Properties

Label 1323.2.i.d.1097.22
Level $1323$
Weight $2$
Character 1323.1097
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(521,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.22
Character \(\chi\) \(=\) 1323.1097
Dual form 1323.2.i.d.521.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.86894i q^{2} -1.49292 q^{4} +(-1.25287 - 2.17003i) q^{5} -0.947692i q^{8} +(-4.05565 + 2.34153i) q^{10} +(-4.85803 - 2.80479i) q^{11} +(0.384312 + 0.221883i) q^{13} -4.75703 q^{16} +(1.53885 + 2.66536i) q^{17} +(-2.22932 - 1.28710i) q^{19} +(1.87044 + 3.23969i) q^{20} +(-5.24197 + 9.07935i) q^{22} +(6.83476 - 3.94605i) q^{23} +(-0.639351 + 1.10739i) q^{25} +(0.414685 - 0.718255i) q^{26} +(-2.71041 + 1.56485i) q^{29} +10.4669i q^{31} +6.99520i q^{32} +(4.98140 - 2.87601i) q^{34} +(0.708168 - 1.22658i) q^{37} +(-2.40550 + 4.16645i) q^{38} +(-2.05652 + 1.18733i) q^{40} +(-1.64665 + 2.85208i) q^{41} +(-4.75676 - 8.23894i) q^{43} +(7.25268 + 4.18733i) q^{44} +(-7.37492 - 12.7737i) q^{46} -2.14380 q^{47} +(2.06964 + 1.19491i) q^{50} +(-0.573749 - 0.331254i) q^{52} +(-4.20379 + 2.42706i) q^{53} +14.0561i q^{55} +(2.92461 + 5.06558i) q^{58} -7.30991 q^{59} +8.55576i q^{61} +19.5619 q^{62} +3.55953 q^{64} -1.11196i q^{65} -1.86888 q^{67} +(-2.29739 - 3.97919i) q^{68} -2.95338i q^{71} +(7.37804 - 4.25971i) q^{73} +(-2.29241 - 1.32352i) q^{74} +(3.32820 + 1.92154i) q^{76} -0.574261 q^{79} +(5.95992 + 10.3229i) q^{80} +(5.33036 + 3.07748i) q^{82} +(-4.23521 - 7.33560i) q^{83} +(3.85595 - 6.67870i) q^{85} +(-15.3981 + 8.89008i) q^{86} +(-2.65807 + 4.60392i) q^{88} +(-3.78929 + 6.56325i) q^{89} +(-10.2038 + 5.89115i) q^{92} +4.00663i q^{94} +6.45024i q^{95} +(-3.22662 + 1.86289i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 24 q^{11} + 48 q^{16} - 48 q^{23} - 24 q^{25} + 96 q^{44} - 48 q^{50} + 48 q^{53} - 48 q^{64} - 168 q^{74} + 48 q^{79} - 24 q^{85} + 24 q^{86} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.86894i 1.32154i −0.750589 0.660769i \(-0.770230\pi\)
0.750589 0.660769i \(-0.229770\pi\)
\(3\) 0 0
\(4\) −1.49292 −0.746462
\(5\) −1.25287 2.17003i −0.560299 0.970467i −0.997470 0.0710881i \(-0.977353\pi\)
0.437171 0.899378i \(-0.355980\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.947692i 0.335060i
\(9\) 0 0
\(10\) −4.05565 + 2.34153i −1.28251 + 0.740457i
\(11\) −4.85803 2.80479i −1.46475 0.845675i −0.465527 0.885034i \(-0.654135\pi\)
−0.999225 + 0.0393590i \(0.987468\pi\)
\(12\) 0 0
\(13\) 0.384312 + 0.221883i 0.106589 + 0.0615392i 0.552347 0.833614i \(-0.313732\pi\)
−0.445758 + 0.895154i \(0.647066\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.75703 −1.18926
\(17\) 1.53885 + 2.66536i 0.373226 + 0.646446i 0.990060 0.140647i \(-0.0449184\pi\)
−0.616834 + 0.787093i \(0.711585\pi\)
\(18\) 0 0
\(19\) −2.22932 1.28710i −0.511440 0.295280i 0.221985 0.975050i \(-0.428746\pi\)
−0.733425 + 0.679770i \(0.762080\pi\)
\(20\) 1.87044 + 3.23969i 0.418242 + 0.724417i
\(21\) 0 0
\(22\) −5.24197 + 9.07935i −1.11759 + 1.93572i
\(23\) 6.83476 3.94605i 1.42515 0.822808i 0.428413 0.903583i \(-0.359073\pi\)
0.996732 + 0.0807749i \(0.0257395\pi\)
\(24\) 0 0
\(25\) −0.639351 + 1.10739i −0.127870 + 0.221478i
\(26\) 0.414685 0.718255i 0.0813264 0.140861i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.71041 + 1.56485i −0.503310 + 0.290586i −0.730079 0.683362i \(-0.760517\pi\)
0.226770 + 0.973948i \(0.427184\pi\)
\(30\) 0 0
\(31\) 10.4669i 1.87990i 0.341306 + 0.939952i \(0.389131\pi\)
−0.341306 + 0.939952i \(0.610869\pi\)
\(32\) 6.99520i 1.23659i
\(33\) 0 0
\(34\) 4.98140 2.87601i 0.854303 0.493232i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.708168 1.22658i 0.116422 0.201649i −0.801925 0.597424i \(-0.796191\pi\)
0.918347 + 0.395775i \(0.129524\pi\)
\(38\) −2.40550 + 4.16645i −0.390224 + 0.675887i
\(39\) 0 0
\(40\) −2.05652 + 1.18733i −0.325164 + 0.187734i
\(41\) −1.64665 + 2.85208i −0.257163 + 0.445420i −0.965481 0.260474i \(-0.916121\pi\)
0.708318 + 0.705894i \(0.249455\pi\)
\(42\) 0 0
\(43\) −4.75676 8.23894i −0.725398 1.25643i −0.958810 0.284049i \(-0.908322\pi\)
0.233411 0.972378i \(-0.425011\pi\)
\(44\) 7.25268 + 4.18733i 1.09338 + 0.631264i
\(45\) 0 0
\(46\) −7.37492 12.7737i −1.08737 1.88338i
\(47\) −2.14380 −0.312706 −0.156353 0.987701i \(-0.549974\pi\)
−0.156353 + 0.987701i \(0.549974\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.06964 + 1.19491i 0.292691 + 0.168985i
\(51\) 0 0
\(52\) −0.573749 0.331254i −0.0795647 0.0459367i
\(53\) −4.20379 + 2.42706i −0.577435 + 0.333382i −0.760113 0.649791i \(-0.774857\pi\)
0.182678 + 0.983173i \(0.441523\pi\)
\(54\) 0 0
\(55\) 14.0561i 1.89532i
\(56\) 0 0
\(57\) 0 0
\(58\) 2.92461 + 5.06558i 0.384020 + 0.665143i
\(59\) −7.30991 −0.951669 −0.475835 0.879535i \(-0.657854\pi\)
−0.475835 + 0.879535i \(0.657854\pi\)
\(60\) 0 0
\(61\) 8.55576i 1.09545i 0.836658 + 0.547726i \(0.184506\pi\)
−0.836658 + 0.547726i \(0.815494\pi\)
\(62\) 19.5619 2.48437
\(63\) 0 0
\(64\) 3.55953 0.444941
\(65\) 1.11196i 0.137921i
\(66\) 0 0
\(67\) −1.86888 −0.228321 −0.114160 0.993462i \(-0.536418\pi\)
−0.114160 + 0.993462i \(0.536418\pi\)
\(68\) −2.29739 3.97919i −0.278599 0.482548i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.95338i 0.350501i −0.984524 0.175251i \(-0.943926\pi\)
0.984524 0.175251i \(-0.0560736\pi\)
\(72\) 0 0
\(73\) 7.37804 4.25971i 0.863534 0.498562i −0.00165984 0.999999i \(-0.500528\pi\)
0.865194 + 0.501437i \(0.167195\pi\)
\(74\) −2.29241 1.32352i −0.266487 0.153856i
\(75\) 0 0
\(76\) 3.32820 + 1.92154i 0.381771 + 0.220415i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.574261 −0.0646094 −0.0323047 0.999478i \(-0.510285\pi\)
−0.0323047 + 0.999478i \(0.510285\pi\)
\(80\) 5.95992 + 10.3229i 0.666339 + 1.15413i
\(81\) 0 0
\(82\) 5.33036 + 3.07748i 0.588639 + 0.339851i
\(83\) −4.23521 7.33560i −0.464875 0.805186i 0.534321 0.845281i \(-0.320567\pi\)
−0.999196 + 0.0400951i \(0.987234\pi\)
\(84\) 0 0
\(85\) 3.85595 6.67870i 0.418236 0.724406i
\(86\) −15.3981 + 8.89008i −1.66042 + 0.958642i
\(87\) 0 0
\(88\) −2.65807 + 4.60392i −0.283352 + 0.490779i
\(89\) −3.78929 + 6.56325i −0.401664 + 0.695703i −0.993927 0.110042i \(-0.964901\pi\)
0.592263 + 0.805745i \(0.298235\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −10.2038 + 5.89115i −1.06382 + 0.614195i
\(93\) 0 0
\(94\) 4.00663i 0.413252i
\(95\) 6.45024i 0.661781i
\(96\) 0 0
\(97\) −3.22662 + 1.86289i −0.327614 + 0.189148i −0.654781 0.755818i \(-0.727239\pi\)
0.327167 + 0.944966i \(0.393906\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.954503 1.65325i 0.0954503 0.165325i
\(101\) 3.76725 6.52506i 0.374855 0.649268i −0.615450 0.788176i \(-0.711026\pi\)
0.990305 + 0.138908i \(0.0443592\pi\)
\(102\) 0 0
\(103\) 12.4045 7.16173i 1.22225 0.705666i 0.256853 0.966451i \(-0.417315\pi\)
0.965397 + 0.260784i \(0.0839812\pi\)
\(104\) 0.210276 0.364210i 0.0206193 0.0357137i
\(105\) 0 0
\(106\) 4.53602 + 7.85662i 0.440577 + 0.763102i
\(107\) 11.6798 + 6.74331i 1.12912 + 0.651900i 0.943715 0.330761i \(-0.107305\pi\)
0.185410 + 0.982661i \(0.440639\pi\)
\(108\) 0 0
\(109\) 0.459348 + 0.795613i 0.0439975 + 0.0762059i 0.887186 0.461413i \(-0.152657\pi\)
−0.843188 + 0.537619i \(0.819324\pi\)
\(110\) 26.2700 2.50474
\(111\) 0 0
\(112\) 0 0
\(113\) −4.10412 2.36952i −0.386083 0.222905i 0.294378 0.955689i \(-0.404887\pi\)
−0.680462 + 0.732784i \(0.738221\pi\)
\(114\) 0 0
\(115\) −17.1261 9.88775i −1.59702 0.922037i
\(116\) 4.04643 2.33621i 0.375702 0.216912i
\(117\) 0 0
\(118\) 13.6618i 1.25767i
\(119\) 0 0
\(120\) 0 0
\(121\) 10.2337 + 17.7252i 0.930332 + 1.61138i
\(122\) 15.9902 1.44768
\(123\) 0 0
\(124\) 15.6262i 1.40328i
\(125\) −9.32458 −0.834016
\(126\) 0 0
\(127\) 7.37245 0.654200 0.327100 0.944990i \(-0.393929\pi\)
0.327100 + 0.944990i \(0.393929\pi\)
\(128\) 7.33786i 0.648581i
\(129\) 0 0
\(130\) −2.07818 −0.182268
\(131\) −3.93150 6.80955i −0.343497 0.594953i 0.641583 0.767054i \(-0.278278\pi\)
−0.985079 + 0.172100i \(0.944945\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.49283i 0.301734i
\(135\) 0 0
\(136\) 2.52594 1.45835i 0.216598 0.125053i
\(137\) −10.0198 5.78491i −0.856046 0.494238i 0.00664016 0.999978i \(-0.497886\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(138\) 0 0
\(139\) −16.9741 9.79999i −1.43972 0.831224i −0.441893 0.897068i \(-0.645693\pi\)
−0.997830 + 0.0658437i \(0.979026\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.51968 −0.463201
\(143\) −1.24467 2.15583i −0.104084 0.180279i
\(144\) 0 0
\(145\) 6.79156 + 3.92111i 0.564008 + 0.325630i
\(146\) −7.96114 13.7891i −0.658868 1.14119i
\(147\) 0 0
\(148\) −1.05724 + 1.83120i −0.0869047 + 0.150523i
\(149\) −13.6315 + 7.87012i −1.11673 + 0.644746i −0.940565 0.339615i \(-0.889703\pi\)
−0.176167 + 0.984360i \(0.556370\pi\)
\(150\) 0 0
\(151\) 0.991353 1.71707i 0.0806752 0.139734i −0.822865 0.568237i \(-0.807626\pi\)
0.903540 + 0.428503i \(0.140959\pi\)
\(152\) −1.21977 + 2.11270i −0.0989364 + 0.171363i
\(153\) 0 0
\(154\) 0 0
\(155\) 22.7134 13.1136i 1.82438 1.05331i
\(156\) 0 0
\(157\) 8.39224i 0.669774i −0.942258 0.334887i \(-0.891302\pi\)
0.942258 0.334887i \(-0.108698\pi\)
\(158\) 1.07326i 0.0853837i
\(159\) 0 0
\(160\) 15.1798 8.76405i 1.20007 0.692859i
\(161\) 0 0
\(162\) 0 0
\(163\) 0.537054 0.930204i 0.0420653 0.0728592i −0.844226 0.535987i \(-0.819940\pi\)
0.886291 + 0.463128i \(0.153273\pi\)
\(164\) 2.45832 4.25794i 0.191963 0.332489i
\(165\) 0 0
\(166\) −13.7098 + 7.91534i −1.06408 + 0.614349i
\(167\) 3.99731 6.92354i 0.309321 0.535760i −0.668893 0.743359i \(-0.733232\pi\)
0.978214 + 0.207599i \(0.0665649\pi\)
\(168\) 0 0
\(169\) −6.40154 11.0878i −0.492426 0.852907i
\(170\) −12.4821 7.20652i −0.957330 0.552715i
\(171\) 0 0
\(172\) 7.10148 + 12.3001i 0.541483 + 0.937875i
\(173\) −1.00349 −0.0762938 −0.0381469 0.999272i \(-0.512145\pi\)
−0.0381469 + 0.999272i \(0.512145\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 23.1098 + 13.3424i 1.74197 + 1.00572i
\(177\) 0 0
\(178\) 12.2663 + 7.08195i 0.919398 + 0.530814i
\(179\) 1.27773 0.737695i 0.0955017 0.0551379i −0.451489 0.892277i \(-0.649107\pi\)
0.546990 + 0.837139i \(0.315773\pi\)
\(180\) 0 0
\(181\) 15.0440i 1.11821i −0.829096 0.559106i \(-0.811145\pi\)
0.829096 0.559106i \(-0.188855\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.73964 6.47724i −0.275690 0.477509i
\(185\) −3.54896 −0.260925
\(186\) 0 0
\(187\) 17.2646i 1.26251i
\(188\) 3.20054 0.233423
\(189\) 0 0
\(190\) 12.0551 0.874568
\(191\) 13.2237i 0.956836i −0.878132 0.478418i \(-0.841210\pi\)
0.878132 0.478418i \(-0.158790\pi\)
\(192\) 0 0
\(193\) −1.55571 −0.111982 −0.0559912 0.998431i \(-0.517832\pi\)
−0.0559912 + 0.998431i \(0.517832\pi\)
\(194\) 3.48163 + 6.03035i 0.249966 + 0.432954i
\(195\) 0 0
\(196\) 0 0
\(197\) 4.96185i 0.353517i −0.984254 0.176759i \(-0.943439\pi\)
0.984254 0.176759i \(-0.0565612\pi\)
\(198\) 0 0
\(199\) 9.69273 5.59610i 0.687100 0.396697i −0.115425 0.993316i \(-0.536823\pi\)
0.802525 + 0.596619i \(0.203490\pi\)
\(200\) 1.04946 + 0.605908i 0.0742083 + 0.0428442i
\(201\) 0 0
\(202\) −12.1949 7.04074i −0.858032 0.495385i
\(203\) 0 0
\(204\) 0 0
\(205\) 8.25213 0.576354
\(206\) −13.3848 23.1832i −0.932565 1.61525i
\(207\) 0 0
\(208\) −1.82818 1.05550i −0.126762 0.0731859i
\(209\) 7.22006 + 12.5055i 0.499422 + 0.865024i
\(210\) 0 0
\(211\) 7.68026 13.3026i 0.528731 0.915789i −0.470708 0.882289i \(-0.656001\pi\)
0.999439 0.0334999i \(-0.0106654\pi\)
\(212\) 6.27594 3.62342i 0.431033 0.248857i
\(213\) 0 0
\(214\) 12.6028 21.8287i 0.861511 1.49218i
\(215\) −11.9192 + 20.6446i −0.812880 + 1.40795i
\(216\) 0 0
\(217\) 0 0
\(218\) 1.48695 0.858492i 0.100709 0.0581444i
\(219\) 0 0
\(220\) 20.9847i 1.41479i
\(221\) 1.36578i 0.0918721i
\(222\) 0 0
\(223\) 2.76845 1.59837i 0.185389 0.107034i −0.404433 0.914568i \(-0.632531\pi\)
0.589822 + 0.807533i \(0.299198\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4.42848 + 7.67035i −0.294578 + 0.510224i
\(227\) −7.33494 + 12.7045i −0.486837 + 0.843227i −0.999885 0.0151329i \(-0.995183\pi\)
0.513048 + 0.858360i \(0.328516\pi\)
\(228\) 0 0
\(229\) 2.92550 1.68904i 0.193322 0.111615i −0.400215 0.916421i \(-0.631064\pi\)
0.593537 + 0.804807i \(0.297731\pi\)
\(230\) −18.4796 + 32.0076i −1.21851 + 2.11052i
\(231\) 0 0
\(232\) 1.48300 + 2.56863i 0.0973637 + 0.168639i
\(233\) 4.22628 + 2.44005i 0.276873 + 0.159853i 0.632007 0.774963i \(-0.282231\pi\)
−0.355134 + 0.934815i \(0.615565\pi\)
\(234\) 0 0
\(235\) 2.68590 + 4.65211i 0.175209 + 0.303470i
\(236\) 10.9131 0.710385
\(237\) 0 0
\(238\) 0 0
\(239\) −13.6253 7.86657i −0.881347 0.508846i −0.0102448 0.999948i \(-0.503261\pi\)
−0.871102 + 0.491101i \(0.836594\pi\)
\(240\) 0 0
\(241\) −0.666305 0.384691i −0.0429205 0.0247801i 0.478386 0.878150i \(-0.341222\pi\)
−0.521307 + 0.853369i \(0.674555\pi\)
\(242\) 33.1273 19.1260i 2.12950 1.22947i
\(243\) 0 0
\(244\) 12.7731i 0.817714i
\(245\) 0 0
\(246\) 0 0
\(247\) −0.571169 0.989293i −0.0363426 0.0629472i
\(248\) 9.91936 0.629880
\(249\) 0 0
\(250\) 17.4271i 1.10218i
\(251\) 1.14544 0.0722996 0.0361498 0.999346i \(-0.488491\pi\)
0.0361498 + 0.999346i \(0.488491\pi\)
\(252\) 0 0
\(253\) −44.2713 −2.78331
\(254\) 13.7787i 0.864549i
\(255\) 0 0
\(256\) 20.8331 1.30207
\(257\) −14.4917 25.1004i −0.903969 1.56572i −0.822295 0.569061i \(-0.807307\pi\)
−0.0816738 0.996659i \(-0.526027\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.66007i 0.102953i
\(261\) 0 0
\(262\) −12.7266 + 7.34772i −0.786254 + 0.453944i
\(263\) 11.8643 + 6.84988i 0.731586 + 0.422381i 0.819002 0.573790i \(-0.194528\pi\)
−0.0874160 + 0.996172i \(0.527861\pi\)
\(264\) 0 0
\(265\) 10.5336 + 6.08156i 0.647072 + 0.373587i
\(266\) 0 0
\(267\) 0 0
\(268\) 2.79010 0.170433
\(269\) −5.23973 9.07548i −0.319472 0.553342i 0.660906 0.750469i \(-0.270172\pi\)
−0.980378 + 0.197127i \(0.936839\pi\)
\(270\) 0 0
\(271\) −5.66907 3.27304i −0.344371 0.198823i 0.317832 0.948147i \(-0.397045\pi\)
−0.662203 + 0.749324i \(0.730379\pi\)
\(272\) −7.32034 12.6792i −0.443861 0.768790i
\(273\) 0 0
\(274\) −10.8116 + 18.7263i −0.653155 + 1.13130i
\(275\) 6.21198 3.58649i 0.374596 0.216273i
\(276\) 0 0
\(277\) −11.2156 + 19.4261i −0.673883 + 1.16720i 0.302911 + 0.953019i \(0.402041\pi\)
−0.976794 + 0.214181i \(0.931292\pi\)
\(278\) −18.3156 + 31.7235i −1.09849 + 1.90265i
\(279\) 0 0
\(280\) 0 0
\(281\) −19.3552 + 11.1747i −1.15463 + 0.666627i −0.950012 0.312214i \(-0.898929\pi\)
−0.204621 + 0.978841i \(0.565596\pi\)
\(282\) 0 0
\(283\) 18.9713i 1.12772i 0.825869 + 0.563862i \(0.190685\pi\)
−0.825869 + 0.563862i \(0.809315\pi\)
\(284\) 4.40917i 0.261636i
\(285\) 0 0
\(286\) −4.02910 + 2.32620i −0.238246 + 0.137551i
\(287\) 0 0
\(288\) 0 0
\(289\) 3.76389 6.51924i 0.221405 0.383485i
\(290\) 7.32830 12.6930i 0.430333 0.745358i
\(291\) 0 0
\(292\) −11.0149 + 6.35943i −0.644596 + 0.372158i
\(293\) −4.41136 + 7.64069i −0.257714 + 0.446374i −0.965629 0.259924i \(-0.916303\pi\)
0.707915 + 0.706298i \(0.249636\pi\)
\(294\) 0 0
\(295\) 9.15835 + 15.8627i 0.533220 + 0.923563i
\(296\) −1.16242 0.671125i −0.0675644 0.0390083i
\(297\) 0 0
\(298\) 14.7088 + 25.4763i 0.852056 + 1.47580i
\(299\) 3.50224 0.202540
\(300\) 0 0
\(301\) 0 0
\(302\) −3.20910 1.85278i −0.184663 0.106615i
\(303\) 0 0
\(304\) 10.6049 + 6.12275i 0.608233 + 0.351164i
\(305\) 18.5662 10.7192i 1.06310 0.613781i
\(306\) 0 0
\(307\) 28.7533i 1.64104i −0.571620 0.820519i \(-0.693685\pi\)
0.571620 0.820519i \(-0.306315\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −24.5085 42.4499i −1.39199 2.41099i
\(311\) −13.2859 −0.753373 −0.376687 0.926341i \(-0.622937\pi\)
−0.376687 + 0.926341i \(0.622937\pi\)
\(312\) 0 0
\(313\) 31.5495i 1.78329i 0.452740 + 0.891643i \(0.350447\pi\)
−0.452740 + 0.891643i \(0.649553\pi\)
\(314\) −15.6846 −0.885132
\(315\) 0 0
\(316\) 0.857328 0.0482285
\(317\) 20.0709i 1.12729i −0.826016 0.563646i \(-0.809398\pi\)
0.826016 0.563646i \(-0.190602\pi\)
\(318\) 0 0
\(319\) 17.5563 0.982965
\(320\) −4.45961 7.72428i −0.249300 0.431800i
\(321\) 0 0
\(322\) 0 0
\(323\) 7.92259i 0.440824i
\(324\) 0 0
\(325\) −0.491421 + 0.283722i −0.0272591 + 0.0157381i
\(326\) −1.73849 1.00372i −0.0962862 0.0555909i
\(327\) 0 0
\(328\) 2.70289 + 1.56052i 0.149242 + 0.0861651i
\(329\) 0 0
\(330\) 0 0
\(331\) 1.24791 0.0685915 0.0342958 0.999412i \(-0.489081\pi\)
0.0342958 + 0.999412i \(0.489081\pi\)
\(332\) 6.32285 + 10.9515i 0.347011 + 0.601041i
\(333\) 0 0
\(334\) −12.9397 7.47072i −0.708027 0.408780i
\(335\) 2.34146 + 4.05553i 0.127928 + 0.221577i
\(336\) 0 0
\(337\) 6.58745 11.4098i 0.358842 0.621532i −0.628926 0.777465i \(-0.716505\pi\)
0.987768 + 0.155933i \(0.0498385\pi\)
\(338\) −20.7224 + 11.9641i −1.12715 + 0.650759i
\(339\) 0 0
\(340\) −5.75664 + 9.97079i −0.312198 + 0.540742i
\(341\) 29.3573 50.8484i 1.58979 2.75359i
\(342\) 0 0
\(343\) 0 0
\(344\) −7.80798 + 4.50794i −0.420978 + 0.243052i
\(345\) 0 0
\(346\) 1.87545i 0.100825i
\(347\) 27.0675i 1.45306i −0.687136 0.726529i \(-0.741132\pi\)
0.687136 0.726529i \(-0.258868\pi\)
\(348\) 0 0
\(349\) −30.3413 + 17.5176i −1.62413 + 0.937694i −0.638336 + 0.769758i \(0.720377\pi\)
−0.985798 + 0.167936i \(0.946290\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 19.6200 33.9829i 1.04575 1.81129i
\(353\) 1.26256 2.18682i 0.0671992 0.116392i −0.830468 0.557066i \(-0.811927\pi\)
0.897667 + 0.440674i \(0.145260\pi\)
\(354\) 0 0
\(355\) −6.40892 + 3.70019i −0.340150 + 0.196386i
\(356\) 5.65713 9.79843i 0.299827 0.519316i
\(357\) 0 0
\(358\) −1.37871 2.38799i −0.0728669 0.126209i
\(359\) 6.29395 + 3.63381i 0.332182 + 0.191785i 0.656809 0.754057i \(-0.271906\pi\)
−0.324628 + 0.945842i \(0.605239\pi\)
\(360\) 0 0
\(361\) −6.18677 10.7158i −0.325619 0.563989i
\(362\) −28.1163 −1.47776
\(363\) 0 0
\(364\) 0 0
\(365\) −18.4874 10.6737i −0.967675 0.558688i
\(366\) 0 0
\(367\) −11.6714 6.73848i −0.609242 0.351746i 0.163427 0.986555i \(-0.447745\pi\)
−0.772669 + 0.634809i \(0.781079\pi\)
\(368\) −32.5131 + 18.7715i −1.69486 + 0.978530i
\(369\) 0 0
\(370\) 6.63278i 0.344822i
\(371\) 0 0
\(372\) 0 0
\(373\) −11.8820 20.5801i −0.615224 1.06560i −0.990345 0.138624i \(-0.955732\pi\)
0.375121 0.926976i \(-0.377601\pi\)
\(374\) −32.2664 −1.66846
\(375\) 0 0
\(376\) 2.03166i 0.104775i
\(377\) −1.38886 −0.0715297
\(378\) 0 0
\(379\) 21.2283 1.09042 0.545211 0.838299i \(-0.316449\pi\)
0.545211 + 0.838299i \(0.316449\pi\)
\(380\) 9.62972i 0.493994i
\(381\) 0 0
\(382\) −24.7143 −1.26450
\(383\) 6.47930 + 11.2225i 0.331077 + 0.573442i 0.982723 0.185081i \(-0.0592547\pi\)
−0.651646 + 0.758523i \(0.725921\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.90752i 0.147989i
\(387\) 0 0
\(388\) 4.81710 2.78116i 0.244551 0.141192i
\(389\) 9.48037 + 5.47350i 0.480674 + 0.277517i 0.720697 0.693250i \(-0.243822\pi\)
−0.240023 + 0.970767i \(0.577155\pi\)
\(390\) 0 0
\(391\) 21.0353 + 12.1447i 1.06380 + 0.614186i
\(392\) 0 0
\(393\) 0 0
\(394\) −9.27338 −0.467186
\(395\) 0.719472 + 1.24616i 0.0362006 + 0.0627012i
\(396\) 0 0
\(397\) −25.8856 14.9451i −1.29916 0.750071i −0.318901 0.947788i \(-0.603314\pi\)
−0.980259 + 0.197717i \(0.936647\pi\)
\(398\) −10.4588 18.1151i −0.524250 0.908028i
\(399\) 0 0
\(400\) 3.04141 5.26788i 0.152071 0.263394i
\(401\) 16.6233 9.59744i 0.830126 0.479273i −0.0237698 0.999717i \(-0.507567\pi\)
0.853896 + 0.520444i \(0.174234\pi\)
\(402\) 0 0
\(403\) −2.32242 + 4.02254i −0.115688 + 0.200377i
\(404\) −5.62421 + 9.74142i −0.279815 + 0.484654i
\(405\) 0 0
\(406\) 0 0
\(407\) −6.88060 + 3.97252i −0.341059 + 0.196910i
\(408\) 0 0
\(409\) 28.8372i 1.42591i −0.701212 0.712953i \(-0.747357\pi\)
0.701212 0.712953i \(-0.252643\pi\)
\(410\) 15.4227i 0.761673i
\(411\) 0 0
\(412\) −18.5190 + 10.6919i −0.912363 + 0.526753i
\(413\) 0 0
\(414\) 0 0
\(415\) −10.6123 + 18.3811i −0.520938 + 0.902290i
\(416\) −1.55211 + 2.68834i −0.0760986 + 0.131807i
\(417\) 0 0
\(418\) 23.3720 13.4938i 1.14316 0.660005i
\(419\) 5.06390 8.77094i 0.247388 0.428488i −0.715412 0.698702i \(-0.753761\pi\)
0.962800 + 0.270214i \(0.0870945\pi\)
\(420\) 0 0
\(421\) 12.7094 + 22.0134i 0.619419 + 1.07287i 0.989592 + 0.143902i \(0.0459651\pi\)
−0.370173 + 0.928963i \(0.620702\pi\)
\(422\) −24.8617 14.3539i −1.21025 0.698738i
\(423\) 0 0
\(424\) 2.30010 + 3.98390i 0.111703 + 0.193475i
\(425\) −3.93546 −0.190898
\(426\) 0 0
\(427\) 0 0
\(428\) −17.4370 10.0673i −0.842849 0.486619i
\(429\) 0 0
\(430\) 38.5834 + 22.2762i 1.86066 + 1.07425i
\(431\) 9.39066 5.42170i 0.452332 0.261154i −0.256482 0.966549i \(-0.582564\pi\)
0.708815 + 0.705395i \(0.249230\pi\)
\(432\) 0 0
\(433\) 13.0519i 0.627233i 0.949550 + 0.313616i \(0.101541\pi\)
−0.949550 + 0.313616i \(0.898459\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.685771 1.18779i −0.0328425 0.0568849i
\(437\) −20.3158 −0.971835
\(438\) 0 0
\(439\) 31.9547i 1.52511i −0.646922 0.762557i \(-0.723944\pi\)
0.646922 0.762557i \(-0.276056\pi\)
\(440\) 13.3208 0.635046
\(441\) 0 0
\(442\) 2.55255 0.121412
\(443\) 24.7969i 1.17814i −0.808083 0.589068i \(-0.799495\pi\)
0.808083 0.589068i \(-0.200505\pi\)
\(444\) 0 0
\(445\) 18.9899 0.900208
\(446\) −2.98724 5.17406i −0.141450 0.244999i
\(447\) 0 0
\(448\) 0 0
\(449\) 13.7710i 0.649892i 0.945733 + 0.324946i \(0.105346\pi\)
−0.945733 + 0.324946i \(0.894654\pi\)
\(450\) 0 0
\(451\) 15.9989 9.23700i 0.753361 0.434953i
\(452\) 6.12715 + 3.53751i 0.288197 + 0.166390i
\(453\) 0 0
\(454\) 23.7439 + 13.7085i 1.11436 + 0.643374i
\(455\) 0 0
\(456\) 0 0
\(457\) 27.3107 1.27754 0.638771 0.769397i \(-0.279443\pi\)
0.638771 + 0.769397i \(0.279443\pi\)
\(458\) −3.15670 5.46757i −0.147503 0.255483i
\(459\) 0 0
\(460\) 25.5680 + 14.7617i 1.19211 + 0.688266i
\(461\) −5.51822 9.55784i −0.257009 0.445153i 0.708430 0.705781i \(-0.249404\pi\)
−0.965439 + 0.260628i \(0.916070\pi\)
\(462\) 0 0
\(463\) −12.2346 + 21.1910i −0.568591 + 0.984829i 0.428115 + 0.903724i \(0.359178\pi\)
−0.996706 + 0.0811042i \(0.974155\pi\)
\(464\) 12.8935 7.44405i 0.598564 0.345581i
\(465\) 0 0
\(466\) 4.56029 7.89866i 0.211251 0.365898i
\(467\) −7.95241 + 13.7740i −0.367994 + 0.637384i −0.989252 0.146222i \(-0.953289\pi\)
0.621258 + 0.783606i \(0.286622\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 8.69451 5.01978i 0.401048 0.231545i
\(471\) 0 0
\(472\) 6.92754i 0.318866i
\(473\) 53.3667i 2.45380i
\(474\) 0 0
\(475\) 2.85063 1.64581i 0.130796 0.0755151i
\(476\) 0 0
\(477\) 0 0
\(478\) −14.7021 + 25.4648i −0.672459 + 1.16473i
\(479\) −6.92685 + 11.9976i −0.316496 + 0.548187i −0.979754 0.200204i \(-0.935840\pi\)
0.663259 + 0.748390i \(0.269173\pi\)
\(480\) 0 0
\(481\) 0.544315 0.314261i 0.0248186 0.0143290i
\(482\) −0.718964 + 1.24528i −0.0327479 + 0.0567210i
\(483\) 0 0
\(484\) −15.2781 26.4624i −0.694458 1.20284i
\(485\) 8.08506 + 4.66791i 0.367123 + 0.211959i
\(486\) 0 0
\(487\) −14.3993 24.9404i −0.652496 1.13016i −0.982515 0.186182i \(-0.940389\pi\)
0.330020 0.943974i \(-0.392945\pi\)
\(488\) 8.10822 0.367042
\(489\) 0 0
\(490\) 0 0
\(491\) 33.5627 + 19.3774i 1.51466 + 0.874492i 0.999852 + 0.0171884i \(0.00547151\pi\)
0.514812 + 0.857303i \(0.327862\pi\)
\(492\) 0 0
\(493\) −8.34181 4.81615i −0.375696 0.216908i
\(494\) −1.84893 + 1.06748i −0.0831872 + 0.0480281i
\(495\) 0 0
\(496\) 49.7911i 2.23569i
\(497\) 0 0
\(498\) 0 0
\(499\) 1.73333 + 3.00222i 0.0775946 + 0.134398i 0.902212 0.431294i \(-0.141943\pi\)
−0.824617 + 0.565691i \(0.808609\pi\)
\(500\) 13.9209 0.622561
\(501\) 0 0
\(502\) 2.14076i 0.0955467i
\(503\) −28.2202 −1.25828 −0.629138 0.777293i \(-0.716592\pi\)
−0.629138 + 0.777293i \(0.716592\pi\)
\(504\) 0 0
\(505\) −18.8794 −0.840124
\(506\) 82.7403i 3.67825i
\(507\) 0 0
\(508\) −11.0065 −0.488335
\(509\) 17.9062 + 31.0144i 0.793678 + 1.37469i 0.923675 + 0.383176i \(0.125170\pi\)
−0.129997 + 0.991514i \(0.541497\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 24.2599i 1.07215i
\(513\) 0 0
\(514\) −46.9111 + 27.0841i −2.06916 + 1.19463i
\(515\) −31.0823 17.9454i −1.36965 0.790768i
\(516\) 0 0
\(517\) 10.4147 + 6.01291i 0.458036 + 0.264447i
\(518\) 0 0
\(519\) 0 0
\(520\) −1.05379 −0.0462119
\(521\) 13.4608 + 23.3148i 0.589729 + 1.02144i 0.994268 + 0.106920i \(0.0340989\pi\)
−0.404538 + 0.914521i \(0.632568\pi\)
\(522\) 0 0
\(523\) −7.82181 4.51593i −0.342024 0.197468i 0.319143 0.947707i \(-0.396605\pi\)
−0.661167 + 0.750239i \(0.729938\pi\)
\(524\) 5.86943 + 10.1662i 0.256407 + 0.444110i
\(525\) 0 0
\(526\) 12.8020 22.1737i 0.558193 0.966819i
\(527\) −27.8980 + 16.1069i −1.21526 + 0.701629i
\(528\) 0 0
\(529\) 19.6426 34.0220i 0.854026 1.47922i
\(530\) 11.3661 19.6866i 0.493710 0.855131i
\(531\) 0 0
\(532\) 0 0
\(533\) −1.26565 + 0.730726i −0.0548216 + 0.0316513i
\(534\) 0 0
\(535\) 33.7939i 1.46104i
\(536\) 1.77113i 0.0765010i
\(537\) 0 0
\(538\) −16.9615 + 9.79273i −0.731262 + 0.422195i
\(539\) 0 0
\(540\) 0 0
\(541\) −5.66792 + 9.81713i −0.243683 + 0.422071i −0.961760 0.273892i \(-0.911689\pi\)
0.718078 + 0.695963i \(0.245022\pi\)
\(542\) −6.11710 + 10.5951i −0.262752 + 0.455100i
\(543\) 0 0
\(544\) −18.6447 + 10.7646i −0.799387 + 0.461526i
\(545\) 1.15100 1.99360i 0.0493035 0.0853962i
\(546\) 0 0
\(547\) 19.4246 + 33.6444i 0.830537 + 1.43853i 0.897613 + 0.440784i \(0.145300\pi\)
−0.0670762 + 0.997748i \(0.521367\pi\)
\(548\) 14.9587 + 8.63644i 0.639006 + 0.368930i
\(549\) 0 0
\(550\) −6.70292 11.6098i −0.285813 0.495043i
\(551\) 8.05647 0.343217
\(552\) 0 0
\(553\) 0 0
\(554\) 36.3061 + 20.9613i 1.54250 + 0.890562i
\(555\) 0 0
\(556\) 25.3410 + 14.6306i 1.07470 + 0.620478i
\(557\) 6.29167 3.63249i 0.266586 0.153914i −0.360749 0.932663i \(-0.617479\pi\)
0.627335 + 0.778749i \(0.284146\pi\)
\(558\) 0 0
\(559\) 4.22177i 0.178562i
\(560\) 0 0
\(561\) 0 0
\(562\) 20.8848 + 36.1736i 0.880973 + 1.52589i
\(563\) 23.0818 0.972780 0.486390 0.873742i \(-0.338313\pi\)
0.486390 + 0.873742i \(0.338313\pi\)
\(564\) 0 0
\(565\) 11.8748i 0.499575i
\(566\) 35.4561 1.49033
\(567\) 0 0
\(568\) −2.79889 −0.117439
\(569\) 17.9535i 0.752651i 0.926487 + 0.376326i \(0.122813\pi\)
−0.926487 + 0.376326i \(0.877187\pi\)
\(570\) 0 0
\(571\) −14.0847 −0.589425 −0.294713 0.955586i \(-0.595224\pi\)
−0.294713 + 0.955586i \(0.595224\pi\)
\(572\) 1.85819 + 3.21849i 0.0776950 + 0.134572i
\(573\) 0 0
\(574\) 0 0
\(575\) 10.0916i 0.420851i
\(576\) 0 0
\(577\) −26.0392 + 15.0337i −1.08403 + 0.625862i −0.931979 0.362511i \(-0.881919\pi\)
−0.152046 + 0.988373i \(0.548586\pi\)
\(578\) −12.1841 7.03447i −0.506790 0.292595i
\(579\) 0 0
\(580\) −10.1393 5.85392i −0.421011 0.243071i
\(581\) 0 0
\(582\) 0 0
\(583\) 27.2295 1.12773
\(584\) −4.03690 6.99211i −0.167048 0.289336i
\(585\) 0 0
\(586\) 14.2800 + 8.24455i 0.589900 + 0.340579i
\(587\) 18.0979 + 31.3465i 0.746981 + 1.29381i 0.949264 + 0.314481i \(0.101831\pi\)
−0.202283 + 0.979327i \(0.564836\pi\)
\(588\) 0 0
\(589\) 13.4719 23.3339i 0.555098 0.961459i
\(590\) 29.6464 17.1164i 1.22052 0.704670i
\(591\) 0 0
\(592\) −3.36877 + 5.83489i −0.138456 + 0.239812i
\(593\) 1.02158 1.76943i 0.0419514 0.0726620i −0.844287 0.535891i \(-0.819976\pi\)
0.886239 + 0.463229i \(0.153309\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20.3507 11.7495i 0.833598 0.481278i
\(597\) 0 0
\(598\) 6.54547i 0.267664i
\(599\) 18.2296i 0.744840i −0.928064 0.372420i \(-0.878528\pi\)
0.928064 0.372420i \(-0.121472\pi\)
\(600\) 0 0
\(601\) 32.1713 18.5741i 1.31230 0.757654i 0.329820 0.944044i \(-0.393012\pi\)
0.982476 + 0.186390i \(0.0596787\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.48002 + 2.56346i −0.0602210 + 0.104306i
\(605\) 25.6428 44.4146i 1.04253 1.80571i
\(606\) 0 0
\(607\) 17.1730 9.91482i 0.697030 0.402430i −0.109211 0.994019i \(-0.534832\pi\)
0.806240 + 0.591588i \(0.201499\pi\)
\(608\) 9.00349 15.5945i 0.365140 0.632440i
\(609\) 0 0
\(610\) −20.0336 34.6991i −0.811135 1.40493i
\(611\) −0.823890 0.475673i −0.0333310 0.0192437i
\(612\) 0 0
\(613\) 6.34412 + 10.9883i 0.256237 + 0.443815i 0.965231 0.261400i \(-0.0841840\pi\)
−0.708994 + 0.705214i \(0.750851\pi\)
\(614\) −53.7381 −2.16869
\(615\) 0 0
\(616\) 0 0
\(617\) −4.37247 2.52445i −0.176029 0.101630i 0.409397 0.912357i \(-0.365739\pi\)
−0.585426 + 0.810726i \(0.699073\pi\)
\(618\) 0 0
\(619\) 0.231999 + 0.133945i 0.00932485 + 0.00538370i 0.504655 0.863321i \(-0.331620\pi\)
−0.495330 + 0.868705i \(0.664953\pi\)
\(620\) −33.9094 + 19.5776i −1.36183 + 0.786255i
\(621\) 0 0
\(622\) 24.8305i 0.995611i
\(623\) 0 0
\(624\) 0 0
\(625\) 14.8792 + 25.7716i 0.595169 + 1.03086i
\(626\) 58.9641 2.35668
\(627\) 0 0
\(628\) 12.5290i 0.499961i
\(629\) 4.35905 0.173807
\(630\) 0 0
\(631\) 37.7899 1.50439 0.752197 0.658938i \(-0.228994\pi\)
0.752197 + 0.658938i \(0.228994\pi\)
\(632\) 0.544222i 0.0216480i
\(633\) 0 0
\(634\) −37.5112 −1.48976
\(635\) −9.23671 15.9984i −0.366547 0.634879i
\(636\) 0 0
\(637\) 0 0
\(638\) 32.8117i 1.29903i
\(639\) 0 0
\(640\) 15.9234 9.19336i 0.629426 0.363400i
\(641\) 29.7991 + 17.2045i 1.17699 + 0.679537i 0.955317 0.295583i \(-0.0955140\pi\)
0.221676 + 0.975120i \(0.428847\pi\)
\(642\) 0 0
\(643\) −0.676278 0.390449i −0.0266698 0.0153978i 0.486606 0.873622i \(-0.338235\pi\)
−0.513276 + 0.858224i \(0.671568\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −14.8068 −0.582566
\(647\) 9.82182 + 17.0119i 0.386136 + 0.668807i 0.991926 0.126818i \(-0.0404763\pi\)
−0.605790 + 0.795624i \(0.707143\pi\)
\(648\) 0 0
\(649\) 35.5118 + 20.5027i 1.39396 + 0.804803i
\(650\) 0.530259 + 0.918435i 0.0207985 + 0.0360240i
\(651\) 0 0
\(652\) −0.801781 + 1.38872i −0.0314001 + 0.0543867i
\(653\) 2.77600 1.60272i 0.108633 0.0627194i −0.444699 0.895680i \(-0.646689\pi\)
0.553332 + 0.832961i \(0.313356\pi\)
\(654\) 0 0
\(655\) −9.85129 + 17.0629i −0.384922 + 0.666704i
\(656\) 7.83315 13.5674i 0.305833 0.529719i
\(657\) 0 0
\(658\) 0 0
\(659\) 24.2959 14.0273i 0.946435 0.546425i 0.0544636 0.998516i \(-0.482655\pi\)
0.891972 + 0.452091i \(0.149322\pi\)
\(660\) 0 0
\(661\) 32.3882i 1.25976i 0.776694 + 0.629878i \(0.216895\pi\)
−0.776694 + 0.629878i \(0.783105\pi\)
\(662\) 2.33227i 0.0906463i
\(663\) 0 0
\(664\) −6.95189 + 4.01367i −0.269785 + 0.155761i
\(665\) 0 0
\(666\) 0 0
\(667\) −12.3500 + 21.3908i −0.478193 + 0.828255i
\(668\) −5.96768 + 10.3363i −0.230897 + 0.399925i
\(669\) 0 0
\(670\) 7.57953 4.37605i 0.292823 0.169061i
\(671\) 23.9971 41.5641i 0.926397 1.60457i
\(672\) 0 0
\(673\) −10.3088 17.8554i −0.397375 0.688273i 0.596026 0.802965i \(-0.296745\pi\)
−0.993401 + 0.114692i \(0.963412\pi\)
\(674\) −21.3242 12.3115i −0.821378 0.474223i
\(675\) 0 0
\(676\) 9.55701 + 16.5532i 0.367577 + 0.636663i
\(677\) 50.3311 1.93438 0.967190 0.254053i \(-0.0817639\pi\)
0.967190 + 0.254053i \(0.0817639\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.32935 3.65425i −0.242719 0.140134i
\(681\) 0 0
\(682\) −95.0324 54.8670i −3.63898 2.10097i
\(683\) −11.9031 + 6.87227i −0.455460 + 0.262960i −0.710133 0.704067i \(-0.751365\pi\)
0.254673 + 0.967027i \(0.418032\pi\)
\(684\) 0 0
\(685\) 28.9909i 1.10769i
\(686\) 0 0
\(687\) 0 0
\(688\) 22.6280 + 39.1929i 0.862685 + 1.49421i
\(689\) −2.15409 −0.0820643
\(690\) 0 0
\(691\) 29.3673i 1.11719i −0.829442 0.558593i \(-0.811342\pi\)
0.829442 0.558593i \(-0.188658\pi\)
\(692\) 1.49813 0.0569504
\(693\) 0 0
\(694\) −50.5874 −1.92027
\(695\) 49.1123i 1.86294i
\(696\) 0 0
\(697\) −10.1358 −0.383920
\(698\) 32.7392 + 56.7060i 1.23920 + 2.14635i
\(699\) 0 0
\(700\) 0 0
\(701\) 44.2011i 1.66945i 0.550666 + 0.834726i \(0.314374\pi\)
−0.550666 + 0.834726i \(0.685626\pi\)
\(702\) 0 0
\(703\) −3.15746 + 1.82296i −0.119086 + 0.0687542i
\(704\) −17.2923 9.98371i −0.651728 0.376275i
\(705\) 0 0
\(706\) −4.08702 2.35964i −0.153817 0.0888063i
\(707\) 0 0
\(708\) 0 0
\(709\) −11.3326 −0.425604 −0.212802 0.977095i \(-0.568259\pi\)
−0.212802 + 0.977095i \(0.568259\pi\)
\(710\) 6.91542 + 11.9779i 0.259531 + 0.449521i
\(711\) 0 0
\(712\) 6.21994 + 3.59108i 0.233102 + 0.134581i
\(713\) 41.3028 + 71.5385i 1.54680 + 2.67914i
\(714\) 0 0
\(715\) −3.11881 + 5.40193i −0.116637 + 0.202021i
\(716\) −1.90755 + 1.10132i −0.0712884 + 0.0411584i
\(717\) 0 0
\(718\) 6.79136 11.7630i 0.253451 0.438991i
\(719\) 18.0647 31.2890i 0.673700 1.16688i −0.303147 0.952944i \(-0.598037\pi\)
0.976847 0.213939i \(-0.0686294\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −20.0271 + 11.5627i −0.745333 + 0.430318i
\(723\) 0 0
\(724\) 22.4596i 0.834703i
\(725\) 4.00197i 0.148629i
\(726\) 0 0
\(727\) 6.20547 3.58273i 0.230148 0.132876i −0.380492 0.924784i \(-0.624245\pi\)
0.610640 + 0.791908i \(0.290912\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −19.9485 + 34.5518i −0.738327 + 1.27882i
\(731\) 14.6399 25.3570i 0.541475 0.937862i
\(732\) 0 0
\(733\) 41.4391 23.9249i 1.53059 0.883685i 0.531253 0.847213i \(-0.321721\pi\)
0.999335 0.0364726i \(-0.0116122\pi\)
\(734\) −12.5938 + 21.8131i −0.464846 + 0.805136i
\(735\) 0 0
\(736\) 27.6034 + 47.8105i 1.01747 + 1.76232i
\(737\) 9.07910 + 5.24182i 0.334433 + 0.193085i
\(738\) 0 0
\(739\) −7.67416 13.2920i −0.282299 0.488956i 0.689652 0.724141i \(-0.257764\pi\)
−0.971951 + 0.235185i \(0.924430\pi\)
\(740\) 5.29833 0.194771
\(741\) 0 0
\(742\) 0 0
\(743\) −34.9422 20.1739i −1.28191 0.740109i −0.304709 0.952445i \(-0.598559\pi\)
−0.977197 + 0.212337i \(0.931893\pi\)
\(744\) 0 0
\(745\) 34.1568 + 19.7204i 1.25141 + 0.722501i
\(746\) −38.4630 + 22.2066i −1.40823 + 0.813042i
\(747\) 0 0
\(748\) 25.7747i 0.942417i
\(749\) 0 0
\(750\) 0 0
\(751\) −16.9449 29.3494i −0.618327 1.07097i −0.989791 0.142527i \(-0.954477\pi\)
0.371463 0.928448i \(-0.378856\pi\)
\(752\) 10.1981 0.371887
\(753\) 0 0
\(754\) 2.59568i 0.0945293i
\(755\) −4.96814 −0.180809
\(756\) 0 0
\(757\) −5.73237 −0.208346 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(758\) 39.6743i 1.44103i
\(759\) 0 0
\(760\) 6.11284 0.221736
\(761\) 13.2666 + 22.9784i 0.480914 + 0.832968i 0.999760 0.0218999i \(-0.00697151\pi\)
−0.518846 + 0.854868i \(0.673638\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 19.7420i 0.714242i
\(765\) 0 0
\(766\) 20.9741 12.1094i 0.757825 0.437531i
\(767\) −2.80929 1.62194i −0.101438 0.0585650i
\(768\) 0 0
\(769\) −23.3944 13.5068i −0.843623 0.487066i 0.0148711 0.999889i \(-0.495266\pi\)
−0.858494 + 0.512823i \(0.828600\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.32256 0.0835906
\(773\) 11.3009 + 19.5737i 0.406464 + 0.704016i 0.994491 0.104826i \(-0.0334284\pi\)
−0.588027 + 0.808841i \(0.700095\pi\)
\(774\) 0 0
\(775\) −11.5909 6.69201i −0.416357 0.240384i
\(776\) 1.76545 + 3.05784i 0.0633758 + 0.109770i
\(777\) 0 0
\(778\) 10.2296 17.7182i 0.366750 0.635229i
\(779\) 7.34180 4.23879i 0.263047 0.151870i
\(780\) 0 0
\(781\) −8.28359 + 14.3476i −0.296410 + 0.513398i
\(782\) 22.6978 39.3137i 0.811670 1.40585i
\(783\) 0 0
\(784\) 0 0
\(785\) −18.2114 + 10.5144i −0.649993 + 0.375274i
\(786\) 0 0
\(787\) 26.1960i 0.933787i 0.884314 + 0.466893i \(0.154627\pi\)
−0.884314 + 0.466893i \(0.845373\pi\)
\(788\) 7.40767i 0.263887i
\(789\) 0 0
\(790\) 2.32900 1.34465i 0.0828620 0.0478404i
\(791\) 0 0
\(792\) 0 0
\(793\) −1.89838 + 3.28808i −0.0674133 + 0.116763i
\(794\) −27.9314 + 48.3785i −0.991247 + 1.71689i
\(795\) 0 0
\(796\) −14.4705 + 8.35456i −0.512894 + 0.296120i
\(797\) −5.96560 + 10.3327i −0.211312 + 0.366004i −0.952126 0.305707i \(-0.901107\pi\)
0.740813 + 0.671711i \(0.234440\pi\)
\(798\) 0 0
\(799\) −3.29899 5.71402i −0.116710 0.202147i
\(800\) −7.74640 4.47239i −0.273877 0.158123i
\(801\) 0 0
\(802\) −17.9370 31.0678i −0.633378 1.09704i
\(803\) −47.7904 −1.68648
\(804\) 0 0
\(805\) 0 0
\(806\) 7.51788 + 4.34045i 0.264806 + 0.152886i
\(807\) 0 0
\(808\) −6.18375 3.57019i −0.217543 0.125599i
\(809\) −22.9399 + 13.2443i −0.806522 + 0.465646i −0.845747 0.533585i \(-0.820845\pi\)
0.0392244 + 0.999230i \(0.487511\pi\)
\(810\) 0 0
\(811\) 13.7419i 0.482544i −0.970458 0.241272i \(-0.922435\pi\)
0.970458 0.241272i \(-0.0775646\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 7.42439 + 12.8594i 0.260225 + 0.450722i
\(815\) −2.69143 −0.0942766
\(816\) 0 0
\(817\) 24.4896i 0.856783i
\(818\) −53.8949 −1.88439
\(819\) 0 0
\(820\) −12.3198 −0.430226
\(821\) 13.5669i 0.473489i 0.971572 + 0.236744i \(0.0760804\pi\)
−0.971572 + 0.236744i \(0.923920\pi\)
\(822\) 0 0
\(823\) 14.6971 0.512310 0.256155 0.966636i \(-0.417544\pi\)
0.256155 + 0.966636i \(0.417544\pi\)
\(824\) −6.78711 11.7556i −0.236440 0.409527i
\(825\) 0 0
\(826\) 0 0
\(827\) 40.8787i 1.42149i 0.703449 + 0.710746i \(0.251642\pi\)
−0.703449 + 0.710746i \(0.748358\pi\)
\(828\) 0 0
\(829\) 17.7189 10.2300i 0.615402 0.355302i −0.159675 0.987170i \(-0.551045\pi\)
0.775077 + 0.631867i \(0.217711\pi\)
\(830\) 34.3530 + 19.8337i 1.19241 + 0.688439i
\(831\) 0 0
\(832\) 1.36797 + 0.789798i 0.0474258 + 0.0273813i
\(833\) 0 0
\(834\) 0 0
\(835\) −20.0324 −0.693249
\(836\) −10.7790 18.6698i −0.372800 0.645708i
\(837\) 0 0
\(838\) −16.3923 9.46412i −0.566264 0.326932i
\(839\) −27.3475 47.3673i −0.944141 1.63530i −0.757462 0.652880i \(-0.773561\pi\)
−0.186680 0.982421i \(-0.559773\pi\)
\(840\) 0 0
\(841\) −9.60247 + 16.6320i −0.331120 + 0.573516i
\(842\) 41.1416 23.7531i 1.41783 0.818586i
\(843\) 0 0
\(844\) −11.4661 + 19.8598i −0.394678 + 0.683602i
\(845\) −16.0405 + 27.7830i −0.551812 + 0.955766i
\(846\) 0 0
\(847\) 0 0
\(848\) 19.9975 11.5456i 0.686718 0.396477i
\(849\) 0 0
\(850\) 7.35513i 0.252279i
\(851\) 11.1779i 0.383172i
\(852\) 0 0
\(853\) 11.0684 6.39037i 0.378976 0.218802i −0.298396 0.954442i \(-0.596452\pi\)
0.677373 + 0.735640i \(0.263118\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 6.39058 11.0688i 0.218426 0.378324i
\(857\) −9.16200 + 15.8691i −0.312968 + 0.542077i −0.979003 0.203844i \(-0.934657\pi\)
0.666035 + 0.745920i \(0.267990\pi\)
\(858\) 0 0
\(859\) −33.4579 + 19.3169i −1.14157 + 0.659085i −0.946819 0.321768i \(-0.895723\pi\)
−0.194750 + 0.980853i \(0.562390\pi\)
\(860\) 17.7944 30.8208i 0.606784 1.05098i
\(861\) 0 0
\(862\) −10.1328 17.5505i −0.345125 0.597774i
\(863\) 14.4626 + 8.35001i 0.492314 + 0.284238i 0.725534 0.688186i \(-0.241593\pi\)
−0.233220 + 0.972424i \(0.574926\pi\)
\(864\) 0 0
\(865\) 1.25724 + 2.17760i 0.0427473 + 0.0740405i
\(866\) 24.3931 0.828912
\(867\) 0 0
\(868\) 0 0
\(869\) 2.78978 + 1.61068i 0.0946367 + 0.0546385i
\(870\) 0 0
\(871\) −0.718235 0.414673i −0.0243365 0.0140507i
\(872\) 0.753996 0.435320i 0.0255335 0.0147418i
\(873\) 0 0
\(874\) 37.9689i 1.28432i
\(875\) 0 0
\(876\) 0 0
\(877\) −16.7617 29.0321i −0.566002 0.980345i −0.996956 0.0779707i \(-0.975156\pi\)
0.430953 0.902374i \(-0.358177\pi\)
\(878\) −59.7213 −2.01549
\(879\) 0 0
\(880\) 66.8652i 2.25403i
\(881\) 28.6657 0.965771 0.482885 0.875684i \(-0.339589\pi\)
0.482885 + 0.875684i \(0.339589\pi\)
\(882\) 0 0
\(883\) −38.2091 −1.28584 −0.642919 0.765935i \(-0.722277\pi\)
−0.642919 + 0.765935i \(0.722277\pi\)
\(884\) 2.03900i 0.0685790i
\(885\) 0 0
\(886\) −46.3439 −1.55695
\(887\) −17.5914 30.4692i −0.590662 1.02306i −0.994143 0.108069i \(-0.965533\pi\)
0.403481 0.914988i \(-0.367800\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 35.4910i 1.18966i
\(891\) 0 0
\(892\) −4.13309 + 2.38624i −0.138386 + 0.0798972i
\(893\) 4.77921 + 2.75928i 0.159930 + 0.0923358i
\(894\) 0 0
\(895\) −3.20164 1.84847i −0.107019 0.0617875i
\(896\) 0 0
\(897\) 0 0
\(898\) 25.7371 0.858857
\(899\) −16.3791 28.3695i −0.546274 0.946174i
\(900\) 0 0
\(901\) −12.9380 7.46975i −0.431027 0.248854i
\(902\) −17.2634 29.9010i −0.574807 0.995595i
\(903\) 0 0
\(904\) −2.24557 + 3.88944i −0.0746866 + 0.129361i
\(905\) −32.6459 + 18.8481i −1.08519 + 0.626533i
\(906\) 0 0
\(907\) 21.2977 36.8887i 0.707179 1.22487i −0.258720 0.965952i \(-0.583301\pi\)
0.965899 0.258918i \(-0.0833660\pi\)
\(908\) 10.9505 18.9669i 0.363406 0.629437i
\(909\) 0 0
\(910\) 0 0
\(911\) 43.5221 25.1275i 1.44195 0.832510i 0.443970 0.896042i \(-0.353570\pi\)
0.997980 + 0.0635313i \(0.0202363\pi\)
\(912\) 0 0
\(913\) 47.5154i 1.57253i
\(914\) 51.0420i 1.68832i
\(915\) 0 0
\(916\) −4.36754 + 2.52160i −0.144308 + 0.0833161i
\(917\) 0 0
\(918\) 0 0
\(919\) 29.3486 50.8333i 0.968121 1.67684i 0.267137 0.963658i \(-0.413922\pi\)
0.700984 0.713177i \(-0.252744\pi\)
\(920\) −9.37054 + 16.2303i −0.308938 + 0.535096i
\(921\) 0 0
\(922\) −17.8630 + 10.3132i −0.588287 + 0.339647i
\(923\) 0.655304 1.13502i 0.0215696 0.0373596i
\(924\) 0 0
\(925\) 0.905536 + 1.56843i 0.0297738 + 0.0515698i
\(926\) 39.6046 + 22.8657i 1.30149 + 0.751415i
\(927\) 0 0
\(928\) −10.9465 18.9598i −0.359335 0.622387i
\(929\) −14.3823 −0.471868 −0.235934 0.971769i \(-0.575815\pi\)
−0.235934 + 0.971769i \(0.575815\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −6.30952 3.64281i −0.206675 0.119324i
\(933\) 0 0
\(934\) 25.7427 + 14.8626i 0.842327 + 0.486318i
\(935\) −37.4646 + 21.6302i −1.22522 + 0.707384i
\(936\) 0 0
\(937\) 44.2981i 1.44716i 0.690243 + 0.723578i \(0.257504\pi\)
−0.690243 + 0.723578i \(0.742496\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.00985 6.94526i −0.130787 0.226529i
\(941\) −14.8880 −0.485335 −0.242667 0.970110i \(-0.578022\pi\)
−0.242667 + 0.970110i \(0.578022\pi\)
\(942\) 0 0
\(943\) 25.9910i 0.846384i
\(944\) 34.7734 1.13178
\(945\) 0 0
\(946\) 99.7390 3.24280
\(947\) 41.9552i 1.36336i −0.731650 0.681681i \(-0.761249\pi\)
0.731650 0.681681i \(-0.238751\pi\)
\(948\) 0 0
\(949\) 3.78063 0.122724
\(950\) −3.07592 5.32765i −0.0997960 0.172852i
\(951\) 0 0
\(952\) 0 0
\(953\) 13.9821i 0.452926i −0.974020 0.226463i \(-0.927284\pi\)
0.974020 0.226463i \(-0.0727162\pi\)
\(954\) 0 0
\(955\) −28.6959 + 16.5676i −0.928578 + 0.536115i
\(956\) 20.3415 + 11.7442i 0.657892 + 0.379834i
\(957\) 0 0
\(958\) 22.4228 + 12.9458i 0.724449 + 0.418261i
\(959\) 0 0
\(960\) 0 0
\(961\) −78.5553 −2.53404
\(962\) −0.587333 1.01729i −0.0189364 0.0327988i
\(963\) 0 0
\(964\) 0.994743 + 0.574315i 0.0320385 + 0.0184974i
\(965\) 1.94910 + 3.37593i 0.0627436 + 0.108675i
\(966\) 0 0
\(967\) −11.5757 + 20.0497i −0.372249 + 0.644754i −0.989911 0.141690i \(-0.954746\pi\)
0.617662 + 0.786443i \(0.288080\pi\)
\(968\) 16.7980 9.69835i 0.539909 0.311717i
\(969\) 0 0
\(970\) 8.72403 15.1105i 0.280112 0.485168i
\(971\) −21.6869 + 37.5628i −0.695965 + 1.20545i 0.273890 + 0.961761i \(0.411690\pi\)
−0.969854 + 0.243685i \(0.921644\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −46.6120 + 26.9114i −1.49354 + 0.862298i
\(975\) 0 0
\(976\) 40.7000i 1.30277i
\(977\) 12.0331i 0.384974i −0.981300 0.192487i \(-0.938345\pi\)
0.981300 0.192487i \(-0.0616553\pi\)
\(978\) 0 0
\(979\) 36.8170 21.2563i 1.17668 0.679355i
\(980\) 0 0
\(981\) 0 0
\(982\) 36.2152 62.7266i 1.15567 2.00169i
\(983\) −3.14829 + 5.45300i −0.100415 + 0.173924i −0.911856 0.410511i \(-0.865350\pi\)
0.811441 + 0.584435i \(0.198684\pi\)
\(984\) 0 0
\(985\) −10.7674 + 6.21654i −0.343077 + 0.198075i
\(986\) −9.00108 + 15.5903i −0.286653 + 0.496497i
\(987\) 0 0
\(988\) 0.852712 + 1.47694i 0.0271284 + 0.0469877i
\(989\) −65.0225 37.5408i −2.06760 1.19373i
\(990\) 0 0
\(991\) −16.7814 29.0662i −0.533078 0.923317i −0.999254 0.0386256i \(-0.987702\pi\)
0.466176 0.884692i \(-0.345631\pi\)
\(992\) −73.2178 −2.32467
\(993\) 0 0
\(994\) 0 0
\(995\) −24.2874 14.0223i −0.769963 0.444538i
\(996\) 0 0
\(997\) 9.74838 + 5.62823i 0.308734 + 0.178248i 0.646360 0.763033i \(-0.276290\pi\)
−0.337626 + 0.941280i \(0.609624\pi\)
\(998\) 5.61096 3.23949i 0.177612 0.102544i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.i.d.1097.22 48
3.2 odd 2 441.2.i.d.68.19 48
7.2 even 3 1323.2.o.e.881.5 48
7.3 odd 6 1323.2.s.d.962.19 48
7.4 even 3 1323.2.s.d.962.20 48
7.5 odd 6 1323.2.o.e.881.6 48
7.6 odd 2 inner 1323.2.i.d.1097.7 48
9.2 odd 6 1323.2.s.d.656.19 48
9.7 even 3 441.2.s.d.362.5 48
21.2 odd 6 441.2.o.e.293.20 yes 48
21.5 even 6 441.2.o.e.293.19 yes 48
21.11 odd 6 441.2.s.d.374.6 48
21.17 even 6 441.2.s.d.374.5 48
21.20 even 2 441.2.i.d.68.20 48
63.2 odd 6 1323.2.o.e.440.6 48
63.11 odd 6 inner 1323.2.i.d.521.7 48
63.16 even 3 441.2.o.e.146.19 48
63.20 even 6 1323.2.s.d.656.20 48
63.25 even 3 441.2.i.d.227.6 48
63.34 odd 6 441.2.s.d.362.6 48
63.38 even 6 inner 1323.2.i.d.521.22 48
63.47 even 6 1323.2.o.e.440.5 48
63.52 odd 6 441.2.i.d.227.5 48
63.61 odd 6 441.2.o.e.146.20 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.19 48 3.2 odd 2
441.2.i.d.68.20 48 21.20 even 2
441.2.i.d.227.5 48 63.52 odd 6
441.2.i.d.227.6 48 63.25 even 3
441.2.o.e.146.19 48 63.16 even 3
441.2.o.e.146.20 yes 48 63.61 odd 6
441.2.o.e.293.19 yes 48 21.5 even 6
441.2.o.e.293.20 yes 48 21.2 odd 6
441.2.s.d.362.5 48 9.7 even 3
441.2.s.d.362.6 48 63.34 odd 6
441.2.s.d.374.5 48 21.17 even 6
441.2.s.d.374.6 48 21.11 odd 6
1323.2.i.d.521.7 48 63.11 odd 6 inner
1323.2.i.d.521.22 48 63.38 even 6 inner
1323.2.i.d.1097.7 48 7.6 odd 2 inner
1323.2.i.d.1097.22 48 1.1 even 1 trivial
1323.2.o.e.440.5 48 63.47 even 6
1323.2.o.e.440.6 48 63.2 odd 6
1323.2.o.e.881.5 48 7.2 even 3
1323.2.o.e.881.6 48 7.5 odd 6
1323.2.s.d.656.19 48 9.2 odd 6
1323.2.s.d.656.20 48 63.20 even 6
1323.2.s.d.962.19 48 7.3 odd 6
1323.2.s.d.962.20 48 7.4 even 3