Properties

Label 1008.2.df.e.689.24
Level $1008$
Weight $2$
Character 1008.689
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 689.24
Character \(\chi\) \(=\) 1008.689
Dual form 1008.2.df.e.929.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70958 + 0.278106i) q^{3} -0.542075 q^{5} +(2.62378 - 0.340238i) q^{7} +(2.84531 + 0.950888i) q^{9} -0.769377i q^{11} +(2.96386 + 1.71119i) q^{13} +(-0.926720 - 0.150754i) q^{15} +(3.23477 - 5.60278i) q^{17} +(-5.60413 + 3.23554i) q^{19} +(4.58018 + 0.148027i) q^{21} -0.115878i q^{23} -4.70615 q^{25} +(4.59984 + 2.41692i) q^{27} +(4.40174 - 2.54135i) q^{29} +(-4.01429 + 2.31765i) q^{31} +(0.213968 - 1.31531i) q^{33} +(-1.42229 + 0.184434i) q^{35} +(5.47518 + 9.48329i) q^{37} +(4.59106 + 3.74967i) q^{39} +(4.04575 - 7.00745i) q^{41} +(-3.32569 - 5.76026i) q^{43} +(-1.54237 - 0.515453i) q^{45} +(-0.773085 + 1.33902i) q^{47} +(6.76848 - 1.78542i) q^{49} +(7.08826 - 8.67879i) q^{51} +(0.221011 + 0.127601i) q^{53} +0.417060i q^{55} +(-10.4805 + 3.97287i) q^{57} +(5.12056 + 8.86906i) q^{59} +(4.83167 + 2.78957i) q^{61} +(7.78902 + 1.52684i) q^{63} +(-1.60664 - 0.927591i) q^{65} +(-1.64175 - 2.84359i) q^{67} +(0.0322262 - 0.198102i) q^{69} +5.67917i q^{71} +(-5.35354 - 3.09087i) q^{73} +(-8.04554 - 1.30881i) q^{75} +(-0.261771 - 2.01868i) q^{77} +(2.01229 - 3.48540i) q^{79} +(7.19162 + 5.41115i) q^{81} +(-5.80057 - 10.0469i) q^{83} +(-1.75349 + 3.03713i) q^{85} +(8.23188 - 3.12048i) q^{87} +(2.00832 + 3.47851i) q^{89} +(8.35874 + 3.48136i) q^{91} +(-7.50729 + 2.84580i) q^{93} +(3.03786 - 1.75391i) q^{95} +(-15.0653 + 8.69795i) q^{97} +(0.731591 - 2.18912i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{9} - 8 q^{15} - 10 q^{21} + 48 q^{25} - 18 q^{27} + 18 q^{29} - 18 q^{31} + 12 q^{33} + 4 q^{39} - 6 q^{41} + 6 q^{43} - 18 q^{45} - 18 q^{47} - 12 q^{49} - 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70958 + 0.278106i 0.987025 + 0.160565i
\(4\) 0 0
\(5\) −0.542075 −0.242423 −0.121212 0.992627i \(-0.538678\pi\)
−0.121212 + 0.992627i \(0.538678\pi\)
\(6\) 0 0
\(7\) 2.62378 0.340238i 0.991697 0.128598i
\(8\) 0 0
\(9\) 2.84531 + 0.950888i 0.948438 + 0.316963i
\(10\) 0 0
\(11\) 0.769377i 0.231976i −0.993251 0.115988i \(-0.962997\pi\)
0.993251 0.115988i \(-0.0370034\pi\)
\(12\) 0 0
\(13\) 2.96386 + 1.71119i 0.822027 + 0.474598i 0.851115 0.524979i \(-0.175927\pi\)
−0.0290877 + 0.999577i \(0.509260\pi\)
\(14\) 0 0
\(15\) −0.926720 0.150754i −0.239278 0.0389246i
\(16\) 0 0
\(17\) 3.23477 5.60278i 0.784547 1.35887i −0.144723 0.989472i \(-0.546229\pi\)
0.929269 0.369403i \(-0.120438\pi\)
\(18\) 0 0
\(19\) −5.60413 + 3.23554i −1.28567 + 0.742285i −0.977880 0.209168i \(-0.932924\pi\)
−0.307795 + 0.951453i \(0.599591\pi\)
\(20\) 0 0
\(21\) 4.58018 + 0.148027i 0.999478 + 0.0323022i
\(22\) 0 0
\(23\) 0.115878i 0.0241621i −0.999927 0.0120811i \(-0.996154\pi\)
0.999927 0.0120811i \(-0.00384562\pi\)
\(24\) 0 0
\(25\) −4.70615 −0.941231
\(26\) 0 0
\(27\) 4.59984 + 2.41692i 0.885239 + 0.465136i
\(28\) 0 0
\(29\) 4.40174 2.54135i 0.817383 0.471916i −0.0321304 0.999484i \(-0.510229\pi\)
0.849513 + 0.527568i \(0.176896\pi\)
\(30\) 0 0
\(31\) −4.01429 + 2.31765i −0.720987 + 0.416262i −0.815116 0.579298i \(-0.803327\pi\)
0.0941289 + 0.995560i \(0.469993\pi\)
\(32\) 0 0
\(33\) 0.213968 1.31531i 0.0372471 0.228966i
\(34\) 0 0
\(35\) −1.42229 + 0.184434i −0.240410 + 0.0311751i
\(36\) 0 0
\(37\) 5.47518 + 9.48329i 0.900114 + 1.55904i 0.827345 + 0.561694i \(0.189850\pi\)
0.0727692 + 0.997349i \(0.476816\pi\)
\(38\) 0 0
\(39\) 4.59106 + 3.74967i 0.735158 + 0.600428i
\(40\) 0 0
\(41\) 4.04575 7.00745i 0.631841 1.09438i −0.355334 0.934739i \(-0.615633\pi\)
0.987175 0.159641i \(-0.0510337\pi\)
\(42\) 0 0
\(43\) −3.32569 5.76026i −0.507162 0.878431i −0.999966 0.00829006i \(-0.997361\pi\)
0.492803 0.870141i \(-0.335972\pi\)
\(44\) 0 0
\(45\) −1.54237 0.515453i −0.229923 0.0768391i
\(46\) 0 0
\(47\) −0.773085 + 1.33902i −0.112766 + 0.195317i −0.916885 0.399152i \(-0.869304\pi\)
0.804118 + 0.594469i \(0.202638\pi\)
\(48\) 0 0
\(49\) 6.76848 1.78542i 0.966925 0.255060i
\(50\) 0 0
\(51\) 7.08826 8.67879i 0.992555 1.21527i
\(52\) 0 0
\(53\) 0.221011 + 0.127601i 0.0303582 + 0.0175273i 0.515102 0.857129i \(-0.327754\pi\)
−0.484744 + 0.874656i \(0.661087\pi\)
\(54\) 0 0
\(55\) 0.417060i 0.0562364i
\(56\) 0 0
\(57\) −10.4805 + 3.97287i −1.38818 + 0.526220i
\(58\) 0 0
\(59\) 5.12056 + 8.86906i 0.666640 + 1.15465i 0.978838 + 0.204637i \(0.0656013\pi\)
−0.312198 + 0.950017i \(0.601065\pi\)
\(60\) 0 0
\(61\) 4.83167 + 2.78957i 0.618632 + 0.357167i 0.776336 0.630319i \(-0.217076\pi\)
−0.157704 + 0.987486i \(0.550409\pi\)
\(62\) 0 0
\(63\) 7.78902 + 1.52684i 0.981324 + 0.192364i
\(64\) 0 0
\(65\) −1.60664 0.927591i −0.199279 0.115054i
\(66\) 0 0
\(67\) −1.64175 2.84359i −0.200571 0.347400i 0.748141 0.663539i \(-0.230947\pi\)
−0.948713 + 0.316140i \(0.897613\pi\)
\(68\) 0 0
\(69\) 0.0322262 0.198102i 0.00387958 0.0238486i
\(70\) 0 0
\(71\) 5.67917i 0.673994i 0.941506 + 0.336997i \(0.109411\pi\)
−0.941506 + 0.336997i \(0.890589\pi\)
\(72\) 0 0
\(73\) −5.35354 3.09087i −0.626585 0.361759i 0.152844 0.988250i \(-0.451157\pi\)
−0.779428 + 0.626492i \(0.784490\pi\)
\(74\) 0 0
\(75\) −8.04554 1.30881i −0.929019 0.151128i
\(76\) 0 0
\(77\) −0.261771 2.01868i −0.0298316 0.230050i
\(78\) 0 0
\(79\) 2.01229 3.48540i 0.226401 0.392138i −0.730338 0.683086i \(-0.760637\pi\)
0.956739 + 0.290948i \(0.0939707\pi\)
\(80\) 0 0
\(81\) 7.19162 + 5.41115i 0.799069 + 0.601239i
\(82\) 0 0
\(83\) −5.80057 10.0469i −0.636695 1.10279i −0.986153 0.165836i \(-0.946968\pi\)
0.349458 0.936952i \(-0.386366\pi\)
\(84\) 0 0
\(85\) −1.75349 + 3.03713i −0.190192 + 0.329423i
\(86\) 0 0
\(87\) 8.23188 3.12048i 0.882550 0.334550i
\(88\) 0 0
\(89\) 2.00832 + 3.47851i 0.212881 + 0.368721i 0.952615 0.304178i \(-0.0983819\pi\)
−0.739734 + 0.672900i \(0.765049\pi\)
\(90\) 0 0
\(91\) 8.35874 + 3.48136i 0.876234 + 0.364946i
\(92\) 0 0
\(93\) −7.50729 + 2.84580i −0.778469 + 0.295096i
\(94\) 0 0
\(95\) 3.03786 1.75391i 0.311677 0.179947i
\(96\) 0 0
\(97\) −15.0653 + 8.69795i −1.52965 + 0.883143i −0.530272 + 0.847828i \(0.677910\pi\)
−0.999376 + 0.0353150i \(0.988757\pi\)
\(98\) 0 0
\(99\) 0.731591 2.18912i 0.0735277 0.220015i
\(100\) 0 0
\(101\) −16.5023 −1.64204 −0.821019 0.570902i \(-0.806594\pi\)
−0.821019 + 0.570902i \(0.806594\pi\)
\(102\) 0 0
\(103\) 0.293992i 0.0289678i 0.999895 + 0.0144839i \(0.00461054\pi\)
−0.999895 + 0.0144839i \(0.995389\pi\)
\(104\) 0 0
\(105\) −2.48280 0.0802418i −0.242297 0.00783080i
\(106\) 0 0
\(107\) −3.17327 + 1.83209i −0.306772 + 0.177115i −0.645481 0.763776i \(-0.723343\pi\)
0.338709 + 0.940891i \(0.390010\pi\)
\(108\) 0 0
\(109\) 1.26497 2.19099i 0.121162 0.209858i −0.799064 0.601246i \(-0.794671\pi\)
0.920226 + 0.391387i \(0.128005\pi\)
\(110\) 0 0
\(111\) 6.72289 + 17.7351i 0.638108 + 1.68334i
\(112\) 0 0
\(113\) −11.9275 6.88637i −1.12205 0.647815i −0.180126 0.983644i \(-0.557650\pi\)
−0.941923 + 0.335828i \(0.890984\pi\)
\(114\) 0 0
\(115\) 0.0628143i 0.00585746i
\(116\) 0 0
\(117\) 6.80597 + 7.68716i 0.629212 + 0.710679i
\(118\) 0 0
\(119\) 6.58105 15.8011i 0.603284 1.44848i
\(120\) 0 0
\(121\) 10.4081 0.946187
\(122\) 0 0
\(123\) 8.86535 10.8546i 0.799362 0.978730i
\(124\) 0 0
\(125\) 5.26146 0.470600
\(126\) 0 0
\(127\) −9.44974 −0.838529 −0.419265 0.907864i \(-0.637712\pi\)
−0.419265 + 0.907864i \(0.637712\pi\)
\(128\) 0 0
\(129\) −4.08356 10.7725i −0.359537 0.948466i
\(130\) 0 0
\(131\) −12.5013 −1.09225 −0.546123 0.837705i \(-0.683897\pi\)
−0.546123 + 0.837705i \(0.683897\pi\)
\(132\) 0 0
\(133\) −13.6032 + 10.3961i −1.17954 + 0.901456i
\(134\) 0 0
\(135\) −2.49346 1.31015i −0.214603 0.112760i
\(136\) 0 0
\(137\) 19.3033i 1.64919i −0.565725 0.824594i \(-0.691404\pi\)
0.565725 0.824594i \(-0.308596\pi\)
\(138\) 0 0
\(139\) −0.863952 0.498803i −0.0732794 0.0423079i 0.462913 0.886404i \(-0.346804\pi\)
−0.536192 + 0.844096i \(0.680138\pi\)
\(140\) 0 0
\(141\) −1.69404 + 2.07417i −0.142664 + 0.174676i
\(142\) 0 0
\(143\) 1.31655 2.28033i 0.110095 0.190690i
\(144\) 0 0
\(145\) −2.38607 + 1.37760i −0.198153 + 0.114403i
\(146\) 0 0
\(147\) 12.0678 1.16996i 0.995333 0.0964967i
\(148\) 0 0
\(149\) 19.6506i 1.60984i 0.593383 + 0.804920i \(0.297792\pi\)
−0.593383 + 0.804920i \(0.702208\pi\)
\(150\) 0 0
\(151\) −17.0342 −1.38622 −0.693111 0.720831i \(-0.743760\pi\)
−0.693111 + 0.720831i \(0.743760\pi\)
\(152\) 0 0
\(153\) 14.5316 12.8658i 1.17481 1.04014i
\(154\) 0 0
\(155\) 2.17604 1.25634i 0.174784 0.100912i
\(156\) 0 0
\(157\) −0.977815 + 0.564542i −0.0780381 + 0.0450553i −0.538511 0.842618i \(-0.681013\pi\)
0.460473 + 0.887674i \(0.347680\pi\)
\(158\) 0 0
\(159\) 0.342349 + 0.279608i 0.0271501 + 0.0221744i
\(160\) 0 0
\(161\) −0.0394259 0.304037i −0.00310720 0.0239615i
\(162\) 0 0
\(163\) 8.60142 + 14.8981i 0.673715 + 1.16691i 0.976843 + 0.213959i \(0.0686359\pi\)
−0.303127 + 0.952950i \(0.598031\pi\)
\(164\) 0 0
\(165\) −0.115987 + 0.712997i −0.00902957 + 0.0555067i
\(166\) 0 0
\(167\) −2.22256 + 3.84959i −0.171987 + 0.297890i −0.939114 0.343605i \(-0.888352\pi\)
0.767128 + 0.641495i \(0.221685\pi\)
\(168\) 0 0
\(169\) −0.643682 1.11489i −0.0495140 0.0857607i
\(170\) 0 0
\(171\) −19.0221 + 3.87724i −1.45466 + 0.296500i
\(172\) 0 0
\(173\) 9.94291 17.2216i 0.755946 1.30934i −0.188957 0.981985i \(-0.560511\pi\)
0.944903 0.327351i \(-0.106156\pi\)
\(174\) 0 0
\(175\) −12.3479 + 1.60121i −0.933416 + 0.121040i
\(176\) 0 0
\(177\) 6.28745 + 16.5864i 0.472594 + 1.24671i
\(178\) 0 0
\(179\) 1.71472 + 0.989994i 0.128164 + 0.0739956i 0.562711 0.826653i \(-0.309758\pi\)
−0.434547 + 0.900649i \(0.643092\pi\)
\(180\) 0 0
\(181\) 5.68137i 0.422293i −0.977454 0.211146i \(-0.932280\pi\)
0.977454 0.211146i \(-0.0677197\pi\)
\(182\) 0 0
\(183\) 7.48432 + 6.11270i 0.553257 + 0.451864i
\(184\) 0 0
\(185\) −2.96796 5.14065i −0.218209 0.377948i
\(186\) 0 0
\(187\) −4.31065 2.48876i −0.315226 0.181996i
\(188\) 0 0
\(189\) 12.8913 + 4.77643i 0.937704 + 0.347434i
\(190\) 0 0
\(191\) 3.59419 + 2.07511i 0.260066 + 0.150149i 0.624365 0.781133i \(-0.285358\pi\)
−0.364298 + 0.931282i \(0.618691\pi\)
\(192\) 0 0
\(193\) −2.93533 5.08413i −0.211289 0.365964i 0.740829 0.671694i \(-0.234433\pi\)
−0.952118 + 0.305730i \(0.901100\pi\)
\(194\) 0 0
\(195\) −2.48870 2.03260i −0.178219 0.145558i
\(196\) 0 0
\(197\) 3.37912i 0.240753i −0.992728 0.120376i \(-0.961590\pi\)
0.992728 0.120376i \(-0.0384101\pi\)
\(198\) 0 0
\(199\) 4.03812 + 2.33141i 0.286255 + 0.165269i 0.636252 0.771482i \(-0.280484\pi\)
−0.349997 + 0.936751i \(0.613817\pi\)
\(200\) 0 0
\(201\) −2.01588 5.31792i −0.142189 0.375097i
\(202\) 0 0
\(203\) 10.6846 8.16558i 0.749908 0.573111i
\(204\) 0 0
\(205\) −2.19310 + 3.79856i −0.153173 + 0.265303i
\(206\) 0 0
\(207\) 0.110187 0.329708i 0.00765849 0.0229163i
\(208\) 0 0
\(209\) 2.48935 + 4.31168i 0.172192 + 0.298245i
\(210\) 0 0
\(211\) 3.09622 5.36281i 0.213153 0.369191i −0.739547 0.673105i \(-0.764960\pi\)
0.952699 + 0.303914i \(0.0982935\pi\)
\(212\) 0 0
\(213\) −1.57941 + 9.70899i −0.108220 + 0.665249i
\(214\) 0 0
\(215\) 1.80277 + 3.12249i 0.122948 + 0.212952i
\(216\) 0 0
\(217\) −9.74406 + 7.44682i −0.661470 + 0.505523i
\(218\) 0 0
\(219\) −8.29271 6.77293i −0.560369 0.457672i
\(220\) 0 0
\(221\) 19.1748 11.0706i 1.28984 0.744688i
\(222\) 0 0
\(223\) 8.84510 5.10672i 0.592312 0.341971i −0.173699 0.984799i \(-0.555572\pi\)
0.766011 + 0.642827i \(0.222239\pi\)
\(224\) 0 0
\(225\) −13.3905 4.47503i −0.892699 0.298335i
\(226\) 0 0
\(227\) −16.2479 −1.07841 −0.539205 0.842175i \(-0.681275\pi\)
−0.539205 + 0.842175i \(0.681275\pi\)
\(228\) 0 0
\(229\) 8.67789i 0.573451i 0.958013 + 0.286726i \(0.0925668\pi\)
−0.958013 + 0.286726i \(0.907433\pi\)
\(230\) 0 0
\(231\) 0.113889 3.52389i 0.00749332 0.231855i
\(232\) 0 0
\(233\) −19.0308 + 10.9874i −1.24675 + 0.719811i −0.970460 0.241263i \(-0.922438\pi\)
−0.276290 + 0.961074i \(0.589105\pi\)
\(234\) 0 0
\(235\) 0.419070 0.725851i 0.0273371 0.0473493i
\(236\) 0 0
\(237\) 4.40948 5.39893i 0.286427 0.350698i
\(238\) 0 0
\(239\) −14.3752 8.29955i −0.929857 0.536853i −0.0430908 0.999071i \(-0.513720\pi\)
−0.886766 + 0.462218i \(0.847054\pi\)
\(240\) 0 0
\(241\) 11.0022i 0.708716i −0.935110 0.354358i \(-0.884699\pi\)
0.935110 0.354358i \(-0.115301\pi\)
\(242\) 0 0
\(243\) 10.7898 + 11.2508i 0.692164 + 0.721740i
\(244\) 0 0
\(245\) −3.66902 + 0.967831i −0.234405 + 0.0618325i
\(246\) 0 0
\(247\) −22.1465 −1.40915
\(248\) 0 0
\(249\) −7.12243 18.7891i −0.451365 1.19071i
\(250\) 0 0
\(251\) −18.0406 −1.13871 −0.569356 0.822091i \(-0.692808\pi\)
−0.569356 + 0.822091i \(0.692808\pi\)
\(252\) 0 0
\(253\) −0.0891535 −0.00560503
\(254\) 0 0
\(255\) −3.84237 + 4.70455i −0.240618 + 0.294611i
\(256\) 0 0
\(257\) −14.4064 −0.898648 −0.449324 0.893369i \(-0.648335\pi\)
−0.449324 + 0.893369i \(0.648335\pi\)
\(258\) 0 0
\(259\) 17.5923 + 23.0192i 1.09313 + 1.43035i
\(260\) 0 0
\(261\) 14.9409 3.04537i 0.924817 0.188503i
\(262\) 0 0
\(263\) 24.9490i 1.53842i −0.638997 0.769209i \(-0.720650\pi\)
0.638997 0.769209i \(-0.279350\pi\)
\(264\) 0 0
\(265\) −0.119805 0.0691692i −0.00735954 0.00424903i
\(266\) 0 0
\(267\) 2.46598 + 6.50531i 0.150916 + 0.398118i
\(268\) 0 0
\(269\) −11.0059 + 19.0627i −0.671040 + 1.16228i 0.306569 + 0.951848i \(0.400819\pi\)
−0.977609 + 0.210428i \(0.932514\pi\)
\(270\) 0 0
\(271\) −22.7444 + 13.1315i −1.38162 + 0.797680i −0.992352 0.123443i \(-0.960607\pi\)
−0.389271 + 0.921123i \(0.627273\pi\)
\(272\) 0 0
\(273\) 13.3217 + 8.27628i 0.806268 + 0.500903i
\(274\) 0 0
\(275\) 3.62081i 0.218343i
\(276\) 0 0
\(277\) 4.76411 0.286248 0.143124 0.989705i \(-0.454285\pi\)
0.143124 + 0.989705i \(0.454285\pi\)
\(278\) 0 0
\(279\) −13.6257 + 2.77730i −0.815751 + 0.166273i
\(280\) 0 0
\(281\) 19.1963 11.0830i 1.14515 0.661155i 0.197452 0.980312i \(-0.436733\pi\)
0.947702 + 0.319158i \(0.103400\pi\)
\(282\) 0 0
\(283\) 2.51629 1.45278i 0.149578 0.0863590i −0.423343 0.905970i \(-0.639143\pi\)
0.572921 + 0.819611i \(0.305810\pi\)
\(284\) 0 0
\(285\) 5.68122 2.15359i 0.336527 0.127568i
\(286\) 0 0
\(287\) 8.23098 19.7626i 0.485860 1.16655i
\(288\) 0 0
\(289\) −12.4275 21.5250i −0.731027 1.26618i
\(290\) 0 0
\(291\) −28.1742 + 10.6801i −1.65160 + 0.626077i
\(292\) 0 0
\(293\) −13.9866 + 24.2255i −0.817104 + 1.41527i 0.0907025 + 0.995878i \(0.471089\pi\)
−0.907807 + 0.419388i \(0.862245\pi\)
\(294\) 0 0
\(295\) −2.77573 4.80770i −0.161609 0.279915i
\(296\) 0 0
\(297\) 1.85952 3.53901i 0.107900 0.205354i
\(298\) 0 0
\(299\) 0.198288 0.343445i 0.0114673 0.0198619i
\(300\) 0 0
\(301\) −10.6857 13.9821i −0.615915 0.805917i
\(302\) 0 0
\(303\) −28.2119 4.58938i −1.62073 0.263653i
\(304\) 0 0
\(305\) −2.61913 1.51215i −0.149971 0.0865857i
\(306\) 0 0
\(307\) 30.3968i 1.73484i 0.497579 + 0.867419i \(0.334223\pi\)
−0.497579 + 0.867419i \(0.665777\pi\)
\(308\) 0 0
\(309\) −0.0817608 + 0.502601i −0.00465121 + 0.0285920i
\(310\) 0 0
\(311\) −13.9130 24.0980i −0.788934 1.36647i −0.926620 0.375998i \(-0.877300\pi\)
0.137686 0.990476i \(-0.456034\pi\)
\(312\) 0 0
\(313\) 0.0403324 + 0.0232859i 0.00227972 + 0.00131620i 0.501139 0.865367i \(-0.332914\pi\)
−0.498860 + 0.866683i \(0.666248\pi\)
\(314\) 0 0
\(315\) −4.22223 0.827662i −0.237896 0.0466335i
\(316\) 0 0
\(317\) −7.35604 4.24701i −0.413156 0.238536i 0.278989 0.960294i \(-0.410001\pi\)
−0.692145 + 0.721758i \(0.743334\pi\)
\(318\) 0 0
\(319\) −1.95525 3.38660i −0.109473 0.189613i
\(320\) 0 0
\(321\) −5.93448 + 2.24960i −0.331230 + 0.125560i
\(322\) 0 0
\(323\) 41.8649i 2.32943i
\(324\) 0 0
\(325\) −13.9484 8.05311i −0.773718 0.446706i
\(326\) 0 0
\(327\) 2.77188 3.39387i 0.153286 0.187681i
\(328\) 0 0
\(329\) −1.57282 + 3.77634i −0.0867125 + 0.208196i
\(330\) 0 0
\(331\) 3.62730 6.28268i 0.199375 0.345327i −0.748951 0.662625i \(-0.769442\pi\)
0.948326 + 0.317298i \(0.102776\pi\)
\(332\) 0 0
\(333\) 6.56106 + 32.1892i 0.359544 + 1.76396i
\(334\) 0 0
\(335\) 0.889950 + 1.54144i 0.0486232 + 0.0842178i
\(336\) 0 0
\(337\) −4.82349 + 8.35454i −0.262752 + 0.455101i −0.966972 0.254881i \(-0.917964\pi\)
0.704220 + 0.709982i \(0.251297\pi\)
\(338\) 0 0
\(339\) −18.4759 15.0899i −1.00347 0.819571i
\(340\) 0 0
\(341\) 1.78315 + 3.08850i 0.0965627 + 0.167252i
\(342\) 0 0
\(343\) 17.1515 6.98745i 0.926097 0.377287i
\(344\) 0 0
\(345\) −0.0174690 + 0.107386i −0.000940501 + 0.00578147i
\(346\) 0 0
\(347\) 11.3105 6.53014i 0.607182 0.350556i −0.164680 0.986347i \(-0.552659\pi\)
0.771862 + 0.635791i \(0.219326\pi\)
\(348\) 0 0
\(349\) −17.4929 + 10.0995i −0.936372 + 0.540614i −0.888821 0.458254i \(-0.848475\pi\)
−0.0475506 + 0.998869i \(0.515142\pi\)
\(350\) 0 0
\(351\) 9.49749 + 15.0346i 0.506939 + 0.802487i
\(352\) 0 0
\(353\) 4.10843 0.218670 0.109335 0.994005i \(-0.465128\pi\)
0.109335 + 0.994005i \(0.465128\pi\)
\(354\) 0 0
\(355\) 3.07854i 0.163392i
\(356\) 0 0
\(357\) 15.6452 25.1830i 0.828032 1.33282i
\(358\) 0 0
\(359\) 28.7322 16.5885i 1.51643 0.875510i 0.516613 0.856219i \(-0.327192\pi\)
0.999814 0.0192910i \(-0.00614090\pi\)
\(360\) 0 0
\(361\) 11.4375 19.8103i 0.601973 1.04265i
\(362\) 0 0
\(363\) 17.7934 + 2.89454i 0.933911 + 0.151924i
\(364\) 0 0
\(365\) 2.90202 + 1.67548i 0.151899 + 0.0876988i
\(366\) 0 0
\(367\) 3.17611i 0.165792i 0.996558 + 0.0828958i \(0.0264169\pi\)
−0.996558 + 0.0828958i \(0.973583\pi\)
\(368\) 0 0
\(369\) 18.1747 16.0913i 0.946139 0.837682i
\(370\) 0 0
\(371\) 0.623300 + 0.259601i 0.0323601 + 0.0134778i
\(372\) 0 0
\(373\) 20.9606 1.08530 0.542649 0.839960i \(-0.317422\pi\)
0.542649 + 0.839960i \(0.317422\pi\)
\(374\) 0 0
\(375\) 8.99488 + 1.46324i 0.464494 + 0.0755616i
\(376\) 0 0
\(377\) 17.3949 0.895881
\(378\) 0 0
\(379\) 20.1198 1.03348 0.516742 0.856141i \(-0.327145\pi\)
0.516742 + 0.856141i \(0.327145\pi\)
\(380\) 0 0
\(381\) −16.1551 2.62803i −0.827650 0.134638i
\(382\) 0 0
\(383\) −25.1676 −1.28601 −0.643003 0.765864i \(-0.722312\pi\)
−0.643003 + 0.765864i \(0.722312\pi\)
\(384\) 0 0
\(385\) 0.141900 + 1.09427i 0.00723187 + 0.0557694i
\(386\) 0 0
\(387\) −3.98526 19.5521i −0.202582 0.993889i
\(388\) 0 0
\(389\) 20.0980i 1.01901i −0.860468 0.509505i \(-0.829829\pi\)
0.860468 0.509505i \(-0.170171\pi\)
\(390\) 0 0
\(391\) −0.649237 0.374837i −0.0328333 0.0189563i
\(392\) 0 0
\(393\) −21.3720 3.47670i −1.07808 0.175376i
\(394\) 0 0
\(395\) −1.09081 + 1.88935i −0.0548848 + 0.0950633i
\(396\) 0 0
\(397\) 6.64273 3.83518i 0.333389 0.192482i −0.323956 0.946072i \(-0.605013\pi\)
0.657345 + 0.753590i \(0.271680\pi\)
\(398\) 0 0
\(399\) −26.1469 + 13.9898i −1.30898 + 0.700367i
\(400\) 0 0
\(401\) 3.54909i 0.177233i 0.996066 + 0.0886165i \(0.0282446\pi\)
−0.996066 + 0.0886165i \(0.971755\pi\)
\(402\) 0 0
\(403\) −15.8637 −0.790228
\(404\) 0 0
\(405\) −3.89840 2.93325i −0.193713 0.145754i
\(406\) 0 0
\(407\) 7.29622 4.21248i 0.361660 0.208805i
\(408\) 0 0
\(409\) −2.98914 + 1.72578i −0.147804 + 0.0853345i −0.572078 0.820199i \(-0.693863\pi\)
0.424274 + 0.905534i \(0.360529\pi\)
\(410\) 0 0
\(411\) 5.36835 33.0004i 0.264801 1.62779i
\(412\) 0 0
\(413\) 16.4528 + 21.5283i 0.809590 + 1.05934i
\(414\) 0 0
\(415\) 3.14434 + 5.44616i 0.154350 + 0.267342i
\(416\) 0 0
\(417\) −1.33827 1.09301i −0.0655355 0.0535251i
\(418\) 0 0
\(419\) −8.49112 + 14.7071i −0.414818 + 0.718487i −0.995409 0.0957088i \(-0.969488\pi\)
0.580591 + 0.814195i \(0.302822\pi\)
\(420\) 0 0
\(421\) 10.3437 + 17.9158i 0.504120 + 0.873162i 0.999989 + 0.00476397i \(0.00151642\pi\)
−0.495869 + 0.868398i \(0.665150\pi\)
\(422\) 0 0
\(423\) −3.47293 + 3.07482i −0.168860 + 0.149503i
\(424\) 0 0
\(425\) −15.2233 + 26.3676i −0.738440 + 1.27901i
\(426\) 0 0
\(427\) 13.6264 + 5.67530i 0.659426 + 0.274647i
\(428\) 0 0
\(429\) 2.88491 3.53226i 0.139285 0.170539i
\(430\) 0 0
\(431\) 32.0588 + 18.5091i 1.54422 + 0.891554i 0.998566 + 0.0535418i \(0.0170511\pi\)
0.545651 + 0.838012i \(0.316282\pi\)
\(432\) 0 0
\(433\) 15.2206i 0.731453i 0.930722 + 0.365727i \(0.119179\pi\)
−0.930722 + 0.365727i \(0.880821\pi\)
\(434\) 0 0
\(435\) −4.46230 + 1.69153i −0.213951 + 0.0811028i
\(436\) 0 0
\(437\) 0.374927 + 0.649392i 0.0179352 + 0.0310646i
\(438\) 0 0
\(439\) 28.4122 + 16.4038i 1.35604 + 0.782909i 0.989087 0.147331i \(-0.0470682\pi\)
0.366951 + 0.930240i \(0.380402\pi\)
\(440\) 0 0
\(441\) 20.9562 + 1.35598i 0.997913 + 0.0645706i
\(442\) 0 0
\(443\) 20.5791 + 11.8813i 0.977740 + 0.564499i 0.901587 0.432597i \(-0.142403\pi\)
0.0761532 + 0.997096i \(0.475736\pi\)
\(444\) 0 0
\(445\) −1.08866 1.88561i −0.0516074 0.0893866i
\(446\) 0 0
\(447\) −5.46495 + 33.5942i −0.258483 + 1.58895i
\(448\) 0 0
\(449\) 21.8105i 1.02930i 0.857400 + 0.514651i \(0.172079\pi\)
−0.857400 + 0.514651i \(0.827921\pi\)
\(450\) 0 0
\(451\) −5.39137 3.11271i −0.253870 0.146572i
\(452\) 0 0
\(453\) −29.1212 4.73731i −1.36824 0.222578i
\(454\) 0 0
\(455\) −4.53106 1.88716i −0.212420 0.0884715i
\(456\) 0 0
\(457\) 19.8532 34.3867i 0.928693 1.60854i 0.143182 0.989696i \(-0.454266\pi\)
0.785511 0.618848i \(-0.212400\pi\)
\(458\) 0 0
\(459\) 28.4209 17.9537i 1.32657 0.838009i
\(460\) 0 0
\(461\) 7.37073 + 12.7665i 0.343289 + 0.594594i 0.985041 0.172318i \(-0.0551256\pi\)
−0.641752 + 0.766912i \(0.721792\pi\)
\(462\) 0 0
\(463\) 12.4381 21.5434i 0.578046 1.00120i −0.417658 0.908604i \(-0.637149\pi\)
0.995703 0.0926000i \(-0.0295178\pi\)
\(464\) 0 0
\(465\) 4.06951 1.54264i 0.188719 0.0715382i
\(466\) 0 0
\(467\) −6.70092 11.6063i −0.310081 0.537077i 0.668298 0.743893i \(-0.267023\pi\)
−0.978380 + 0.206817i \(0.933690\pi\)
\(468\) 0 0
\(469\) −5.27509 6.90238i −0.243581 0.318722i
\(470\) 0 0
\(471\) −1.82865 + 0.693192i −0.0842599 + 0.0319406i
\(472\) 0 0
\(473\) −4.43181 + 2.55870i −0.203775 + 0.117649i
\(474\) 0 0
\(475\) 26.3739 15.2270i 1.21012 0.698661i
\(476\) 0 0
\(477\) 0.507512 + 0.573221i 0.0232374 + 0.0262460i
\(478\) 0 0
\(479\) 41.1461 1.88001 0.940007 0.341154i \(-0.110818\pi\)
0.940007 + 0.341154i \(0.110818\pi\)
\(480\) 0 0
\(481\) 37.4762i 1.70877i
\(482\) 0 0
\(483\) 0.0171530 0.530740i 0.000780489 0.0241495i
\(484\) 0 0
\(485\) 8.16651 4.71494i 0.370822 0.214094i
\(486\) 0 0
\(487\) 14.7695 25.5814i 0.669268 1.15921i −0.308841 0.951114i \(-0.599941\pi\)
0.978109 0.208092i \(-0.0667255\pi\)
\(488\) 0 0
\(489\) 10.5615 + 27.8616i 0.477610 + 1.25994i
\(490\) 0 0
\(491\) −8.53341 4.92676i −0.385107 0.222342i 0.294931 0.955519i \(-0.404703\pi\)
−0.680038 + 0.733177i \(0.738037\pi\)
\(492\) 0 0
\(493\) 32.8827i 1.48096i
\(494\) 0 0
\(495\) −0.396577 + 1.18667i −0.0178248 + 0.0533367i
\(496\) 0 0
\(497\) 1.93227 + 14.9009i 0.0866741 + 0.668397i
\(498\) 0 0
\(499\) 40.7751 1.82534 0.912671 0.408694i \(-0.134016\pi\)
0.912671 + 0.408694i \(0.134016\pi\)
\(500\) 0 0
\(501\) −4.87023 + 5.96306i −0.217586 + 0.266410i
\(502\) 0 0
\(503\) 23.6750 1.05561 0.527807 0.849364i \(-0.323014\pi\)
0.527807 + 0.849364i \(0.323014\pi\)
\(504\) 0 0
\(505\) 8.94547 0.398068
\(506\) 0 0
\(507\) −0.790367 2.08500i −0.0351014 0.0925982i
\(508\) 0 0
\(509\) −28.7676 −1.27510 −0.637551 0.770408i \(-0.720052\pi\)
−0.637551 + 0.770408i \(0.720052\pi\)
\(510\) 0 0
\(511\) −15.0982 6.28829i −0.667903 0.278178i
\(512\) 0 0
\(513\) −33.5981 + 1.33828i −1.48339 + 0.0590863i
\(514\) 0 0
\(515\) 0.159365i 0.00702248i
\(516\) 0 0
\(517\) 1.03021 + 0.594794i 0.0453087 + 0.0261590i
\(518\) 0 0
\(519\) 21.7876 26.6765i 0.956371 1.17097i
\(520\) 0 0
\(521\) −3.64967 + 6.32142i −0.159895 + 0.276947i −0.934831 0.355094i \(-0.884449\pi\)
0.774936 + 0.632040i \(0.217782\pi\)
\(522\) 0 0
\(523\) 21.2167 12.2495i 0.927742 0.535632i 0.0416450 0.999132i \(-0.486740\pi\)
0.886097 + 0.463501i \(0.153407\pi\)
\(524\) 0 0
\(525\) −21.5551 0.696639i −0.940740 0.0304038i
\(526\) 0 0
\(527\) 29.9882i 1.30631i
\(528\) 0 0
\(529\) 22.9866 0.999416
\(530\) 0 0
\(531\) 6.13610 + 30.1043i 0.266284 + 1.30642i
\(532\) 0 0
\(533\) 23.9821 13.8461i 1.03878 0.599740i
\(534\) 0 0
\(535\) 1.72015 0.993131i 0.0743687 0.0429368i
\(536\) 0 0
\(537\) 2.65612 + 2.16935i 0.114620 + 0.0936142i
\(538\) 0 0
\(539\) −1.37366 5.20751i −0.0591678 0.224303i
\(540\) 0 0
\(541\) −12.1854 21.1057i −0.523891 0.907406i −0.999613 0.0278106i \(-0.991146\pi\)
0.475722 0.879596i \(-0.342187\pi\)
\(542\) 0 0
\(543\) 1.58002 9.71274i 0.0678053 0.416814i
\(544\) 0 0
\(545\) −0.685707 + 1.18768i −0.0293724 + 0.0508746i
\(546\) 0 0
\(547\) −19.3409 33.4994i −0.826957 1.43233i −0.900414 0.435034i \(-0.856736\pi\)
0.0734566 0.997298i \(-0.476597\pi\)
\(548\) 0 0
\(549\) 11.0951 + 12.5316i 0.473525 + 0.534834i
\(550\) 0 0
\(551\) −16.4453 + 28.4840i −0.700592 + 1.21346i
\(552\) 0 0
\(553\) 4.09396 9.82958i 0.174093 0.417996i
\(554\) 0 0
\(555\) −3.64431 9.61376i −0.154692 0.408081i
\(556\) 0 0
\(557\) 5.55184 + 3.20536i 0.235239 + 0.135815i 0.612987 0.790093i \(-0.289968\pi\)
−0.377748 + 0.925909i \(0.623301\pi\)
\(558\) 0 0
\(559\) 22.7635i 0.962792i
\(560\) 0 0
\(561\) −6.67726 5.45354i −0.281914 0.230249i
\(562\) 0 0
\(563\) 8.47537 + 14.6798i 0.357194 + 0.618678i 0.987491 0.157676i \(-0.0504001\pi\)
−0.630297 + 0.776354i \(0.717067\pi\)
\(564\) 0 0
\(565\) 6.46562 + 3.73293i 0.272011 + 0.157046i
\(566\) 0 0
\(567\) 20.7103 + 11.7508i 0.869752 + 0.493488i
\(568\) 0 0
\(569\) 10.8854 + 6.28471i 0.456341 + 0.263469i 0.710505 0.703693i \(-0.248467\pi\)
−0.254163 + 0.967161i \(0.581800\pi\)
\(570\) 0 0
\(571\) −4.82080 8.34988i −0.201744 0.349431i 0.747346 0.664435i \(-0.231328\pi\)
−0.949091 + 0.315003i \(0.897994\pi\)
\(572\) 0 0
\(573\) 5.56745 + 4.54712i 0.232584 + 0.189959i
\(574\) 0 0
\(575\) 0.545337i 0.0227421i
\(576\) 0 0
\(577\) 20.9563 + 12.0991i 0.872421 + 0.503692i 0.868152 0.496299i \(-0.165308\pi\)
0.00426870 + 0.999991i \(0.498641\pi\)
\(578\) 0 0
\(579\) −3.60424 9.50806i −0.149787 0.395141i
\(580\) 0 0
\(581\) −18.6378 24.3873i −0.773225 1.01175i
\(582\) 0 0
\(583\) 0.0981731 0.170041i 0.00406592 0.00704237i
\(584\) 0 0
\(585\) −3.68935 4.16702i −0.152536 0.172285i
\(586\) 0 0
\(587\) −12.5498 21.7368i −0.517984 0.897175i −0.999782 0.0208923i \(-0.993349\pi\)
0.481798 0.876283i \(-0.339984\pi\)
\(588\) 0 0
\(589\) 14.9977 25.9768i 0.617970 1.07035i
\(590\) 0 0
\(591\) 0.939755 5.77687i 0.0386563 0.237629i
\(592\) 0 0
\(593\) −19.1605 33.1869i −0.786826 1.36282i −0.927902 0.372824i \(-0.878390\pi\)
0.141076 0.989999i \(-0.454944\pi\)
\(594\) 0 0
\(595\) −3.56743 + 8.56537i −0.146250 + 0.351146i
\(596\) 0 0
\(597\) 6.25510 + 5.10875i 0.256004 + 0.209087i
\(598\) 0 0
\(599\) −1.10762 + 0.639484i −0.0452561 + 0.0261286i −0.522457 0.852665i \(-0.674985\pi\)
0.477201 + 0.878794i \(0.341651\pi\)
\(600\) 0 0
\(601\) −31.2150 + 18.0220i −1.27329 + 0.735133i −0.975605 0.219532i \(-0.929547\pi\)
−0.297682 + 0.954665i \(0.596214\pi\)
\(602\) 0 0
\(603\) −1.96735 9.65202i −0.0801167 0.393061i
\(604\) 0 0
\(605\) −5.64195 −0.229378
\(606\) 0 0
\(607\) 45.1639i 1.83315i 0.399867 + 0.916573i \(0.369056\pi\)
−0.399867 + 0.916573i \(0.630944\pi\)
\(608\) 0 0
\(609\) 20.5370 10.9883i 0.832200 0.445267i
\(610\) 0 0
\(611\) −4.58264 + 2.64579i −0.185394 + 0.107037i
\(612\) 0 0
\(613\) −9.50638 + 16.4655i −0.383959 + 0.665037i −0.991624 0.129157i \(-0.958773\pi\)
0.607665 + 0.794193i \(0.292106\pi\)
\(614\) 0 0
\(615\) −4.80568 + 5.88403i −0.193784 + 0.237267i
\(616\) 0 0
\(617\) 17.2379 + 9.95232i 0.693973 + 0.400665i 0.805099 0.593141i \(-0.202112\pi\)
−0.111126 + 0.993806i \(0.535446\pi\)
\(618\) 0 0
\(619\) 25.4529i 1.02304i 0.859272 + 0.511519i \(0.170917\pi\)
−0.859272 + 0.511519i \(0.829083\pi\)
\(620\) 0 0
\(621\) 0.280066 0.533018i 0.0112387 0.0213893i
\(622\) 0 0
\(623\) 6.45291 + 8.44355i 0.258530 + 0.338283i
\(624\) 0 0
\(625\) 20.6787 0.827147
\(626\) 0 0
\(627\) 3.05664 + 8.06346i 0.122070 + 0.322024i
\(628\) 0 0
\(629\) 70.8438 2.82473
\(630\) 0 0
\(631\) −40.8171 −1.62490 −0.812452 0.583028i \(-0.801868\pi\)
−0.812452 + 0.583028i \(0.801868\pi\)
\(632\) 0 0
\(633\) 6.78466 8.30707i 0.269666 0.330176i
\(634\) 0 0
\(635\) 5.12247 0.203279
\(636\) 0 0
\(637\) 23.1160 + 6.29039i 0.915890 + 0.249234i
\(638\) 0 0
\(639\) −5.40026 + 16.1590i −0.213631 + 0.639241i
\(640\) 0 0
\(641\) 9.98592i 0.394420i 0.980361 + 0.197210i \(0.0631881\pi\)
−0.980361 + 0.197210i \(0.936812\pi\)
\(642\) 0 0
\(643\) 4.32793 + 2.49873i 0.170677 + 0.0985403i 0.582905 0.812540i \(-0.301916\pi\)
−0.412228 + 0.911081i \(0.635249\pi\)
\(644\) 0 0
\(645\) 2.21359 + 5.83950i 0.0871602 + 0.229930i
\(646\) 0 0
\(647\) 5.04602 8.73996i 0.198379 0.343603i −0.749624 0.661864i \(-0.769766\pi\)
0.948003 + 0.318261i \(0.103099\pi\)
\(648\) 0 0
\(649\) 6.82365 3.93964i 0.267852 0.154644i
\(650\) 0 0
\(651\) −18.7292 + 10.0210i −0.734057 + 0.392755i
\(652\) 0 0
\(653\) 17.1169i 0.669835i 0.942247 + 0.334918i \(0.108708\pi\)
−0.942247 + 0.334918i \(0.891292\pi\)
\(654\) 0 0
\(655\) 6.77666 0.264786
\(656\) 0 0
\(657\) −12.2934 13.8851i −0.479613 0.541710i
\(658\) 0 0
\(659\) −12.7790 + 7.37798i −0.497800 + 0.287405i −0.727805 0.685784i \(-0.759459\pi\)
0.230004 + 0.973190i \(0.426126\pi\)
\(660\) 0 0
\(661\) −26.0082 + 15.0158i −1.01160 + 0.584048i −0.911660 0.410946i \(-0.865199\pi\)
−0.0999403 + 0.994993i \(0.531865\pi\)
\(662\) 0 0
\(663\) 35.8596 13.5934i 1.39267 0.527924i
\(664\) 0 0
\(665\) 7.37393 5.63547i 0.285949 0.218534i
\(666\) 0 0
\(667\) −0.294485 0.510063i −0.0114025 0.0197497i
\(668\) 0 0
\(669\) 16.5416 6.27046i 0.639535 0.242430i
\(670\) 0 0
\(671\) 2.14623 3.71737i 0.0828542 0.143508i
\(672\) 0 0
\(673\) 18.1953 + 31.5152i 0.701378 + 1.21482i 0.967983 + 0.251016i \(0.0807648\pi\)
−0.266605 + 0.963806i \(0.585902\pi\)
\(674\) 0 0
\(675\) −21.6476 11.3744i −0.833215 0.437800i
\(676\) 0 0
\(677\) −9.16096 + 15.8672i −0.352084 + 0.609828i −0.986614 0.163070i \(-0.947860\pi\)
0.634530 + 0.772898i \(0.281194\pi\)
\(678\) 0 0
\(679\) −36.5687 + 27.9473i −1.40338 + 1.07252i
\(680\) 0 0
\(681\) −27.7770 4.51863i −1.06442 0.173154i
\(682\) 0 0
\(683\) 6.46067 + 3.73007i 0.247210 + 0.142727i 0.618486 0.785796i \(-0.287746\pi\)
−0.371276 + 0.928523i \(0.621080\pi\)
\(684\) 0 0
\(685\) 10.4638i 0.399802i
\(686\) 0 0
\(687\) −2.41337 + 14.8355i −0.0920759 + 0.566011i
\(688\) 0 0
\(689\) 0.436698 + 0.756383i 0.0166369 + 0.0288159i
\(690\) 0 0
\(691\) 15.1699 + 8.75833i 0.577089 + 0.333182i 0.759976 0.649952i \(-0.225211\pi\)
−0.182887 + 0.983134i \(0.558544\pi\)
\(692\) 0 0
\(693\) 1.17472 5.99269i 0.0446238 0.227643i
\(694\) 0 0
\(695\) 0.468327 + 0.270389i 0.0177646 + 0.0102564i
\(696\) 0 0
\(697\) −26.1742 45.3350i −0.991417 1.71718i
\(698\) 0 0
\(699\) −35.5903 + 13.4913i −1.34615 + 0.510288i
\(700\) 0 0
\(701\) 37.8622i 1.43004i −0.699106 0.715018i \(-0.746418\pi\)
0.699106 0.715018i \(-0.253582\pi\)
\(702\) 0 0
\(703\) −61.3672 35.4304i −2.31451 1.33628i
\(704\) 0 0
\(705\) 0.918297 1.12435i 0.0345851 0.0423456i
\(706\) 0 0
\(707\) −43.2984 + 5.61469i −1.62840 + 0.211162i
\(708\) 0 0
\(709\) 18.5507 32.1307i 0.696686 1.20670i −0.272923 0.962036i \(-0.587991\pi\)
0.969609 0.244659i \(-0.0786761\pi\)
\(710\) 0 0
\(711\) 9.03983 8.00358i 0.339020 0.300158i
\(712\) 0 0
\(713\) 0.268563 + 0.465165i 0.0100578 + 0.0174206i
\(714\) 0 0
\(715\) −0.713667 + 1.23611i −0.0266896 + 0.0462278i
\(716\) 0 0
\(717\) −22.2674 18.1866i −0.831593 0.679190i
\(718\) 0 0
\(719\) 5.73941 + 9.94096i 0.214044 + 0.370735i 0.952976 0.303044i \(-0.0980031\pi\)
−0.738932 + 0.673780i \(0.764670\pi\)
\(720\) 0 0
\(721\) 0.100027 + 0.771370i 0.00372520 + 0.0287273i
\(722\) 0 0
\(723\) 3.05979 18.8092i 0.113795 0.699521i
\(724\) 0 0
\(725\) −20.7153 + 11.9600i −0.769346 + 0.444182i
\(726\) 0 0
\(727\) 13.1105 7.56936i 0.486242 0.280732i −0.236772 0.971565i \(-0.576089\pi\)
0.723014 + 0.690833i \(0.242756\pi\)
\(728\) 0 0
\(729\) 15.3170 + 22.2349i 0.567297 + 0.823513i
\(730\) 0 0
\(731\) −43.0313 −1.59157
\(732\) 0 0
\(733\) 9.20011i 0.339814i 0.985460 + 0.169907i \(0.0543467\pi\)
−0.985460 + 0.169907i \(0.945653\pi\)
\(734\) 0 0
\(735\) −6.54164 + 0.634206i −0.241292 + 0.0233930i
\(736\) 0 0
\(737\) −2.18779 + 1.26312i −0.0805884 + 0.0465277i
\(738\) 0 0
\(739\) 14.6669 25.4038i 0.539529 0.934492i −0.459400 0.888230i \(-0.651935\pi\)
0.998929 0.0462628i \(-0.0147312\pi\)
\(740\) 0 0
\(741\) −37.8611 6.15907i −1.39086 0.226259i
\(742\) 0 0
\(743\) 33.9829 + 19.6200i 1.24671 + 0.719789i 0.970452 0.241294i \(-0.0775719\pi\)
0.276259 + 0.961083i \(0.410905\pi\)
\(744\) 0 0
\(745\) 10.6521i 0.390263i
\(746\) 0 0
\(747\) −6.95098 34.1022i −0.254323 1.24773i
\(748\) 0 0
\(749\) −7.70264 + 5.88668i −0.281448 + 0.215094i
\(750\) 0 0
\(751\) −21.0068 −0.766549 −0.383274 0.923635i \(-0.625204\pi\)
−0.383274 + 0.923635i \(0.625204\pi\)
\(752\) 0 0
\(753\) −30.8418 5.01720i −1.12394 0.182837i
\(754\) 0 0
\(755\) 9.23380 0.336052
\(756\) 0 0
\(757\) 12.1528 0.441703 0.220851 0.975307i \(-0.429116\pi\)
0.220851 + 0.975307i \(0.429116\pi\)
\(758\) 0 0
\(759\) −0.152415 0.0247941i −0.00553231 0.000899970i
\(760\) 0 0
\(761\) 14.4805 0.524919 0.262459 0.964943i \(-0.415466\pi\)
0.262459 + 0.964943i \(0.415466\pi\)
\(762\) 0 0
\(763\) 2.57354 6.17906i 0.0931684 0.223697i
\(764\) 0 0
\(765\) −7.87719 + 6.97422i −0.284800 + 0.252153i
\(766\) 0 0
\(767\) 35.0489i 1.26554i
\(768\) 0 0
\(769\) −6.13371 3.54130i −0.221187 0.127702i 0.385313 0.922786i \(-0.374094\pi\)
−0.606500 + 0.795084i \(0.707427\pi\)
\(770\) 0 0
\(771\) −24.6289 4.00651i −0.886988 0.144291i
\(772\) 0 0
\(773\) 19.1640 33.1930i 0.689280 1.19387i −0.282791 0.959182i \(-0.591260\pi\)
0.972071 0.234687i \(-0.0754065\pi\)
\(774\) 0 0
\(775\) 18.8918 10.9072i 0.678615 0.391799i
\(776\) 0 0
\(777\) 23.6735 + 44.2457i 0.849284 + 1.58731i
\(778\) 0 0
\(779\) 52.3609i 1.87602i
\(780\) 0 0
\(781\) 4.36942 0.156350
\(782\) 0 0
\(783\) 26.3895 1.05114i 0.943084 0.0375648i
\(784\) 0 0
\(785\) 0.530049 0.306024i 0.0189183 0.0109225i
\(786\) 0 0
\(787\) 13.5265 7.80954i 0.482168 0.278380i −0.239151 0.970982i \(-0.576869\pi\)
0.721320 + 0.692602i \(0.243536\pi\)
\(788\) 0 0
\(789\) 6.93845 42.6522i 0.247016 1.51846i
\(790\) 0 0
\(791\) −33.6383 14.0101i −1.19604 0.498143i
\(792\) 0 0
\(793\) 9.54693 + 16.5358i 0.339022 + 0.587203i
\(794\) 0 0
\(795\) −0.185579 0.151569i −0.00658181 0.00537558i
\(796\) 0 0
\(797\) −12.0230 + 20.8244i −0.425875 + 0.737637i −0.996502 0.0835726i \(-0.973367\pi\)
0.570627 + 0.821210i \(0.306700\pi\)
\(798\) 0 0
\(799\) 5.00151 + 8.66286i 0.176941 + 0.306470i
\(800\) 0 0
\(801\) 2.40662 + 11.8071i 0.0850338 + 0.417184i
\(802\) 0 0
\(803\) −2.37804 + 4.11889i −0.0839193 + 0.145352i
\(804\) 0 0
\(805\) 0.0213718 + 0.164811i 0.000753257 + 0.00580883i
\(806\) 0 0
\(807\) −24.1169 + 29.5284i −0.848954 + 1.03945i
\(808\) 0 0
\(809\) 25.2846 + 14.5980i 0.888958 + 0.513240i 0.873601 0.486642i \(-0.161778\pi\)
0.0153562 + 0.999882i \(0.495112\pi\)
\(810\) 0 0
\(811\) 26.0991i 0.916464i −0.888833 0.458232i \(-0.848483\pi\)
0.888833 0.458232i \(-0.151517\pi\)
\(812\) 0 0
\(813\) −42.5352 + 16.1239i −1.49178 + 0.565491i
\(814\) 0 0
\(815\) −4.66261 8.07589i −0.163324 0.282886i
\(816\) 0 0
\(817\) 37.2751 + 21.5208i 1.30409 + 0.752917i
\(818\) 0 0
\(819\) 20.4729 + 17.8538i 0.715379 + 0.623862i
\(820\) 0 0
\(821\) −47.6231 27.4952i −1.66206 0.959590i −0.971730 0.236094i \(-0.924133\pi\)
−0.690329 0.723496i \(-0.742534\pi\)
\(822\) 0 0
\(823\) −9.05785 15.6887i −0.315737 0.546872i 0.663857 0.747860i \(-0.268918\pi\)
−0.979594 + 0.200987i \(0.935585\pi\)
\(824\) 0 0
\(825\) −1.00697 + 6.19005i −0.0350581 + 0.215510i
\(826\) 0 0
\(827\) 38.1934i 1.32812i 0.747681 + 0.664058i \(0.231167\pi\)
−0.747681 + 0.664058i \(0.768833\pi\)
\(828\) 0 0
\(829\) 47.0722 + 27.1771i 1.63488 + 0.943901i 0.982557 + 0.185963i \(0.0595404\pi\)
0.652327 + 0.757938i \(0.273793\pi\)
\(830\) 0 0
\(831\) 8.14462 + 1.32493i 0.282534 + 0.0459613i
\(832\) 0 0
\(833\) 11.8911 43.6977i 0.412003 1.51404i
\(834\) 0 0
\(835\) 1.20479 2.08677i 0.0416936 0.0722155i
\(836\) 0 0
\(837\) −24.0666 + 0.958618i −0.831864 + 0.0331347i
\(838\) 0 0
\(839\) −13.3919 23.1955i −0.462341 0.800798i 0.536736 0.843750i \(-0.319657\pi\)
−0.999077 + 0.0429523i \(0.986324\pi\)
\(840\) 0 0
\(841\) −1.58312 + 2.74205i −0.0545904 + 0.0945534i
\(842\) 0 0
\(843\) 35.8998 13.6086i 1.23645 0.468705i
\(844\) 0 0
\(845\) 0.348924 + 0.604354i 0.0120033 + 0.0207904i
\(846\) 0 0
\(847\) 27.3085 3.54121i 0.938331 0.121678i
\(848\) 0 0
\(849\) 4.70583 1.78385i 0.161504 0.0612216i
\(850\) 0 0
\(851\) 1.09890 0.634450i 0.0376698 0.0217487i
\(852\) 0 0
\(853\) 15.6735 9.04908i 0.536649 0.309835i −0.207071 0.978326i \(-0.566393\pi\)
0.743720 + 0.668491i \(0.233060\pi\)
\(854\) 0 0
\(855\) 10.3114 2.10176i 0.352643 0.0718785i
\(856\) 0 0
\(857\) 35.3122 1.20624 0.603120 0.797650i \(-0.293924\pi\)
0.603120 + 0.797650i \(0.293924\pi\)
\(858\) 0 0
\(859\) 23.2786i 0.794254i −0.917764 0.397127i \(-0.870007\pi\)
0.917764 0.397127i \(-0.129993\pi\)
\(860\) 0 0
\(861\) 19.5676 31.4965i 0.666862 1.07340i
\(862\) 0 0
\(863\) −28.3933 + 16.3929i −0.966520 + 0.558020i −0.898173 0.439641i \(-0.855106\pi\)
−0.0683462 + 0.997662i \(0.521772\pi\)
\(864\) 0 0
\(865\) −5.38980 + 9.33541i −0.183259 + 0.317414i
\(866\) 0 0
\(867\) −15.2595 40.2548i −0.518239 1.36712i
\(868\) 0 0
\(869\) −2.68158 1.54821i −0.0909665 0.0525195i
\(870\) 0 0
\(871\) 11.2373i 0.380763i
\(872\) 0 0
\(873\) −51.1362 + 10.4230i −1.73070 + 0.352765i
\(874\) 0 0
\(875\) 13.8049 1.79015i 0.466692 0.0605181i
\(876\) 0 0
\(877\) 21.5376 0.727273 0.363636 0.931541i \(-0.381535\pi\)
0.363636 + 0.931541i \(0.381535\pi\)
\(878\) 0 0
\(879\) −30.6484 + 37.5256i −1.03374 + 1.26571i
\(880\) 0 0
\(881\) −22.9322 −0.772606 −0.386303 0.922372i \(-0.626248\pi\)
−0.386303 + 0.922372i \(0.626248\pi\)
\(882\) 0 0
\(883\) −31.8225 −1.07091 −0.535455 0.844564i \(-0.679860\pi\)
−0.535455 + 0.844564i \(0.679860\pi\)
\(884\) 0 0
\(885\) −3.40827 8.99108i −0.114568 0.302232i
\(886\) 0 0
\(887\) 22.2271 0.746312 0.373156 0.927769i \(-0.378276\pi\)
0.373156 + 0.927769i \(0.378276\pi\)
\(888\) 0 0
\(889\) −24.7941 + 3.21516i −0.831567 + 0.107833i
\(890\) 0 0
\(891\) 4.16321 5.53307i 0.139473 0.185365i
\(892\) 0 0
\(893\) 10.0054i 0.334818i
\(894\) 0 0
\(895\) −0.929507 0.536651i −0.0310700 0.0179383i
\(896\) 0 0
\(897\) 0.434503 0.532001i 0.0145076 0.0177630i
\(898\) 0 0
\(899\) −11.7799 + 20.4034i −0.392881 + 0.680491i
\(900\) 0 0
\(901\) 1.42984 0.825518i 0.0476349 0.0275020i
\(902\) 0 0
\(903\) −14.3796 26.8753i −0.478522 0.894355i
\(904\) 0 0
\(905\) 3.07973i 0.102374i
\(906\) 0 0
\(907\) −39.8198 −1.32219 −0.661097 0.750301i \(-0.729909\pi\)
−0.661097 + 0.750301i \(0.729909\pi\)
\(908\) 0 0
\(909\) −46.9541 15.6918i −1.55737 0.520464i
\(910\) 0 0
\(911\) −5.87819 + 3.39378i −0.194753 + 0.112441i −0.594206 0.804313i \(-0.702534\pi\)
0.399453 + 0.916754i \(0.369200\pi\)
\(912\) 0 0
\(913\) −7.72984 + 4.46282i −0.255820 + 0.147698i
\(914\) 0 0
\(915\) −4.05706 3.31354i −0.134122 0.109542i
\(916\) 0 0
\(917\) −32.8008 + 4.25342i −1.08318 + 0.140460i
\(918\) 0 0
\(919\) −14.0173 24.2787i −0.462389 0.800882i 0.536690 0.843779i \(-0.319674\pi\)
−0.999079 + 0.0428977i \(0.986341\pi\)
\(920\) 0 0
\(921\) −8.45354 + 51.9657i −0.278554 + 1.71233i
\(922\) 0 0
\(923\) −9.71812 + 16.8323i −0.319876 + 0.554041i
\(924\) 0 0
\(925\) −25.7670 44.6298i −0.847215 1.46742i
\(926\) 0 0
\(927\) −0.279553 + 0.836498i −0.00918173 + 0.0274742i
\(928\) 0 0
\(929\) −8.87040 + 15.3640i −0.291028 + 0.504076i −0.974053 0.226319i \(-0.927331\pi\)
0.683025 + 0.730395i \(0.260664\pi\)
\(930\) 0 0
\(931\) −32.1546 + 31.9054i −1.05382 + 1.04566i
\(932\) 0 0
\(933\) −17.0836 45.0668i −0.559291 1.47542i
\(934\) 0 0
\(935\) 2.33670 + 1.34909i 0.0764182 + 0.0441200i
\(936\) 0 0
\(937\) 10.2459i 0.334719i −0.985896 0.167360i \(-0.946476\pi\)
0.985896 0.167360i \(-0.0535241\pi\)
\(938\) 0 0
\(939\) 0.0624755 + 0.0510258i 0.00203881 + 0.00166517i
\(940\) 0 0
\(941\) 4.99827 + 8.65726i 0.162939 + 0.282219i 0.935921 0.352209i \(-0.114569\pi\)
−0.772982 + 0.634427i \(0.781236\pi\)
\(942\) 0 0
\(943\) −0.812006 0.468812i −0.0264426 0.0152666i
\(944\) 0 0
\(945\) −6.98805 2.58918i −0.227321 0.0842261i
\(946\) 0 0
\(947\) 41.7852 + 24.1247i 1.35784 + 0.783948i 0.989332 0.145678i \(-0.0465363\pi\)
0.368505 + 0.929626i \(0.379870\pi\)
\(948\) 0 0
\(949\) −10.5781 18.3218i −0.343380 0.594751i
\(950\) 0 0
\(951\) −11.3946 9.30636i −0.369495 0.301779i
\(952\) 0 0
\(953\) 40.4708i 1.31098i 0.755205 + 0.655489i \(0.227537\pi\)
−0.755205 + 0.655489i \(0.772463\pi\)
\(954\) 0 0
\(955\) −1.94832 1.12486i −0.0630462 0.0363997i
\(956\) 0 0
\(957\) −2.40082 6.33342i −0.0776076 0.204730i
\(958\) 0 0
\(959\) −6.56769 50.6476i −0.212082 1.63549i
\(960\) 0 0
\(961\) −4.75701 + 8.23938i −0.153452 + 0.265787i
\(962\) 0 0
\(963\) −10.7711 + 2.19545i −0.347093 + 0.0707472i
\(964\) 0 0
\(965\) 1.59117 + 2.75598i 0.0512215 + 0.0887182i
\(966\) 0 0
\(967\) 14.6566 25.3860i 0.471325 0.816359i −0.528137 0.849159i \(-0.677109\pi\)
0.999462 + 0.0328000i \(0.0104424\pi\)
\(968\) 0 0
\(969\) −11.6429 + 71.5714i −0.374024 + 2.29920i
\(970\) 0 0
\(971\) −9.02830 15.6375i −0.289732 0.501831i 0.684014 0.729469i \(-0.260233\pi\)
−0.973746 + 0.227639i \(0.926900\pi\)
\(972\) 0 0
\(973\) −2.43653 1.01480i −0.0781117 0.0325330i
\(974\) 0 0
\(975\) −21.6062 17.6465i −0.691954 0.565142i
\(976\) 0 0
\(977\) 33.9886 19.6233i 1.08739 0.627805i 0.154510 0.987991i \(-0.450620\pi\)
0.932880 + 0.360186i \(0.117287\pi\)
\(978\) 0 0
\(979\) 2.67628 1.54515i 0.0855344 0.0493833i
\(980\) 0 0
\(981\) 5.68261 5.03120i 0.181432 0.160634i
\(982\) 0 0
\(983\) 26.4668 0.844159 0.422079 0.906559i \(-0.361300\pi\)
0.422079 + 0.906559i \(0.361300\pi\)
\(984\) 0 0
\(985\) 1.83174i 0.0583640i
\(986\) 0 0
\(987\) −3.73909 + 6.01854i −0.119016 + 0.191572i
\(988\) 0 0
\(989\) −0.667484 + 0.385372i −0.0212248 + 0.0122541i
\(990\) 0 0
\(991\) −7.32864 + 12.6936i −0.232802 + 0.403225i −0.958632 0.284650i \(-0.908123\pi\)
0.725830 + 0.687875i \(0.241456\pi\)
\(992\) 0 0
\(993\) 7.94841 9.73195i 0.252235 0.308834i
\(994\) 0 0
\(995\) −2.18896 1.26380i −0.0693948 0.0400651i
\(996\) 0 0
\(997\) 3.93872i 0.124741i 0.998053 + 0.0623703i \(0.0198660\pi\)
−0.998053 + 0.0623703i \(0.980134\pi\)
\(998\) 0 0
\(999\) 2.26463 + 56.8547i 0.0716496 + 1.79880i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.e.689.24 48
3.2 odd 2 3024.2.df.e.17.13 48
4.3 odd 2 504.2.cx.a.185.1 yes 48
7.5 odd 6 1008.2.ca.e.257.17 48
9.2 odd 6 1008.2.ca.e.353.17 48
9.7 even 3 3024.2.ca.e.2033.13 48
12.11 even 2 1512.2.cx.a.17.13 48
21.5 even 6 3024.2.ca.e.2609.13 48
28.19 even 6 504.2.bs.a.257.8 48
36.7 odd 6 1512.2.bs.a.521.13 48
36.11 even 6 504.2.bs.a.353.8 yes 48
63.47 even 6 inner 1008.2.df.e.929.24 48
63.61 odd 6 3024.2.df.e.1601.13 48
84.47 odd 6 1512.2.bs.a.1097.13 48
252.47 odd 6 504.2.cx.a.425.1 yes 48
252.187 even 6 1512.2.cx.a.89.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.8 48 28.19 even 6
504.2.bs.a.353.8 yes 48 36.11 even 6
504.2.cx.a.185.1 yes 48 4.3 odd 2
504.2.cx.a.425.1 yes 48 252.47 odd 6
1008.2.ca.e.257.17 48 7.5 odd 6
1008.2.ca.e.353.17 48 9.2 odd 6
1008.2.df.e.689.24 48 1.1 even 1 trivial
1008.2.df.e.929.24 48 63.47 even 6 inner
1512.2.bs.a.521.13 48 36.7 odd 6
1512.2.bs.a.1097.13 48 84.47 odd 6
1512.2.cx.a.17.13 48 12.11 even 2
1512.2.cx.a.89.13 48 252.187 even 6
3024.2.ca.e.2033.13 48 9.7 even 3
3024.2.ca.e.2609.13 48 21.5 even 6
3024.2.df.e.17.13 48 3.2 odd 2
3024.2.df.e.1601.13 48 63.61 odd 6