.252279i
\(851\) 11.1779i 0.383172i
\(852\) 0.769269 7.59806i 0.0263547 0.260305i
\(853\) −11.0684 + 6.39037i −0.378976 + 0.218802i −0.677373 0.735640i \(-0.736882\pi\)
0.298396 + 0.954442i \(0.403548\pi\)
\(854\) 0 0
\(855\) 3.87859 18.9580i 0.132645 0.648351i
\(856\) 6.39058 11.0688i 0.218426 0.378324i
\(857\) −9.16200 + 15.8691i −0.312968 + 0.542077i −0.979003 0.203844i \(-0.934657\pi\)
0.666035 + 0.745920i \(0.267990\pi\)
\(858\) 7.34897 3.30565i 0.250890 0.112853i
\(859\) 33.4579 19.3169i 1.14157 0.659085i 0.194750 0.980853i \(-0.437610\pi\)
0.946819 + 0.321768i \(0.104277\pi\)
\(860\) 17.7944 30.8208i 0.606784 1.05098i
\(861\) 0 0
\(862\) −10.1328 17.5505i −0.345125 0.597774i
\(863\) −14.4626 8.35001i −0.492314 0.284238i 0.233220 0.972424i \(-0.425074\pi\)
−0.725534 + 0.688186i \(0.758407\pi\)
\(864\) 10.8355 34.6955i 0.368631 1.18036i
\(865\) 1.25724 + 2.17760i 0.0427473 + 0.0740405i
\(866\) 24.3931 0.828912
\(867\) 7.62350 10.5775i 0.258908 0.359232i
\(868\) 0 0
\(869\) −2.78978 1.61068i −0.0946367 0.0546385i
\(870\) 14.8430 20.5945i 0.503224 0.698219i
\(871\) 0.718235 + 0.414673i 0.0243365 + 0.0140507i
\(872\) −0.753996 + 0.435320i −0.0255335 + 0.0147418i
\(873\) 10.6036 3.53506i 0.358878 0.119644i
\(874\) 37.9689i 1.28432i
\(875\) 0 0
\(876\) 20.0908 9.03707i 0.678805 0.305334i
\(877\) −16.7617 29.0321i −0.566002 0.980345i −0.996956 0.0779707i \(-0.975156\pi\)
0.430953 0.902374i \(-0.358177\pi\)
\(878\) −59.7213 −2.01549
\(879\) −8.93491 + 12.3971i −0.301367 + 0.418144i
\(880\) 66.8652i 2.25403i
\(881\) 28.6657 0.965771 0.482885 0.875684i \(-0.339589\pi\)
0.482885 + 0.875684i \(0.339589\pi\)
\(882\) 0 0
\(883\) −38.2091 −1.28584 −0.642919 0.765935i \(-0.722277\pi\)
−0.642919 + 0.765935i \(0.722277\pi\)
\(884\) 2.03900i 0.0685790i
\(885\) 13.0145 + 28.9332i 0.437476 + 0.972577i
\(886\) −46.3439 −1.55695
\(887\) −17.5914 30.4692i −0.590662 1.02306i −0.994143 0.108069i \(-0.965533\pi\)
0.403481 0.914988i \(-0.367800\pi\)
\(888\) 1.88604 + 1.35932i 0.0632915 + 0.0456157i
\(889\) 0 0
\(890\) 35.4910i 1.18966i
\(891\) 30.2953 + 40.3862i 1.01493 + 1.35299i
\(892\) 4.13309 2.38624i 0.138386 0.0798972i
\(893\) −4.77921 2.75928i −0.159930 0.0923358i
\(894\) 20.9019 + 46.4681i 0.699063 + 1.55413i
\(895\) 3.20164 + 1.84847i 0.107019 + 0.0617875i
\(896\) 0 0
\(897\) 6.03521 + 0.611037i 0.201510 + 0.0204019i
\(898\) 25.7371 0.858857
\(899\) −16.3791 28.3695i −0.546274 0.946174i
\(900\) 3.79951 4.28514i 0.126650 0.142838i
\(901\) 12.9380 + 7.46975i 0.431027 + 0.248854i
\(902\) −17.2634 29.9010i −0.574807 0.995595i
\(903\) 0 0
\(904\) −2.24557 + 3.88944i −0.0746866 + 0.129361i
\(905\) 32.6459 18.8481i 1.08519 0.626533i
\(906\) 5.20680 + 3.75267i 0.172984 + 0.124674i
\(907\) 21.2977 36.8887i 0.707179 1.22487i −0.258720 0.965952i \(-0.583301\pi\)
0.965899 0.258918i \(-0.0833660\pi\)
\(908\) 10.9505 18.9669i 0.363406 0.629437i
\(909\) 14.9960 16.9127i 0.497385 0.560958i
\(910\) 0 0
\(911\) −43.5221 + 25.1275i −1.44195 + 0.832510i −0.997980 0.0635313i \(-0.979764\pi\)
−0.443970 + 0.896042i \(0.646430\pi\)
\(912\) −17.2066 12.4012i −0.569767 0.410645i
\(913\) 47.5154i 1.57253i
\(914\) 51.0420i 1.68832i
\(915\) −33.8643 + 15.2326i −1.11952 + 0.503573i
\(916\) 4.36754 2.52160i 0.144308 0.0833161i
\(917\) 0 0
\(918\) −29.1622 + 6.54860i −0.962495 + 0.216136i
\(919\) 29.3486 50.8333i 0.968121 1.67684i 0.267137 0.963658i \(-0.413922\pi\)
0.700984 0.713177i \(-0.252744\pi\)
\(920\) −9.37054 + 16.2303i −0.308938 + 0.535096i
\(921\) −5.01660 + 49.5489i −0.165302 + 1.63269i
\(922\) 17.8630 10.3132i 0.588287 0.339647i
\(923\) 0.655304 1.13502i 0.0215696 0.0373596i
\(924\) 0 0
\(925\) 0.905536 + 1.56843i 0.0297738 + 0.0515698i
\(926\) −39.6046 22.8657i −1.30149 0.751415i
\(927\) −40.7647 + 13.5903i −1.33889 + 0.446363i
\(928\) −10.9465 18.9598i −0.359335 0.622387i
\(929\) −14.3823 −0.471868 −0.235934 0.971769i \(-0.575815\pi\)
−0.235934 + 0.971769i \(0.575815\pi\)
\(930\) −34.8278 77.4275i −1.14205 2.53895i
\(931\) 0 0
\(932\) 6.30952 + 3.64281i 0.206675 + 0.119324i
\(933\) −22.8948 2.31799i −0.749542 0.0758877i
\(934\) −25.7427 14.8626i −0.842327 0.486318i
\(935\) 37.4646 21.6302i 1.22522 0.707384i
\(936\) 0.837030 0.944015i 0.0273592 0.0308561i
\(937\) 44.2981i 1.44716i −0.690243 0.723578i \(-0.742496\pi\)
0.690243 0.723578i \(-0.257504\pi\)
\(938\) 0 0
\(939\) 5.50446 54.3675i 0.179631 1.77422i
\(940\) −4.00985 6.94526i −0.130787 0.226529i
\(941\) −14.8880 −0.485335 −0.242667 0.970110i \(-0.578022\pi\)
−0.242667 + 0.970110i \(0.578022\pi\)
\(942\) −27.0283 2.73649i −0.880630 0.0891598i
\(943\) 25.9910i 0.846384i
\(944\) 34.7734 1.13178
\(945\) 0 0
\(946\) 99.7390 3.24280
\(947\) 41.9552i 1.36336i 0.731650 + 0.681681i \(0.238751\pi\)
−0.731650 + 0.681681i \(0.761249\pi\)
\(948\) 1.47738 + 0.149578i 0.0479832 + 0.00485808i
\(949\) 3.78063 0.122724
\(950\) −3.07592 5.32765i −0.0997960 0.172852i
\(951\) −3.50177 + 34.5869i −0.113553 + 1.12156i
\(952\) 0 0
\(953\) 13.9821i 0.452926i 0.974020 + 0.226463i \(0.0727162\pi\)
−0.974020 + 0.226463i \(0.927284\pi\)
\(954\) 8.60765 + 25.8191i 0.278683 + 0.835924i
\(955\) 28.6959 16.5676i 0.928578 0.536115i
\(956\) −20.3415 11.7442i −0.657892 0.379834i
\(957\) 30.2538 + 3.06306i 0.977966 + 0.0990146i
\(958\) −22.4228 12.9458i −0.724449 0.418261i
\(959\) 0 0
\(960\) −6.33733 14.0889i −0.204537 0.454716i
\(961\) −78.5553 −2.53404
\(962\) −0.587333 1.01729i −0.0189364 0.0327988i
\(963\) −30.2734 26.8425i −0.975546 0.864989i
\(964\) −0.994743 0.574315i −0.0320385 0.0184974i
\(965\) 1.94910 + 3.37593i 0.0627436 + 0.108675i
\(966\) 0 0
\(967\) −11.5757 + 20.0497i −0.372249 + 0.644754i −0.989911 0.141690i \(-0.954746\pi\)
0.617662 + 0.786443i \(0.288080\pi\)
\(968\) −16.7980 + 9.69835i −0.539909 + 0.311717i
\(969\) −1.38226 + 13.6525i −0.0444045 + 0.438582i
\(970\) 8.72403 15.1105i 0.280112 0.485168i
\(971\) −21.6869 + 37.5628i −0.695965 + 1.20545i 0.273890 + 0.961761i \(0.411690\pi\)
−0.969854 + 0.243685i \(0.921644\pi\)
\(972\) −20.3729 11.2493i −0.653462 0.360823i
\(973\) 0 0
\(974\) 46.6120 26.9114i 1.49354 0.862298i
\(975\) 0.896338 0.403183i 0.0287058 0.0129122i
\(976\) 40.7000i 1.30277i
\(977\) 12.0331i 0.384974i 0.981300 + 0.192487i \(0.0616553\pi\)
−0.981300 + 0.192487i \(0.938345\pi\)
\(978\) 2.82072 + 2.03297i 0.0901968 + 0.0650071i
\(979\) −36.8170 + 21.2563i −1.17668 + 0.679355i
\(980\) 0 0
\(981\) 0.871668 + 2.61461i 0.0278302 + 0.0834782i
\(982\) 36.2152 62.7266i 1.15567 2.00169i
\(983\) −3.14829 + 5.45300i −0.100415 + 0.173924i −0.911856 0.410511i \(-0.865350\pi\)
0.811441 + 0.584435i \(0.198684\pi\)
\(984\) −4.38547 3.16072i −0.139804 0.100760i
\(985\) 10.7674 6.21654i 0.343077 0.198075i
\(986\) −9.00108 + 15.5903i −0.286653 + 0.496497i
\(987\) 0 0
\(988\) 0.852712 + 1.47694i 0.0271284 + 0.0469877i
\(989\) 65.0225 + 37.5408i 2.06760 + 1.19373i
\(990\) 77.2106 + 15.7964i 2.45391 + 0.502041i
\(991\) −16.7814 29.0662i −0.533078 0.923317i −0.999254 0.0386256i \(-0.987702\pi\)
0.466176 0.884692i \(-0.345631\pi\)
\(992\) −73.2178 −2.32467
\(993\) 2.15046 + 0.217724i 0.0682427 + 0.00690926i
\(994\) 0 0
\(995\) 24.2874 + 14.0223i 0.769963 + 0.444538i
\(996\) 8.98508 + 19.9752i 0.284703 + 0.632939i
\(997\) −9.74838 5.62823i −0.308734 0.178248i 0.337626 0.941280i \(-0.390376\pi\)
−0.646360 + 0.763033i \(0.723710\pi\)
\(998\) −5.61096 + 3.23949i −0.177612 + 0.102544i
\(999\) 5.41241 4.98679i 0.171241 0.157775i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.i.d.68.20 48
3.2 odd 2 1323.2.i.d.1097.7 48
7.2 even 3 441.2.o.e.293.19 yes 48
7.3 odd 6 441.2.s.d.374.6 48
7.4 even 3 441.2.s.d.374.5 48
7.5 odd 6 441.2.o.e.293.20 yes 48
7.6 odd 2 inner 441.2.i.d.68.19 48
9.2 odd 6 441.2.s.d.362.6 48
9.7 even 3 1323.2.s.d.656.20 48
21.2 odd 6 1323.2.o.e.881.6 48
21.5 even 6 1323.2.o.e.881.5 48
21.11 odd 6 1323.2.s.d.962.19 48
21.17 even 6 1323.2.s.d.962.20 48
21.20 even 2 1323.2.i.d.1097.22 48
63.2 odd 6 441.2.o.e.146.20 yes 48
63.11 odd 6 inner 441.2.i.d.227.5 48
63.16 even 3 1323.2.o.e.440.5 48
63.20 even 6 441.2.s.d.362.5 48
63.25 even 3 1323.2.i.d.521.22 48
63.34 odd 6 1323.2.s.d.656.19 48
63.38 even 6 inner 441.2.i.d.227.6 48
63.47 even 6 441.2.o.e.146.19 48
63.52 odd 6 1323.2.i.d.521.7 48
63.61 odd 6 1323.2.o.e.440.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.19 48 7.6 odd 2 inner
441.2.i.d.68.20 48 1.1 even 1 trivial
441.2.i.d.227.5 48 63.11 odd 6 inner
441.2.i.d.227.6 48 63.38 even 6 inner
441.2.o.e.146.19 48 63.47 even 6
441.2.o.e.146.20 yes 48 63.2 odd 6
441.2.o.e.293.19 yes 48 7.2 even 3
441.2.o.e.293.20 yes 48 7.5 odd 6
441.2.s.d.362.5 48 63.20 even 6
441.2.s.d.362.6 48 9.2 odd 6
441.2.s.d.374.5 48 7.4 even 3
441.2.s.d.374.6 48 7.3 odd 6
1323.2.i.d.521.7 48 63.52 odd 6
1323.2.i.d.521.22 48 63.25 even 3
1323.2.i.d.1097.7 48 3.2 odd 2
1323.2.i.d.1097.22 48 21.20 even 2
1323.2.o.e.440.5 48 63.16 even 3
1323.2.o.e.440.6 48 63.61 odd 6
1323.2.o.e.881.5 48 21.5 even 6
1323.2.o.e.881.6 48 21.2 odd 6
1323.2.s.d.656.19 48 63.34 odd 6
1323.2.s.d.656.20 48 9.7 even 3
1323.2.s.d.962.19 48 21.11 odd 6
1323.2.s.d.962.20 48 21.17 even 6