Properties

Label 1323.2
Level 1323
Weight 2
Dimension 47373
Nonzero newspaces 32
Sturm bound 254016
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 32 \)
Sturm bound: \(254016\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1323))\).

Total New Old
Modular forms 65304 48925 16379
Cusp forms 61705 47373 14332
Eisenstein series 3599 1552 2047

Trace form

\( 47373 q - 126 q^{2} - 186 q^{3} - 218 q^{4} - 123 q^{5} - 180 q^{6} - 252 q^{7} - 210 q^{8} - 180 q^{9} - 213 q^{10} - 117 q^{11} - 168 q^{12} - 207 q^{13} - 132 q^{14} - 315 q^{15} - 166 q^{16} - 75 q^{17}+ \cdots - 603 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1323))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1323.2.a \(\chi_{1323}(1, \cdot)\) 1323.2.a.a 1 1
1323.2.a.b 1
1323.2.a.c 1
1323.2.a.d 1
1323.2.a.e 1
1323.2.a.f 1
1323.2.a.g 1
1323.2.a.h 1
1323.2.a.i 1
1323.2.a.j 1
1323.2.a.k 1
1323.2.a.l 1
1323.2.a.m 1
1323.2.a.n 1
1323.2.a.o 1
1323.2.a.p 1
1323.2.a.q 1
1323.2.a.r 1
1323.2.a.s 1
1323.2.a.t 2
1323.2.a.u 2
1323.2.a.v 2
1323.2.a.w 2
1323.2.a.x 3
1323.2.a.y 3
1323.2.a.z 3
1323.2.a.ba 3
1323.2.a.bb 4
1323.2.a.bc 4
1323.2.a.bd 4
1323.2.a.be 4
1323.2.c \(\chi_{1323}(1322, \cdot)\) 1323.2.c.a 2 1
1323.2.c.b 4
1323.2.c.c 4
1323.2.c.d 12
1323.2.c.e 16
1323.2.c.f 16
1323.2.e \(\chi_{1323}(1108, \cdot)\) n/a 106 2
1323.2.f \(\chi_{1323}(442, \cdot)\) 1323.2.f.a 2 2
1323.2.f.b 2
1323.2.f.c 6
1323.2.f.d 6
1323.2.f.e 10
1323.2.f.f 10
1323.2.f.g 12
1323.2.f.h 24
1323.2.g \(\chi_{1323}(361, \cdot)\) 1323.2.g.a 2 2
1323.2.g.b 6
1323.2.g.c 6
1323.2.g.d 6
1323.2.g.e 6
1323.2.g.f 10
1323.2.g.g 12
1323.2.g.h 24
1323.2.h \(\chi_{1323}(226, \cdot)\) 1323.2.h.a 2 2
1323.2.h.b 6
1323.2.h.c 6
1323.2.h.d 6
1323.2.h.e 6
1323.2.h.f 10
1323.2.h.g 12
1323.2.h.h 24
1323.2.i \(\chi_{1323}(521, \cdot)\) 1323.2.i.a 2 2
1323.2.i.b 10
1323.2.i.c 12
1323.2.i.d 48
1323.2.o \(\chi_{1323}(440, \cdot)\) 1323.2.o.a 2 2
1323.2.o.b 2
1323.2.o.c 10
1323.2.o.d 10
1323.2.o.e 48
1323.2.p \(\chi_{1323}(80, \cdot)\) n/a 106 2
1323.2.s \(\chi_{1323}(656, \cdot)\) 1323.2.s.a 2 2
1323.2.s.b 10
1323.2.s.c 12
1323.2.s.d 48
1323.2.u \(\chi_{1323}(190, \cdot)\) n/a 444 6
1323.2.v \(\chi_{1323}(67, \cdot)\) n/a 696 6
1323.2.w \(\chi_{1323}(148, \cdot)\) n/a 708 6
1323.2.x \(\chi_{1323}(214, \cdot)\) n/a 696 6
1323.2.z \(\chi_{1323}(188, \cdot)\) n/a 444 6
1323.2.be \(\chi_{1323}(68, \cdot)\) n/a 696 6
1323.2.bh \(\chi_{1323}(362, \cdot)\) n/a 696 6
1323.2.bi \(\chi_{1323}(146, \cdot)\) n/a 696 6
1323.2.bk \(\chi_{1323}(37, \cdot)\) n/a 648 12
1323.2.bl \(\chi_{1323}(100, \cdot)\) n/a 648 12
1323.2.bm \(\chi_{1323}(64, \cdot)\) n/a 648 12
1323.2.bn \(\chi_{1323}(109, \cdot)\) n/a 900 12
1323.2.bp \(\chi_{1323}(17, \cdot)\) n/a 648 12
1323.2.bs \(\chi_{1323}(26, \cdot)\) n/a 900 12
1323.2.bt \(\chi_{1323}(62, \cdot)\) n/a 648 12
1323.2.bz \(\chi_{1323}(143, \cdot)\) n/a 648 12
1323.2.ca \(\chi_{1323}(25, \cdot)\) n/a 5976 36
1323.2.cb \(\chi_{1323}(22, \cdot)\) n/a 5976 36
1323.2.cc \(\chi_{1323}(4, \cdot)\) n/a 5976 36
1323.2.ce \(\chi_{1323}(20, \cdot)\) n/a 5976 36
1323.2.cf \(\chi_{1323}(47, \cdot)\) n/a 5976 36
1323.2.ci \(\chi_{1323}(5, \cdot)\) n/a 5976 36

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1323))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1323)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(441))\)\(^{\oplus 2}\)