Properties

Label 1323.2.s.d.962.20
Level $1323$
Weight $2$
Character 1323.962
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(656,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.656"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 962.20
Character \(\chi\) \(=\) 1323.962
Dual form 1323.2.s.d.656.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61855 + 0.934468i) q^{2} +(0.746462 + 1.29291i) q^{4} +2.50573 q^{5} -0.947692i q^{8} +(4.05565 + 2.34153i) q^{10} +5.60957i q^{11} +(0.384312 + 0.221883i) q^{13} +(2.37851 - 4.11970i) q^{16} +(1.53885 - 2.66536i) q^{17} +(2.22932 - 1.28710i) q^{19} +(1.87044 + 3.23969i) q^{20} +(-5.24197 + 9.07935i) q^{22} +7.89210i q^{23} +1.27870 q^{25} +(0.414685 + 0.718255i) q^{26} +(-2.71041 + 1.56485i) q^{29} +(9.06457 - 5.23343i) q^{31} +(6.05802 - 3.49760i) q^{32} +(4.98140 - 2.87601i) q^{34} +(0.708168 + 1.22658i) q^{37} +4.81100 q^{38} -2.37466i q^{40} +(-1.64665 + 2.85208i) q^{41} +(-4.75676 - 8.23894i) q^{43} +(-7.25268 + 4.18733i) q^{44} +(-7.37492 + 12.7737i) q^{46} +(1.07190 - 1.85659i) q^{47} +(2.06964 + 1.19491i) q^{50} +0.662509i q^{52} +(4.20379 + 2.42706i) q^{53} +14.0561i q^{55} -5.84923 q^{58} +(3.65496 + 6.33057i) q^{59} +(-7.40950 - 4.27788i) q^{61} +19.5619 q^{62} +3.55953 q^{64} +(0.962984 + 0.555979i) q^{65} +(0.934442 + 1.61850i) q^{67} +4.59477 q^{68} -2.95338i q^{71} +(-7.37804 - 4.25971i) q^{73} +2.64704i q^{74} +(3.32820 + 1.92154i) q^{76} +(0.287130 - 0.497324i) q^{79} +(5.95992 - 10.3229i) q^{80} +(-5.33036 + 3.07748i) q^{82} +(-4.23521 - 7.33560i) q^{83} +(3.85595 - 6.67870i) q^{85} -17.7802i q^{86} +5.31615 q^{88} +(-3.78929 - 6.56325i) q^{89} +(-10.2038 + 5.89115i) q^{92} +(3.46984 - 2.00332i) q^{94} +(5.58607 - 3.22512i) q^{95} +(-3.22662 + 1.86289i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} - 24 q^{16} + 48 q^{25} + 120 q^{32} - 96 q^{44} - 48 q^{50} - 48 q^{53} - 48 q^{64} + 120 q^{65} - 24 q^{79} - 24 q^{85} + 144 q^{92} + 96 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61855 + 0.934468i 1.14449 + 0.660769i 0.947537 0.319645i \(-0.103564\pi\)
0.196948 + 0.980414i \(0.436897\pi\)
\(3\) 0 0
\(4\) 0.746462 + 1.29291i 0.373231 + 0.646455i
\(5\) 2.50573 1.12060 0.560299 0.828290i \(-0.310686\pi\)
0.560299 + 0.828290i \(0.310686\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.947692i 0.335060i
\(9\) 0 0
\(10\) 4.05565 + 2.34153i 1.28251 + 0.740457i
\(11\) 5.60957i 1.69135i 0.533698 + 0.845675i \(0.320802\pi\)
−0.533698 + 0.845675i \(0.679198\pi\)
\(12\) 0 0
\(13\) 0.384312 + 0.221883i 0.106589 + 0.0615392i 0.552347 0.833614i \(-0.313732\pi\)
−0.445758 + 0.895154i \(0.647066\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.37851 4.11970i 0.594628 1.02993i
\(17\) 1.53885 2.66536i 0.373226 0.646446i −0.616834 0.787093i \(-0.711585\pi\)
0.990060 + 0.140647i \(0.0449184\pi\)
\(18\) 0 0
\(19\) 2.22932 1.28710i 0.511440 0.295280i −0.221985 0.975050i \(-0.571254\pi\)
0.733425 + 0.679770i \(0.237920\pi\)
\(20\) 1.87044 + 3.23969i 0.418242 + 0.724417i
\(21\) 0 0
\(22\) −5.24197 + 9.07935i −1.11759 + 1.93572i
\(23\) 7.89210i 1.64562i 0.568319 + 0.822808i \(0.307594\pi\)
−0.568319 + 0.822808i \(0.692406\pi\)
\(24\) 0 0
\(25\) 1.27870 0.255741
\(26\) 0.414685 + 0.718255i 0.0813264 + 0.140861i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.71041 + 1.56485i −0.503310 + 0.290586i −0.730079 0.683362i \(-0.760517\pi\)
0.226770 + 0.973948i \(0.427184\pi\)
\(30\) 0 0
\(31\) 9.06457 5.23343i 1.62805 0.939952i 0.643370 0.765556i \(-0.277536\pi\)
0.984675 0.174397i \(-0.0557975\pi\)
\(32\) 6.05802 3.49760i 1.07092 0.618294i
\(33\) 0 0
\(34\) 4.98140 2.87601i 0.854303 0.493232i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.708168 + 1.22658i 0.116422 + 0.201649i 0.918347 0.395775i \(-0.129524\pi\)
−0.801925 + 0.597424i \(0.796191\pi\)
\(38\) 4.81100 0.780448
\(39\) 0 0
\(40\) 2.37466i 0.375467i
\(41\) −1.64665 + 2.85208i −0.257163 + 0.445420i −0.965481 0.260474i \(-0.916121\pi\)
0.708318 + 0.705894i \(0.249455\pi\)
\(42\) 0 0
\(43\) −4.75676 8.23894i −0.725398 1.25643i −0.958810 0.284049i \(-0.908322\pi\)
0.233411 0.972378i \(-0.425011\pi\)
\(44\) −7.25268 + 4.18733i −1.09338 + 0.631264i
\(45\) 0 0
\(46\) −7.37492 + 12.7737i −1.08737 + 1.88338i
\(47\) 1.07190 1.85659i 0.156353 0.270811i −0.777198 0.629256i \(-0.783360\pi\)
0.933551 + 0.358445i \(0.116693\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.06964 + 1.19491i 0.292691 + 0.168985i
\(51\) 0 0
\(52\) 0.662509i 0.0918734i
\(53\) 4.20379 + 2.42706i 0.577435 + 0.333382i 0.760113 0.649791i \(-0.225143\pi\)
−0.182678 + 0.983173i \(0.558477\pi\)
\(54\) 0 0
\(55\) 14.0561i 1.89532i
\(56\) 0 0
\(57\) 0 0
\(58\) −5.84923 −0.768041
\(59\) 3.65496 + 6.33057i 0.475835 + 0.824170i 0.999617 0.0276824i \(-0.00881270\pi\)
−0.523782 + 0.851852i \(0.675479\pi\)
\(60\) 0 0
\(61\) −7.40950 4.27788i −0.948690 0.547726i −0.0560160 0.998430i \(-0.517840\pi\)
−0.892674 + 0.450704i \(0.851173\pi\)
\(62\) 19.5619 2.48437
\(63\) 0 0
\(64\) 3.55953 0.444941
\(65\) 0.962984 + 0.555979i 0.119443 + 0.0689607i
\(66\) 0 0
\(67\) 0.934442 + 1.61850i 0.114160 + 0.197731i 0.917444 0.397865i \(-0.130249\pi\)
−0.803284 + 0.595597i \(0.796916\pi\)
\(68\) 4.59477 0.557198
\(69\) 0 0
\(70\) 0 0
\(71\) 2.95338i 0.350501i −0.984524 0.175251i \(-0.943926\pi\)
0.984524 0.175251i \(-0.0560736\pi\)
\(72\) 0 0
\(73\) −7.37804 4.25971i −0.863534 0.498562i 0.00165984 0.999999i \(-0.499472\pi\)
−0.865194 + 0.501437i \(0.832805\pi\)
\(74\) 2.64704i 0.307712i
\(75\) 0 0
\(76\) 3.32820 + 1.92154i 0.381771 + 0.220415i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.287130 0.497324i 0.0323047 0.0559533i −0.849421 0.527716i \(-0.823049\pi\)
0.881726 + 0.471762i \(0.156382\pi\)
\(80\) 5.95992 10.3229i 0.666339 1.15413i
\(81\) 0 0
\(82\) −5.33036 + 3.07748i −0.588639 + 0.339851i
\(83\) −4.23521 7.33560i −0.464875 0.805186i 0.534321 0.845281i \(-0.320567\pi\)
−0.999196 + 0.0400951i \(0.987234\pi\)
\(84\) 0 0
\(85\) 3.85595 6.67870i 0.418236 0.724406i
\(86\) 17.7802i 1.91728i
\(87\) 0 0
\(88\) 5.31615 0.566703
\(89\) −3.78929 6.56325i −0.401664 0.695703i 0.592263 0.805745i \(-0.298235\pi\)
−0.993927 + 0.110042i \(0.964901\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −10.2038 + 5.89115i −1.06382 + 0.614195i
\(93\) 0 0
\(94\) 3.46984 2.00332i 0.357887 0.206626i
\(95\) 5.58607 3.22512i 0.573119 0.330890i
\(96\) 0 0
\(97\) −3.22662 + 1.86289i −0.327614 + 0.189148i −0.654781 0.755818i \(-0.727239\pi\)
0.327167 + 0.944966i \(0.393906\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.954503 + 1.65325i 0.0954503 + 0.165325i
\(101\) −7.53449 −0.749710 −0.374855 0.927083i \(-0.622308\pi\)
−0.374855 + 0.927083i \(0.622308\pi\)
\(102\) 0 0
\(103\) 14.3235i 1.41133i 0.708545 + 0.705666i \(0.249352\pi\)
−0.708545 + 0.705666i \(0.750648\pi\)
\(104\) 0.210276 0.364210i 0.0206193 0.0357137i
\(105\) 0 0
\(106\) 4.53602 + 7.85662i 0.440577 + 0.763102i
\(107\) −11.6798 + 6.74331i −1.12912 + 0.651900i −0.943715 0.330761i \(-0.892695\pi\)
−0.185410 + 0.982661i \(0.559361\pi\)
\(108\) 0 0
\(109\) 0.459348 0.795613i 0.0439975 0.0762059i −0.843188 0.537619i \(-0.819324\pi\)
0.887186 + 0.461413i \(0.152657\pi\)
\(110\) −13.1350 + 22.7504i −1.25237 + 2.16917i
\(111\) 0 0
\(112\) 0 0
\(113\) −4.10412 2.36952i −0.386083 0.222905i 0.294378 0.955689i \(-0.404887\pi\)
−0.680462 + 0.732784i \(0.738221\pi\)
\(114\) 0 0
\(115\) 19.7755i 1.84407i
\(116\) −4.04643 2.33621i −0.375702 0.216912i
\(117\) 0 0
\(118\) 13.6618i 1.25767i
\(119\) 0 0
\(120\) 0 0
\(121\) −20.4673 −1.86066
\(122\) −7.99508 13.8479i −0.723841 1.25373i
\(123\) 0 0
\(124\) 13.5327 + 7.81312i 1.21527 + 0.701639i
\(125\) −9.32458 −0.834016
\(126\) 0 0
\(127\) 7.37245 0.654200 0.327100 0.944990i \(-0.393929\pi\)
0.327100 + 0.944990i \(0.393929\pi\)
\(128\) −6.35477 3.66893i −0.561688 0.324291i
\(129\) 0 0
\(130\) 1.03909 + 1.79976i 0.0911342 + 0.157849i
\(131\) 7.86300 0.686993 0.343497 0.939154i \(-0.388389\pi\)
0.343497 + 0.939154i \(0.388389\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.49283i 0.301734i
\(135\) 0 0
\(136\) −2.52594 1.45835i −0.216598 0.125053i
\(137\) 11.5698i 0.988477i 0.869326 + 0.494238i \(0.164553\pi\)
−0.869326 + 0.494238i \(0.835447\pi\)
\(138\) 0 0
\(139\) −16.9741 9.79999i −1.43972 0.831224i −0.441893 0.897068i \(-0.645693\pi\)
−0.997830 + 0.0658437i \(0.979026\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.75984 4.78018i 0.231600 0.401144i
\(143\) −1.24467 + 2.15583i −0.104084 + 0.180279i
\(144\) 0 0
\(145\) −6.79156 + 3.92111i −0.564008 + 0.325630i
\(146\) −7.96114 13.7891i −0.658868 1.14119i
\(147\) 0 0
\(148\) −1.05724 + 1.83120i −0.0869047 + 0.150523i
\(149\) 15.7402i 1.28949i −0.764397 0.644746i \(-0.776963\pi\)
0.764397 0.644746i \(-0.223037\pi\)
\(150\) 0 0
\(151\) −1.98271 −0.161350 −0.0806752 0.996740i \(-0.525708\pi\)
−0.0806752 + 0.996740i \(0.525708\pi\)
\(152\) −1.21977 2.11270i −0.0989364 0.171363i
\(153\) 0 0
\(154\) 0 0
\(155\) 22.7134 13.1136i 1.82438 1.05331i
\(156\) 0 0
\(157\) −7.26790 + 4.19612i −0.580041 + 0.334887i −0.761150 0.648576i \(-0.775365\pi\)
0.181108 + 0.983463i \(0.442031\pi\)
\(158\) 0.929468 0.536628i 0.0739445 0.0426919i
\(159\) 0 0
\(160\) 15.1798 8.76405i 1.20007 0.692859i
\(161\) 0 0
\(162\) 0 0
\(163\) 0.537054 + 0.930204i 0.0420653 + 0.0728592i 0.886291 0.463128i \(-0.153273\pi\)
−0.844226 + 0.535987i \(0.819940\pi\)
\(164\) −4.91665 −0.383926
\(165\) 0 0
\(166\) 15.8307i 1.22870i
\(167\) 3.99731 6.92354i 0.309321 0.535760i −0.668893 0.743359i \(-0.733232\pi\)
0.978214 + 0.207599i \(0.0665649\pi\)
\(168\) 0 0
\(169\) −6.40154 11.0878i −0.492426 0.852907i
\(170\) 12.4821 7.20652i 0.957330 0.552715i
\(171\) 0 0
\(172\) 7.10148 12.3001i 0.541483 0.937875i
\(173\) 0.501744 0.869046i 0.0381469 0.0660723i −0.846322 0.532672i \(-0.821188\pi\)
0.884468 + 0.466600i \(0.154521\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 23.1098 + 13.3424i 1.74197 + 1.00572i
\(177\) 0 0
\(178\) 14.1639i 1.06163i
\(179\) −1.27773 0.737695i −0.0955017 0.0551379i 0.451489 0.892277i \(-0.350893\pi\)
−0.546990 + 0.837139i \(0.684227\pi\)
\(180\) 0 0
\(181\) 15.0440i 1.11821i −0.829096 0.559106i \(-0.811145\pi\)
0.829096 0.559106i \(-0.188855\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 7.47928 0.551380
\(185\) 1.77448 + 3.07349i 0.130462 + 0.225967i
\(186\) 0 0
\(187\) 14.9516 + 8.63229i 1.09337 + 0.631255i
\(188\) 3.20054 0.233423
\(189\) 0 0
\(190\) 12.0551 0.874568
\(191\) 11.4521 + 6.61187i 0.828644 + 0.478418i 0.853388 0.521276i \(-0.174544\pi\)
−0.0247439 + 0.999694i \(0.507877\pi\)
\(192\) 0 0
\(193\) 0.777855 + 1.34728i 0.0559912 + 0.0969796i 0.892662 0.450726i \(-0.148835\pi\)
−0.836671 + 0.547705i \(0.815501\pi\)
\(194\) −6.96325 −0.499932
\(195\) 0 0
\(196\) 0 0
\(197\) 4.96185i 0.353517i −0.984254 0.176759i \(-0.943439\pi\)
0.984254 0.176759i \(-0.0565612\pi\)
\(198\) 0 0
\(199\) −9.69273 5.59610i −0.687100 0.396697i 0.115425 0.993316i \(-0.463177\pi\)
−0.802525 + 0.596619i \(0.796510\pi\)
\(200\) 1.21182i 0.0856883i
\(201\) 0 0
\(202\) −12.1949 7.04074i −0.858032 0.495385i
\(203\) 0 0
\(204\) 0 0
\(205\) −4.12606 + 7.14655i −0.288177 + 0.499137i
\(206\) −13.3848 + 23.1832i −0.932565 + 1.61525i
\(207\) 0 0
\(208\) 1.82818 1.05550i 0.126762 0.0731859i
\(209\) 7.22006 + 12.5055i 0.499422 + 0.865024i
\(210\) 0 0
\(211\) 7.68026 13.3026i 0.528731 0.915789i −0.470708 0.882289i \(-0.656001\pi\)
0.999439 0.0334999i \(-0.0106654\pi\)
\(212\) 7.24683i 0.497714i
\(213\) 0 0
\(214\) −25.2056 −1.72302
\(215\) −11.9192 20.6446i −0.812880 1.40795i
\(216\) 0 0
\(217\) 0 0
\(218\) 1.48695 0.858492i 0.100709 0.0581444i
\(219\) 0 0
\(220\) −18.1733 + 10.4923i −1.22524 + 0.707394i
\(221\) 1.18280 0.682888i 0.0795635 0.0459360i
\(222\) 0 0
\(223\) 2.76845 1.59837i 0.185389 0.107034i −0.404433 0.914568i \(-0.632531\pi\)
0.589822 + 0.807533i \(0.299198\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4.42848 7.67035i −0.294578 0.510224i
\(227\) 14.6699 0.973675 0.486837 0.873493i \(-0.338150\pi\)
0.486837 + 0.873493i \(0.338150\pi\)
\(228\) 0 0
\(229\) 3.37807i 0.223229i 0.993752 + 0.111615i \(0.0356022\pi\)
−0.993752 + 0.111615i \(0.964398\pi\)
\(230\) −18.4796 + 32.0076i −1.21851 + 2.11052i
\(231\) 0 0
\(232\) 1.48300 + 2.56863i 0.0973637 + 0.168639i
\(233\) −4.22628 + 2.44005i −0.276873 + 0.159853i −0.632007 0.774963i \(-0.717769\pi\)
0.355134 + 0.934815i \(0.384435\pi\)
\(234\) 0 0
\(235\) 2.68590 4.65211i 0.175209 0.303470i
\(236\) −5.45657 + 9.45106i −0.355193 + 0.615212i
\(237\) 0 0
\(238\) 0 0
\(239\) −13.6253 7.86657i −0.881347 0.508846i −0.0102448 0.999948i \(-0.503261\pi\)
−0.871102 + 0.491101i \(0.836594\pi\)
\(240\) 0 0
\(241\) 0.769383i 0.0495603i 0.999693 + 0.0247801i \(0.00788857\pi\)
−0.999693 + 0.0247801i \(0.992111\pi\)
\(242\) −33.1273 19.1260i −2.12950 1.22947i
\(243\) 0 0
\(244\) 12.7731i 0.817714i
\(245\) 0 0
\(246\) 0 0
\(247\) 1.14234 0.0726852
\(248\) −4.95968 8.59042i −0.314940 0.545492i
\(249\) 0 0
\(250\) −15.0923 8.71353i −0.954519 0.551092i
\(251\) 1.14544 0.0722996 0.0361498 0.999346i \(-0.488491\pi\)
0.0361498 + 0.999346i \(0.488491\pi\)
\(252\) 0 0
\(253\) −44.2713 −2.78331
\(254\) 11.9327 + 6.88933i 0.748722 + 0.432275i
\(255\) 0 0
\(256\) −10.4165 18.0420i −0.651033 1.12762i
\(257\) 28.9835 1.80794 0.903969 0.427598i \(-0.140640\pi\)
0.903969 + 0.427598i \(0.140640\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.66007i 0.102953i
\(261\) 0 0
\(262\) 12.7266 + 7.34772i 0.786254 + 0.453944i
\(263\) 13.6998i 0.844763i −0.906418 0.422381i \(-0.861194\pi\)
0.906418 0.422381i \(-0.138806\pi\)
\(264\) 0 0
\(265\) 10.5336 + 6.08156i 0.647072 + 0.373587i
\(266\) 0 0
\(267\) 0 0
\(268\) −1.39505 + 2.41630i −0.0852163 + 0.147599i
\(269\) −5.23973 + 9.07548i −0.319472 + 0.553342i −0.980378 0.197127i \(-0.936839\pi\)
0.660906 + 0.750469i \(0.270172\pi\)
\(270\) 0 0
\(271\) 5.66907 3.27304i 0.344371 0.198823i −0.317832 0.948147i \(-0.602955\pi\)
0.662203 + 0.749324i \(0.269621\pi\)
\(272\) −7.32034 12.6792i −0.443861 0.768790i
\(273\) 0 0
\(274\) −10.8116 + 18.7263i −0.653155 + 1.13130i
\(275\) 7.17298i 0.432547i
\(276\) 0 0
\(277\) 22.4313 1.34777 0.673883 0.738838i \(-0.264625\pi\)
0.673883 + 0.738838i \(0.264625\pi\)
\(278\) −18.3156 31.7235i −1.09849 1.90265i
\(279\) 0 0
\(280\) 0 0
\(281\) −19.3552 + 11.1747i −1.15463 + 0.666627i −0.950012 0.312214i \(-0.898929\pi\)
−0.204621 + 0.978841i \(0.565596\pi\)
\(282\) 0 0
\(283\) 16.4296 9.48563i 0.976638 0.563862i 0.0753848 0.997155i \(-0.475981\pi\)
0.901254 + 0.433292i \(0.142648\pi\)
\(284\) 3.81845 2.20459i 0.226584 0.130818i
\(285\) 0 0
\(286\) −4.02910 + 2.32620i −0.238246 + 0.137551i
\(287\) 0 0
\(288\) 0 0
\(289\) 3.76389 + 6.51924i 0.221405 + 0.383485i
\(290\) −14.6566 −0.860665
\(291\) 0 0
\(292\) 12.7189i 0.744315i
\(293\) −4.41136 + 7.64069i −0.257714 + 0.446374i −0.965629 0.259924i \(-0.916303\pi\)
0.707915 + 0.706298i \(0.249636\pi\)
\(294\) 0 0
\(295\) 9.15835 + 15.8627i 0.533220 + 0.923563i
\(296\) 1.16242 0.671125i 0.0675644 0.0390083i
\(297\) 0 0
\(298\) 14.7088 25.4763i 0.852056 1.47580i
\(299\) −1.75112 + 3.03303i −0.101270 + 0.175405i
\(300\) 0 0
\(301\) 0 0
\(302\) −3.20910 1.85278i −0.184663 0.106615i
\(303\) 0 0
\(304\) 12.2455i 0.702327i
\(305\) −18.5662 10.7192i −1.06310 0.613781i
\(306\) 0 0
\(307\) 28.7533i 1.64104i −0.571620 0.820519i \(-0.693685\pi\)
0.571620 0.820519i \(-0.306315\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 49.0169 2.78398
\(311\) 6.64294 + 11.5059i 0.376687 + 0.652441i 0.990578 0.136950i \(-0.0437300\pi\)
−0.613891 + 0.789391i \(0.710397\pi\)
\(312\) 0 0
\(313\) −27.3227 15.7748i −1.54437 0.891643i −0.998555 0.0537372i \(-0.982887\pi\)
−0.545815 0.837905i \(-0.683780\pi\)
\(314\) −15.6846 −0.885132
\(315\) 0 0
\(316\) 0.857328 0.0482285
\(317\) 17.3819 + 10.0354i 0.976264 + 0.563646i 0.901140 0.433528i \(-0.142732\pi\)
0.0751236 + 0.997174i \(0.476065\pi\)
\(318\) 0 0
\(319\) −8.77816 15.2042i −0.491483 0.851273i
\(320\) 8.91923 0.498600
\(321\) 0 0
\(322\) 0 0
\(323\) 7.92259i 0.440824i
\(324\) 0 0
\(325\) 0.491421 + 0.283722i 0.0272591 + 0.0157381i
\(326\) 2.00744i 0.111182i
\(327\) 0 0
\(328\) 2.70289 + 1.56052i 0.149242 + 0.0861651i
\(329\) 0 0
\(330\) 0 0
\(331\) −0.623957 + 1.08073i −0.0342958 + 0.0594020i −0.882664 0.470005i \(-0.844252\pi\)
0.848368 + 0.529407i \(0.177585\pi\)
\(332\) 6.32285 10.9515i 0.347011 0.601041i
\(333\) 0 0
\(334\) 12.9397 7.47072i 0.708027 0.408780i
\(335\) 2.34146 + 4.05553i 0.127928 + 0.221577i
\(336\) 0 0
\(337\) 6.58745 11.4098i 0.358842 0.621532i −0.628926 0.777465i \(-0.716505\pi\)
0.987768 + 0.155933i \(0.0498385\pi\)
\(338\) 23.9281i 1.30152i
\(339\) 0 0
\(340\) 11.5133 0.624395
\(341\) 29.3573 + 50.8484i 1.58979 + 2.75359i
\(342\) 0 0
\(343\) 0 0
\(344\) −7.80798 + 4.50794i −0.420978 + 0.243052i
\(345\) 0 0
\(346\) 1.62419 0.937727i 0.0873171 0.0504125i
\(347\) −23.4411 + 13.5337i −1.25838 + 0.726529i −0.972760 0.231813i \(-0.925534\pi\)
−0.285624 + 0.958342i \(0.592201\pi\)
\(348\) 0 0
\(349\) −30.3413 + 17.5176i −1.62413 + 0.937694i −0.638336 + 0.769758i \(0.720377\pi\)
−0.985798 + 0.167936i \(0.946290\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 19.6200 + 33.9829i 1.04575 + 1.81129i
\(353\) −2.52512 −0.134398 −0.0671992 0.997740i \(-0.521406\pi\)
−0.0671992 + 0.997740i \(0.521406\pi\)
\(354\) 0 0
\(355\) 7.40038i 0.392771i
\(356\) 5.65713 9.79843i 0.299827 0.519316i
\(357\) 0 0
\(358\) −1.37871 2.38799i −0.0728669 0.126209i
\(359\) −6.29395 + 3.63381i −0.332182 + 0.191785i −0.656809 0.754057i \(-0.728094\pi\)
0.324628 + 0.945842i \(0.394761\pi\)
\(360\) 0 0
\(361\) −6.18677 + 10.7158i −0.325619 + 0.563989i
\(362\) 14.0581 24.3494i 0.738880 1.27978i
\(363\) 0 0
\(364\) 0 0
\(365\) −18.4874 10.6737i −0.967675 0.558688i
\(366\) 0 0
\(367\) 13.4770i 0.703492i 0.936095 + 0.351746i \(0.114412\pi\)
−0.936095 + 0.351746i \(0.885588\pi\)
\(368\) 32.5131 + 18.7715i 1.69486 + 0.978530i
\(369\) 0 0
\(370\) 6.63278i 0.344822i
\(371\) 0 0
\(372\) 0 0
\(373\) 23.7639 1.23045 0.615224 0.788352i \(-0.289065\pi\)
0.615224 + 0.788352i \(0.289065\pi\)
\(374\) 16.1332 + 27.9435i 0.834228 + 1.44492i
\(375\) 0 0
\(376\) −1.75947 1.01583i −0.0907379 0.0523875i
\(377\) −1.38886 −0.0715297
\(378\) 0 0
\(379\) 21.2283 1.09042 0.545211 0.838299i \(-0.316449\pi\)
0.545211 + 0.838299i \(0.316449\pi\)
\(380\) 8.33958 + 4.81486i 0.427812 + 0.246997i
\(381\) 0 0
\(382\) 12.3572 + 21.4032i 0.632248 + 1.09509i
\(383\) −12.9586 −0.662154 −0.331077 0.943604i \(-0.607412\pi\)
−0.331077 + 0.943604i \(0.607412\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.90752i 0.147989i
\(387\) 0 0
\(388\) −4.81710 2.78116i −0.244551 0.141192i
\(389\) 10.9470i 0.555035i −0.960721 0.277517i \(-0.910488\pi\)
0.960721 0.277517i \(-0.0895116\pi\)
\(390\) 0 0
\(391\) 21.0353 + 12.1447i 1.06380 + 0.614186i
\(392\) 0 0
\(393\) 0 0
\(394\) 4.63669 8.03098i 0.233593 0.404595i
\(395\) 0.719472 1.24616i 0.0362006 0.0627012i
\(396\) 0 0
\(397\) 25.8856 14.9451i 1.29916 0.750071i 0.318901 0.947788i \(-0.396686\pi\)
0.980259 + 0.197717i \(0.0633528\pi\)
\(398\) −10.4588 18.1151i −0.524250 0.908028i
\(399\) 0 0
\(400\) 3.04141 5.26788i 0.152071 0.263394i
\(401\) 19.1949i 0.958547i 0.877666 + 0.479273i \(0.159100\pi\)
−0.877666 + 0.479273i \(0.840900\pi\)
\(402\) 0 0
\(403\) 4.64483 0.231376
\(404\) −5.62421 9.74142i −0.279815 0.484654i
\(405\) 0 0
\(406\) 0 0
\(407\) −6.88060 + 3.97252i −0.341059 + 0.196910i
\(408\) 0 0
\(409\) −24.9737 + 14.4186i −1.23487 + 0.712953i −0.968041 0.250790i \(-0.919309\pi\)
−0.266830 + 0.963744i \(0.585976\pi\)
\(410\) −13.3565 + 7.71135i −0.659628 + 0.380837i
\(411\) 0 0
\(412\) −18.5190 + 10.6919i −0.912363 + 0.526753i
\(413\) 0 0
\(414\) 0 0
\(415\) −10.6123 18.3811i −0.520938 0.902290i
\(416\) 3.10423 0.152197
\(417\) 0 0
\(418\) 26.9877i 1.32001i
\(419\) 5.06390 8.77094i 0.247388 0.428488i −0.715412 0.698702i \(-0.753761\pi\)
0.962800 + 0.270214i \(0.0870945\pi\)
\(420\) 0 0
\(421\) 12.7094 + 22.0134i 0.619419 + 1.07287i 0.989592 + 0.143902i \(0.0459651\pi\)
−0.370173 + 0.928963i \(0.620702\pi\)
\(422\) 24.8617 14.3539i 1.21025 0.698738i
\(423\) 0 0
\(424\) 2.30010 3.98390i 0.111703 0.193475i
\(425\) 1.96773 3.40821i 0.0954490 0.165322i
\(426\) 0 0
\(427\) 0 0
\(428\) −17.4370 10.0673i −0.842849 0.486619i
\(429\) 0 0
\(430\) 44.5523i 2.14850i
\(431\) −9.39066 5.42170i −0.452332 0.261154i 0.256482 0.966549i \(-0.417436\pi\)
−0.708815 + 0.705395i \(0.750770\pi\)
\(432\) 0 0
\(433\) 13.0519i 0.627233i 0.949550 + 0.313616i \(0.101541\pi\)
−0.949550 + 0.313616i \(0.898459\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.37154 0.0656850
\(437\) 10.1579 + 17.5940i 0.485918 + 0.841634i
\(438\) 0 0
\(439\) 27.6736 + 15.9773i 1.32079 + 0.762557i 0.983854 0.178972i \(-0.0572772\pi\)
0.336933 + 0.941529i \(0.390611\pi\)
\(440\) 13.3208 0.635046
\(441\) 0 0
\(442\) 2.55255 0.121412
\(443\) 21.4748 + 12.3985i 1.02030 + 0.589068i 0.914190 0.405286i \(-0.132828\pi\)
0.106107 + 0.994355i \(0.466162\pi\)
\(444\) 0 0
\(445\) −9.49496 16.4458i −0.450104 0.779603i
\(446\) 5.97449 0.282900
\(447\) 0 0
\(448\) 0 0
\(449\) 13.7710i 0.649892i 0.945733 + 0.324946i \(0.105346\pi\)
−0.945733 + 0.324946i \(0.894654\pi\)
\(450\) 0 0
\(451\) −15.9989 9.23700i −0.753361 0.434953i
\(452\) 7.07502i 0.332781i
\(453\) 0 0
\(454\) 23.7439 + 13.7085i 1.11436 + 0.643374i
\(455\) 0 0
\(456\) 0 0
\(457\) −13.6554 + 23.6518i −0.638771 + 1.10638i 0.346931 + 0.937890i \(0.387224\pi\)
−0.985703 + 0.168494i \(0.946110\pi\)
\(458\) −3.15670 + 5.46757i −0.147503 + 0.255483i
\(459\) 0 0
\(460\) −25.5680 + 14.7617i −1.19211 + 0.688266i
\(461\) −5.51822 9.55784i −0.257009 0.445153i 0.708430 0.705781i \(-0.249404\pi\)
−0.965439 + 0.260628i \(0.916070\pi\)
\(462\) 0 0
\(463\) −12.2346 + 21.1910i −0.568591 + 0.984829i 0.428115 + 0.903724i \(0.359178\pi\)
−0.996706 + 0.0811042i \(0.974155\pi\)
\(464\) 14.8881i 0.691163i
\(465\) 0 0
\(466\) −9.12059 −0.422503
\(467\) −7.95241 13.7740i −0.367994 0.637384i 0.621258 0.783606i \(-0.286622\pi\)
−0.989252 + 0.146222i \(0.953289\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 8.69451 5.01978i 0.401048 0.231545i
\(471\) 0 0
\(472\) 5.99943 3.46377i 0.276146 0.159433i
\(473\) 46.2169 26.6834i 2.12506 1.22690i
\(474\) 0 0
\(475\) 2.85063 1.64581i 0.130796 0.0755151i
\(476\) 0 0
\(477\) 0 0
\(478\) −14.7021 25.4648i −0.672459 1.16473i
\(479\) 13.8537 0.632991 0.316496 0.948594i \(-0.397494\pi\)
0.316496 + 0.948594i \(0.397494\pi\)
\(480\) 0 0
\(481\) 0.628521i 0.0286581i
\(482\) −0.718964 + 1.24528i −0.0327479 + 0.0567210i
\(483\) 0 0
\(484\) −15.2781 26.4624i −0.694458 1.20284i
\(485\) −8.08506 + 4.66791i −0.367123 + 0.211959i
\(486\) 0 0
\(487\) −14.3993 + 24.9404i −0.652496 + 1.13016i 0.330020 + 0.943974i \(0.392945\pi\)
−0.982515 + 0.186182i \(0.940389\pi\)
\(488\) −4.05411 + 7.02193i −0.183521 + 0.317868i
\(489\) 0 0
\(490\) 0 0
\(491\) 33.5627 + 19.3774i 1.51466 + 0.874492i 0.999852 + 0.0171884i \(0.00547151\pi\)
0.514812 + 0.857303i \(0.327862\pi\)
\(492\) 0 0
\(493\) 9.63230i 0.433817i
\(494\) 1.84893 + 1.06748i 0.0831872 + 0.0480281i
\(495\) 0 0
\(496\) 49.7911i 2.23569i
\(497\) 0 0
\(498\) 0 0
\(499\) −3.46667 −0.155189 −0.0775946 0.996985i \(-0.524724\pi\)
−0.0775946 + 0.996985i \(0.524724\pi\)
\(500\) −6.96045 12.0558i −0.311281 0.539154i
\(501\) 0 0
\(502\) 1.85395 + 1.07038i 0.0827458 + 0.0477733i
\(503\) −28.2202 −1.25828 −0.629138 0.777293i \(-0.716592\pi\)
−0.629138 + 0.777293i \(0.716592\pi\)
\(504\) 0 0
\(505\) −18.8794 −0.840124
\(506\) −71.6552 41.3701i −3.18546 1.83913i
\(507\) 0 0
\(508\) 5.50326 + 9.53193i 0.244168 + 0.422911i
\(509\) −35.8124 −1.58736 −0.793678 0.608338i \(-0.791836\pi\)
−0.793678 + 0.608338i \(0.791836\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 24.2599i 1.07215i
\(513\) 0 0
\(514\) 46.9111 + 27.0841i 2.06916 + 1.19463i
\(515\) 35.8908i 1.58154i
\(516\) 0 0
\(517\) 10.4147 + 6.01291i 0.458036 + 0.264447i
\(518\) 0 0
\(519\) 0 0
\(520\) 0.526897 0.912612i 0.0231060 0.0400207i
\(521\) 13.4608 23.3148i 0.589729 1.02144i −0.404538 0.914521i \(-0.632568\pi\)
0.994268 0.106920i \(-0.0340989\pi\)
\(522\) 0 0
\(523\) 7.82181 4.51593i 0.342024 0.197468i −0.319143 0.947707i \(-0.603395\pi\)
0.661167 + 0.750239i \(0.270062\pi\)
\(524\) 5.86943 + 10.1662i 0.256407 + 0.444110i
\(525\) 0 0
\(526\) 12.8020 22.1737i 0.558193 0.966819i
\(527\) 32.2139i 1.40326i
\(528\) 0 0
\(529\) −39.2852 −1.70805
\(530\) 11.3661 + 19.6866i 0.493710 + 0.855131i
\(531\) 0 0
\(532\) 0 0
\(533\) −1.26565 + 0.730726i −0.0548216 + 0.0316513i
\(534\) 0 0
\(535\) −29.2664 + 16.8969i −1.26530 + 0.730518i
\(536\) 1.53384 0.885563i 0.0662518 0.0382505i
\(537\) 0 0
\(538\) −16.9615 + 9.79273i −0.731262 + 0.422195i
\(539\) 0 0
\(540\) 0 0
\(541\) −5.66792 9.81713i −0.243683 0.422071i 0.718078 0.695963i \(-0.245022\pi\)
−0.961760 + 0.273892i \(0.911689\pi\)
\(542\) 12.2342 0.525504
\(543\) 0 0
\(544\) 21.5291i 0.923053i
\(545\) 1.15100 1.99360i 0.0493035 0.0853962i
\(546\) 0 0
\(547\) 19.4246 + 33.6444i 0.830537 + 1.43853i 0.897613 + 0.440784i \(0.145300\pi\)
−0.0670762 + 0.997748i \(0.521367\pi\)
\(548\) −14.9587 + 8.63644i −0.639006 + 0.368930i
\(549\) 0 0
\(550\) −6.70292 + 11.6098i −0.285813 + 0.495043i
\(551\) −4.02823 + 6.97711i −0.171609 + 0.297235i
\(552\) 0 0
\(553\) 0 0
\(554\) 36.3061 + 20.9613i 1.54250 + 0.890562i
\(555\) 0 0
\(556\) 29.2613i 1.24096i
\(557\) −6.29167 3.63249i −0.266586 0.153914i 0.360749 0.932663i \(-0.382521\pi\)
−0.627335 + 0.778749i \(0.715854\pi\)
\(558\) 0 0
\(559\) 4.22177i 0.178562i
\(560\) 0 0
\(561\) 0 0
\(562\) −41.7697 −1.76195
\(563\) −11.5409 19.9894i −0.486390 0.842453i 0.513487 0.858097i \(-0.328353\pi\)
−0.999878 + 0.0156446i \(0.995020\pi\)
\(564\) 0 0
\(565\) −10.2838 5.93738i −0.432644 0.249787i
\(566\) 35.4561 1.49033
\(567\) 0 0
\(568\) −2.79889 −0.117439
\(569\) −15.5482 8.97677i −0.651815 0.376326i 0.137336 0.990525i \(-0.456146\pi\)
−0.789151 + 0.614199i \(0.789479\pi\)
\(570\) 0 0
\(571\) 7.04234 + 12.1977i 0.294713 + 0.510457i 0.974918 0.222564i \(-0.0714427\pi\)
−0.680205 + 0.733022i \(0.738109\pi\)
\(572\) −3.71639 −0.155390
\(573\) 0 0
\(574\) 0 0
\(575\) 10.0916i 0.420851i
\(576\) 0 0
\(577\) 26.0392 + 15.0337i 1.08403 + 0.625862i 0.931979 0.362511i \(-0.118081\pi\)
0.152046 + 0.988373i \(0.451414\pi\)
\(578\) 14.0689i 0.585190i
\(579\) 0 0
\(580\) −10.1393 5.85392i −0.421011 0.243071i
\(581\) 0 0
\(582\) 0 0
\(583\) −13.6148 + 23.5815i −0.563866 + 0.976644i
\(584\) −4.03690 + 6.99211i −0.167048 + 0.289336i
\(585\) 0 0
\(586\) −14.2800 + 8.24455i −0.589900 + 0.340579i
\(587\) 18.0979 + 31.3465i 0.746981 + 1.29381i 0.949264 + 0.314481i \(0.101831\pi\)
−0.202283 + 0.979327i \(0.564836\pi\)
\(588\) 0 0
\(589\) 13.4719 23.3339i 0.555098 0.961459i
\(590\) 34.2327i 1.40934i
\(591\) 0 0
\(592\) 6.73755 0.276911
\(593\) 1.02158 + 1.76943i 0.0419514 + 0.0726620i 0.886239 0.463229i \(-0.153309\pi\)
−0.844287 + 0.535891i \(0.819976\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20.3507 11.7495i 0.833598 0.481278i
\(597\) 0 0
\(598\) −5.66854 + 3.27273i −0.231804 + 0.133832i
\(599\) −15.7873 + 9.11478i −0.645050 + 0.372420i −0.786557 0.617517i \(-0.788139\pi\)
0.141507 + 0.989937i \(0.454805\pi\)
\(600\) 0 0
\(601\) 32.1713 18.5741i 1.31230 0.757654i 0.329820 0.944044i \(-0.393012\pi\)
0.982476 + 0.186390i \(0.0596787\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.48002 2.56346i −0.0602210 0.104306i
\(605\) −51.2856 −2.08506
\(606\) 0 0
\(607\) 19.8296i 0.804860i 0.915451 + 0.402430i \(0.131834\pi\)
−0.915451 + 0.402430i \(0.868166\pi\)
\(608\) 9.00349 15.5945i 0.365140 0.632440i
\(609\) 0 0
\(610\) −20.0336 34.6991i −0.811135 1.40493i
\(611\) 0.823890 0.475673i 0.0333310 0.0192437i
\(612\) 0 0
\(613\) 6.34412 10.9883i 0.256237 0.443815i −0.708994 0.705214i \(-0.750851\pi\)
0.965231 + 0.261400i \(0.0841840\pi\)
\(614\) 26.8690 46.5385i 1.08435 1.87814i
\(615\) 0 0
\(616\) 0 0
\(617\) −4.37247 2.52445i −0.176029 0.101630i 0.409397 0.912357i \(-0.365739\pi\)
−0.585426 + 0.810726i \(0.699073\pi\)
\(618\) 0 0
\(619\) 0.267890i 0.0107674i −0.999986 0.00538370i \(-0.998286\pi\)
0.999986 0.00538370i \(-0.00171369\pi\)
\(620\) 33.9094 + 19.5776i 1.36183 + 0.786255i
\(621\) 0 0
\(622\) 24.8305i 0.995611i
\(623\) 0 0
\(624\) 0 0
\(625\) −29.7584 −1.19034
\(626\) −29.4820 51.0644i −1.17834 2.04094i
\(627\) 0 0
\(628\) −10.8504 6.26449i −0.432979 0.249981i
\(629\) 4.35905 0.173807
\(630\) 0 0
\(631\) 37.7899 1.50439 0.752197 0.658938i \(-0.228994\pi\)
0.752197 + 0.658938i \(0.228994\pi\)
\(632\) −0.471310 0.272111i −0.0187477 0.0108240i
\(633\) 0 0
\(634\) 18.7556 + 32.4856i 0.744880 + 1.29017i
\(635\) 18.4734 0.733095
\(636\) 0 0
\(637\) 0 0
\(638\) 32.8117i 1.29903i
\(639\) 0 0
\(640\) −15.9234 9.19336i −0.629426 0.363400i
\(641\) 34.4090i 1.35907i −0.733641 0.679537i \(-0.762181\pi\)
0.733641 0.679537i \(-0.237819\pi\)
\(642\) 0 0
\(643\) −0.676278 0.390449i −0.0266698 0.0153978i 0.486606 0.873622i \(-0.338235\pi\)
−0.513276 + 0.858224i \(0.671568\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 7.40341 12.8231i 0.291283 0.504517i
\(647\) 9.82182 17.0119i 0.386136 0.668807i −0.605790 0.795624i \(-0.707143\pi\)
0.991926 + 0.126818i \(0.0404763\pi\)
\(648\) 0 0
\(649\) −35.5118 + 20.5027i −1.39396 + 0.804803i
\(650\) 0.530259 + 0.918435i 0.0207985 + 0.0360240i
\(651\) 0 0
\(652\) −0.801781 + 1.38872i −0.0314001 + 0.0543867i
\(653\) 3.20545i 0.125439i 0.998031 + 0.0627194i \(0.0199773\pi\)
−0.998031 + 0.0627194i \(0.980023\pi\)
\(654\) 0 0
\(655\) 19.7026 0.769843
\(656\) 7.83315 + 13.5674i 0.305833 + 0.529719i
\(657\) 0 0
\(658\) 0 0
\(659\) 24.2959 14.0273i 0.946435 0.546425i 0.0544636 0.998516i \(-0.482655\pi\)
0.891972 + 0.452091i \(0.149322\pi\)
\(660\) 0 0
\(661\) 28.0490 16.1941i 1.09098 0.629878i 0.157143 0.987576i \(-0.449772\pi\)
0.933837 + 0.357698i \(0.116438\pi\)
\(662\) −2.01981 + 1.16614i −0.0785020 + 0.0453232i
\(663\) 0 0
\(664\) −6.95189 + 4.01367i −0.269785 + 0.155761i
\(665\) 0 0
\(666\) 0 0
\(667\) −12.3500 21.3908i −0.478193 0.828255i
\(668\) 11.9354 0.461793
\(669\) 0 0
\(670\) 8.75209i 0.338123i
\(671\) 23.9971 41.5641i 0.926397 1.60457i
\(672\) 0 0
\(673\) −10.3088 17.8554i −0.397375 0.688273i 0.596026 0.802965i \(-0.296745\pi\)
−0.993401 + 0.114692i \(0.963412\pi\)
\(674\) 21.3242 12.3115i 0.821378 0.474223i
\(675\) 0 0
\(676\) 9.55701 16.5532i 0.367577 0.636663i
\(677\) −25.1655 + 43.5880i −0.967190 + 1.67522i −0.263578 + 0.964638i \(0.584903\pi\)
−0.703612 + 0.710585i \(0.748431\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.32935 3.65425i −0.242719 0.140134i
\(681\) 0 0
\(682\) 109.734i 4.20193i
\(683\) 11.9031 + 6.87227i 0.455460 + 0.262960i 0.710133 0.704067i \(-0.248635\pi\)
−0.254673 + 0.967027i \(0.581968\pi\)
\(684\) 0 0
\(685\) 28.9909i 1.10769i
\(686\) 0 0
\(687\) 0 0
\(688\) −45.2560 −1.72537
\(689\) 1.07705 + 1.86550i 0.0410321 + 0.0710698i
\(690\) 0 0
\(691\) 25.4328 + 14.6837i 0.967511 + 0.558593i 0.898476 0.439022i \(-0.144675\pi\)
0.0690343 + 0.997614i \(0.478008\pi\)
\(692\) 1.49813 0.0569504
\(693\) 0 0
\(694\) −50.5874 −1.92027
\(695\) −42.5325 24.5562i −1.61335 0.931468i
\(696\) 0 0
\(697\) 5.06789 + 8.77784i 0.191960 + 0.332484i
\(698\) −65.4785 −2.47840
\(699\) 0 0
\(700\) 0 0
\(701\) 44.2011i 1.66945i 0.550666 + 0.834726i \(0.314374\pi\)
−0.550666 + 0.834726i \(0.685626\pi\)
\(702\) 0 0
\(703\) 3.15746 + 1.82296i 0.119086 + 0.0687542i
\(704\) 19.9674i 0.752551i
\(705\) 0 0
\(706\) −4.08702 2.35964i −0.153817 0.0888063i
\(707\) 0 0
\(708\) 0 0
\(709\) 5.66629 9.81430i 0.212802 0.368584i −0.739788 0.672840i \(-0.765074\pi\)
0.952590 + 0.304256i \(0.0984077\pi\)
\(710\) 6.91542 11.9779i 0.259531 0.449521i
\(711\) 0 0
\(712\) −6.21994 + 3.59108i −0.233102 + 0.134581i
\(713\) 41.3028 + 71.5385i 1.54680 + 2.67914i
\(714\) 0 0
\(715\) −3.11881 + 5.40193i −0.116637 + 0.202021i
\(716\) 2.20265i 0.0823168i
\(717\) 0 0
\(718\) −13.5827 −0.506903
\(719\) 18.0647 + 31.2890i 0.673700 + 1.16688i 0.976847 + 0.213939i \(0.0686294\pi\)
−0.303147 + 0.952944i \(0.598037\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −20.0271 + 11.5627i −0.745333 + 0.430318i
\(723\) 0 0
\(724\) 19.4505 11.2298i 0.722874 0.417351i
\(725\) −3.46580 + 2.00098i −0.128717 + 0.0743146i
\(726\) 0 0
\(727\) 6.20547 3.58273i 0.230148 0.132876i −0.380492 0.924784i \(-0.624245\pi\)
0.610640 + 0.791908i \(0.290912\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −19.9485 34.5518i −0.738327 1.27882i
\(731\) −29.2797 −1.08295
\(732\) 0 0
\(733\) 47.8498i 1.76737i 0.468081 + 0.883685i \(0.344945\pi\)
−0.468081 + 0.883685i \(0.655055\pi\)
\(734\) −12.5938 + 21.8131i −0.464846 + 0.805136i
\(735\) 0 0
\(736\) 27.6034 + 47.8105i 1.01747 + 1.76232i
\(737\) −9.07910 + 5.24182i −0.334433 + 0.193085i
\(738\) 0 0
\(739\) −7.67416 + 13.2920i −0.282299 + 0.488956i −0.971951 0.235185i \(-0.924430\pi\)
0.689652 + 0.724141i \(0.257764\pi\)
\(740\) −2.64917 + 4.58849i −0.0973853 + 0.168676i
\(741\) 0 0
\(742\) 0 0
\(743\) −34.9422 20.1739i −1.28191 0.740109i −0.304709 0.952445i \(-0.598559\pi\)
−0.977197 + 0.212337i \(0.931893\pi\)
\(744\) 0 0
\(745\) 39.4409i 1.44500i
\(746\) 38.4630 + 22.2066i 1.40823 + 0.813042i
\(747\) 0 0
\(748\) 25.7747i 0.942417i
\(749\) 0 0
\(750\) 0 0
\(751\) 33.8898 1.23665 0.618327 0.785921i \(-0.287811\pi\)
0.618327 + 0.785921i \(0.287811\pi\)
\(752\) −5.09906 8.83183i −0.185944 0.322064i
\(753\) 0 0
\(754\) −2.24793 1.29784i −0.0818647 0.0472646i
\(755\) −4.96814 −0.180809
\(756\) 0 0
\(757\) −5.73237 −0.208346 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(758\) 34.3589 + 19.8371i 1.24797 + 0.720517i
\(759\) 0 0
\(760\) −3.05642 5.29387i −0.110868 0.192029i
\(761\) −26.5332 −0.961828 −0.480914 0.876768i \(-0.659695\pi\)
−0.480914 + 0.876768i \(0.659695\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 19.7420i 0.714242i
\(765\) 0 0
\(766\) −20.9741 12.1094i −0.757825 0.437531i
\(767\) 3.24389i 0.117130i
\(768\) 0 0
\(769\) −23.3944 13.5068i −0.843623 0.487066i 0.0148711 0.999889i \(-0.495266\pi\)
−0.858494 + 0.512823i \(0.828600\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.16128 + 2.01139i −0.0417953 + 0.0723916i
\(773\) 11.3009 19.5737i 0.406464 0.704016i −0.588027 0.808841i \(-0.700095\pi\)
0.994491 + 0.104826i \(0.0334284\pi\)
\(774\) 0 0
\(775\) 11.5909 6.69201i 0.416357 0.240384i
\(776\) 1.76545 + 3.05784i 0.0633758 + 0.109770i
\(777\) 0 0
\(778\) 10.2296 17.7182i 0.366750 0.635229i
\(779\) 8.47758i 0.303741i
\(780\) 0 0
\(781\) 16.5672 0.592821
\(782\) 22.6978 + 39.3137i 0.811670 + 1.40585i
\(783\) 0 0
\(784\) 0 0
\(785\) −18.2114 + 10.5144i −0.649993 + 0.375274i
\(786\) 0 0
\(787\) 22.6864 13.0980i 0.808683 0.466893i −0.0378153 0.999285i \(-0.512040\pi\)
0.846498 + 0.532391i \(0.178707\pi\)
\(788\) 6.41523 3.70383i 0.228533 0.131944i
\(789\) 0 0
\(790\) 2.32900 1.34465i 0.0828620 0.0478404i
\(791\) 0 0
\(792\) 0 0
\(793\) −1.89838 3.28808i −0.0674133 0.116763i
\(794\) 55.8627 1.98249
\(795\) 0 0
\(796\) 16.7091i 0.592239i
\(797\) −5.96560 + 10.3327i −0.211312 + 0.366004i −0.952126 0.305707i \(-0.901107\pi\)
0.740813 + 0.671711i \(0.234440\pi\)
\(798\) 0 0
\(799\) −3.29899 5.71402i −0.116710 0.202147i
\(800\) 7.74640 4.47239i 0.273877 0.158123i
\(801\) 0 0
\(802\) −17.9370 + 31.0678i −0.633378 + 1.09704i
\(803\) 23.8952 41.3877i 0.843242 1.46054i
\(804\) 0 0
\(805\) 0 0
\(806\) 7.51788 + 4.34045i 0.264806 + 0.152886i
\(807\) 0 0
\(808\) 7.14038i 0.251198i
\(809\) 22.9399 + 13.2443i 0.806522 + 0.465646i 0.845747 0.533585i \(-0.179155\pi\)
−0.0392244 + 0.999230i \(0.512489\pi\)
\(810\) 0 0
\(811\) 13.7419i 0.482544i −0.970458 0.241272i \(-0.922435\pi\)
0.970458 0.241272i \(-0.0775646\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −14.8488 −0.520449
\(815\) 1.34571 + 2.33084i 0.0471383 + 0.0816459i
\(816\) 0 0
\(817\) −21.2086 12.2448i −0.741996 0.428391i
\(818\) −53.8949 −1.88439
\(819\) 0 0
\(820\) −12.3198 −0.430226
\(821\) −11.7493 6.78346i −0.410053 0.236744i 0.280759 0.959778i \(-0.409414\pi\)
−0.690813 + 0.723034i \(0.742747\pi\)
\(822\) 0 0
\(823\) −7.34857 12.7281i −0.256155 0.443674i 0.709053 0.705155i \(-0.249122\pi\)
−0.965209 + 0.261481i \(0.915789\pi\)
\(824\) 13.5742 0.472881
\(825\) 0 0
\(826\) 0 0
\(827\) 40.8787i 1.42149i 0.703449 + 0.710746i \(0.251642\pi\)
−0.703449 + 0.710746i \(0.748358\pi\)
\(828\) 0 0
\(829\) −17.7189 10.2300i −0.615402 0.355302i 0.159675 0.987170i \(-0.448955\pi\)
−0.775077 + 0.631867i \(0.782289\pi\)
\(830\) 39.6675i 1.37688i
\(831\) 0 0
\(832\) 1.36797 + 0.789798i 0.0474258 + 0.0273813i
\(833\) 0 0
\(834\) 0 0
\(835\) 10.0162 17.3486i 0.346625 0.600372i
\(836\) −10.7790 + 18.6698i −0.372800 + 0.645708i
\(837\) 0 0
\(838\) 16.3923 9.46412i 0.566264 0.326932i
\(839\) −27.3475 47.3673i −0.944141 1.63530i −0.757462 0.652880i \(-0.773561\pi\)
−0.186680 0.982421i \(-0.559773\pi\)
\(840\) 0 0
\(841\) −9.60247 + 16.6320i −0.331120 + 0.573516i
\(842\) 47.5062i 1.63717i
\(843\) 0 0
\(844\) 22.9321 0.789356
\(845\) −16.0405 27.7830i −0.551812 0.955766i
\(846\) 0 0
\(847\) 0 0
\(848\) 19.9975 11.5456i 0.686718 0.396477i
\(849\) 0 0
\(850\) 6.36973 3.67756i 0.218480 0.126139i
\(851\) −9.68031 + 5.58893i −0.331837 + 0.191586i
\(852\) 0 0
\(853\) 11.0684 6.39037i 0.378976 0.218802i −0.298396 0.954442i \(-0.596452\pi\)
0.677373 + 0.735640i \(0.263118\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 6.39058 + 11.0688i 0.218426 + 0.378324i
\(857\) 18.3240 0.625936 0.312968 0.949764i \(-0.398677\pi\)
0.312968 + 0.949764i \(0.398677\pi\)
\(858\) 0 0
\(859\) 38.6339i 1.31817i −0.752068 0.659085i \(-0.770944\pi\)
0.752068 0.659085i \(-0.229056\pi\)
\(860\) 17.7944 30.8208i 0.606784 1.05098i
\(861\) 0 0
\(862\) −10.1328 17.5505i −0.345125 0.597774i
\(863\) −14.4626 + 8.35001i −0.492314 + 0.284238i −0.725534 0.688186i \(-0.758407\pi\)
0.233220 + 0.972424i \(0.425074\pi\)
\(864\) 0 0
\(865\) 1.25724 2.17760i 0.0427473 0.0740405i
\(866\) −12.1966 + 21.1251i −0.414456 + 0.717859i
\(867\) 0 0
\(868\) 0 0
\(869\) 2.78978 + 1.61068i 0.0946367 + 0.0546385i
\(870\) 0 0
\(871\) 0.829346i 0.0281013i
\(872\) −0.753996 0.435320i −0.0255335 0.0147418i
\(873\) 0 0
\(874\) 37.9689i 1.28432i
\(875\) 0 0
\(876\) 0 0
\(877\) 33.5234 1.13200 0.566002 0.824404i \(-0.308489\pi\)
0.566002 + 0.824404i \(0.308489\pi\)
\(878\) 29.8606 + 51.7201i 1.00775 + 1.74547i
\(879\) 0 0
\(880\) 57.9070 + 33.4326i 1.95204 + 1.12701i
\(881\) 28.6657 0.965771 0.482885 0.875684i \(-0.339589\pi\)
0.482885 + 0.875684i \(0.339589\pi\)
\(882\) 0 0
\(883\) −38.2091 −1.28584 −0.642919 0.765935i \(-0.722277\pi\)
−0.642919 + 0.765935i \(0.722277\pi\)
\(884\) 1.76583 + 1.01950i 0.0593912 + 0.0342895i
\(885\) 0 0
\(886\) 23.1719 + 40.1350i 0.778476 + 1.34836i
\(887\) 35.1828 1.18132 0.590662 0.806919i \(-0.298867\pi\)
0.590662 + 0.806919i \(0.298867\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 35.4910i 1.18966i
\(891\) 0 0
\(892\) 4.13309 + 2.38624i 0.138386 + 0.0798972i
\(893\) 5.51856i 0.184672i
\(894\) 0 0
\(895\) −3.20164 1.84847i −0.107019 0.0617875i
\(896\) 0 0
\(897\) 0 0
\(898\) −12.8685 + 22.2890i −0.429429 + 0.743792i
\(899\) −16.3791 + 28.3695i −0.546274 + 0.946174i
\(900\) 0 0
\(901\) 12.9380 7.46975i 0.431027 0.248854i
\(902\) −17.2634 29.9010i −0.574807 0.995595i
\(903\) 0 0
\(904\) −2.24557 + 3.88944i −0.0746866 + 0.129361i
\(905\) 37.6963i 1.25307i
\(906\) 0 0
\(907\) −42.5954 −1.41436 −0.707179 0.707034i \(-0.750033\pi\)
−0.707179 + 0.707034i \(0.750033\pi\)
\(908\) 10.9505 + 18.9669i 0.363406 + 0.629437i
\(909\) 0 0
\(910\) 0 0
\(911\) 43.5221 25.1275i 1.44195 0.832510i 0.443970 0.896042i \(-0.353570\pi\)
0.997980 + 0.0635313i \(0.0202363\pi\)
\(912\) 0 0
\(913\) 41.1496 23.7577i 1.36185 0.786265i
\(914\) −44.2037 + 25.5210i −1.46213 + 0.844160i
\(915\) 0 0
\(916\) −4.36754 + 2.52160i −0.144308 + 0.0833161i
\(917\) 0 0
\(918\) 0 0
\(919\) 29.3486 + 50.8333i 0.968121 + 1.67684i 0.700984 + 0.713177i \(0.252744\pi\)
0.267137 + 0.963658i \(0.413922\pi\)
\(920\) 18.7411 0.617875
\(921\) 0 0
\(922\) 20.6264i 0.679295i
\(923\) 0.655304 1.13502i 0.0215696 0.0373596i
\(924\) 0 0
\(925\) 0.905536 + 1.56843i 0.0297738 + 0.0515698i
\(926\) −39.6046 + 22.8657i −1.30149 + 0.751415i
\(927\) 0 0
\(928\) −10.9465 + 18.9598i −0.359335 + 0.622387i
\(929\) 7.19115 12.4554i 0.235934 0.408650i −0.723610 0.690209i \(-0.757518\pi\)
0.959544 + 0.281560i \(0.0908518\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −6.30952 3.64281i −0.206675 0.119324i
\(933\) 0 0
\(934\) 29.7251i 0.972636i
\(935\) 37.4646 + 21.6302i 1.22522 + 0.707384i
\(936\) 0 0
\(937\) 44.2981i 1.44716i 0.690243 + 0.723578i \(0.257504\pi\)
−0.690243 + 0.723578i \(0.742496\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 8.01969 0.261573
\(941\) 7.44400 + 12.8934i 0.242667 + 0.420312i 0.961473 0.274899i \(-0.0886443\pi\)
−0.718806 + 0.695211i \(0.755311\pi\)
\(942\) 0 0
\(943\) −22.5089 12.9955i −0.732990 0.423192i
\(944\) 34.7734 1.13178
\(945\) 0 0
\(946\) 99.7390 3.24280
\(947\) 36.3343 + 20.9776i 1.18071 + 0.681681i 0.956178 0.292787i \(-0.0945827\pi\)
0.224528 + 0.974468i \(0.427916\pi\)
\(948\) 0 0
\(949\) −1.89031 3.27412i −0.0613622 0.106282i
\(950\) 6.15184 0.199592
\(951\) 0 0
\(952\) 0 0
\(953\) 13.9821i 0.452926i −0.974020 0.226463i \(-0.927284\pi\)
0.974020 0.226463i \(-0.0727162\pi\)
\(954\) 0 0
\(955\) 28.6959 + 16.5676i 0.928578 + 0.536115i
\(956\) 23.4884i 0.759669i
\(957\) 0 0
\(958\) 22.4228 + 12.9458i 0.724449 + 0.418261i
\(959\) 0 0
\(960\) 0 0
\(961\) 39.2776 68.0309i 1.26702 2.19454i
\(962\) −0.587333 + 1.01729i −0.0189364 + 0.0327988i
\(963\) 0 0
\(964\) −0.994743 + 0.574315i −0.0320385 + 0.0184974i
\(965\) 1.94910 + 3.37593i 0.0627436 + 0.108675i
\(966\) 0 0
\(967\) −11.5757 + 20.0497i −0.372249 + 0.644754i −0.989911 0.141690i \(-0.954746\pi\)
0.617662 + 0.786443i \(0.288080\pi\)
\(968\) 19.3967i 0.623433i
\(969\) 0 0
\(970\) −17.4481 −0.560223
\(971\) −21.6869 37.5628i −0.695965 1.20545i −0.969854 0.243685i \(-0.921644\pi\)
0.273890 0.961761i \(-0.411690\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −46.6120 + 26.9114i −1.49354 + 0.862298i
\(975\) 0 0
\(976\) −35.2472 + 20.3500i −1.12824 + 0.651387i
\(977\) −10.4210 + 6.01657i −0.333397 + 0.192487i −0.657348 0.753587i \(-0.728322\pi\)
0.323951 + 0.946074i \(0.394989\pi\)
\(978\) 0 0
\(979\) 36.8170 21.2563i 1.17668 0.679355i
\(980\) 0 0
\(981\) 0 0
\(982\) 36.2152 + 62.7266i 1.15567 + 2.00169i
\(983\) 6.29658 0.200830 0.100415 0.994946i \(-0.467983\pi\)
0.100415 + 0.994946i \(0.467983\pi\)
\(984\) 0 0
\(985\) 12.4331i 0.396151i
\(986\) −9.00108 + 15.5903i −0.286653 + 0.496497i
\(987\) 0 0
\(988\) 0.852712 + 1.47694i 0.0271284 + 0.0469877i
\(989\) 65.0225 37.5408i 2.06760 1.19373i
\(990\) 0 0
\(991\) −16.7814 + 29.0662i −0.533078 + 0.923317i 0.466176 + 0.884692i \(0.345631\pi\)
−0.999254 + 0.0386256i \(0.987702\pi\)
\(992\) 36.6089 63.4085i 1.16233 2.01322i
\(993\) 0 0
\(994\) 0 0
\(995\) −24.2874 14.0223i −0.769963 0.444538i
\(996\) 0 0
\(997\) 11.2565i 0.356495i −0.983986 0.178248i \(-0.942957\pi\)
0.983986 0.178248i \(-0.0570428\pi\)
\(998\) −5.61096 3.23949i −0.177612 0.102544i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.s.d.962.20 48
3.2 odd 2 441.2.s.d.374.6 48
7.2 even 3 1323.2.i.d.1097.22 48
7.3 odd 6 1323.2.o.e.881.6 48
7.4 even 3 1323.2.o.e.881.5 48
7.5 odd 6 1323.2.i.d.1097.7 48
7.6 odd 2 inner 1323.2.s.d.962.19 48
9.2 odd 6 1323.2.i.d.521.7 48
9.7 even 3 441.2.i.d.227.6 48
21.2 odd 6 441.2.i.d.68.19 48
21.5 even 6 441.2.i.d.68.20 48
21.11 odd 6 441.2.o.e.293.20 yes 48
21.17 even 6 441.2.o.e.293.19 yes 48
21.20 even 2 441.2.s.d.374.5 48
63.2 odd 6 inner 1323.2.s.d.656.19 48
63.11 odd 6 1323.2.o.e.440.6 48
63.16 even 3 441.2.s.d.362.5 48
63.20 even 6 1323.2.i.d.521.22 48
63.25 even 3 441.2.o.e.146.19 48
63.34 odd 6 441.2.i.d.227.5 48
63.38 even 6 1323.2.o.e.440.5 48
63.47 even 6 inner 1323.2.s.d.656.20 48
63.52 odd 6 441.2.o.e.146.20 yes 48
63.61 odd 6 441.2.s.d.362.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.19 48 21.2 odd 6
441.2.i.d.68.20 48 21.5 even 6
441.2.i.d.227.5 48 63.34 odd 6
441.2.i.d.227.6 48 9.7 even 3
441.2.o.e.146.19 48 63.25 even 3
441.2.o.e.146.20 yes 48 63.52 odd 6
441.2.o.e.293.19 yes 48 21.17 even 6
441.2.o.e.293.20 yes 48 21.11 odd 6
441.2.s.d.362.5 48 63.16 even 3
441.2.s.d.362.6 48 63.61 odd 6
441.2.s.d.374.5 48 21.20 even 2
441.2.s.d.374.6 48 3.2 odd 2
1323.2.i.d.521.7 48 9.2 odd 6
1323.2.i.d.521.22 48 63.20 even 6
1323.2.i.d.1097.7 48 7.5 odd 6
1323.2.i.d.1097.22 48 7.2 even 3
1323.2.o.e.440.5 48 63.38 even 6
1323.2.o.e.440.6 48 63.11 odd 6
1323.2.o.e.881.5 48 7.4 even 3
1323.2.o.e.881.6 48 7.3 odd 6
1323.2.s.d.656.19 48 63.2 odd 6 inner
1323.2.s.d.656.20 48 63.47 even 6 inner
1323.2.s.d.962.19 48 7.6 odd 2 inner
1323.2.s.d.962.20 48 1.1 even 1 trivial