Properties

Label 441.2.o.e.293.19
Level $441$
Weight $2$
Character 441.293
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(146,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.146"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 293.19
Character \(\chi\) \(=\) 441.293
Dual form 441.2.o.e.146.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61855 - 0.934468i) q^{2} +(-1.01272 + 1.40514i) q^{3} +(0.746462 - 1.29291i) q^{4} +(-1.25287 + 2.17003i) q^{5} +(-0.326074 + 3.22063i) q^{6} +0.947692i q^{8} +(-0.948811 - 2.84601i) q^{9} +4.68306i q^{10} +(-4.85803 + 2.80479i) q^{11} +(1.06076 + 2.35823i) q^{12} +(-0.384312 - 0.221883i) q^{13} +(-1.78039 - 3.95807i) q^{15} +(2.37851 + 4.11970i) q^{16} -3.07770 q^{17} +(-4.19520 - 3.71976i) q^{18} -2.57419i q^{19} +(1.87044 + 3.23969i) q^{20} +(-5.24197 + 9.07935i) q^{22} +(6.83476 + 3.94605i) q^{23} +(-1.33164 - 0.959743i) q^{24} +(-0.639351 - 1.10739i) q^{25} -0.829370 q^{26} +(4.95990 + 1.54899i) q^{27} +(2.71041 - 1.56485i) q^{29} +(-6.58033 - 4.74261i) q^{30} +(9.06457 + 5.23343i) q^{31} +(6.05802 + 3.49760i) q^{32} +(0.978704 - 9.66665i) q^{33} +(-4.98140 + 2.87601i) q^{34} +(-4.38788 - 0.897709i) q^{36} -1.41634 q^{37} +(-2.40550 - 4.16645i) q^{38} +(0.700975 - 0.315306i) q^{39} +(-2.05652 - 1.18733i) q^{40} +(-1.64665 + 2.85208i) q^{41} +(-4.75676 - 8.23894i) q^{43} +8.37467i q^{44} +(7.36465 + 1.50672i) q^{45} +14.7498 q^{46} +(1.07190 + 1.85659i) q^{47} +(-8.19750 - 0.829960i) q^{48} +(-2.06964 - 1.19491i) q^{50} +(3.11684 - 4.32458i) q^{51} +(-0.573749 + 0.331254i) q^{52} +4.85412i q^{53} +(9.47532 - 2.12776i) q^{54} -14.0561i q^{55} +(3.61709 + 2.60693i) q^{57} +(2.92461 - 5.06558i) q^{58} +(3.65496 - 6.33057i) q^{59} +(-6.44642 - 0.652671i) q^{60} +(-7.40950 + 4.27788i) q^{61} +19.5619 q^{62} +3.55953 q^{64} +(0.962984 - 0.555979i) q^{65} +(-7.44910 - 16.5605i) q^{66} +(0.934442 - 1.61850i) q^{67} +(-2.29739 + 3.97919i) q^{68} +(-12.4664 + 5.60753i) q^{69} +2.95338i q^{71} +(2.69714 - 0.899181i) q^{72} -8.51943i q^{73} +(-2.29241 + 1.32352i) q^{74} +(2.20351 + 0.223096i) q^{75} +(-3.32820 - 1.92154i) q^{76} +(0.839916 - 1.16538i) q^{78} +(0.287130 + 0.497324i) q^{79} -11.9198 q^{80} +(-7.19951 + 5.40065i) q^{81} +6.15497i q^{82} +(-4.23521 - 7.33560i) q^{83} +(3.85595 - 6.67870i) q^{85} +(-15.3981 - 8.89008i) q^{86} +(-0.546041 + 5.39324i) q^{87} +(-2.65807 - 4.60392i) q^{88} +7.57858 q^{89} +(13.3280 - 4.44334i) q^{90} +(10.2038 - 5.89115i) q^{92} +(-16.5335 + 7.43697i) q^{93} +(3.46984 + 2.00332i) q^{94} +(5.58607 + 3.22512i) q^{95} +(-11.0497 + 4.97026i) q^{96} +(3.22662 - 1.86289i) q^{97} +(12.5918 + 11.1648i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} + 16 q^{9} - 24 q^{11} - 40 q^{15} - 24 q^{16} - 16 q^{18} - 48 q^{23} - 24 q^{25} - 24 q^{30} + 120 q^{32} - 8 q^{36} + 88 q^{39} + 48 q^{50} + 24 q^{51} + 80 q^{57} - 96 q^{60} - 48 q^{64}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61855 0.934468i 1.14449 0.660769i 0.196948 0.980414i \(-0.436897\pi\)
0.947537 + 0.319645i \(0.103564\pi\)
\(3\) −1.01272 + 1.40514i −0.584692 + 0.811255i
\(4\) 0.746462 1.29291i 0.373231 0.646455i
\(5\) −1.25287 + 2.17003i −0.560299 + 0.970467i 0.437171 + 0.899378i \(0.355980\pi\)
−0.997470 + 0.0710881i \(0.977353\pi\)
\(6\) −0.326074 + 3.22063i −0.133119 + 1.31482i
\(7\) 0 0
\(8\) 0.947692i 0.335060i
\(9\) −0.948811 2.84601i −0.316270 0.948669i
\(10\) 4.68306i 1.48091i
\(11\) −4.85803 + 2.80479i −1.46475 + 0.845675i −0.999225 0.0393590i \(-0.987468\pi\)
−0.465527 + 0.885034i \(0.654135\pi\)
\(12\) 1.06076 + 2.35823i 0.306215 + 0.680763i
\(13\) −0.384312 0.221883i −0.106589 0.0615392i 0.445758 0.895154i \(-0.352934\pi\)
−0.552347 + 0.833614i \(0.686268\pi\)
\(14\) 0 0
\(15\) −1.78039 3.95807i −0.459694 1.02197i
\(16\) 2.37851 + 4.11970i 0.594628 + 1.02993i
\(17\) −3.07770 −0.746451 −0.373226 0.927741i \(-0.621748\pi\)
−0.373226 + 0.927741i \(0.621748\pi\)
\(18\) −4.19520 3.71976i −0.988818 0.876756i
\(19\) 2.57419i 0.590560i −0.955411 0.295280i \(-0.904587\pi\)
0.955411 0.295280i \(-0.0954130\pi\)
\(20\) 1.87044 + 3.23969i 0.418242 + 0.724417i
\(21\) 0 0
\(22\) −5.24197 + 9.07935i −1.11759 + 1.93572i
\(23\) 6.83476 + 3.94605i 1.42515 + 0.822808i 0.996732 0.0807749i \(-0.0257395\pi\)
0.428413 + 0.903583i \(0.359073\pi\)
\(24\) −1.33164 0.959743i −0.271819 0.195907i
\(25\) −0.639351 1.10739i −0.127870 0.221478i
\(26\) −0.829370 −0.162653
\(27\) 4.95990 + 1.54899i 0.954534 + 0.298103i
\(28\) 0 0
\(29\) 2.71041 1.56485i 0.503310 0.290586i −0.226770 0.973948i \(-0.572816\pi\)
0.730079 + 0.683362i \(0.239483\pi\)
\(30\) −6.58033 4.74261i −1.20140 0.865878i
\(31\) 9.06457 + 5.23343i 1.62805 + 0.939952i 0.984675 + 0.174397i \(0.0557975\pi\)
0.643370 + 0.765556i \(0.277536\pi\)
\(32\) 6.05802 + 3.49760i 1.07092 + 0.618294i
\(33\) 0.978704 9.66665i 0.170370 1.68275i
\(34\) −4.98140 + 2.87601i −0.854303 + 0.493232i
\(35\) 0 0
\(36\) −4.38788 0.897709i −0.731314 0.149618i
\(37\) −1.41634 −0.232844 −0.116422 0.993200i \(-0.537143\pi\)
−0.116422 + 0.993200i \(0.537143\pi\)
\(38\) −2.40550 4.16645i −0.390224 0.675887i
\(39\) 0.700975 0.315306i 0.112246 0.0504894i
\(40\) −2.05652 1.18733i −0.325164 0.187734i
\(41\) −1.64665 + 2.85208i −0.257163 + 0.445420i −0.965481 0.260474i \(-0.916121\pi\)
0.708318 + 0.705894i \(0.249455\pi\)
\(42\) 0 0
\(43\) −4.75676 8.23894i −0.725398 1.25643i −0.958810 0.284049i \(-0.908322\pi\)
0.233411 0.972378i \(-0.425011\pi\)
\(44\) 8.37467i 1.26253i
\(45\) 7.36465 + 1.50672i 1.09786 + 0.224609i
\(46\) 14.7498 2.17474
\(47\) 1.07190 + 1.85659i 0.156353 + 0.270811i 0.933551 0.358445i \(-0.116693\pi\)
−0.777198 + 0.629256i \(0.783360\pi\)
\(48\) −8.19750 0.829960i −1.18321 0.119794i
\(49\) 0 0
\(50\) −2.06964 1.19491i −0.292691 0.168985i
\(51\) 3.11684 4.32458i 0.436444 0.605563i
\(52\) −0.573749 + 0.331254i −0.0795647 + 0.0459367i
\(53\) 4.85412i 0.666764i 0.942792 + 0.333382i \(0.108190\pi\)
−0.942792 + 0.333382i \(0.891810\pi\)
\(54\) 9.47532 2.12776i 1.28943 0.289551i
\(55\) 14.0561i 1.89532i
\(56\) 0 0
\(57\) 3.61709 + 2.60693i 0.479095 + 0.345296i
\(58\) 2.92461 5.06558i 0.384020 0.665143i
\(59\) 3.65496 6.33057i 0.475835 0.824170i −0.523782 0.851852i \(-0.675479\pi\)
0.999617 + 0.0276824i \(0.00881270\pi\)
\(60\) −6.44642 0.652671i −0.832230 0.0842595i
\(61\) −7.40950 + 4.27788i −0.948690 + 0.547726i −0.892674 0.450704i \(-0.851173\pi\)
−0.0560160 + 0.998430i \(0.517840\pi\)
\(62\) 19.5619 2.48437
\(63\) 0 0
\(64\) 3.55953 0.444941
\(65\) 0.962984 0.555979i 0.119443 0.0689607i
\(66\) −7.44910 16.5605i −0.916920 2.03845i
\(67\) 0.934442 1.61850i 0.114160 0.197731i −0.803284 0.595597i \(-0.796916\pi\)
0.917444 + 0.397865i \(0.130249\pi\)
\(68\) −2.29739 + 3.97919i −0.278599 + 0.482548i
\(69\) −12.4664 + 5.60753i −1.50078 + 0.675067i
\(70\) 0 0
\(71\) 2.95338i 0.350501i 0.984524 + 0.175251i \(0.0560736\pi\)
−0.984524 + 0.175251i \(0.943926\pi\)
\(72\) 2.69714 0.899181i 0.317861 0.105969i
\(73\) 8.51943i 0.997124i −0.866854 0.498562i \(-0.833862\pi\)
0.866854 0.498562i \(-0.166138\pi\)
\(74\) −2.29241 + 1.32352i −0.266487 + 0.153856i
\(75\) 2.20351 + 0.223096i 0.254440 + 0.0257609i
\(76\) −3.32820 1.92154i −0.381771 0.220415i
\(77\) 0 0
\(78\) 0.839916 1.16538i 0.0951018 0.131953i
\(79\) 0.287130 + 0.497324i 0.0323047 + 0.0559533i 0.881726 0.471762i \(-0.156382\pi\)
−0.849421 + 0.527716i \(0.823049\pi\)
\(80\) −11.9198 −1.33268
\(81\) −7.19951 + 5.40065i −0.799946 + 0.600072i
\(82\) 6.15497i 0.679702i
\(83\) −4.23521 7.33560i −0.464875 0.805186i 0.534321 0.845281i \(-0.320567\pi\)
−0.999196 + 0.0400951i \(0.987234\pi\)
\(84\) 0 0
\(85\) 3.85595 6.67870i 0.418236 0.724406i
\(86\) −15.3981 8.89008i −1.66042 0.958642i
\(87\) −0.546041 + 5.39324i −0.0585417 + 0.578216i
\(88\) −2.65807 4.60392i −0.283352 0.490779i
\(89\) 7.57858 0.803328 0.401664 0.915787i \(-0.368432\pi\)
0.401664 + 0.915787i \(0.368432\pi\)
\(90\) 13.3280 4.44334i 1.40490 0.468369i
\(91\) 0 0
\(92\) 10.2038 5.89115i 1.06382 0.614195i
\(93\) −16.5335 + 7.43697i −1.71445 + 0.771178i
\(94\) 3.46984 + 2.00332i 0.357887 + 0.206626i
\(95\) 5.58607 + 3.22512i 0.573119 + 0.330890i
\(96\) −11.0497 + 4.97026i −1.12775 + 0.507275i
\(97\) 3.22662 1.86289i 0.327614 0.189148i −0.327167 0.944966i \(-0.606094\pi\)
0.654781 + 0.755818i \(0.272761\pi\)
\(98\) 0 0
\(99\) 12.5918 + 11.1648i 1.26552 + 1.12210i
\(100\) −1.90901 −0.190901
\(101\) 3.76725 + 6.52506i 0.374855 + 0.649268i 0.990305 0.138908i \(-0.0443592\pi\)
−0.615450 + 0.788176i \(0.711026\pi\)
\(102\) 1.00356 9.91212i 0.0993670 0.981447i
\(103\) 12.4045 + 7.16173i 1.22225 + 0.705666i 0.965397 0.260784i \(-0.0839812\pi\)
0.256853 + 0.966451i \(0.417315\pi\)
\(104\) 0.210276 0.364210i 0.0206193 0.0357137i
\(105\) 0 0
\(106\) 4.53602 + 7.85662i 0.440577 + 0.763102i
\(107\) 13.4866i 1.30380i 0.758305 + 0.651900i \(0.226028\pi\)
−0.758305 + 0.651900i \(0.773972\pi\)
\(108\) 5.70509 5.25645i 0.548972 0.505802i
\(109\) −0.918695 −0.0879950 −0.0439975 0.999032i \(-0.514009\pi\)
−0.0439975 + 0.999032i \(0.514009\pi\)
\(110\) −13.1350 22.7504i −1.25237 2.16917i
\(111\) 1.43435 1.99014i 0.136142 0.188896i
\(112\) 0 0
\(113\) 4.10412 + 2.36952i 0.386083 + 0.222905i 0.680462 0.732784i \(-0.261779\pi\)
−0.294378 + 0.955689i \(0.595113\pi\)
\(114\) 8.29052 + 0.839377i 0.776478 + 0.0786149i
\(115\) −17.1261 + 9.88775i −1.59702 + 0.922037i
\(116\) 4.67242i 0.433823i
\(117\) −0.266840 + 1.30428i −0.0246694 + 0.120581i
\(118\) 13.6618i 1.25767i
\(119\) 0 0
\(120\) 3.75103 1.68726i 0.342421 0.154025i
\(121\) 10.2337 17.7252i 0.930332 1.61138i
\(122\) −7.99508 + 13.8479i −0.723841 + 1.25373i
\(123\) −2.33997 5.20211i −0.210988 0.469059i
\(124\) 13.5327 7.81312i 1.21527 0.701639i
\(125\) −9.32458 −0.834016
\(126\) 0 0
\(127\) 7.37245 0.654200 0.327100 0.944990i \(-0.393929\pi\)
0.327100 + 0.944990i \(0.393929\pi\)
\(128\) −6.35477 + 3.66893i −0.561688 + 0.324291i
\(129\) 16.3941 + 1.65983i 1.44342 + 0.146139i
\(130\) 1.03909 1.79976i 0.0911342 0.157849i
\(131\) −3.93150 + 6.80955i −0.343497 + 0.594953i −0.985079 0.172100i \(-0.944945\pi\)
0.641583 + 0.767054i \(0.278278\pi\)
\(132\) −11.7675 8.48116i −1.02423 0.738191i
\(133\) 0 0
\(134\) 3.49283i 0.301734i
\(135\) −9.57545 + 8.82246i −0.824124 + 0.759316i
\(136\) 2.91671i 0.250106i
\(137\) −10.0198 + 5.78491i −0.856046 + 0.494238i −0.862686 0.505740i \(-0.831220\pi\)
0.00664016 + 0.999978i \(0.497886\pi\)
\(138\) −14.9374 + 20.7255i −1.27156 + 1.76427i
\(139\) 16.9741 + 9.79999i 1.43972 + 0.831224i 0.997830 0.0658437i \(-0.0209739\pi\)
0.441893 + 0.897068i \(0.354307\pi\)
\(140\) 0 0
\(141\) −3.69429 0.374030i −0.311115 0.0314990i
\(142\) 2.75984 + 4.78018i 0.231600 + 0.401144i
\(143\) 2.48933 0.208169
\(144\) 9.46795 10.6781i 0.788996 0.889841i
\(145\) 7.84221i 0.651260i
\(146\) −7.96114 13.7891i −0.658868 1.14119i
\(147\) 0 0
\(148\) −1.05724 + 1.83120i −0.0869047 + 0.150523i
\(149\) −13.6315 7.87012i −1.11673 0.644746i −0.176167 0.984360i \(-0.556370\pi\)
−0.940565 + 0.339615i \(0.889703\pi\)
\(150\) 3.77496 1.69802i 0.308225 0.138643i
\(151\) 0.991353 + 1.71707i 0.0806752 + 0.139734i 0.903540 0.428503i \(-0.140959\pi\)
−0.822865 + 0.568237i \(0.807626\pi\)
\(152\) 2.43954 0.197873
\(153\) 2.92015 + 8.75915i 0.236081 + 0.708135i
\(154\) 0 0
\(155\) −22.7134 + 13.1136i −1.82438 + 1.05331i
\(156\) 0.115588 1.14166i 0.00925445 0.0914061i
\(157\) −7.26790 4.19612i −0.580041 0.334887i 0.181108 0.983463i \(-0.442031\pi\)
−0.761150 + 0.648576i \(0.775365\pi\)
\(158\) 0.929468 + 0.536628i 0.0739445 + 0.0426919i
\(159\) −6.82069 4.91584i −0.540916 0.389852i
\(160\) −15.1798 + 8.76405i −1.20007 + 0.692859i
\(161\) 0 0
\(162\) −6.60602 + 15.4689i −0.519018 + 1.21535i
\(163\) −1.07411 −0.0841306 −0.0420653 0.999115i \(-0.513394\pi\)
−0.0420653 + 0.999115i \(0.513394\pi\)
\(164\) 2.45832 + 4.25794i 0.191963 + 0.332489i
\(165\) 19.7507 + 14.2348i 1.53759 + 1.10818i
\(166\) −13.7098 7.91534i −1.06408 0.614349i
\(167\) 3.99731 6.92354i 0.309321 0.535760i −0.668893 0.743359i \(-0.733232\pi\)
0.978214 + 0.207599i \(0.0665649\pi\)
\(168\) 0 0
\(169\) −6.40154 11.0878i −0.492426 0.852907i
\(170\) 14.4130i 1.10543i
\(171\) −7.32617 + 2.44242i −0.560246 + 0.186777i
\(172\) −14.2030 −1.08297
\(173\) 0.501744 + 0.869046i 0.0381469 + 0.0660723i 0.884468 0.466600i \(-0.154521\pi\)
−0.846322 + 0.532672i \(0.821188\pi\)
\(174\) 4.15602 + 9.23947i 0.315067 + 0.700442i
\(175\) 0 0
\(176\) −23.1098 13.3424i −1.74197 1.00572i
\(177\) 5.19387 + 11.5468i 0.390395 + 0.867909i
\(178\) 12.2663 7.08195i 0.919398 0.530814i
\(179\) 1.47539i 0.110276i −0.998479 0.0551379i \(-0.982440\pi\)
0.998479 0.0551379i \(-0.0175599\pi\)
\(180\) 7.44549 8.39713i 0.554954 0.625885i
\(181\) 15.0440i 1.11821i 0.829096 + 0.559106i \(0.188855\pi\)
−0.829096 + 0.559106i \(0.811145\pi\)
\(182\) 0 0
\(183\) 1.49273 14.7436i 0.110345 1.08988i
\(184\) −3.73964 + 6.47724i −0.275690 + 0.477509i
\(185\) 1.77448 3.07349i 0.130462 0.225967i
\(186\) −19.8107 + 27.4871i −1.45259 + 2.01545i
\(187\) 14.9516 8.63229i 1.09337 0.631255i
\(188\) 3.20054 0.233423
\(189\) 0 0
\(190\) 12.0551 0.874568
\(191\) 11.4521 6.61187i 0.828644 0.478418i −0.0247439 0.999694i \(-0.507877\pi\)
0.853388 + 0.521276i \(0.174544\pi\)
\(192\) −3.60479 + 5.00162i −0.260153 + 0.360961i
\(193\) 0.777855 1.34728i 0.0559912 0.0969796i −0.836671 0.547705i \(-0.815501\pi\)
0.892662 + 0.450726i \(0.148835\pi\)
\(194\) 3.48163 6.03035i 0.249966 0.432954i
\(195\) −0.194004 + 1.91617i −0.0138929 + 0.137220i
\(196\) 0 0
\(197\) 4.96185i 0.353517i 0.984254 + 0.176759i \(0.0565612\pi\)
−0.984254 + 0.176759i \(0.943439\pi\)
\(198\) 30.8135 + 6.30408i 2.18982 + 0.448012i
\(199\) 11.1922i 0.793394i −0.917950 0.396697i \(-0.870156\pi\)
0.917950 0.396697i \(-0.129844\pi\)
\(200\) 1.04946 0.605908i 0.0742083 0.0428442i
\(201\) 1.32789 + 2.95210i 0.0936620 + 0.208225i
\(202\) 12.1949 + 7.04074i 0.858032 + 0.495385i
\(203\) 0 0
\(204\) −3.26470 7.25793i −0.228575 0.508157i
\(205\) −4.12606 7.14655i −0.288177 0.499137i
\(206\) 26.7696 1.86513
\(207\) 4.74559 23.1958i 0.329841 1.61222i
\(208\) 2.11100i 0.146372i
\(209\) 7.22006 + 12.5055i 0.499422 + 0.865024i
\(210\) 0 0
\(211\) 7.68026 13.3026i 0.528731 0.915789i −0.470708 0.882289i \(-0.656001\pi\)
0.999439 0.0334999i \(-0.0106654\pi\)
\(212\) 6.27594 + 3.62342i 0.431033 + 0.248857i
\(213\) −4.14990 2.99093i −0.284346 0.204935i
\(214\) 12.6028 + 21.8287i 0.861511 + 1.49218i
\(215\) 23.8383 1.62576
\(216\) −1.46796 + 4.70046i −0.0998824 + 0.319826i
\(217\) 0 0
\(218\) −1.48695 + 0.858492i −0.100709 + 0.0581444i
\(219\) 11.9710 + 8.62776i 0.808922 + 0.583010i
\(220\) −18.1733 10.4923i −1.22524 0.707394i
\(221\) 1.18280 + 0.682888i 0.0795635 + 0.0459360i
\(222\) 0.461830 4.56149i 0.0309960 0.306147i
\(223\) −2.76845 + 1.59837i −0.185389 + 0.107034i −0.589822 0.807533i \(-0.700802\pi\)
0.404433 + 0.914568i \(0.367469\pi\)
\(224\) 0 0
\(225\) −2.54501 + 2.87030i −0.169668 + 0.191353i
\(226\) 8.85695 0.589156
\(227\) −7.33494 12.7045i −0.486837 0.843227i 0.513048 0.858360i \(-0.328516\pi\)
−0.999885 + 0.0151329i \(0.995183\pi\)
\(228\) 6.07054 2.73060i 0.402031 0.180838i
\(229\) 2.92550 + 1.68904i 0.193322 + 0.111615i 0.593537 0.804807i \(-0.297731\pi\)
−0.400215 + 0.916421i \(0.631064\pi\)
\(230\) −18.4796 + 32.0076i −1.21851 + 2.11052i
\(231\) 0 0
\(232\) 1.48300 + 2.56863i 0.0973637 + 0.168639i
\(233\) 4.88009i 0.319706i 0.987141 + 0.159853i \(0.0511020\pi\)
−0.987141 + 0.159853i \(0.948898\pi\)
\(234\) 0.786915 + 2.36039i 0.0514423 + 0.154304i
\(235\) −5.37180 −0.350418
\(236\) −5.45657 9.45106i −0.355193 0.615212i
\(237\) −0.989589 0.100191i −0.0642807 0.00650813i
\(238\) 0 0
\(239\) 13.6253 + 7.86657i 0.881347 + 0.508846i 0.871102 0.491101i \(-0.163406\pi\)
0.0102448 + 0.999948i \(0.496739\pi\)
\(240\) 12.0714 16.7490i 0.779207 1.08114i
\(241\) −0.666305 + 0.384691i −0.0429205 + 0.0247801i −0.521307 0.853369i \(-0.674555\pi\)
0.478386 + 0.878150i \(0.341222\pi\)
\(242\) 38.2521i 2.45894i
\(243\) −0.297576 15.5856i −0.0190895 0.999818i
\(244\) 12.7731i 0.817714i
\(245\) 0 0
\(246\) −8.64856 6.23323i −0.551412 0.397416i
\(247\) −0.571169 + 0.989293i −0.0363426 + 0.0629472i
\(248\) −4.95968 + 8.59042i −0.314940 + 0.545492i
\(249\) 14.5966 + 1.47784i 0.925020 + 0.0936541i
\(250\) −15.0923 + 8.71353i −0.954519 + 0.551092i
\(251\) 1.14544 0.0722996 0.0361498 0.999346i \(-0.488491\pi\)
0.0361498 + 0.999346i \(0.488491\pi\)
\(252\) 0 0
\(253\) −44.2713 −2.78331
\(254\) 11.9327 6.88933i 0.748722 0.432275i
\(255\) 5.47949 + 12.1818i 0.343139 + 0.762851i
\(256\) −10.4165 + 18.0420i −0.651033 + 1.12762i
\(257\) −14.4917 + 25.1004i −0.903969 + 1.56572i −0.0816738 + 0.996659i \(0.526027\pi\)
−0.822295 + 0.569061i \(0.807307\pi\)
\(258\) 28.0856 12.6332i 1.74853 0.786511i
\(259\) 0 0
\(260\) 1.66007i 0.102953i
\(261\) −7.02525 6.22908i −0.434852 0.385571i
\(262\) 14.6954i 0.907887i
\(263\) 11.8643 6.84988i 0.731586 0.422381i −0.0874160 0.996172i \(-0.527861\pi\)
0.819002 + 0.573790i \(0.194528\pi\)
\(264\) 9.16100 + 0.927510i 0.563821 + 0.0570843i
\(265\) −10.5336 6.08156i −0.647072 0.373587i
\(266\) 0 0
\(267\) −7.67496 + 10.6489i −0.469700 + 0.651704i
\(268\) −1.39505 2.41630i −0.0852163 0.147599i
\(269\) 10.4795 0.638944 0.319472 0.947596i \(-0.396494\pi\)
0.319472 + 0.947596i \(0.396494\pi\)
\(270\) −7.25401 + 23.2275i −0.441465 + 1.41358i
\(271\) 6.54607i 0.397646i −0.980035 0.198823i \(-0.936288\pi\)
0.980035 0.198823i \(-0.0637118\pi\)
\(272\) −7.32034 12.6792i −0.443861 0.768790i
\(273\) 0 0
\(274\) −10.8116 + 18.7263i −0.653155 + 1.13130i
\(275\) 6.21198 + 3.58649i 0.374596 + 0.216273i
\(276\) −2.05566 + 20.3038i −0.123736 + 1.22214i
\(277\) −11.2156 19.4261i −0.673883 1.16720i −0.976794 0.214181i \(-0.931292\pi\)
0.302911 0.953019i \(-0.402041\pi\)
\(278\) 36.6311 2.19699
\(279\) 6.29382 30.7634i 0.376801 1.84176i
\(280\) 0 0
\(281\) 19.3552 11.1747i 1.15463 0.666627i 0.204621 0.978841i \(-0.434404\pi\)
0.950012 + 0.312214i \(0.101071\pi\)
\(282\) −6.32890 + 2.84681i −0.376880 + 0.169525i
\(283\) 16.4296 + 9.48563i 0.976638 + 0.563862i 0.901254 0.433292i \(-0.142648\pi\)
0.0753848 + 0.997155i \(0.475981\pi\)
\(284\) 3.81845 + 2.20459i 0.226584 + 0.130818i
\(285\) −10.1888 + 4.58306i −0.603535 + 0.271477i
\(286\) 4.02910 2.32620i 0.238246 0.137551i
\(287\) 0 0
\(288\) 4.20627 20.5597i 0.247857 1.21149i
\(289\) −7.52777 −0.442810
\(290\) 7.32830 + 12.6930i 0.430333 + 0.745358i
\(291\) −0.650038 + 6.42042i −0.0381059 + 0.376372i
\(292\) −11.0149 6.35943i −0.644596 0.372158i
\(293\) −4.41136 + 7.64069i −0.257714 + 0.446374i −0.965629 0.259924i \(-0.916303\pi\)
0.707915 + 0.706298i \(0.249636\pi\)
\(294\) 0 0
\(295\) 9.15835 + 15.8627i 0.533220 + 0.923563i
\(296\) 1.34225i 0.0780167i
\(297\) −28.4399 + 6.38642i −1.65025 + 0.370578i
\(298\) −29.4175 −1.70411
\(299\) −1.75112 3.03303i −0.101270 0.175405i
\(300\) 1.93328 2.68241i 0.111618 0.154869i
\(301\) 0 0
\(302\) 3.20910 + 1.85278i 0.184663 + 0.106615i
\(303\) −12.9837 1.31455i −0.745897 0.0755187i
\(304\) 10.6049 6.12275i 0.608233 0.351164i
\(305\) 21.4385i 1.22756i
\(306\) 12.9116 + 11.4483i 0.738105 + 0.654456i
\(307\) 28.7533i 1.64104i 0.571620 + 0.820519i \(0.306315\pi\)
−0.571620 + 0.820519i \(0.693685\pi\)
\(308\) 0 0
\(309\) −22.6254 + 10.1772i −1.28712 + 0.578959i
\(310\) −24.5085 + 42.4499i −1.39199 + 2.41099i
\(311\) 6.64294 11.5059i 0.376687 0.652441i −0.613891 0.789391i \(-0.710397\pi\)
0.990578 + 0.136950i \(0.0437300\pi\)
\(312\) 0.298813 + 0.664308i 0.0169170 + 0.0376090i
\(313\) −27.3227 + 15.7748i −1.54437 + 0.891643i −0.545815 + 0.837905i \(0.683780\pi\)
−0.998555 + 0.0537372i \(0.982887\pi\)
\(314\) −15.6846 −0.885132
\(315\) 0 0
\(316\) 0.857328 0.0482285
\(317\) 17.3819 10.0354i 0.976264 0.563646i 0.0751236 0.997174i \(-0.476065\pi\)
0.901140 + 0.433528i \(0.142732\pi\)
\(318\) −15.6333 1.58280i −0.876672 0.0887591i
\(319\) −8.77816 + 15.2042i −0.491483 + 0.851273i
\(320\) −4.45961 + 7.72428i −0.249300 + 0.431800i
\(321\) −18.9505 13.6581i −1.05772 0.762322i
\(322\) 0 0
\(323\) 7.92259i 0.440824i
\(324\) 1.60839 + 13.3397i 0.0893549 + 0.741095i
\(325\) 0.567444i 0.0314761i
\(326\) −1.73849 + 1.00372i −0.0962862 + 0.0555909i
\(327\) 0.930378 1.29089i 0.0514500 0.0713864i
\(328\) −2.70289 1.56052i −0.149242 0.0861651i
\(329\) 0 0
\(330\) 45.2695 + 4.58333i 2.49200 + 0.252304i
\(331\) −0.623957 1.08073i −0.0342958 0.0594020i 0.848368 0.529407i \(-0.177585\pi\)
−0.882664 + 0.470005i \(0.844252\pi\)
\(332\) −12.6457 −0.694023
\(333\) 1.34384 + 4.03090i 0.0736417 + 0.220892i
\(334\) 14.9414i 0.817559i
\(335\) 2.34146 + 4.05553i 0.127928 + 0.221577i
\(336\) 0 0
\(337\) 6.58745 11.4098i 0.358842 0.621532i −0.628926 0.777465i \(-0.716505\pi\)
0.987768 + 0.155933i \(0.0498385\pi\)
\(338\) −20.7224 11.9641i −1.12715 0.650759i
\(339\) −7.48581 + 3.36720i −0.406573 + 0.182881i
\(340\) −5.75664 9.97079i −0.312198 0.540742i
\(341\) −58.7146 −3.17958
\(342\) −9.57538 + 10.7992i −0.517777 + 0.583956i
\(343\) 0 0
\(344\) 7.80798 4.50794i 0.420978 0.243052i
\(345\) 3.45024 34.0780i 0.185755 1.83470i
\(346\) 1.62419 + 0.937727i 0.0873171 + 0.0504125i
\(347\) −23.4411 13.5337i −1.25838 0.726529i −0.285624 0.958342i \(-0.592201\pi\)
−0.972760 + 0.231813i \(0.925534\pi\)
\(348\) 6.56538 + 4.73183i 0.351941 + 0.253653i
\(349\) 30.3413 17.5176i 1.62413 0.937694i 0.638336 0.769758i \(-0.279623\pi\)
0.985798 0.167936i \(-0.0537101\pi\)
\(350\) 0 0
\(351\) −1.56246 1.69581i −0.0833978 0.0905158i
\(352\) −39.2401 −2.09150
\(353\) 1.26256 + 2.18682i 0.0671992 + 0.116392i 0.897667 0.440674i \(-0.145260\pi\)
−0.830468 + 0.557066i \(0.811927\pi\)
\(354\) 19.1966 + 13.8355i 1.02029 + 0.735348i
\(355\) −6.40892 3.70019i −0.340150 0.196386i
\(356\) 5.65713 9.79843i 0.299827 0.519316i
\(357\) 0 0
\(358\) −1.37871 2.38799i −0.0728669 0.126209i
\(359\) 7.26762i 0.383570i 0.981437 + 0.191785i \(0.0614277\pi\)
−0.981437 + 0.191785i \(0.938572\pi\)
\(360\) −1.42791 + 6.97942i −0.0752573 + 0.367848i
\(361\) 12.3735 0.651239
\(362\) 14.0581 + 24.3494i 0.738880 + 1.27978i
\(363\) 14.5425 + 32.3303i 0.763285 + 1.69690i
\(364\) 0 0
\(365\) 18.4874 + 10.6737i 0.967675 + 0.558688i
\(366\) −11.3614 25.2582i −0.593871 1.32027i
\(367\) −11.6714 + 6.73848i −0.609242 + 0.351746i −0.772669 0.634809i \(-0.781079\pi\)
0.163427 + 0.986555i \(0.447745\pi\)
\(368\) 37.5429i 1.95706i
\(369\) 9.67940 + 1.98029i 0.503889 + 0.103090i
\(370\) 6.63278i 0.344822i
\(371\) 0 0
\(372\) −2.72632 + 26.9278i −0.141353 + 1.39614i
\(373\) −11.8820 + 20.5801i −0.615224 + 1.06560i 0.375121 + 0.926976i \(0.377601\pi\)
−0.990345 + 0.138624i \(0.955732\pi\)
\(374\) 16.1332 27.9435i 0.834228 1.44492i
\(375\) 9.44316 13.1023i 0.487642 0.676600i
\(376\) −1.75947 + 1.01583i −0.0907379 + 0.0523875i
\(377\) −1.38886 −0.0715297
\(378\) 0 0
\(379\) 21.2283 1.09042 0.545211 0.838299i \(-0.316449\pi\)
0.545211 + 0.838299i \(0.316449\pi\)
\(380\) 8.33958 4.81486i 0.427812 0.246997i
\(381\) −7.46621 + 10.3593i −0.382505 + 0.530723i
\(382\) 12.3572 21.4032i 0.632248 1.09509i
\(383\) 6.47930 11.2225i 0.331077 0.573442i −0.651646 0.758523i \(-0.725921\pi\)
0.982723 + 0.185081i \(0.0592547\pi\)
\(384\) 1.28024 12.6449i 0.0653319 0.645282i
\(385\) 0 0
\(386\) 2.90752i 0.147989i
\(387\) −18.9348 + 21.3550i −0.962511 + 1.08553i
\(388\) 5.56231i 0.282384i
\(389\) 9.48037 5.47350i 0.480674 0.277517i −0.240023 0.970767i \(-0.577155\pi\)
0.720697 + 0.693250i \(0.243822\pi\)
\(390\) 1.47660 + 3.28271i 0.0747705 + 0.166226i
\(391\) −21.0353 12.1447i −1.06380 0.614186i
\(392\) 0 0
\(393\) −5.58685 12.4204i −0.281819 0.626528i
\(394\) 4.63669 + 8.03098i 0.233593 + 0.404595i
\(395\) −1.43894 −0.0724011
\(396\) 23.8344 7.94598i 1.19772 0.399301i
\(397\) 29.8901i 1.50014i −0.661358 0.750071i \(-0.730019\pi\)
0.661358 0.750071i \(-0.269981\pi\)
\(398\) −10.4588 18.1151i −0.524250 0.908028i
\(399\) 0 0
\(400\) 3.04141 5.26788i 0.152071 0.263394i
\(401\) 16.6233 + 9.59744i 0.830126 + 0.479273i 0.853896 0.520444i \(-0.174234\pi\)
−0.0237698 + 0.999717i \(0.507567\pi\)
\(402\) 4.90789 + 3.53724i 0.244783 + 0.176422i
\(403\) −2.32242 4.02254i −0.115688 0.200377i
\(404\) 11.2484 0.559630
\(405\) −2.69953 22.3894i −0.134141 1.11254i
\(406\) 0 0
\(407\) 6.88060 3.97252i 0.341059 0.196910i
\(408\) 4.09837 + 2.95380i 0.202900 + 0.146235i
\(409\) −24.9737 14.4186i −1.23487 0.712953i −0.266830 0.963744i \(-0.585976\pi\)
−0.968041 + 0.250790i \(0.919309\pi\)
\(410\) −13.3565 7.71135i −0.659628 0.380837i
\(411\) 2.01859 19.9376i 0.0995698 0.983449i
\(412\) 18.5190 10.6919i 0.912363 0.526753i
\(413\) 0 0
\(414\) −13.9948 41.9781i −0.687807 2.06311i
\(415\) 21.2246 1.04188
\(416\) −1.55211 2.68834i −0.0760986 0.131807i
\(417\) −30.9602 + 13.9263i −1.51613 + 0.681972i
\(418\) 23.3720 + 13.4938i 1.14316 + 0.660005i
\(419\) 5.06390 8.77094i 0.247388 0.428488i −0.715412 0.698702i \(-0.753761\pi\)
0.962800 + 0.270214i \(0.0870945\pi\)
\(420\) 0 0
\(421\) 12.7094 + 22.0134i 0.619419 + 1.07287i 0.989592 + 0.143902i \(0.0459651\pi\)
−0.370173 + 0.928963i \(0.620702\pi\)
\(422\) 28.7079i 1.39748i
\(423\) 4.26683 4.81219i 0.207460 0.233977i
\(424\) −4.60021 −0.223406
\(425\) 1.96773 + 3.40821i 0.0954490 + 0.165322i
\(426\) −9.51173 0.963020i −0.460845 0.0466585i
\(427\) 0 0
\(428\) 17.4370 + 10.0673i 0.842849 + 0.486619i
\(429\) −2.52099 + 3.49785i −0.121715 + 0.168878i
\(430\) 38.5834 22.2762i 1.86066 1.07425i
\(431\) 10.8434i 0.522308i −0.965297 0.261154i \(-0.915897\pi\)
0.965297 0.261154i \(-0.0841031\pi\)
\(432\) 5.41581 + 24.1176i 0.260568 + 1.16036i
\(433\) 13.0519i 0.627233i −0.949550 0.313616i \(-0.898459\pi\)
0.949550 0.313616i \(-0.101541\pi\)
\(434\) 0 0
\(435\) −11.0194 7.94194i −0.528338 0.380787i
\(436\) −0.685771 + 1.18779i −0.0328425 + 0.0568849i
\(437\) 10.1579 17.5940i 0.485918 0.841634i
\(438\) 27.4379 + 2.77796i 1.31103 + 0.132736i
\(439\) 27.6736 15.9773i 1.32079 0.762557i 0.336933 0.941529i \(-0.390611\pi\)
0.983854 + 0.178972i \(0.0572772\pi\)
\(440\) 13.3208 0.635046
\(441\) 0 0
\(442\) 2.55255 0.121412
\(443\) 21.4748 12.3985i 1.02030 0.589068i 0.106107 0.994355i \(-0.466162\pi\)
0.914190 + 0.405286i \(0.132828\pi\)
\(444\) −1.50239 3.34005i −0.0713004 0.158512i
\(445\) −9.49496 + 16.4458i −0.450104 + 0.779603i
\(446\) −2.98724 + 5.17406i −0.141450 + 0.244999i
\(447\) 24.8634 11.1838i 1.17600 0.528977i
\(448\) 0 0
\(449\) 13.7710i 0.649892i −0.945733 0.324946i \(-0.894654\pi\)
0.945733 0.324946i \(-0.105346\pi\)
\(450\) −1.43702 + 7.02395i −0.0677416 + 0.331112i
\(451\) 18.4740i 0.869906i
\(452\) 6.12715 3.53751i 0.288197 0.166390i
\(453\) −3.41668 0.345923i −0.160530 0.0162529i
\(454\) −23.7439 13.7085i −1.11436 0.643374i
\(455\) 0 0
\(456\) −2.47056 + 3.42789i −0.115695 + 0.160525i
\(457\) −13.6554 23.6518i −0.638771 1.10638i −0.985703 0.168494i \(-0.946110\pi\)
0.346931 0.937890i \(-0.387224\pi\)
\(458\) 6.31340 0.295006
\(459\) −15.2651 4.76732i −0.712513 0.222520i
\(460\) 29.5233i 1.37653i
\(461\) −5.51822 9.55784i −0.257009 0.445153i 0.708430 0.705781i \(-0.249404\pi\)
−0.965439 + 0.260628i \(0.916070\pi\)
\(462\) 0 0
\(463\) −12.2346 + 21.1910i −0.568591 + 0.984829i 0.428115 + 0.903724i \(0.359178\pi\)
−0.996706 + 0.0811042i \(0.974155\pi\)
\(464\) 12.8935 + 7.44405i 0.598564 + 0.345581i
\(465\) 4.57587 45.1958i 0.212201 2.09590i
\(466\) 4.56029 + 7.89866i 0.211251 + 0.365898i
\(467\) 15.9048 0.735988 0.367994 0.929828i \(-0.380045\pi\)
0.367994 + 0.929828i \(0.380045\pi\)
\(468\) 1.48713 + 1.31860i 0.0687427 + 0.0609521i
\(469\) 0 0
\(470\) −8.69451 + 5.01978i −0.401048 + 0.231545i
\(471\) 13.2564 5.96290i 0.610824 0.274756i
\(472\) 5.99943 + 3.46377i 0.276146 + 0.159433i
\(473\) 46.2169 + 26.6834i 2.12506 + 1.22690i
\(474\) −1.69532 + 0.762576i −0.0778687 + 0.0350263i
\(475\) −2.85063 + 1.64581i −0.130796 + 0.0755151i
\(476\) 0 0
\(477\) 13.8149 4.60564i 0.632539 0.210878i
\(478\) 29.4042 1.34492
\(479\) −6.92685 11.9976i −0.316496 0.548187i 0.663259 0.748390i \(-0.269173\pi\)
−0.979754 + 0.200204i \(0.935840\pi\)
\(480\) 3.05813 30.2051i 0.139584 1.37867i
\(481\) 0.544315 + 0.314261i 0.0248186 + 0.0143290i
\(482\) −0.718964 + 1.24528i −0.0327479 + 0.0567210i
\(483\) 0 0
\(484\) −15.2781 26.4624i −0.694458 1.20284i
\(485\) 9.33582i 0.423918i
\(486\) −15.0459 24.9480i −0.682496 1.13166i
\(487\) 28.7987 1.30499 0.652496 0.757792i \(-0.273722\pi\)
0.652496 + 0.757792i \(0.273722\pi\)
\(488\) −4.05411 7.02193i −0.183521 0.317868i
\(489\) 1.08777 1.50927i 0.0491905 0.0682514i
\(490\) 0 0
\(491\) −33.5627 19.3774i −1.51466 0.874492i −0.999852 0.0171884i \(-0.994528\pi\)
−0.514812 0.857303i \(-0.672138\pi\)
\(492\) −8.47257 0.857809i −0.381973 0.0386730i
\(493\) −8.34181 + 4.81615i −0.375696 + 0.216908i
\(494\) 2.13496i 0.0960562i
\(495\) −40.0038 + 13.3366i −1.79803 + 0.599435i
\(496\) 49.7911i 2.23569i
\(497\) 0 0
\(498\) 25.0062 11.2481i 1.12056 0.504039i
\(499\) 1.73333 3.00222i 0.0775946 0.134398i −0.824617 0.565691i \(-0.808609\pi\)
0.902212 + 0.431294i \(0.141943\pi\)
\(500\) −6.96045 + 12.0558i −0.311281 + 0.539154i
\(501\) 5.68038 + 12.6283i 0.253780 + 0.564193i
\(502\) 1.85395 1.07038i 0.0827458 0.0477733i
\(503\) −28.2202 −1.25828 −0.629138 0.777293i \(-0.716592\pi\)
−0.629138 + 0.777293i \(0.716592\pi\)
\(504\) 0 0
\(505\) −18.8794 −0.840124
\(506\) −71.6552 + 41.3701i −3.18546 + 1.83913i
\(507\) 22.0628 + 2.23376i 0.979842 + 0.0992046i
\(508\) 5.50326 9.53193i 0.244168 0.422911i
\(509\) 17.9062 31.0144i 0.793678 1.37469i −0.129997 0.991514i \(-0.541497\pi\)
0.923675 0.383176i \(-0.125170\pi\)
\(510\) 20.2523 + 14.5963i 0.896786 + 0.646336i
\(511\) 0 0
\(512\) 24.2599i 1.07215i
\(513\) 3.98740 12.7677i 0.176048 0.563709i
\(514\) 54.1682i 2.38926i
\(515\) −31.0823 + 17.9454i −1.36965 + 0.790768i
\(516\) 14.3836 19.9571i 0.633201 0.878561i
\(517\) −10.4147 6.01291i −0.458036 0.264447i
\(518\) 0 0
\(519\) −1.72925 0.175079i −0.0759057 0.00768511i
\(520\) 0.526897 + 0.912612i 0.0231060 + 0.0400207i
\(521\) −26.9216 −1.17946 −0.589729 0.807601i \(-0.700766\pi\)
−0.589729 + 0.807601i \(0.700766\pi\)
\(522\) −17.1916 3.51719i −0.752455 0.153943i
\(523\) 9.03185i 0.394935i −0.980309 0.197468i \(-0.936728\pi\)
0.980309 0.197468i \(-0.0632717\pi\)
\(524\) 5.86943 + 10.1662i 0.256407 + 0.444110i
\(525\) 0 0
\(526\) 12.8020 22.1737i 0.558193 0.966819i
\(527\) −27.8980 16.1069i −1.21526 0.701629i
\(528\) 42.1516 18.9603i 1.83441 0.825140i
\(529\) 19.6426 + 34.0220i 0.854026 + 1.47922i
\(530\) −22.7321 −0.987420
\(531\) −21.4847 4.39552i −0.932357 0.190749i
\(532\) 0 0
\(533\) 1.26565 0.730726i 0.0548216 0.0316513i
\(534\) −2.47118 + 24.4078i −0.106938 + 1.05623i
\(535\) −29.2664 16.8969i −1.26530 0.730518i
\(536\) 1.53384 + 0.885563i 0.0662518 + 0.0382505i
\(537\) 2.07312 + 1.49415i 0.0894619 + 0.0644774i
\(538\) 16.9615 9.79273i 0.731262 0.422195i
\(539\) 0 0
\(540\) 4.25893 + 18.9658i 0.183275 + 0.816159i
\(541\) 11.3358 0.487366 0.243683 0.969855i \(-0.421644\pi\)
0.243683 + 0.969855i \(0.421644\pi\)
\(542\) −6.11710 10.5951i −0.262752 0.455100i
\(543\) −21.1389 15.2353i −0.907155 0.653810i
\(544\) −18.6447 10.7646i −0.799387 0.461526i
\(545\) 1.15100 1.99360i 0.0493035 0.0853962i
\(546\) 0 0
\(547\) 19.4246 + 33.6444i 0.830537 + 1.43853i 0.897613 + 0.440784i \(0.145300\pi\)
−0.0670762 + 0.997748i \(0.521367\pi\)
\(548\) 17.2729i 0.737861i
\(549\) 19.2051 + 17.0286i 0.819653 + 0.726763i
\(550\) 13.4058 0.571627
\(551\) −4.02823 6.97711i −0.171609 0.297235i
\(552\) −5.31421 11.8143i −0.226188 0.502850i
\(553\) 0 0
\(554\) −36.3061 20.9613i −1.54250 0.890562i
\(555\) 2.52162 + 5.60596i 0.107037 + 0.237960i
\(556\) 25.3410 14.6306i 1.07470 0.620478i
\(557\) 7.26499i 0.307827i −0.988084 0.153914i \(-0.950812\pi\)
0.988084 0.153914i \(-0.0491878\pi\)
\(558\) −18.5606 55.6733i −0.785731 2.35684i
\(559\) 4.22177i 0.178562i
\(560\) 0 0
\(561\) −3.01216 + 29.7510i −0.127173 + 1.25609i
\(562\) 20.8848 36.1736i 0.880973 1.52589i
\(563\) −11.5409 + 19.9894i −0.486390 + 0.842453i −0.999878 0.0156446i \(-0.995020\pi\)
0.513487 + 0.858097i \(0.328353\pi\)
\(564\) −3.24123 + 4.49719i −0.136481 + 0.189366i
\(565\) −10.2838 + 5.93738i −0.432644 + 0.249787i
\(566\) 35.4561 1.49033
\(567\) 0 0
\(568\) −2.79889 −0.117439
\(569\) −15.5482 + 8.97677i −0.651815 + 0.376326i −0.789151 0.614199i \(-0.789479\pi\)
0.137336 + 0.990525i \(0.456146\pi\)
\(570\) −12.2084 + 16.9390i −0.511353 + 0.709498i
\(571\) 7.04234 12.1977i 0.294713 0.510457i −0.680205 0.733022i \(-0.738109\pi\)
0.974918 + 0.222564i \(0.0714427\pi\)
\(572\) 1.85819 3.21849i 0.0776950 0.134572i
\(573\) −2.30715 + 22.7877i −0.0963826 + 0.951969i
\(574\) 0 0
\(575\) 10.0916i 0.420851i
\(576\) −3.37732 10.1304i −0.140722 0.422102i
\(577\) 30.0675i 1.25172i 0.779934 + 0.625862i \(0.215253\pi\)
−0.779934 + 0.625862i \(0.784747\pi\)
\(578\) −12.1841 + 7.03447i −0.506790 + 0.292595i
\(579\) 1.10537 + 2.45741i 0.0459376 + 0.102126i
\(580\) 10.1393 + 5.85392i 0.421011 + 0.243071i
\(581\) 0 0
\(582\) 4.94756 + 10.9992i 0.205083 + 0.455931i
\(583\) −13.6148 23.5815i −0.563866 0.976644i
\(584\) 8.07379 0.334096
\(585\) −2.49601 2.21314i −0.103197 0.0915021i
\(586\) 16.4891i 0.681158i
\(587\) 18.0979 + 31.3465i 0.746981 + 1.29381i 0.949264 + 0.314481i \(0.101831\pi\)
−0.202283 + 0.979327i \(0.564836\pi\)
\(588\) 0 0
\(589\) 13.4719 23.3339i 0.555098 0.961459i
\(590\) 29.6464 + 17.1164i 1.22052 + 0.704670i
\(591\) −6.97207 5.02494i −0.286793 0.206699i
\(592\) −3.36877 5.83489i −0.138456 0.239812i
\(593\) −2.04317 −0.0839028 −0.0419514 0.999120i \(-0.513357\pi\)
−0.0419514 + 0.999120i \(0.513357\pi\)
\(594\) −40.0635 + 36.9130i −1.64382 + 1.51456i
\(595\) 0 0
\(596\) −20.3507 + 11.7495i −0.833598 + 0.481278i
\(597\) 15.7266 + 11.3345i 0.643645 + 0.463891i
\(598\) −5.66854 3.27273i −0.231804 0.133832i
\(599\) −15.7873 9.11478i −0.645050 0.372420i 0.141507 0.989937i \(-0.454805\pi\)
−0.786557 + 0.617517i \(0.788139\pi\)
\(600\) −0.211426 + 2.08825i −0.00863143 + 0.0852525i
\(601\) −32.1713 + 18.5741i −1.31230 + 0.757654i −0.982476 0.186390i \(-0.940321\pi\)
−0.329820 + 0.944044i \(0.606988\pi\)
\(602\) 0 0
\(603\) −5.49287 1.12378i −0.223687 0.0457637i
\(604\) 2.96003 0.120442
\(605\) 25.6428 + 44.4146i 1.04253 + 1.80571i
\(606\) −22.2432 + 10.0052i −0.903568 + 0.406435i
\(607\) 17.1730 + 9.91482i 0.697030 + 0.402430i 0.806240 0.591588i \(-0.201499\pi\)
−0.109211 + 0.994019i \(0.534832\pi\)
\(608\) 9.00349 15.5945i 0.365140 0.632440i
\(609\) 0 0
\(610\) −20.0336 34.6991i −0.811135 1.40493i
\(611\) 0.951346i 0.0384873i
\(612\) 13.5046 + 2.76288i 0.545891 + 0.111683i
\(613\) −12.6882 −0.512473 −0.256237 0.966614i \(-0.582483\pi\)
−0.256237 + 0.966614i \(0.582483\pi\)
\(614\) 26.8690 + 46.5385i 1.08435 + 1.87814i
\(615\) 14.2204 + 1.43975i 0.573422 + 0.0580564i
\(616\) 0 0
\(617\) 4.37247 + 2.52445i 0.176029 + 0.101630i 0.585426 0.810726i \(-0.300927\pi\)
−0.409397 + 0.912357i \(0.634261\pi\)
\(618\) −27.1100 + 37.6150i −1.09053 + 1.51310i
\(619\) 0.231999 0.133945i 0.00932485 0.00538370i −0.495330 0.868705i \(-0.664953\pi\)
0.504655 + 0.863321i \(0.331620\pi\)
\(620\) 39.1552i 1.57251i
\(621\) 27.7873 + 30.1590i 1.11507 + 1.21024i
\(622\) 24.8305i 0.995611i
\(623\) 0 0
\(624\) 2.96625 + 2.13785i 0.118745 + 0.0855824i
\(625\) 14.8792 25.7716i 0.595169 1.03086i
\(626\) −29.4820 + 51.0644i −1.17834 + 2.04094i
\(627\) −24.8838 2.51937i −0.993763 0.100614i
\(628\) −10.8504 + 6.26449i −0.432979 + 0.249981i
\(629\) 4.35905 0.173807
\(630\) 0 0
\(631\) 37.7899 1.50439 0.752197 0.658938i \(-0.228994\pi\)
0.752197 + 0.658938i \(0.228994\pi\)
\(632\) −0.471310 + 0.272111i −0.0187477 + 0.0108240i
\(633\) 10.9140 + 24.2636i 0.433794 + 0.964391i
\(634\) 18.7556 32.4856i 0.744880 1.29017i
\(635\) −9.23671 + 15.9984i −0.366547 + 0.634879i
\(636\) −11.4471 + 5.14905i −0.453908 + 0.204173i
\(637\) 0 0
\(638\) 32.8117i 1.29903i
\(639\) 8.40533 2.80220i 0.332510 0.110853i
\(640\) 18.3867i 0.726799i
\(641\) 29.7991 17.2045i 1.17699 0.679537i 0.221676 0.975120i \(-0.428847\pi\)
0.955317 + 0.295583i \(0.0955140\pi\)
\(642\) −43.4354 4.39764i −1.71426 0.173561i
\(643\) 0.676278 + 0.390449i 0.0266698 + 0.0153978i 0.513276 0.858224i \(-0.328432\pi\)
−0.486606 + 0.873622i \(0.661765\pi\)
\(644\) 0 0
\(645\) −24.1415 + 33.4961i −0.950569 + 1.31891i
\(646\) 7.40341 + 12.8231i 0.291283 + 0.504517i
\(647\) −19.6436 −0.772271 −0.386136 0.922442i \(-0.626190\pi\)
−0.386136 + 0.922442i \(0.626190\pi\)
\(648\) −5.11815 6.82292i −0.201060 0.268030i
\(649\) 41.0055i 1.60961i
\(650\) 0.530259 + 0.918435i 0.0207985 + 0.0360240i
\(651\) 0 0
\(652\) −0.801781 + 1.38872i −0.0314001 + 0.0543867i
\(653\) 2.77600 + 1.60272i 0.108633 + 0.0627194i 0.553332 0.832961i \(-0.313356\pi\)
−0.444699 + 0.895680i \(0.646689\pi\)
\(654\) 0.299563 2.95878i 0.0117138 0.115697i
\(655\) −9.85129 17.0629i −0.384922 0.666704i
\(656\) −15.6663 −0.611666
\(657\) −24.2464 + 8.08333i −0.945940 + 0.315361i
\(658\) 0 0
\(659\) −24.2959 + 14.0273i −0.946435 + 0.546425i −0.891972 0.452091i \(-0.850678\pi\)
−0.0544636 + 0.998516i \(0.517345\pi\)
\(660\) 33.1475 14.9101i 1.29027 0.580377i
\(661\) 28.0490 + 16.1941i 1.09098 + 0.629878i 0.933837 0.357698i \(-0.116438\pi\)
0.157143 + 0.987576i \(0.449772\pi\)
\(662\) −2.01981 1.16614i −0.0785020 0.0453232i
\(663\) −2.15739 + 0.970418i −0.0837860 + 0.0376879i
\(664\) 6.95189 4.01367i 0.269785 0.155761i
\(665\) 0 0
\(666\) 5.94181 + 5.26843i 0.230240 + 0.204148i
\(667\) 24.7000 0.956386
\(668\) −5.96768 10.3363i −0.230897 0.399925i
\(669\) 0.557735 5.50874i 0.0215633 0.212980i
\(670\) 7.57953 + 4.37605i 0.292823 + 0.169061i
\(671\) 23.9971 41.5641i 0.926397 1.60457i
\(672\) 0 0
\(673\) −10.3088 17.8554i −0.397375 0.688273i 0.596026 0.802965i \(-0.296745\pi\)
−0.993401 + 0.114692i \(0.963412\pi\)
\(674\) 24.6231i 0.948445i
\(675\) −1.45579 6.48289i −0.0560332 0.249527i
\(676\) −19.1140 −0.735155
\(677\) −25.1655 43.5880i −0.967190 1.67522i −0.703612 0.710585i \(-0.748431\pi\)
−0.263578 0.964638i \(-0.584903\pi\)
\(678\) −8.96958 + 12.4452i −0.344475 + 0.477956i
\(679\) 0 0
\(680\) 6.32935 + 3.65425i 0.242719 + 0.140134i
\(681\) 25.2798 + 2.55946i 0.968722 + 0.0980787i
\(682\) −95.0324 + 54.8670i −3.63898 + 2.10097i
\(683\) 13.7445i 0.525920i 0.964807 + 0.262960i \(0.0846987\pi\)
−0.964807 + 0.262960i \(0.915301\pi\)
\(684\) −2.31087 + 11.2953i −0.0883585 + 0.431885i
\(685\) 28.9909i 1.10769i
\(686\) 0 0
\(687\) −5.33602 + 2.40020i −0.203582 + 0.0915735i
\(688\) 22.6280 39.1929i 0.862685 1.49421i
\(689\) 1.07705 1.86550i 0.0410321 0.0710698i
\(690\) −26.2604 58.3809i −0.999716 2.22252i
\(691\) 25.4328 14.6837i 0.967511 0.558593i 0.0690343 0.997614i \(-0.478008\pi\)
0.898476 + 0.439022i \(0.144675\pi\)
\(692\) 1.49813 0.0569504
\(693\) 0 0
\(694\) −50.5874 −1.92027
\(695\) −42.5325 + 24.5562i −1.61335 + 0.931468i
\(696\) −5.11113 0.517479i −0.193737 0.0196150i
\(697\) 5.06789 8.77784i 0.191960 0.332484i
\(698\) 32.7392 56.7060i 1.23920 2.14635i
\(699\) −6.85719 4.94215i −0.259363 0.186929i
\(700\) 0 0
\(701\) 44.2011i 1.66945i −0.550666 0.834726i \(-0.685626\pi\)
0.550666 0.834726i \(-0.314374\pi\)
\(702\) −4.11359 1.28469i −0.155258 0.0484873i
\(703\) 3.64592i 0.137508i
\(704\) −17.2923 + 9.98371i −0.651728 + 0.376275i
\(705\) 5.44011 7.54811i 0.204886 0.284278i
\(706\) 4.08702 + 2.35964i 0.153817 + 0.0888063i
\(707\) 0 0
\(708\) 18.8060 + 1.90402i 0.706772 + 0.0715575i
\(709\) 5.66629 + 9.81430i 0.212802 + 0.368584i 0.952590 0.304256i \(-0.0984077\pi\)
−0.739788 + 0.672840i \(0.765074\pi\)
\(710\) −13.8308 −0.519062
\(711\) 1.14296 1.28904i 0.0428642 0.0483428i
\(712\) 7.18216i 0.269163i
\(713\) 41.3028 + 71.5385i 1.54680 + 2.67914i
\(714\) 0 0
\(715\) −3.11881 + 5.40193i −0.116637 + 0.202021i
\(716\) −1.90755 1.10132i −0.0712884 0.0411584i
\(717\) −24.8522 + 11.1788i −0.928121 + 0.417479i
\(718\) 6.79136 + 11.7630i 0.253451 + 0.438991i
\(719\) −36.1294 −1.34740 −0.673700 0.739005i \(-0.735296\pi\)
−0.673700 + 0.739005i \(0.735296\pi\)
\(720\) 11.3097 + 33.9240i 0.421487 + 1.26427i
\(721\) 0 0
\(722\) 20.0271 11.5627i 0.745333 0.430318i
\(723\) 0.134234 1.32583i 0.00499223 0.0493082i
\(724\) 19.4505 + 11.2298i 0.722874 + 0.417351i
\(725\) −3.46580 2.00098i −0.128717 0.0743146i
\(726\) 53.7494 + 38.7385i 1.99483 + 1.43772i
\(727\) −6.20547 + 3.58273i −0.230148 + 0.132876i −0.610640 0.791908i \(-0.709088\pi\)
0.380492 + 0.924784i \(0.375755\pi\)
\(728\) 0 0
\(729\) 22.2013 + 15.3657i 0.822269 + 0.569099i
\(730\) 39.8970 1.47665
\(731\) 14.6399 + 25.3570i 0.541475 + 0.937862i
\(732\) −17.9479 12.9355i −0.663375 0.478111i
\(733\) 41.4391 + 23.9249i 1.53059 + 0.883685i 0.999335 + 0.0364726i \(0.0116122\pi\)
0.531253 + 0.847213i \(0.321721\pi\)
\(734\) −12.5938 + 21.8131i −0.464846 + 0.805136i
\(735\) 0 0
\(736\) 27.6034 + 47.8105i 1.01747 + 1.76232i
\(737\) 10.4836i 0.386170i
\(738\) 17.5171 5.83990i 0.644812 0.214970i
\(739\) 15.3483 0.564597 0.282299 0.959327i \(-0.408903\pi\)
0.282299 + 0.959327i \(0.408903\pi\)
\(740\) −2.64917 4.58849i −0.0973853 0.168676i
\(741\) −0.811659 1.80444i −0.0298170 0.0662879i
\(742\) 0 0
\(743\) 34.9422 + 20.1739i 1.28191 + 0.740109i 0.977197 0.212337i \(-0.0681073\pi\)
0.304709 + 0.952445i \(0.401441\pi\)
\(744\) −7.04795 15.6687i −0.258391 0.574442i
\(745\) 34.1568 19.7204i 1.25141 0.722501i
\(746\) 44.4132i 1.62608i
\(747\) −16.8587 + 19.0135i −0.616829 + 0.695669i
\(748\) 25.7747i 0.942417i
\(749\) 0 0
\(750\) 3.04050 30.0310i 0.111023 1.09658i
\(751\) −16.9449 + 29.3494i −0.618327 + 1.07097i 0.371463 + 0.928448i \(0.378856\pi\)
−0.989791 + 0.142527i \(0.954477\pi\)
\(752\) −5.09906 + 8.83183i −0.185944 + 0.322064i
\(753\) −1.16001 + 1.60950i −0.0422730 + 0.0586534i
\(754\) −2.24793 + 1.29784i −0.0818647 + 0.0472646i
\(755\) −4.96814 −0.180809
\(756\) 0 0
\(757\) −5.73237 −0.208346 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(758\) 34.3589 19.8371i 1.24797 0.720517i
\(759\) 44.8343 62.2072i 1.62738 2.25798i
\(760\) −3.05642 + 5.29387i −0.110868 + 0.192029i
\(761\) 13.2666 22.9784i 0.480914 0.832968i −0.518846 0.854868i \(-0.673638\pi\)
0.999760 + 0.0218999i \(0.00697151\pi\)
\(762\) −2.40397 + 23.7439i −0.0870865 + 0.860152i
\(763\) 0 0
\(764\) 19.7420i 0.714242i
\(765\) −22.6662 4.63723i −0.819498 0.167659i
\(766\) 24.2188i 0.875061i
\(767\) −2.80929 + 1.62194i −0.101438 + 0.0585650i
\(768\) −14.8024 32.9080i −0.534136 1.18747i
\(769\) 23.3944 + 13.5068i 0.843623 + 0.487066i 0.858494 0.512823i \(-0.171400\pi\)
−0.0148711 + 0.999889i \(0.504734\pi\)
\(770\) 0 0
\(771\) −20.5935 45.7824i −0.741655 1.64881i
\(772\) −1.16128 2.01139i −0.0417953 0.0723916i
\(773\) −22.6017 −0.812927 −0.406464 0.913667i \(-0.633238\pi\)
−0.406464 + 0.913667i \(0.633238\pi\)
\(774\) −10.6914 + 52.2580i −0.384293 + 1.87838i
\(775\) 13.3840i 0.480768i
\(776\) 1.76545 + 3.05784i 0.0633758 + 0.109770i
\(777\) 0 0
\(778\) 10.2296 17.7182i 0.366750 0.635229i
\(779\) 7.34180 + 4.23879i 0.263047 + 0.151870i
\(780\) 2.33262 + 1.68118i 0.0835213 + 0.0601959i
\(781\) −8.28359 14.3476i −0.296410 0.513398i
\(782\) −45.3955 −1.62334
\(783\) 15.8673 3.56313i 0.567051 0.127336i
\(784\) 0 0
\(785\) 18.2114 10.5144i 0.649993 0.375274i
\(786\) −20.6491 14.8823i −0.736528 0.530835i
\(787\) 22.6864 + 13.0980i 0.808683 + 0.466893i 0.846498 0.532391i \(-0.178707\pi\)
−0.0378153 + 0.999285i \(0.512040\pi\)
\(788\) 6.41523 + 3.70383i 0.228533 + 0.131944i
\(789\) −2.39020 + 23.6080i −0.0850934 + 0.840466i
\(790\) −2.32900 + 1.34465i −0.0828620 + 0.0478404i
\(791\) 0 0
\(792\) −10.5808 + 11.9331i −0.375971 + 0.424026i
\(793\) 3.79675 0.134827
\(794\) −27.9314 48.3785i −0.991247 1.71689i
\(795\) 19.2129 8.64220i 0.681413 0.306507i
\(796\) −14.4705 8.35456i −0.512894 0.296120i
\(797\) −5.96560 + 10.3327i −0.211312 + 0.366004i −0.952126 0.305707i \(-0.901107\pi\)
0.740813 + 0.671711i \(0.234440\pi\)
\(798\) 0 0
\(799\) −3.29899 5.71402i −0.116710 0.202147i
\(800\) 8.94478i 0.316246i
\(801\) −7.19065 21.5687i −0.254069 0.762093i
\(802\) 35.8740 1.26676
\(803\) 23.8952 + 41.3877i 0.843242 + 1.46054i
\(804\) 4.80802 + 0.486790i 0.169566 + 0.0171678i
\(805\) 0 0
\(806\) −7.51788 4.34045i −0.264806 0.152886i
\(807\) −10.6127 + 14.7251i −0.373586 + 0.518347i
\(808\) −6.18375 + 3.57019i −0.217543 + 0.125599i
\(809\) 26.4887i 0.931292i 0.884971 + 0.465646i \(0.154178\pi\)
−0.884971 + 0.465646i \(0.845822\pi\)
\(810\) −25.2915 33.7157i −0.888654 1.18465i
\(811\) 13.7419i 0.482544i 0.970458 + 0.241272i \(0.0775646\pi\)
−0.970458 + 0.241272i \(0.922435\pi\)
\(812\) 0 0
\(813\) 9.19812 + 6.62932i 0.322592 + 0.232500i
\(814\) 7.42439 12.8594i 0.260225 0.450722i
\(815\) 1.34571 2.33084i 0.0471383 0.0816459i
\(816\) 25.2294 + 2.55437i 0.883207 + 0.0894207i
\(817\) −21.2086 + 12.2448i −0.741996 + 0.428391i
\(818\) −53.8949 −1.88439
\(819\) 0 0
\(820\) −12.3198 −0.430226
\(821\) −11.7493 + 6.78346i −0.410053 + 0.236744i −0.690813 0.723034i \(-0.742747\pi\)
0.280759 + 0.959778i \(0.409414\pi\)
\(822\) −15.3639 34.1562i −0.535877 1.19134i
\(823\) −7.34857 + 12.7281i −0.256155 + 0.443674i −0.965209 0.261481i \(-0.915789\pi\)
0.709053 + 0.705155i \(0.249122\pi\)
\(824\) −6.78711 + 11.7556i −0.236440 + 0.409527i
\(825\) −11.3305 + 5.09658i −0.394476 + 0.177440i
\(826\) 0 0
\(827\) 40.8787i 1.42149i −0.703449 0.710746i \(-0.748358\pi\)
0.703449 0.710746i \(-0.251642\pi\)
\(828\) −26.4477 23.4504i −0.919122 0.814959i
\(829\) 20.4600i 0.710605i −0.934751 0.355302i \(-0.884378\pi\)
0.934751 0.355302i \(-0.115622\pi\)
\(830\) 34.3530 19.8337i 1.19241 0.688439i
\(831\) 38.6545 + 3.91360i 1.34091 + 0.135761i
\(832\) −1.36797 0.789798i −0.0474258 0.0273813i
\(833\) 0 0
\(834\) −37.0969 + 51.4717i −1.28456 + 1.78232i
\(835\) 10.0162 + 17.3486i 0.346625 + 0.600372i
\(836\) 21.5580 0.745599
\(837\) 36.8529 + 39.9982i 1.27382 + 1.38254i
\(838\) 18.9282i 0.653865i
\(839\) −27.3475 47.3673i −0.944141 1.63530i −0.757462 0.652880i \(-0.773561\pi\)
−0.186680 0.982421i \(-0.559773\pi\)
\(840\) 0 0
\(841\) −9.60247 + 16.6320i −0.331120 + 0.573516i
\(842\) 41.1416 + 23.7531i 1.41783 + 0.818586i
\(843\) −3.89931 + 38.5134i −0.134299 + 1.32647i
\(844\) −11.4661 19.8598i −0.394678 0.683602i
\(845\) 32.0811 1.10362
\(846\) 2.40922 11.7760i 0.0828308 0.404866i
\(847\) 0 0
\(848\) −19.9975 + 11.5456i −0.686718 + 0.396477i
\(849\) −29.9671 + 13.4796i −1.02847 + 0.462617i
\(850\) 6.36973 + 3.67756i 0.218480 + 0.126139i
\(851\) −9.68031 5.58893i −0.331837 0.191586i
\(852\) −6.96475 + 3.13282i −0.238608 + 0.107329i
\(853\) −11.0684 + 6.39037i −0.378976 + 0.218802i −0.677373 0.735640i \(-0.736882\pi\)
0.298396 + 0.954442i \(0.403548\pi\)
\(854\) 0 0
\(855\) 3.87859 18.9580i 0.132645 0.648351i
\(856\) −12.7812 −0.436851
\(857\) −9.16200 15.8691i −0.312968 0.542077i 0.666035 0.745920i \(-0.267990\pi\)
−0.979003 + 0.203844i \(0.934657\pi\)
\(858\) −0.811707 + 8.01722i −0.0277112 + 0.273704i
\(859\) −33.4579 19.3169i −1.14157 0.659085i −0.194750 0.980853i \(-0.562390\pi\)
−0.946819 + 0.321768i \(0.895723\pi\)
\(860\) 17.7944 30.8208i 0.606784 1.05098i
\(861\) 0 0
\(862\) −10.1328 17.5505i −0.345125 0.597774i
\(863\) 16.7000i 0.568475i 0.958754 + 0.284238i \(0.0917405\pi\)
−0.958754 + 0.284238i \(0.908260\pi\)
\(864\) 24.6294 + 26.7315i 0.837910 + 0.909426i
\(865\) −2.51447 −0.0854947
\(866\) −12.1966 21.1251i −0.414456 0.717859i
\(867\) 7.62350 10.5775i 0.258908 0.359232i
\(868\) 0 0
\(869\) −2.78978 1.61068i −0.0946367 0.0546385i
\(870\) −25.2569 2.55714i −0.856288 0.0866952i
\(871\) −0.718235 + 0.414673i −0.0243365 + 0.0140507i
\(872\) 0.870640i 0.0294836i
\(873\) −8.36326 7.41546i −0.283053 0.250975i
\(874\) 37.9689i 1.28432i
\(875\) 0 0
\(876\) 20.0908 9.03707i 0.678805 0.305334i
\(877\) −16.7617 + 29.0321i −0.566002 + 0.980345i 0.430953 + 0.902374i \(0.358177\pi\)
−0.996956 + 0.0779707i \(0.975156\pi\)
\(878\) 29.8606 51.7201i 1.00775 1.74547i
\(879\) −6.26876 13.9364i −0.211440 0.470063i
\(880\) 57.9070 33.4326i 1.95204 1.12701i
\(881\) 28.6657 0.965771 0.482885 0.875684i \(-0.339589\pi\)
0.482885 + 0.875684i \(0.339589\pi\)
\(882\) 0 0
\(883\) −38.2091 −1.28584 −0.642919 0.765935i \(-0.722277\pi\)
−0.642919 + 0.765935i \(0.722277\pi\)
\(884\) 1.76583 1.01950i 0.0593912 0.0342895i
\(885\) −31.5641 3.19572i −1.06101 0.107423i
\(886\) 23.1719 40.1350i 0.778476 1.34836i
\(887\) −17.5914 + 30.4692i −0.590662 + 1.02306i 0.403481 + 0.914988i \(0.367800\pi\)
−0.994143 + 0.108069i \(0.965533\pi\)
\(888\) 1.88604 + 1.35932i 0.0632915 + 0.0456157i
\(889\) 0 0
\(890\) 35.4910i 1.18966i
\(891\) 19.8278 46.4296i 0.664257 1.55545i
\(892\) 4.77248i 0.159794i
\(893\) 4.77921 2.75928i 0.159930 0.0923358i
\(894\) 29.7916 41.3356i 0.996380 1.38247i
\(895\) 3.20164 + 1.84847i 0.107019 + 0.0617875i
\(896\) 0 0
\(897\) 6.03521 + 0.611037i 0.201510 + 0.0204019i
\(898\) −12.8685 22.2890i −0.429429 0.743792i
\(899\) 32.7582 1.09255
\(900\) 1.81129 + 5.43305i 0.0603762 + 0.181102i
\(901\) 14.9395i 0.497707i
\(902\) −17.2634 29.9010i −0.574807 0.995595i
\(903\) 0 0
\(904\) −2.24557 + 3.88944i −0.0746866 + 0.129361i
\(905\) −32.6459 18.8481i −1.08519 0.626533i
\(906\) −5.85331 + 2.63289i −0.194463 + 0.0874718i
\(907\) 21.2977 + 36.8887i 0.707179 + 1.22487i 0.965899 + 0.258918i \(0.0833660\pi\)
−0.258720 + 0.965952i \(0.583301\pi\)
\(908\) −21.9010 −0.726811
\(909\) 14.9960 16.9127i 0.497385 0.560958i
\(910\) 0 0
\(911\) −43.5221 + 25.1275i −1.44195 + 0.832510i −0.997980 0.0635313i \(-0.979764\pi\)
−0.443970 + 0.896042i \(0.646430\pi\)
\(912\) −2.13648 + 21.1019i −0.0707458 + 0.698755i
\(913\) 41.1496 + 23.7577i 1.36185 + 0.786265i
\(914\) −44.2037 25.5210i −1.46213 0.844160i
\(915\) 30.1239 + 21.7111i 0.995866 + 0.717746i
\(916\) 4.36754 2.52160i 0.144308 0.0833161i
\(917\) 0 0
\(918\) −29.1622 + 6.54860i −0.962495 + 0.216136i
\(919\) −58.6972 −1.93624 −0.968121 0.250481i \(-0.919411\pi\)
−0.968121 + 0.250481i \(0.919411\pi\)
\(920\) −9.37054 16.2303i −0.308938 0.535096i
\(921\) −40.4023 29.1189i −1.33130 0.959501i
\(922\) −17.8630 10.3132i −0.588287 0.339647i
\(923\) 0.655304 1.13502i 0.0215696 0.0373596i
\(924\) 0 0
\(925\) 0.905536 + 1.56843i 0.0297738 + 0.0515698i
\(926\) 45.7315i 1.50283i
\(927\) 8.61282 42.0984i 0.282882 1.38269i
\(928\) 21.8929 0.718670
\(929\) 7.19115 + 12.4554i 0.235934 + 0.408650i 0.959544 0.281560i \(-0.0908518\pi\)
−0.723610 + 0.690209i \(0.757518\pi\)
\(930\) −34.8278 77.4275i −1.14205 2.53895i
\(931\) 0 0
\(932\) 6.30952 + 3.64281i 0.206675 + 0.119324i
\(933\) 9.43995 + 20.9865i 0.309050 + 0.687066i
\(934\) 25.7427 14.8626i 0.842327 0.486318i
\(935\) 43.2604i 1.41477i
\(936\) −1.23606 0.252882i −0.0404017 0.00826572i
\(937\) 44.2981i 1.44716i −0.690243 0.723578i \(-0.742496\pi\)
0.690243 0.723578i \(-0.257504\pi\)
\(938\) 0 0
\(939\) 5.50446 54.3675i 0.179631 1.77422i
\(940\) −4.00985 + 6.94526i −0.130787 + 0.226529i
\(941\) 7.44400 12.8934i 0.242667 0.420312i −0.718806 0.695211i \(-0.755311\pi\)
0.961473 + 0.274899i \(0.0886443\pi\)
\(942\) 15.8840 22.0390i 0.517530 0.718068i
\(943\) −22.5089 + 12.9955i −0.732990 + 0.423192i
\(944\) 34.7734 1.13178
\(945\) 0 0
\(946\) 99.7390 3.24280
\(947\) 36.3343 20.9776i 1.18071 0.681681i 0.224528 0.974468i \(-0.427916\pi\)
0.956178 + 0.292787i \(0.0945827\pi\)
\(948\) −0.868230 + 1.20466i −0.0281988 + 0.0391256i
\(949\) −1.89031 + 3.27412i −0.0613622 + 0.106282i
\(950\) −3.07592 + 5.32765i −0.0997960 + 0.172852i
\(951\) −3.50177 + 34.5869i −0.113553 + 1.12156i
\(952\) 0 0
\(953\) 13.9821i 0.452926i 0.974020 + 0.226463i \(0.0727162\pi\)
−0.974020 + 0.226463i \(0.927284\pi\)
\(954\) 18.0562 20.3640i 0.584590 0.659308i
\(955\) 33.1352i 1.07223i
\(956\) 20.3415 11.7442i 0.657892 0.379834i
\(957\) −12.4742 27.7321i −0.403234 0.896450i
\(958\) −22.4228 12.9458i −0.724449 0.418261i
\(959\) 0 0
\(960\) −6.33733 14.0889i −0.204537 0.454716i
\(961\) 39.2776 + 68.0309i 1.26702 + 2.19454i
\(962\) 1.17467 0.0378728
\(963\) 38.3830 12.7963i 1.23688 0.412354i
\(964\) 1.14863i 0.0369949i
\(965\) 1.94910 + 3.37593i 0.0627436 + 0.108675i
\(966\) 0 0
\(967\) −11.5757 + 20.0497i −0.372249 + 0.644754i −0.989911 0.141690i \(-0.954746\pi\)
0.617662 + 0.786443i \(0.288080\pi\)
\(968\) 16.7980 + 9.69835i 0.539909 + 0.311717i
\(969\) −11.1323 8.02333i −0.357621 0.257747i
\(970\) 8.72403 + 15.1105i 0.280112 + 0.485168i
\(971\) 43.3737 1.39193 0.695965 0.718076i \(-0.254977\pi\)
0.695965 + 0.718076i \(0.254977\pi\)
\(972\) −20.3729 11.2493i −0.653462 0.360823i
\(973\) 0 0
\(974\) 46.6120 26.9114i 1.49354 0.862298i
\(975\) −0.797336 0.574660i −0.0255352 0.0184038i
\(976\) −35.2472 20.3500i −1.12824 0.651387i
\(977\) −10.4210 6.01657i −0.333397 0.192487i 0.323951 0.946074i \(-0.394989\pi\)
−0.657348 + 0.753587i \(0.728322\pi\)
\(978\) 0.350238 3.45930i 0.0111994 0.110616i
\(979\) −36.8170 + 21.2563i −1.17668 + 0.679355i
\(980\) 0 0
\(981\) 0.871668 + 2.61461i 0.0278302 + 0.0834782i
\(982\) −72.4304 −2.31135
\(983\) −3.14829 5.45300i −0.100415 0.173924i 0.811441 0.584435i \(-0.198684\pi\)
−0.911856 + 0.410511i \(0.865350\pi\)
\(984\) 4.93000 2.21757i 0.157163 0.0706936i
\(985\) −10.7674 6.21654i −0.343077 0.198075i
\(986\) −9.00108 + 15.5903i −0.286653 + 0.496497i
\(987\) 0 0
\(988\) 0.852712 + 1.47694i 0.0271284 + 0.0469877i
\(989\) 75.0816i 2.38745i
\(990\) −52.2853 + 58.9681i −1.66174 + 1.87413i
\(991\) 33.5627 1.06616 0.533078 0.846066i \(-0.321035\pi\)
0.533078 + 0.846066i \(0.321035\pi\)
\(992\) 36.6089 + 63.4085i 1.16233 + 2.01322i
\(993\) 2.15046 + 0.217724i 0.0682427 + 0.00690926i
\(994\) 0 0
\(995\) 24.2874 + 14.0223i 0.769963 + 0.444538i
\(996\) 12.8065 17.7689i 0.405790 0.563030i
\(997\) 9.74838 5.62823i 0.308734 0.178248i −0.337626 0.941280i \(-0.609624\pi\)
0.646360 + 0.763033i \(0.276290\pi\)
\(998\) 6.47898i 0.205088i
\(999\) −7.02489 2.19389i −0.222258 0.0694116i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.o.e.293.19 yes 48
3.2 odd 2 1323.2.o.e.881.6 48
7.2 even 3 441.2.s.d.374.5 48
7.3 odd 6 441.2.i.d.68.19 48
7.4 even 3 441.2.i.d.68.20 48
7.5 odd 6 441.2.s.d.374.6 48
7.6 odd 2 inner 441.2.o.e.293.20 yes 48
9.2 odd 6 inner 441.2.o.e.146.20 yes 48
9.7 even 3 1323.2.o.e.440.5 48
21.2 odd 6 1323.2.s.d.962.19 48
21.5 even 6 1323.2.s.d.962.20 48
21.11 odd 6 1323.2.i.d.1097.7 48
21.17 even 6 1323.2.i.d.1097.22 48
21.20 even 2 1323.2.o.e.881.5 48
63.2 odd 6 441.2.i.d.227.5 48
63.11 odd 6 441.2.s.d.362.6 48
63.16 even 3 1323.2.i.d.521.22 48
63.20 even 6 inner 441.2.o.e.146.19 48
63.25 even 3 1323.2.s.d.656.20 48
63.34 odd 6 1323.2.o.e.440.6 48
63.38 even 6 441.2.s.d.362.5 48
63.47 even 6 441.2.i.d.227.6 48
63.52 odd 6 1323.2.s.d.656.19 48
63.61 odd 6 1323.2.i.d.521.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.19 48 7.3 odd 6
441.2.i.d.68.20 48 7.4 even 3
441.2.i.d.227.5 48 63.2 odd 6
441.2.i.d.227.6 48 63.47 even 6
441.2.o.e.146.19 48 63.20 even 6 inner
441.2.o.e.146.20 yes 48 9.2 odd 6 inner
441.2.o.e.293.19 yes 48 1.1 even 1 trivial
441.2.o.e.293.20 yes 48 7.6 odd 2 inner
441.2.s.d.362.5 48 63.38 even 6
441.2.s.d.362.6 48 63.11 odd 6
441.2.s.d.374.5 48 7.2 even 3
441.2.s.d.374.6 48 7.5 odd 6
1323.2.i.d.521.7 48 63.61 odd 6
1323.2.i.d.521.22 48 63.16 even 3
1323.2.i.d.1097.7 48 21.11 odd 6
1323.2.i.d.1097.22 48 21.17 even 6
1323.2.o.e.440.5 48 9.7 even 3
1323.2.o.e.440.6 48 63.34 odd 6
1323.2.o.e.881.5 48 21.20 even 2
1323.2.o.e.881.6 48 3.2 odd 2
1323.2.s.d.656.19 48 63.52 odd 6
1323.2.s.d.656.20 48 63.25 even 3
1323.2.s.d.962.19 48 21.2 odd 6
1323.2.s.d.962.20 48 21.5 even 6