Properties

Label 1512.2.cx.a.17.13
Level $1512$
Weight $2$
Character 1512.17
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.13
Character \(\chi\) \(=\) 1512.17
Dual form 1512.2.cx.a.89.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.542075 q^{5} +(-2.62378 + 0.340238i) q^{7} -0.769377i q^{11} +(2.96386 + 1.71119i) q^{13} +(-3.23477 + 5.60278i) q^{17} +(5.60413 - 3.23554i) q^{19} -0.115878i q^{23} -4.70615 q^{25} +(-4.40174 + 2.54135i) q^{29} +(4.01429 - 2.31765i) q^{31} +(-1.42229 + 0.184434i) q^{35} +(5.47518 + 9.48329i) q^{37} +(-4.04575 + 7.00745i) q^{41} +(3.32569 + 5.76026i) q^{43} +(-0.773085 + 1.33902i) q^{47} +(6.76848 - 1.78542i) q^{49} +(-0.221011 - 0.127601i) q^{53} -0.417060i q^{55} +(5.12056 + 8.86906i) q^{59} +(4.83167 + 2.78957i) q^{61} +(1.60664 + 0.927591i) q^{65} +(1.64175 + 2.84359i) q^{67} +5.67917i q^{71} +(-5.35354 - 3.09087i) q^{73} +(0.261771 + 2.01868i) q^{77} +(-2.01229 + 3.48540i) q^{79} +(-5.80057 - 10.0469i) q^{83} +(-1.75349 + 3.03713i) q^{85} +(-2.00832 - 3.47851i) q^{89} +(-8.35874 - 3.48136i) q^{91} +(3.03786 - 1.75391i) q^{95} +(-15.0653 + 8.69795i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.542075 0.242423 0.121212 0.992627i \(-0.461322\pi\)
0.121212 + 0.992627i \(0.461322\pi\)
\(6\) 0 0
\(7\) −2.62378 + 0.340238i −0.991697 + 0.128598i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.769377i 0.231976i −0.993251 0.115988i \(-0.962997\pi\)
0.993251 0.115988i \(-0.0370034\pi\)
\(12\) 0 0
\(13\) 2.96386 + 1.71119i 0.822027 + 0.474598i 0.851115 0.524979i \(-0.175927\pi\)
−0.0290877 + 0.999577i \(0.509260\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.23477 + 5.60278i −0.784547 + 1.35887i 0.144723 + 0.989472i \(0.453771\pi\)
−0.929269 + 0.369403i \(0.879562\pi\)
\(18\) 0 0
\(19\) 5.60413 3.23554i 1.28567 0.742285i 0.307795 0.951453i \(-0.400409\pi\)
0.977880 + 0.209168i \(0.0670756\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.115878i 0.0241621i −0.999927 0.0120811i \(-0.996154\pi\)
0.999927 0.0120811i \(-0.00384562\pi\)
\(24\) 0 0
\(25\) −4.70615 −0.941231
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.40174 + 2.54135i −0.817383 + 0.471916i −0.849513 0.527568i \(-0.823104\pi\)
0.0321304 + 0.999484i \(0.489771\pi\)
\(30\) 0 0
\(31\) 4.01429 2.31765i 0.720987 0.416262i −0.0941289 0.995560i \(-0.530007\pi\)
0.815116 + 0.579298i \(0.196673\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.42229 + 0.184434i −0.240410 + 0.0311751i
\(36\) 0 0
\(37\) 5.47518 + 9.48329i 0.900114 + 1.55904i 0.827345 + 0.561694i \(0.189850\pi\)
0.0727692 + 0.997349i \(0.476816\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.04575 + 7.00745i −0.631841 + 1.09438i 0.355334 + 0.934739i \(0.384367\pi\)
−0.987175 + 0.159641i \(0.948966\pi\)
\(42\) 0 0
\(43\) 3.32569 + 5.76026i 0.507162 + 0.878431i 0.999966 + 0.00829006i \(0.00263884\pi\)
−0.492803 + 0.870141i \(0.664028\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.773085 + 1.33902i −0.112766 + 0.195317i −0.916885 0.399152i \(-0.869304\pi\)
0.804118 + 0.594469i \(0.202638\pi\)
\(48\) 0 0
\(49\) 6.76848 1.78542i 0.966925 0.255060i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.221011 0.127601i −0.0303582 0.0175273i 0.484744 0.874656i \(-0.338913\pi\)
−0.515102 + 0.857129i \(0.672246\pi\)
\(54\) 0 0
\(55\) 0.417060i 0.0562364i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.12056 + 8.86906i 0.666640 + 1.15465i 0.978838 + 0.204637i \(0.0656013\pi\)
−0.312198 + 0.950017i \(0.601065\pi\)
\(60\) 0 0
\(61\) 4.83167 + 2.78957i 0.618632 + 0.357167i 0.776336 0.630319i \(-0.217076\pi\)
−0.157704 + 0.987486i \(0.550409\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.60664 + 0.927591i 0.199279 + 0.115054i
\(66\) 0 0
\(67\) 1.64175 + 2.84359i 0.200571 + 0.347400i 0.948713 0.316140i \(-0.102387\pi\)
−0.748141 + 0.663539i \(0.769053\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.67917i 0.673994i 0.941506 + 0.336997i \(0.109411\pi\)
−0.941506 + 0.336997i \(0.890589\pi\)
\(72\) 0 0
\(73\) −5.35354 3.09087i −0.626585 0.361759i 0.152844 0.988250i \(-0.451157\pi\)
−0.779428 + 0.626492i \(0.784490\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.261771 + 2.01868i 0.0298316 + 0.230050i
\(78\) 0 0
\(79\) −2.01229 + 3.48540i −0.226401 + 0.392138i −0.956739 0.290948i \(-0.906029\pi\)
0.730338 + 0.683086i \(0.239363\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.80057 10.0469i −0.636695 1.10279i −0.986153 0.165836i \(-0.946968\pi\)
0.349458 0.936952i \(-0.386366\pi\)
\(84\) 0 0
\(85\) −1.75349 + 3.03713i −0.190192 + 0.329423i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.00832 3.47851i −0.212881 0.368721i 0.739734 0.672900i \(-0.234951\pi\)
−0.952615 + 0.304178i \(0.901618\pi\)
\(90\) 0 0
\(91\) −8.35874 3.48136i −0.876234 0.364946i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.03786 1.75391i 0.311677 0.179947i
\(96\) 0 0
\(97\) −15.0653 + 8.69795i −1.52965 + 0.883143i −0.530272 + 0.847828i \(0.677910\pi\)
−0.999376 + 0.0353150i \(0.988757\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.5023 1.64204 0.821019 0.570902i \(-0.193406\pi\)
0.821019 + 0.570902i \(0.193406\pi\)
\(102\) 0 0
\(103\) 0.293992i 0.0289678i −0.999895 0.0144839i \(-0.995389\pi\)
0.999895 0.0144839i \(-0.00461054\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.17327 + 1.83209i −0.306772 + 0.177115i −0.645481 0.763776i \(-0.723343\pi\)
0.338709 + 0.940891i \(0.390010\pi\)
\(108\) 0 0
\(109\) 1.26497 2.19099i 0.121162 0.209858i −0.799064 0.601246i \(-0.794671\pi\)
0.920226 + 0.391387i \(0.128005\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.9275 + 6.88637i 1.12205 + 0.647815i 0.941923 0.335828i \(-0.109016\pi\)
0.180126 + 0.983644i \(0.442350\pi\)
\(114\) 0 0
\(115\) 0.0628143i 0.00585746i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.58105 15.8011i 0.603284 1.44848i
\(120\) 0 0
\(121\) 10.4081 0.946187
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.26146 −0.470600
\(126\) 0 0
\(127\) 9.44974 0.838529 0.419265 0.907864i \(-0.362288\pi\)
0.419265 + 0.907864i \(0.362288\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.5013 −1.09225 −0.546123 0.837705i \(-0.683897\pi\)
−0.546123 + 0.837705i \(0.683897\pi\)
\(132\) 0 0
\(133\) −13.6032 + 10.3961i −1.17954 + 0.901456i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.3033i 1.64919i 0.565725 + 0.824594i \(0.308596\pi\)
−0.565725 + 0.824594i \(0.691404\pi\)
\(138\) 0 0
\(139\) 0.863952 + 0.498803i 0.0732794 + 0.0423079i 0.536192 0.844096i \(-0.319862\pi\)
−0.462913 + 0.886404i \(0.653196\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.31655 2.28033i 0.110095 0.190690i
\(144\) 0 0
\(145\) −2.38607 + 1.37760i −0.198153 + 0.114403i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 19.6506i 1.60984i −0.593383 0.804920i \(-0.702208\pi\)
0.593383 0.804920i \(-0.297792\pi\)
\(150\) 0 0
\(151\) 17.0342 1.38622 0.693111 0.720831i \(-0.256240\pi\)
0.693111 + 0.720831i \(0.256240\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.17604 1.25634i 0.174784 0.100912i
\(156\) 0 0
\(157\) −0.977815 + 0.564542i −0.0780381 + 0.0450553i −0.538511 0.842618i \(-0.681013\pi\)
0.460473 + 0.887674i \(0.347680\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.0394259 + 0.304037i 0.00310720 + 0.0239615i
\(162\) 0 0
\(163\) −8.60142 14.8981i −0.673715 1.16691i −0.976843 0.213959i \(-0.931364\pi\)
0.303127 0.952950i \(-0.401969\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.22256 + 3.84959i −0.171987 + 0.297890i −0.939114 0.343605i \(-0.888352\pi\)
0.767128 + 0.641495i \(0.221685\pi\)
\(168\) 0 0
\(169\) −0.643682 1.11489i −0.0495140 0.0857607i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.94291 + 17.2216i −0.755946 + 1.30934i 0.188957 + 0.981985i \(0.439489\pi\)
−0.944903 + 0.327351i \(0.893844\pi\)
\(174\) 0 0
\(175\) 12.3479 1.60121i 0.933416 0.121040i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.71472 + 0.989994i 0.128164 + 0.0739956i 0.562711 0.826653i \(-0.309758\pi\)
−0.434547 + 0.900649i \(0.643092\pi\)
\(180\) 0 0
\(181\) 5.68137i 0.422293i −0.977454 0.211146i \(-0.932280\pi\)
0.977454 0.211146i \(-0.0677197\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.96796 + 5.14065i 0.218209 + 0.377948i
\(186\) 0 0
\(187\) 4.31065 + 2.48876i 0.315226 + 0.181996i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.59419 + 2.07511i 0.260066 + 0.150149i 0.624365 0.781133i \(-0.285358\pi\)
−0.364298 + 0.931282i \(0.618691\pi\)
\(192\) 0 0
\(193\) −2.93533 5.08413i −0.211289 0.365964i 0.740829 0.671694i \(-0.234433\pi\)
−0.952118 + 0.305730i \(0.901100\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.37912i 0.240753i 0.992728 + 0.120376i \(0.0384101\pi\)
−0.992728 + 0.120376i \(0.961590\pi\)
\(198\) 0 0
\(199\) −4.03812 2.33141i −0.286255 0.165269i 0.349997 0.936751i \(-0.386183\pi\)
−0.636252 + 0.771482i \(0.719516\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.6846 8.16558i 0.749908 0.573111i
\(204\) 0 0
\(205\) −2.19310 + 3.79856i −0.153173 + 0.265303i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.48935 4.31168i −0.172192 0.298245i
\(210\) 0 0
\(211\) −3.09622 + 5.36281i −0.213153 + 0.369191i −0.952699 0.303914i \(-0.901706\pi\)
0.739547 + 0.673105i \(0.235040\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.80277 + 3.12249i 0.122948 + 0.212952i
\(216\) 0 0
\(217\) −9.74406 + 7.44682i −0.661470 + 0.505523i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −19.1748 + 11.0706i −1.28984 + 0.744688i
\(222\) 0 0
\(223\) −8.84510 + 5.10672i −0.592312 + 0.341971i −0.766011 0.642827i \(-0.777761\pi\)
0.173699 + 0.984799i \(0.444428\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.2479 −1.07841 −0.539205 0.842175i \(-0.681275\pi\)
−0.539205 + 0.842175i \(0.681275\pi\)
\(228\) 0 0
\(229\) 8.67789i 0.573451i 0.958013 + 0.286726i \(0.0925668\pi\)
−0.958013 + 0.286726i \(0.907433\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.0308 10.9874i 1.24675 0.719811i 0.276290 0.961074i \(-0.410895\pi\)
0.970460 + 0.241263i \(0.0775617\pi\)
\(234\) 0 0
\(235\) −0.419070 + 0.725851i −0.0273371 + 0.0473493i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.3752 8.29955i −0.929857 0.536853i −0.0430908 0.999071i \(-0.513720\pi\)
−0.886766 + 0.462218i \(0.847054\pi\)
\(240\) 0 0
\(241\) 11.0022i 0.708716i −0.935110 0.354358i \(-0.884699\pi\)
0.935110 0.354358i \(-0.115301\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.66902 0.967831i 0.234405 0.0618325i
\(246\) 0 0
\(247\) 22.1465 1.40915
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −18.0406 −1.13871 −0.569356 0.822091i \(-0.692808\pi\)
−0.569356 + 0.822091i \(0.692808\pi\)
\(252\) 0 0
\(253\) −0.0891535 −0.00560503
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.4064 0.898648 0.449324 0.893369i \(-0.351665\pi\)
0.449324 + 0.893369i \(0.351665\pi\)
\(258\) 0 0
\(259\) −17.5923 23.0192i −1.09313 1.43035i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 24.9490i 1.53842i −0.638997 0.769209i \(-0.720650\pi\)
0.638997 0.769209i \(-0.279350\pi\)
\(264\) 0 0
\(265\) −0.119805 0.0691692i −0.00735954 0.00424903i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 11.0059 19.0627i 0.671040 1.16228i −0.306569 0.951848i \(-0.599181\pi\)
0.977609 0.210428i \(-0.0674856\pi\)
\(270\) 0 0
\(271\) 22.7444 13.1315i 1.38162 0.797680i 0.389271 0.921123i \(-0.372727\pi\)
0.992352 + 0.123443i \(0.0393935\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.62081i 0.218343i
\(276\) 0 0
\(277\) 4.76411 0.286248 0.143124 0.989705i \(-0.454285\pi\)
0.143124 + 0.989705i \(0.454285\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −19.1963 + 11.0830i −1.14515 + 0.661155i −0.947702 0.319158i \(-0.896600\pi\)
−0.197452 + 0.980312i \(0.563267\pi\)
\(282\) 0 0
\(283\) −2.51629 + 1.45278i −0.149578 + 0.0863590i −0.572921 0.819611i \(-0.694190\pi\)
0.423343 + 0.905970i \(0.360857\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.23098 19.7626i 0.485860 1.16655i
\(288\) 0 0
\(289\) −12.4275 21.5250i −0.731027 1.26618i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.9866 24.2255i 0.817104 1.41527i −0.0907025 0.995878i \(-0.528911\pi\)
0.907807 0.419388i \(-0.137755\pi\)
\(294\) 0 0
\(295\) 2.77573 + 4.80770i 0.161609 + 0.279915i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.198288 0.343445i 0.0114673 0.0198619i
\(300\) 0 0
\(301\) −10.6857 13.9821i −0.615915 0.805917i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.61913 + 1.51215i 0.149971 + 0.0865857i
\(306\) 0 0
\(307\) 30.3968i 1.73484i −0.497579 0.867419i \(-0.665777\pi\)
0.497579 0.867419i \(-0.334223\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.9130 24.0980i −0.788934 1.36647i −0.926620 0.375998i \(-0.877300\pi\)
0.137686 0.990476i \(-0.456034\pi\)
\(312\) 0 0
\(313\) 0.0403324 + 0.0232859i 0.00227972 + 0.00131620i 0.501139 0.865367i \(-0.332914\pi\)
−0.498860 + 0.866683i \(0.666248\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.35604 + 4.24701i 0.413156 + 0.238536i 0.692145 0.721758i \(-0.256666\pi\)
−0.278989 + 0.960294i \(0.589999\pi\)
\(318\) 0 0
\(319\) 1.95525 + 3.38660i 0.109473 + 0.189613i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 41.8649i 2.32943i
\(324\) 0 0
\(325\) −13.9484 8.05311i −0.773718 0.446706i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.57282 3.77634i 0.0867125 0.208196i
\(330\) 0 0
\(331\) −3.62730 + 6.28268i −0.199375 + 0.345327i −0.948326 0.317298i \(-0.897224\pi\)
0.748951 + 0.662625i \(0.230558\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.889950 + 1.54144i 0.0486232 + 0.0842178i
\(336\) 0 0
\(337\) −4.82349 + 8.35454i −0.262752 + 0.455101i −0.966972 0.254881i \(-0.917964\pi\)
0.704220 + 0.709982i \(0.251297\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.78315 3.08850i −0.0965627 0.167252i
\(342\) 0 0
\(343\) −17.1515 + 6.98745i −0.926097 + 0.377287i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.3105 6.53014i 0.607182 0.350556i −0.164680 0.986347i \(-0.552659\pi\)
0.771862 + 0.635791i \(0.219326\pi\)
\(348\) 0 0
\(349\) −17.4929 + 10.0995i −0.936372 + 0.540614i −0.888821 0.458254i \(-0.848475\pi\)
−0.0475506 + 0.998869i \(0.515142\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.10843 −0.218670 −0.109335 0.994005i \(-0.534872\pi\)
−0.109335 + 0.994005i \(0.534872\pi\)
\(354\) 0 0
\(355\) 3.07854i 0.163392i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.7322 16.5885i 1.51643 0.875510i 0.516613 0.856219i \(-0.327192\pi\)
0.999814 0.0192910i \(-0.00614090\pi\)
\(360\) 0 0
\(361\) 11.4375 19.8103i 0.601973 1.04265i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.90202 1.67548i −0.151899 0.0876988i
\(366\) 0 0
\(367\) 3.17611i 0.165792i −0.996558 0.0828958i \(-0.973583\pi\)
0.996558 0.0828958i \(-0.0264169\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.623300 + 0.259601i 0.0323601 + 0.0134778i
\(372\) 0 0
\(373\) 20.9606 1.08530 0.542649 0.839960i \(-0.317422\pi\)
0.542649 + 0.839960i \(0.317422\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −17.3949 −0.895881
\(378\) 0 0
\(379\) −20.1198 −1.03348 −0.516742 0.856141i \(-0.672855\pi\)
−0.516742 + 0.856141i \(0.672855\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −25.1676 −1.28601 −0.643003 0.765864i \(-0.722312\pi\)
−0.643003 + 0.765864i \(0.722312\pi\)
\(384\) 0 0
\(385\) 0.141900 + 1.09427i 0.00723187 + 0.0557694i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.0980i 1.01901i 0.860468 + 0.509505i \(0.170171\pi\)
−0.860468 + 0.509505i \(0.829829\pi\)
\(390\) 0 0
\(391\) 0.649237 + 0.374837i 0.0328333 + 0.0189563i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.09081 + 1.88935i −0.0548848 + 0.0950633i
\(396\) 0 0
\(397\) 6.64273 3.83518i 0.333389 0.192482i −0.323956 0.946072i \(-0.605013\pi\)
0.657345 + 0.753590i \(0.271680\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.54909i 0.177233i −0.996066 0.0886165i \(-0.971755\pi\)
0.996066 0.0886165i \(-0.0282446\pi\)
\(402\) 0 0
\(403\) 15.8637 0.790228
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.29622 4.21248i 0.361660 0.208805i
\(408\) 0 0
\(409\) −2.98914 + 1.72578i −0.147804 + 0.0853345i −0.572078 0.820199i \(-0.693863\pi\)
0.424274 + 0.905534i \(0.360529\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16.4528 21.5283i −0.809590 1.05934i
\(414\) 0 0
\(415\) −3.14434 5.44616i −0.154350 0.267342i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.49112 + 14.7071i −0.414818 + 0.718487i −0.995409 0.0957088i \(-0.969488\pi\)
0.580591 + 0.814195i \(0.302822\pi\)
\(420\) 0 0
\(421\) 10.3437 + 17.9158i 0.504120 + 0.873162i 0.999989 + 0.00476397i \(0.00151642\pi\)
−0.495869 + 0.868398i \(0.665150\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 15.2233 26.3676i 0.738440 1.27901i
\(426\) 0 0
\(427\) −13.6264 5.67530i −0.659426 0.274647i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 32.0588 + 18.5091i 1.54422 + 0.891554i 0.998566 + 0.0535418i \(0.0170511\pi\)
0.545651 + 0.838012i \(0.316282\pi\)
\(432\) 0 0
\(433\) 15.2206i 0.731453i 0.930722 + 0.365727i \(0.119179\pi\)
−0.930722 + 0.365727i \(0.880821\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.374927 0.649392i −0.0179352 0.0310646i
\(438\) 0 0
\(439\) −28.4122 16.4038i −1.35604 0.782909i −0.366951 0.930240i \(-0.619598\pi\)
−0.989087 + 0.147331i \(0.952932\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.5791 + 11.8813i 0.977740 + 0.564499i 0.901587 0.432597i \(-0.142403\pi\)
0.0761532 + 0.997096i \(0.475736\pi\)
\(444\) 0 0
\(445\) −1.08866 1.88561i −0.0516074 0.0893866i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.8105i 1.02930i −0.857400 0.514651i \(-0.827921\pi\)
0.857400 0.514651i \(-0.172079\pi\)
\(450\) 0 0
\(451\) 5.39137 + 3.11271i 0.253870 + 0.146572i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.53106 1.88716i −0.212420 0.0884715i
\(456\) 0 0
\(457\) 19.8532 34.3867i 0.928693 1.60854i 0.143182 0.989696i \(-0.454266\pi\)
0.785511 0.618848i \(-0.212400\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.37073 12.7665i −0.343289 0.594594i 0.641752 0.766912i \(-0.278208\pi\)
−0.985041 + 0.172318i \(0.944874\pi\)
\(462\) 0 0
\(463\) −12.4381 + 21.5434i −0.578046 + 1.00120i 0.417658 + 0.908604i \(0.362851\pi\)
−0.995703 + 0.0926000i \(0.970482\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.70092 11.6063i −0.310081 0.537077i 0.668298 0.743893i \(-0.267023\pi\)
−0.978380 + 0.206817i \(0.933690\pi\)
\(468\) 0 0
\(469\) −5.27509 6.90238i −0.243581 0.318722i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.43181 2.55870i 0.203775 0.117649i
\(474\) 0 0
\(475\) −26.3739 + 15.2270i −1.21012 + 0.698661i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 41.1461 1.88001 0.940007 0.341154i \(-0.110818\pi\)
0.940007 + 0.341154i \(0.110818\pi\)
\(480\) 0 0
\(481\) 37.4762i 1.70877i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.16651 + 4.71494i −0.370822 + 0.214094i
\(486\) 0 0
\(487\) −14.7695 + 25.5814i −0.669268 + 1.15921i 0.308841 + 0.951114i \(0.400059\pi\)
−0.978109 + 0.208092i \(0.933275\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.53341 4.92676i −0.385107 0.222342i 0.294931 0.955519i \(-0.404703\pi\)
−0.680038 + 0.733177i \(0.738037\pi\)
\(492\) 0 0
\(493\) 32.8827i 1.48096i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.93227 14.9009i −0.0866741 0.668397i
\(498\) 0 0
\(499\) −40.7751 −1.82534 −0.912671 0.408694i \(-0.865984\pi\)
−0.912671 + 0.408694i \(0.865984\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 23.6750 1.05561 0.527807 0.849364i \(-0.323014\pi\)
0.527807 + 0.849364i \(0.323014\pi\)
\(504\) 0 0
\(505\) 8.94547 0.398068
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.7676 1.27510 0.637551 0.770408i \(-0.279948\pi\)
0.637551 + 0.770408i \(0.279948\pi\)
\(510\) 0 0
\(511\) 15.0982 + 6.28829i 0.667903 + 0.278178i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.159365i 0.00702248i
\(516\) 0 0
\(517\) 1.03021 + 0.594794i 0.0453087 + 0.0261590i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.64967 6.32142i 0.159895 0.276947i −0.774936 0.632040i \(-0.782218\pi\)
0.934831 + 0.355094i \(0.115551\pi\)
\(522\) 0 0
\(523\) −21.2167 + 12.2495i −0.927742 + 0.535632i −0.886097 0.463501i \(-0.846593\pi\)
−0.0416450 + 0.999132i \(0.513260\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29.9882i 1.30631i
\(528\) 0 0
\(529\) 22.9866 0.999416
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23.9821 + 13.8461i −1.03878 + 0.599740i
\(534\) 0 0
\(535\) −1.72015 + 0.993131i −0.0743687 + 0.0429368i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.37366 5.20751i −0.0591678 0.224303i
\(540\) 0 0
\(541\) −12.1854 21.1057i −0.523891 0.907406i −0.999613 0.0278106i \(-0.991146\pi\)
0.475722 0.879596i \(-0.342187\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.685707 1.18768i 0.0293724 0.0508746i
\(546\) 0 0
\(547\) 19.3409 + 33.4994i 0.826957 + 1.43233i 0.900414 + 0.435034i \(0.143264\pi\)
−0.0734566 + 0.997298i \(0.523403\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −16.4453 + 28.4840i −0.700592 + 1.21346i
\(552\) 0 0
\(553\) 4.09396 9.82958i 0.174093 0.417996i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.55184 3.20536i −0.235239 0.135815i 0.377748 0.925909i \(-0.376699\pi\)
−0.612987 + 0.790093i \(0.710032\pi\)
\(558\) 0 0
\(559\) 22.7635i 0.962792i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.47537 + 14.6798i 0.357194 + 0.618678i 0.987491 0.157676i \(-0.0504001\pi\)
−0.630297 + 0.776354i \(0.717067\pi\)
\(564\) 0 0
\(565\) 6.46562 + 3.73293i 0.272011 + 0.157046i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.8854 6.28471i −0.456341 0.263469i 0.254163 0.967161i \(-0.418200\pi\)
−0.710505 + 0.703693i \(0.751533\pi\)
\(570\) 0 0
\(571\) 4.82080 + 8.34988i 0.201744 + 0.349431i 0.949091 0.315003i \(-0.102006\pi\)
−0.747346 + 0.664435i \(0.768672\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.545337i 0.0227421i
\(576\) 0 0
\(577\) 20.9563 + 12.0991i 0.872421 + 0.503692i 0.868152 0.496299i \(-0.165308\pi\)
0.00426870 + 0.999991i \(0.498641\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 18.6378 + 24.3873i 0.773225 + 1.01175i
\(582\) 0 0
\(583\) −0.0981731 + 0.170041i −0.00406592 + 0.00704237i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.5498 21.7368i −0.517984 0.897175i −0.999782 0.0208923i \(-0.993349\pi\)
0.481798 0.876283i \(-0.339984\pi\)
\(588\) 0 0
\(589\) 14.9977 25.9768i 0.617970 1.07035i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.1605 + 33.1869i 0.786826 + 1.36282i 0.927902 + 0.372824i \(0.121610\pi\)
−0.141076 + 0.989999i \(0.545056\pi\)
\(594\) 0 0
\(595\) 3.56743 8.56537i 0.146250 0.351146i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.10762 + 0.639484i −0.0452561 + 0.0261286i −0.522457 0.852665i \(-0.674985\pi\)
0.477201 + 0.878794i \(0.341651\pi\)
\(600\) 0 0
\(601\) −31.2150 + 18.0220i −1.27329 + 0.735133i −0.975605 0.219532i \(-0.929547\pi\)
−0.297682 + 0.954665i \(0.596214\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.64195 0.229378
\(606\) 0 0
\(607\) 45.1639i 1.83315i −0.399867 0.916573i \(-0.630944\pi\)
0.399867 0.916573i \(-0.369056\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.58264 + 2.64579i −0.185394 + 0.107037i
\(612\) 0 0
\(613\) −9.50638 + 16.4655i −0.383959 + 0.665037i −0.991624 0.129157i \(-0.958773\pi\)
0.607665 + 0.794193i \(0.292106\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17.2379 9.95232i −0.693973 0.400665i 0.111126 0.993806i \(-0.464554\pi\)
−0.805099 + 0.593141i \(0.797888\pi\)
\(618\) 0 0
\(619\) 25.4529i 1.02304i −0.859272 0.511519i \(-0.829083\pi\)
0.859272 0.511519i \(-0.170917\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.45291 + 8.44355i 0.258530 + 0.338283i
\(624\) 0 0
\(625\) 20.6787 0.827147
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −70.8438 −2.82473
\(630\) 0 0
\(631\) 40.8171 1.62490 0.812452 0.583028i \(-0.198132\pi\)
0.812452 + 0.583028i \(0.198132\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.12247 0.203279
\(636\) 0 0
\(637\) 23.1160 + 6.29039i 0.915890 + 0.249234i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.98592i 0.394420i −0.980361 0.197210i \(-0.936812\pi\)
0.980361 0.197210i \(-0.0631881\pi\)
\(642\) 0 0
\(643\) −4.32793 2.49873i −0.170677 0.0985403i 0.412228 0.911081i \(-0.364751\pi\)
−0.582905 + 0.812540i \(0.698084\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.04602 8.73996i 0.198379 0.343603i −0.749624 0.661864i \(-0.769766\pi\)
0.948003 + 0.318261i \(0.103099\pi\)
\(648\) 0 0
\(649\) 6.82365 3.93964i 0.267852 0.154644i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.1169i 0.669835i −0.942247 0.334918i \(-0.891292\pi\)
0.942247 0.334918i \(-0.108708\pi\)
\(654\) 0 0
\(655\) −6.77666 −0.264786
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.7790 + 7.37798i −0.497800 + 0.287405i −0.727805 0.685784i \(-0.759459\pi\)
0.230004 + 0.973190i \(0.426126\pi\)
\(660\) 0 0
\(661\) −26.0082 + 15.0158i −1.01160 + 0.584048i −0.911660 0.410946i \(-0.865199\pi\)
−0.0999403 + 0.994993i \(0.531865\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.37393 + 5.63547i −0.285949 + 0.218534i
\(666\) 0 0
\(667\) 0.294485 + 0.510063i 0.0114025 + 0.0197497i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.14623 3.71737i 0.0828542 0.143508i
\(672\) 0 0
\(673\) 18.1953 + 31.5152i 0.701378 + 1.21482i 0.967983 + 0.251016i \(0.0807648\pi\)
−0.266605 + 0.963806i \(0.585902\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.16096 15.8672i 0.352084 0.609828i −0.634530 0.772898i \(-0.718806\pi\)
0.986614 + 0.163070i \(0.0521398\pi\)
\(678\) 0 0
\(679\) 36.5687 27.9473i 1.40338 1.07252i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.46067 + 3.73007i 0.247210 + 0.142727i 0.618486 0.785796i \(-0.287746\pi\)
−0.371276 + 0.928523i \(0.621080\pi\)
\(684\) 0 0
\(685\) 10.4638i 0.399802i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.436698 0.756383i −0.0166369 0.0288159i
\(690\) 0 0
\(691\) −15.1699 8.75833i −0.577089 0.333182i 0.182887 0.983134i \(-0.441456\pi\)
−0.759976 + 0.649952i \(0.774789\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.468327 + 0.270389i 0.0177646 + 0.0102564i
\(696\) 0 0
\(697\) −26.1742 45.3350i −0.991417 1.71718i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 37.8622i 1.43004i 0.699106 + 0.715018i \(0.253582\pi\)
−0.699106 + 0.715018i \(0.746418\pi\)
\(702\) 0 0
\(703\) 61.3672 + 35.4304i 2.31451 + 1.33628i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −43.2984 + 5.61469i −1.62840 + 0.211162i
\(708\) 0 0
\(709\) 18.5507 32.1307i 0.696686 1.20670i −0.272923 0.962036i \(-0.587991\pi\)
0.969609 0.244659i \(-0.0786761\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.268563 0.465165i −0.0100578 0.0174206i
\(714\) 0 0
\(715\) 0.713667 1.23611i 0.0266896 0.0462278i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.73941 + 9.94096i 0.214044 + 0.370735i 0.952976 0.303044i \(-0.0980031\pi\)
−0.738932 + 0.673780i \(0.764670\pi\)
\(720\) 0 0
\(721\) 0.100027 + 0.771370i 0.00372520 + 0.0287273i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 20.7153 11.9600i 0.769346 0.444182i
\(726\) 0 0
\(727\) −13.1105 + 7.56936i −0.486242 + 0.280732i −0.723014 0.690833i \(-0.757244\pi\)
0.236772 + 0.971565i \(0.423911\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −43.0313 −1.59157
\(732\) 0 0
\(733\) 9.20011i 0.339814i 0.985460 + 0.169907i \(0.0543467\pi\)
−0.985460 + 0.169907i \(0.945653\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.18779 1.26312i 0.0805884 0.0465277i
\(738\) 0 0
\(739\) −14.6669 + 25.4038i −0.539529 + 0.934492i 0.459400 + 0.888230i \(0.348065\pi\)
−0.998929 + 0.0462628i \(0.985269\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.9829 + 19.6200i 1.24671 + 0.719789i 0.970452 0.241294i \(-0.0775719\pi\)
0.276259 + 0.961083i \(0.410905\pi\)
\(744\) 0 0
\(745\) 10.6521i 0.390263i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7.70264 5.88668i 0.281448 0.215094i
\(750\) 0 0
\(751\) 21.0068 0.766549 0.383274 0.923635i \(-0.374796\pi\)
0.383274 + 0.923635i \(0.374796\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.23380 0.336052
\(756\) 0 0
\(757\) 12.1528 0.441703 0.220851 0.975307i \(-0.429116\pi\)
0.220851 + 0.975307i \(0.429116\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.4805 −0.524919 −0.262459 0.964943i \(-0.584534\pi\)
−0.262459 + 0.964943i \(0.584534\pi\)
\(762\) 0 0
\(763\) −2.57354 + 6.17906i −0.0931684 + 0.223697i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 35.0489i 1.26554i
\(768\) 0 0
\(769\) −6.13371 3.54130i −0.221187 0.127702i 0.385313 0.922786i \(-0.374094\pi\)
−0.606500 + 0.795084i \(0.707427\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.1640 + 33.1930i −0.689280 + 1.19387i 0.282791 + 0.959182i \(0.408740\pi\)
−0.972071 + 0.234687i \(0.924593\pi\)
\(774\) 0 0
\(775\) −18.8918 + 10.9072i −0.678615 + 0.391799i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 52.3609i 1.87602i
\(780\) 0 0
\(781\) 4.36942 0.156350
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.530049 + 0.306024i −0.0189183 + 0.0109225i
\(786\) 0 0
\(787\) −13.5265 + 7.80954i −0.482168 + 0.278380i −0.721320 0.692602i \(-0.756464\pi\)
0.239151 + 0.970982i \(0.423131\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −33.6383 14.0101i −1.19604 0.498143i
\(792\) 0 0
\(793\) 9.54693 + 16.5358i 0.339022 + 0.587203i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.0230 20.8244i 0.425875 0.737637i −0.570627 0.821210i \(-0.693300\pi\)
0.996502 + 0.0835726i \(0.0266330\pi\)
\(798\) 0 0
\(799\) −5.00151 8.66286i −0.176941 0.306470i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.37804 + 4.11889i −0.0839193 + 0.145352i
\(804\) 0 0
\(805\) 0.0213718 + 0.164811i 0.000753257 + 0.00580883i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −25.2846 14.5980i −0.888958 0.513240i −0.0153562 0.999882i \(-0.504888\pi\)
−0.873601 + 0.486642i \(0.838222\pi\)
\(810\) 0 0
\(811\) 26.0991i 0.916464i 0.888833 + 0.458232i \(0.151517\pi\)
−0.888833 + 0.458232i \(0.848483\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.66261 8.07589i −0.163324 0.282886i
\(816\) 0 0
\(817\) 37.2751 + 21.5208i 1.30409 + 0.752917i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 47.6231 + 27.4952i 1.66206 + 0.959590i 0.971730 + 0.236094i \(0.0758674\pi\)
0.690329 + 0.723496i \(0.257466\pi\)
\(822\) 0 0
\(823\) 9.05785 + 15.6887i 0.315737 + 0.546872i 0.979594 0.200987i \(-0.0644150\pi\)
−0.663857 + 0.747860i \(0.731082\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38.1934i 1.32812i 0.747681 + 0.664058i \(0.231167\pi\)
−0.747681 + 0.664058i \(0.768833\pi\)
\(828\) 0 0
\(829\) 47.0722 + 27.1771i 1.63488 + 0.943901i 0.982557 + 0.185963i \(0.0595404\pi\)
0.652327 + 0.757938i \(0.273793\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11.8911 + 43.6977i −0.412003 + 1.51404i
\(834\) 0 0
\(835\) −1.20479 + 2.08677i −0.0416936 + 0.0722155i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −13.3919 23.1955i −0.462341 0.800798i 0.536736 0.843750i \(-0.319657\pi\)
−0.999077 + 0.0429523i \(0.986324\pi\)
\(840\) 0 0
\(841\) −1.58312 + 2.74205i −0.0545904 + 0.0945534i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.348924 0.604354i −0.0120033 0.0207904i
\(846\) 0 0
\(847\) −27.3085 + 3.54121i −0.938331 + 0.121678i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.09890 0.634450i 0.0376698 0.0217487i
\(852\) 0 0
\(853\) 15.6735 9.04908i 0.536649 0.309835i −0.207071 0.978326i \(-0.566393\pi\)
0.743720 + 0.668491i \(0.233060\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.3122 −1.20624 −0.603120 0.797650i \(-0.706076\pi\)
−0.603120 + 0.797650i \(0.706076\pi\)
\(858\) 0 0
\(859\) 23.2786i 0.794254i 0.917764 + 0.397127i \(0.129993\pi\)
−0.917764 + 0.397127i \(0.870007\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −28.3933 + 16.3929i −0.966520 + 0.558020i −0.898173 0.439641i \(-0.855106\pi\)
−0.0683462 + 0.997662i \(0.521772\pi\)
\(864\) 0 0
\(865\) −5.38980 + 9.33541i −0.183259 + 0.317414i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.68158 + 1.54821i 0.0909665 + 0.0525195i
\(870\) 0 0
\(871\) 11.2373i 0.380763i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 13.8049 1.79015i 0.466692 0.0605181i
\(876\) 0 0
\(877\) 21.5376 0.727273 0.363636 0.931541i \(-0.381535\pi\)
0.363636 + 0.931541i \(0.381535\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.9322 0.772606 0.386303 0.922372i \(-0.373752\pi\)
0.386303 + 0.922372i \(0.373752\pi\)
\(882\) 0 0
\(883\) 31.8225 1.07091 0.535455 0.844564i \(-0.320140\pi\)
0.535455 + 0.844564i \(0.320140\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.2271 0.746312 0.373156 0.927769i \(-0.378276\pi\)
0.373156 + 0.927769i \(0.378276\pi\)
\(888\) 0 0
\(889\) −24.7941 + 3.21516i −0.831567 + 0.107833i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.0054i 0.334818i
\(894\) 0 0
\(895\) 0.929507 + 0.536651i 0.0310700 + 0.0179383i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.7799 + 20.4034i −0.392881 + 0.680491i
\(900\) 0 0
\(901\) 1.42984 0.825518i 0.0476349 0.0275020i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.07973i 0.102374i
\(906\) 0 0
\(907\) 39.8198 1.32219 0.661097 0.750301i \(-0.270091\pi\)
0.661097 + 0.750301i \(0.270091\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.87819 + 3.39378i −0.194753 + 0.112441i −0.594206 0.804313i \(-0.702534\pi\)
0.399453 + 0.916754i \(0.369200\pi\)
\(912\) 0 0
\(913\) −7.72984 + 4.46282i −0.255820 + 0.147698i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 32.8008 4.25342i 1.08318 0.140460i
\(918\) 0 0
\(919\) 14.0173 + 24.2787i 0.462389 + 0.800882i 0.999079 0.0428977i \(-0.0136590\pi\)
−0.536690 + 0.843779i \(0.680326\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.71812 + 16.8323i −0.319876 + 0.554041i
\(924\) 0 0
\(925\) −25.7670 44.6298i −0.847215 1.46742i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.87040 15.3640i 0.291028 0.504076i −0.683025 0.730395i \(-0.739336\pi\)
0.974053 + 0.226319i \(0.0726693\pi\)
\(930\) 0 0
\(931\) 32.1546 31.9054i 1.05382 1.04566i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.33670 + 1.34909i 0.0764182 + 0.0441200i
\(936\) 0 0
\(937\) 10.2459i 0.334719i −0.985896 0.167360i \(-0.946476\pi\)
0.985896 0.167360i \(-0.0535241\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.99827 8.65726i −0.162939 0.282219i 0.772982 0.634427i \(-0.218764\pi\)
−0.935921 + 0.352209i \(0.885431\pi\)
\(942\) 0 0
\(943\) 0.812006 + 0.468812i 0.0264426 + 0.0152666i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.7852 + 24.1247i 1.35784 + 0.783948i 0.989332 0.145678i \(-0.0465363\pi\)
0.368505 + 0.929626i \(0.379870\pi\)
\(948\) 0 0
\(949\) −10.5781 18.3218i −0.343380 0.594751i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 40.4708i 1.31098i −0.755205 0.655489i \(-0.772463\pi\)
0.755205 0.655489i \(-0.227537\pi\)
\(954\) 0 0
\(955\) 1.94832 + 1.12486i 0.0630462 + 0.0363997i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.56769 50.6476i −0.212082 1.63549i
\(960\) 0 0
\(961\) −4.75701 + 8.23938i −0.153452 + 0.265787i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.59117 2.75598i −0.0512215 0.0887182i
\(966\) 0 0
\(967\) −14.6566 + 25.3860i −0.471325 + 0.816359i −0.999462 0.0328000i \(-0.989558\pi\)
0.528137 + 0.849159i \(0.322891\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −9.02830 15.6375i −0.289732 0.501831i 0.684014 0.729469i \(-0.260233\pi\)
−0.973746 + 0.227639i \(0.926900\pi\)
\(972\) 0 0
\(973\) −2.43653 1.01480i −0.0781117 0.0325330i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33.9886 + 19.6233i −1.08739 + 0.627805i −0.932880 0.360186i \(-0.882713\pi\)
−0.154510 + 0.987991i \(0.549380\pi\)
\(978\) 0 0
\(979\) −2.67628 + 1.54515i −0.0855344 + 0.0493833i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 26.4668 0.844159 0.422079 0.906559i \(-0.361300\pi\)
0.422079 + 0.906559i \(0.361300\pi\)
\(984\) 0 0
\(985\) 1.83174i 0.0583640i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.667484 0.385372i 0.0212248 0.0122541i
\(990\) 0 0
\(991\) 7.32864 12.6936i 0.232802 0.403225i −0.725830 0.687875i \(-0.758544\pi\)
0.958632 + 0.284650i \(0.0918773\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.18896 1.26380i −0.0693948 0.0400651i
\(996\) 0 0
\(997\) 3.93872i 0.124741i 0.998053 + 0.0623703i \(0.0198660\pi\)
−0.998053 + 0.0623703i \(0.980134\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.17.13 48
3.2 odd 2 504.2.cx.a.185.1 yes 48
4.3 odd 2 3024.2.df.e.17.13 48
7.5 odd 6 1512.2.bs.a.1097.13 48
9.2 odd 6 1512.2.bs.a.521.13 48
9.7 even 3 504.2.bs.a.353.8 yes 48
12.11 even 2 1008.2.df.e.689.24 48
21.5 even 6 504.2.bs.a.257.8 48
28.19 even 6 3024.2.ca.e.2609.13 48
36.7 odd 6 1008.2.ca.e.353.17 48
36.11 even 6 3024.2.ca.e.2033.13 48
63.47 even 6 inner 1512.2.cx.a.89.13 48
63.61 odd 6 504.2.cx.a.425.1 yes 48
84.47 odd 6 1008.2.ca.e.257.17 48
252.47 odd 6 3024.2.df.e.1601.13 48
252.187 even 6 1008.2.df.e.929.24 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.8 48 21.5 even 6
504.2.bs.a.353.8 yes 48 9.7 even 3
504.2.cx.a.185.1 yes 48 3.2 odd 2
504.2.cx.a.425.1 yes 48 63.61 odd 6
1008.2.ca.e.257.17 48 84.47 odd 6
1008.2.ca.e.353.17 48 36.7 odd 6
1008.2.df.e.689.24 48 12.11 even 2
1008.2.df.e.929.24 48 252.187 even 6
1512.2.bs.a.521.13 48 9.2 odd 6
1512.2.bs.a.1097.13 48 7.5 odd 6
1512.2.cx.a.17.13 48 1.1 even 1 trivial
1512.2.cx.a.89.13 48 63.47 even 6 inner
3024.2.ca.e.2033.13 48 36.11 even 6
3024.2.ca.e.2609.13 48 28.19 even 6
3024.2.df.e.17.13 48 4.3 odd 2
3024.2.df.e.1601.13 48 252.47 odd 6