Properties

Label 1512.2.bs.a.1097.13
Level $1512$
Weight $2$
Character 1512.1097
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(521,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.13
Character \(\chi\) \(=\) 1512.1097
Dual form 1512.2.bs.a.521.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.271038 + 0.469451i) q^{5} +(1.60655 - 2.10214i) q^{7} +(0.666300 + 0.384688i) q^{11} +(-2.96386 - 1.71119i) q^{13} +(3.23477 + 5.60278i) q^{17} +(5.60413 + 3.23554i) q^{19} +(-0.100353 + 0.0579388i) q^{23} +(2.35308 - 4.07565i) q^{25} +(-4.40174 + 2.54135i) q^{29} -4.63530i q^{31} +(1.42229 + 0.184434i) q^{35} +(5.47518 - 9.48329i) q^{37} +(4.04575 - 7.00745i) q^{41} +(3.32569 + 5.76026i) q^{43} -1.54617 q^{47} +(-1.83802 - 6.75438i) q^{49} +(0.221011 - 0.127601i) q^{53} +0.417060i q^{55} +10.2411 q^{59} +5.57913i q^{61} -1.85518i q^{65} -3.28349 q^{67} +5.67917i q^{71} +(-5.35354 + 3.09087i) q^{73} +(1.87911 - 0.782639i) q^{77} +4.02459 q^{79} +(5.80057 + 10.0469i) q^{83} +(-1.75349 + 3.03713i) q^{85} +(2.00832 - 3.47851i) q^{89} +(-8.35874 + 3.48136i) q^{91} +3.50781i q^{95} +(15.0653 - 8.69795i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{23} - 24 q^{25} - 18 q^{29} - 6 q^{41} - 6 q^{43} - 36 q^{47} + 6 q^{49} - 12 q^{53} + 36 q^{77} - 12 q^{79} - 18 q^{89} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.271038 + 0.469451i 0.121212 + 0.209945i 0.920246 0.391341i \(-0.127989\pi\)
−0.799034 + 0.601286i \(0.794655\pi\)
\(6\) 0 0
\(7\) 1.60655 2.10214i 0.607217 0.794536i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.666300 + 0.384688i 0.200897 + 0.115988i 0.597074 0.802186i \(-0.296330\pi\)
−0.396177 + 0.918174i \(0.629663\pi\)
\(12\) 0 0
\(13\) −2.96386 1.71119i −0.822027 0.474598i 0.0290877 0.999577i \(-0.490740\pi\)
−0.851115 + 0.524979i \(0.824073\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.23477 + 5.60278i 0.784547 + 1.35887i 0.929269 + 0.369403i \(0.120438\pi\)
−0.144723 + 0.989472i \(0.546229\pi\)
\(18\) 0 0
\(19\) 5.60413 + 3.23554i 1.28567 + 0.742285i 0.977880 0.209168i \(-0.0670756\pi\)
0.307795 + 0.951453i \(0.400409\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.100353 + 0.0579388i −0.0209250 + 0.0120811i −0.510426 0.859922i \(-0.670512\pi\)
0.489501 + 0.872003i \(0.337179\pi\)
\(24\) 0 0
\(25\) 2.35308 4.07565i 0.470615 0.815130i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.40174 + 2.54135i −0.817383 + 0.471916i −0.849513 0.527568i \(-0.823104\pi\)
0.0321304 + 0.999484i \(0.489771\pi\)
\(30\) 0 0
\(31\) 4.63530i 0.832524i −0.909245 0.416262i \(-0.863340\pi\)
0.909245 0.416262i \(-0.136660\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.42229 + 0.184434i 0.240410 + 0.0311751i
\(36\) 0 0
\(37\) 5.47518 9.48329i 0.900114 1.55904i 0.0727692 0.997349i \(-0.476816\pi\)
0.827345 0.561694i \(-0.189850\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.04575 7.00745i 0.631841 1.09438i −0.355334 0.934739i \(-0.615633\pi\)
0.987175 0.159641i \(-0.0510337\pi\)
\(42\) 0 0
\(43\) 3.32569 + 5.76026i 0.507162 + 0.878431i 0.999966 + 0.00829006i \(0.00263884\pi\)
−0.492803 + 0.870141i \(0.664028\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.54617 −0.225532 −0.112766 0.993622i \(-0.535971\pi\)
−0.112766 + 0.993622i \(0.535971\pi\)
\(48\) 0 0
\(49\) −1.83802 6.75438i −0.262574 0.964912i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.221011 0.127601i 0.0303582 0.0175273i −0.484744 0.874656i \(-0.661087\pi\)
0.515102 + 0.857129i \(0.327754\pi\)
\(54\) 0 0
\(55\) 0.417060i 0.0562364i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.2411 1.33328 0.666640 0.745380i \(-0.267732\pi\)
0.666640 + 0.745380i \(0.267732\pi\)
\(60\) 0 0
\(61\) 5.57913i 0.714335i 0.934040 + 0.357167i \(0.116257\pi\)
−0.934040 + 0.357167i \(0.883743\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.85518i 0.230107i
\(66\) 0 0
\(67\) −3.28349 −0.401143 −0.200571 0.979679i \(-0.564280\pi\)
−0.200571 + 0.979679i \(0.564280\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.67917i 0.673994i 0.941506 + 0.336997i \(0.109411\pi\)
−0.941506 + 0.336997i \(0.890589\pi\)
\(72\) 0 0
\(73\) −5.35354 + 3.09087i −0.626585 + 0.361759i −0.779428 0.626492i \(-0.784490\pi\)
0.152844 + 0.988250i \(0.451157\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.87911 0.782639i 0.214145 0.0891900i
\(78\) 0 0
\(79\) 4.02459 0.452802 0.226401 0.974034i \(-0.427304\pi\)
0.226401 + 0.974034i \(0.427304\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.80057 + 10.0469i 0.636695 + 1.10279i 0.986153 + 0.165836i \(0.0530323\pi\)
−0.349458 + 0.936952i \(0.613634\pi\)
\(84\) 0 0
\(85\) −1.75349 + 3.03713i −0.190192 + 0.329423i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.00832 3.47851i 0.212881 0.368721i −0.739734 0.672900i \(-0.765049\pi\)
0.952615 + 0.304178i \(0.0983819\pi\)
\(90\) 0 0
\(91\) −8.35874 + 3.48136i −0.876234 + 0.364946i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.50781i 0.359894i
\(96\) 0 0
\(97\) 15.0653 8.69795i 1.52965 0.883143i 0.530272 0.847828i \(-0.322090\pi\)
0.999376 0.0353150i \(-0.0112435\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.25113 14.2914i 0.821019 1.42205i −0.0839060 0.996474i \(-0.526740\pi\)
0.904925 0.425572i \(-0.139927\pi\)
\(102\) 0 0
\(103\) 0.254604 0.146996i 0.0250869 0.0144839i −0.487404 0.873177i \(-0.662056\pi\)
0.512491 + 0.858693i \(0.328723\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.17327 + 1.83209i 0.306772 + 0.177115i 0.645481 0.763776i \(-0.276657\pi\)
−0.338709 + 0.940891i \(0.609990\pi\)
\(108\) 0 0
\(109\) 1.26497 + 2.19099i 0.121162 + 0.209858i 0.920226 0.391387i \(-0.128005\pi\)
−0.799064 + 0.601246i \(0.794671\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.9275 + 6.88637i 1.12205 + 0.647815i 0.941923 0.335828i \(-0.109016\pi\)
0.180126 + 0.983644i \(0.442350\pi\)
\(114\) 0 0
\(115\) −0.0543988 0.0314072i −0.00507271 0.00292873i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 16.9747 + 2.20118i 1.55607 + 0.201782i
\(120\) 0 0
\(121\) −5.20403 9.01364i −0.473094 0.819422i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.26146 0.470600
\(126\) 0 0
\(127\) 9.44974 0.838529 0.419265 0.907864i \(-0.362288\pi\)
0.419265 + 0.907864i \(0.362288\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.25067 10.8265i −0.546123 0.945913i −0.998535 0.0541043i \(-0.982770\pi\)
0.452412 0.891809i \(-0.350564\pi\)
\(132\) 0 0
\(133\) 15.8049 6.58263i 1.37046 0.570786i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16.7171 9.65163i −1.42824 0.824594i −0.431257 0.902229i \(-0.641930\pi\)
−0.996982 + 0.0776349i \(0.975263\pi\)
\(138\) 0 0
\(139\) −0.863952 0.498803i −0.0732794 0.0423079i 0.462913 0.886404i \(-0.346804\pi\)
−0.536192 + 0.844096i \(0.680138\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.31655 2.28033i −0.110095 0.190690i
\(144\) 0 0
\(145\) −2.38607 1.37760i −0.198153 0.114403i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.0179 + 9.82530i −1.39416 + 0.804920i −0.993773 0.111425i \(-0.964459\pi\)
−0.400390 + 0.916345i \(0.631125\pi\)
\(150\) 0 0
\(151\) −8.51708 + 14.7520i −0.693111 + 1.20050i 0.277703 + 0.960667i \(0.410427\pi\)
−0.970813 + 0.239836i \(0.922906\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.17604 1.25634i 0.174784 0.100912i
\(156\) 0 0
\(157\) 1.12908i 0.0901107i 0.998984 + 0.0450553i \(0.0143464\pi\)
−0.998984 + 0.0450553i \(0.985654\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.0394259 + 0.304037i −0.00310720 + 0.0239615i
\(162\) 0 0
\(163\) −8.60142 + 14.8981i −0.673715 + 1.16691i 0.303127 + 0.952950i \(0.401969\pi\)
−0.976843 + 0.213959i \(0.931364\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.22256 3.84959i 0.171987 0.297890i −0.767128 0.641495i \(-0.778315\pi\)
0.939114 + 0.343605i \(0.111648\pi\)
\(168\) 0 0
\(169\) −0.643682 1.11489i −0.0495140 0.0857607i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −19.8858 −1.51189 −0.755946 0.654634i \(-0.772823\pi\)
−0.755946 + 0.654634i \(0.772823\pi\)
\(174\) 0 0
\(175\) −4.78728 11.4942i −0.361884 0.868882i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.71472 + 0.989994i −0.128164 + 0.0739956i −0.562711 0.826653i \(-0.690242\pi\)
0.434547 + 0.900649i \(0.356908\pi\)
\(180\) 0 0
\(181\) 5.68137i 0.422293i 0.977454 + 0.211146i \(0.0677197\pi\)
−0.977454 + 0.211146i \(0.932280\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.93592 0.436417
\(186\) 0 0
\(187\) 4.97751i 0.363992i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.15021i 0.300299i −0.988663 0.150149i \(-0.952025\pi\)
0.988663 0.150149i \(-0.0479755\pi\)
\(192\) 0 0
\(193\) 5.87065 0.422579 0.211289 0.977424i \(-0.432234\pi\)
0.211289 + 0.977424i \(0.432234\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.37912i 0.240753i 0.992728 + 0.120376i \(0.0384101\pi\)
−0.992728 + 0.120376i \(0.961590\pi\)
\(198\) 0 0
\(199\) −4.03812 + 2.33141i −0.286255 + 0.165269i −0.636252 0.771482i \(-0.719516\pi\)
0.349997 + 0.936751i \(0.386183\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.72932 + 13.3359i −0.121375 + 0.935995i
\(204\) 0 0
\(205\) 4.38620 0.306346
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.48935 + 4.31168i 0.172192 + 0.298245i
\(210\) 0 0
\(211\) −3.09622 + 5.36281i −0.213153 + 0.369191i −0.952699 0.303914i \(-0.901706\pi\)
0.739547 + 0.673105i \(0.235040\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.80277 + 3.12249i −0.122948 + 0.212952i
\(216\) 0 0
\(217\) −9.74406 7.44682i −0.661470 0.505523i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.1412i 1.48938i
\(222\) 0 0
\(223\) 8.84510 5.10672i 0.592312 0.341971i −0.173699 0.984799i \(-0.555572\pi\)
0.766011 + 0.642827i \(0.222239\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.12394 + 14.0711i −0.539205 + 0.933930i 0.459742 + 0.888052i \(0.347942\pi\)
−0.998947 + 0.0458777i \(0.985392\pi\)
\(228\) 0 0
\(229\) −7.51527 + 4.33894i −0.496623 + 0.286726i −0.727318 0.686301i \(-0.759233\pi\)
0.230695 + 0.973026i \(0.425900\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.0308 10.9874i −1.24675 0.719811i −0.276290 0.961074i \(-0.589105\pi\)
−0.970460 + 0.241263i \(0.922438\pi\)
\(234\) 0 0
\(235\) −0.419070 0.725851i −0.0273371 0.0473493i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.3752 8.29955i −0.929857 0.536853i −0.0430908 0.999071i \(-0.513720\pi\)
−0.886766 + 0.462218i \(0.847054\pi\)
\(240\) 0 0
\(241\) −9.52821 5.50112i −0.613766 0.354358i 0.160672 0.987008i \(-0.448634\pi\)
−0.774438 + 0.632650i \(0.781967\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.67268 2.69355i 0.170751 0.172085i
\(246\) 0 0
\(247\) −11.0732 19.1794i −0.704573 1.22036i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.0406 1.13871 0.569356 0.822091i \(-0.307192\pi\)
0.569356 + 0.822091i \(0.307192\pi\)
\(252\) 0 0
\(253\) −0.0891535 −0.00560503
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.20321 + 12.4763i 0.449324 + 0.778252i 0.998342 0.0575585i \(-0.0183316\pi\)
−0.549018 + 0.835810i \(0.684998\pi\)
\(258\) 0 0
\(259\) −11.1391 26.7450i −0.692151 1.66185i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.6064 + 12.4745i 1.33231 + 0.769209i 0.985653 0.168783i \(-0.0539838\pi\)
0.346656 + 0.937992i \(0.387317\pi\)
\(264\) 0 0
\(265\) 0.119805 + 0.0691692i 0.00735954 + 0.00424903i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.0059 19.0627i −0.671040 1.16228i −0.977609 0.210428i \(-0.932514\pi\)
0.306569 0.951848i \(-0.400819\pi\)
\(270\) 0 0
\(271\) 22.7444 + 13.1315i 1.38162 + 0.797680i 0.992352 0.123443i \(-0.0393935\pi\)
0.389271 + 0.921123i \(0.372727\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.13571 1.81040i 0.189090 0.109171i
\(276\) 0 0
\(277\) −2.38206 + 4.12584i −0.143124 + 0.247898i −0.928671 0.370903i \(-0.879048\pi\)
0.785548 + 0.618801i \(0.212381\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −19.1963 + 11.0830i −1.14515 + 0.661155i −0.947702 0.319158i \(-0.896600\pi\)
−0.197452 + 0.980312i \(0.563267\pi\)
\(282\) 0 0
\(283\) 2.90557i 0.172718i 0.996264 + 0.0863590i \(0.0275232\pi\)
−0.996264 + 0.0863590i \(0.972477\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.23098 19.7626i −0.485860 1.16655i
\(288\) 0 0
\(289\) −12.4275 + 21.5250i −0.731027 + 1.26618i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.9866 + 24.2255i −0.817104 + 1.41527i 0.0907025 + 0.995878i \(0.471089\pi\)
−0.907807 + 0.419388i \(0.862245\pi\)
\(294\) 0 0
\(295\) 2.77573 + 4.80770i 0.161609 + 0.279915i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.396576 0.0229346
\(300\) 0 0
\(301\) 17.4518 + 2.26305i 1.00590 + 0.130440i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.61913 + 1.51215i −0.149971 + 0.0865857i
\(306\) 0 0
\(307\) 30.3968i 1.73484i 0.497579 + 0.867419i \(0.334223\pi\)
−0.497579 + 0.867419i \(0.665777\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −27.8260 −1.57787 −0.788934 0.614477i \(-0.789367\pi\)
−0.788934 + 0.614477i \(0.789367\pi\)
\(312\) 0 0
\(313\) 0.0465719i 0.00263240i 0.999999 + 0.00131620i \(0.000418959\pi\)
−0.999999 + 0.00131620i \(0.999581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.49402i 0.477072i −0.971134 0.238536i \(-0.923333\pi\)
0.971134 0.238536i \(-0.0766675\pi\)
\(318\) 0 0
\(319\) −3.91051 −0.218946
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 41.8649i 2.32943i
\(324\) 0 0
\(325\) −13.9484 + 8.05311i −0.773718 + 0.446706i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.48399 + 3.25027i −0.136947 + 0.179193i
\(330\) 0 0
\(331\) 7.25461 0.398749 0.199375 0.979923i \(-0.436109\pi\)
0.199375 + 0.979923i \(0.436109\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.889950 1.54144i −0.0486232 0.0842178i
\(336\) 0 0
\(337\) −4.82349 + 8.35454i −0.262752 + 0.455101i −0.966972 0.254881i \(-0.917964\pi\)
0.704220 + 0.709982i \(0.251297\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.78315 3.08850i 0.0965627 0.167252i
\(342\) 0 0
\(343\) −17.1515 6.98745i −0.926097 0.377287i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.0603i 0.701113i 0.936542 + 0.350556i \(0.114008\pi\)
−0.936542 + 0.350556i \(0.885992\pi\)
\(348\) 0 0
\(349\) 17.4929 10.0995i 0.936372 0.540614i 0.0475506 0.998869i \(-0.484858\pi\)
0.888821 + 0.458254i \(0.151525\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.05422 + 3.55801i −0.109335 + 0.189374i −0.915501 0.402316i \(-0.868205\pi\)
0.806166 + 0.591689i \(0.201539\pi\)
\(354\) 0 0
\(355\) −2.66609 + 1.53927i −0.141501 + 0.0816959i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.7322 16.5885i −1.51643 0.875510i −0.999814 0.0192910i \(-0.993859\pi\)
−0.516613 0.856219i \(-0.672808\pi\)
\(360\) 0 0
\(361\) 11.4375 + 19.8103i 0.601973 + 1.04265i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.90202 1.67548i −0.151899 0.0876988i
\(366\) 0 0
\(367\) −2.75059 1.58806i −0.143580 0.0828958i 0.426489 0.904493i \(-0.359750\pi\)
−0.570069 + 0.821597i \(0.693084\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.0868292 0.669594i 0.00450795 0.0347636i
\(372\) 0 0
\(373\) −10.4803 18.1524i −0.542649 0.939895i −0.998751 0.0499677i \(-0.984088\pi\)
0.456102 0.889927i \(-0.349245\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.3949 0.895881
\(378\) 0 0
\(379\) −20.1198 −1.03348 −0.516742 0.856141i \(-0.672855\pi\)
−0.516742 + 0.856141i \(0.672855\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.5838 21.7958i −0.643003 1.11371i −0.984759 0.173925i \(-0.944355\pi\)
0.341756 0.939789i \(-0.388978\pi\)
\(384\) 0 0
\(385\) 0.876720 + 0.670026i 0.0446818 + 0.0341477i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.4054 10.0490i −0.882488 0.509505i −0.0110101 0.999939i \(-0.503505\pi\)
−0.871478 + 0.490435i \(0.836838\pi\)
\(390\) 0 0
\(391\) −0.649237 0.374837i −0.0328333 0.0189563i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.09081 + 1.88935i 0.0548848 + 0.0950633i
\(396\) 0 0
\(397\) 6.64273 + 3.83518i 0.333389 + 0.192482i 0.657345 0.753590i \(-0.271680\pi\)
−0.323956 + 0.946072i \(0.605013\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.07360 + 1.77454i −0.153488 + 0.0886165i −0.574777 0.818310i \(-0.694911\pi\)
0.421289 + 0.906927i \(0.361578\pi\)
\(402\) 0 0
\(403\) −7.93186 + 13.7384i −0.395114 + 0.684357i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.29622 4.21248i 0.361660 0.208805i
\(408\) 0 0
\(409\) 3.45157i 0.170669i 0.996352 + 0.0853345i \(0.0271959\pi\)
−0.996352 + 0.0853345i \(0.972804\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.4528 21.5283i 0.809590 1.05934i
\(414\) 0 0
\(415\) −3.14434 + 5.44616i −0.154350 + 0.267342i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.49112 14.7071i 0.414818 0.718487i −0.580591 0.814195i \(-0.697178\pi\)
0.995409 + 0.0957088i \(0.0305118\pi\)
\(420\) 0 0
\(421\) 10.3437 + 17.9158i 0.504120 + 0.873162i 0.999989 + 0.00476397i \(0.00151642\pi\)
−0.495869 + 0.868398i \(0.665150\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 30.4466 1.47688
\(426\) 0 0
\(427\) 11.7281 + 8.96313i 0.567564 + 0.433756i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −32.0588 + 18.5091i −1.54422 + 0.891554i −0.545651 + 0.838012i \(0.683718\pi\)
−0.998566 + 0.0535418i \(0.982949\pi\)
\(432\) 0 0
\(433\) 15.2206i 0.731453i −0.930722 0.365727i \(-0.880821\pi\)
0.930722 0.365727i \(-0.119179\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.749853 −0.0358704
\(438\) 0 0
\(439\) 32.8075i 1.56582i −0.622136 0.782909i \(-0.713735\pi\)
0.622136 0.782909i \(-0.286265\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 23.7626i 1.12900i −0.825434 0.564499i \(-0.809070\pi\)
0.825434 0.564499i \(-0.190930\pi\)
\(444\) 0 0
\(445\) 2.17732 0.103215
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.8105i 1.02930i −0.857400 0.514651i \(-0.827921\pi\)
0.857400 0.514651i \(-0.172079\pi\)
\(450\) 0 0
\(451\) 5.39137 3.11271i 0.253870 0.146572i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.89986 2.98044i −0.182828 0.139725i
\(456\) 0 0
\(457\) −39.7064 −1.85739 −0.928693 0.370849i \(-0.879067\pi\)
−0.928693 + 0.370849i \(0.879067\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.37073 + 12.7665i 0.343289 + 0.594594i 0.985041 0.172318i \(-0.0551256\pi\)
−0.641752 + 0.766912i \(0.721792\pi\)
\(462\) 0 0
\(463\) −12.4381 + 21.5434i −0.578046 + 1.00120i 0.417658 + 0.908604i \(0.362851\pi\)
−0.995703 + 0.0926000i \(0.970482\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.70092 11.6063i 0.310081 0.537077i −0.668298 0.743893i \(-0.732977\pi\)
0.978380 + 0.206817i \(0.0663103\pi\)
\(468\) 0 0
\(469\) −5.27509 + 6.90238i −0.243581 + 0.318722i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.11741i 0.235299i
\(474\) 0 0
\(475\) 26.3739 15.2270i 1.21012 0.698661i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20.5731 35.6336i 0.940007 1.62814i 0.174555 0.984647i \(-0.444151\pi\)
0.765452 0.643493i \(-0.222515\pi\)
\(480\) 0 0
\(481\) −32.4554 + 18.7381i −1.47984 + 0.854384i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.16651 + 4.71494i 0.370822 + 0.214094i
\(486\) 0 0
\(487\) −14.7695 25.5814i −0.669268 1.15921i −0.978109 0.208092i \(-0.933275\pi\)
0.308841 0.951114i \(-0.400059\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.53341 4.92676i −0.385107 0.222342i 0.294931 0.955519i \(-0.404703\pi\)
−0.680038 + 0.733177i \(0.738037\pi\)
\(492\) 0 0
\(493\) −28.4772 16.4413i −1.28255 0.740480i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.9384 + 9.12385i 0.535512 + 0.409261i
\(498\) 0 0
\(499\) 20.3875 + 35.3122i 0.912671 + 1.58079i 0.810275 + 0.586050i \(0.199318\pi\)
0.102396 + 0.994744i \(0.467349\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −23.6750 −1.05561 −0.527807 0.849364i \(-0.676986\pi\)
−0.527807 + 0.849364i \(0.676986\pi\)
\(504\) 0 0
\(505\) 8.94547 0.398068
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.3838 + 24.9135i 0.637551 + 1.10427i 0.985969 + 0.166931i \(0.0533857\pi\)
−0.348418 + 0.937339i \(0.613281\pi\)
\(510\) 0 0
\(511\) −2.10326 + 16.2195i −0.0930427 + 0.717510i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.138015 + 0.0796827i 0.00608165 + 0.00351124i
\(516\) 0 0
\(517\) −1.03021 0.594794i −0.0453087 0.0261590i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.64967 6.32142i −0.159895 0.276947i 0.774936 0.632040i \(-0.217782\pi\)
−0.934831 + 0.355094i \(0.884449\pi\)
\(522\) 0 0
\(523\) −21.2167 12.2495i −0.927742 0.535632i −0.0416450 0.999132i \(-0.513260\pi\)
−0.886097 + 0.463501i \(0.846593\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.9706 14.9941i 1.13130 0.653154i
\(528\) 0 0
\(529\) −11.4933 + 19.9070i −0.499708 + 0.865520i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23.9821 + 13.8461i −1.03878 + 0.599740i
\(534\) 0 0
\(535\) 1.98626i 0.0858736i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.37366 5.20751i 0.0591678 0.224303i
\(540\) 0 0
\(541\) −12.1854 + 21.1057i −0.523891 + 0.907406i 0.475722 + 0.879596i \(0.342187\pi\)
−0.999613 + 0.0278106i \(0.991146\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.685707 + 1.18768i −0.0293724 + 0.0508746i
\(546\) 0 0
\(547\) 19.3409 + 33.4994i 0.826957 + 1.43233i 0.900414 + 0.435034i \(0.143264\pi\)
−0.0734566 + 0.997298i \(0.523403\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −32.8905 −1.40118
\(552\) 0 0
\(553\) 6.46569 8.46027i 0.274949 0.359767i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.55184 3.20536i 0.235239 0.135815i −0.377748 0.925909i \(-0.623301\pi\)
0.612987 + 0.790093i \(0.289968\pi\)
\(558\) 0 0
\(559\) 22.7635i 0.962792i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.9507 0.714388 0.357194 0.934030i \(-0.383733\pi\)
0.357194 + 0.934030i \(0.383733\pi\)
\(564\) 0 0
\(565\) 7.46586i 0.314091i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.5694i 0.526938i 0.964668 + 0.263469i \(0.0848666\pi\)
−0.964668 + 0.263469i \(0.915133\pi\)
\(570\) 0 0
\(571\) −9.64161 −0.403489 −0.201744 0.979438i \(-0.564661\pi\)
−0.201744 + 0.979438i \(0.564661\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.545337i 0.0227421i
\(576\) 0 0
\(577\) 20.9563 12.0991i 0.872421 0.503692i 0.00426870 0.999991i \(-0.498641\pi\)
0.868152 + 0.496299i \(0.165308\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 30.4389 + 3.94714i 1.26282 + 0.163755i
\(582\) 0 0
\(583\) 0.196346 0.00813183
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.5498 + 21.7368i 0.517984 + 0.897175i 0.999782 + 0.0208923i \(0.00665069\pi\)
−0.481798 + 0.876283i \(0.660016\pi\)
\(588\) 0 0
\(589\) 14.9977 25.9768i 0.617970 1.07035i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19.1605 + 33.1869i −0.786826 + 1.36282i 0.141076 + 0.989999i \(0.454944\pi\)
−0.927902 + 0.372824i \(0.878390\pi\)
\(594\) 0 0
\(595\) 3.56743 + 8.56537i 0.146250 + 0.351146i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.27897i 0.0522572i −0.999659 0.0261286i \(-0.991682\pi\)
0.999659 0.0261286i \(-0.00831794\pi\)
\(600\) 0 0
\(601\) 31.2150 18.0220i 1.27329 0.735133i 0.297682 0.954665i \(-0.403786\pi\)
0.975605 + 0.219532i \(0.0704531\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.82097 4.88607i 0.114689 0.198647i
\(606\) 0 0
\(607\) 39.1131 22.5820i 1.58755 0.916573i 0.593843 0.804581i \(-0.297610\pi\)
0.993709 0.111992i \(-0.0357231\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.58264 + 2.64579i 0.185394 + 0.107037i
\(612\) 0 0
\(613\) −9.50638 16.4655i −0.383959 0.665037i 0.607665 0.794193i \(-0.292106\pi\)
−0.991624 + 0.129157i \(0.958773\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17.2379 9.95232i −0.693973 0.400665i 0.111126 0.993806i \(-0.464554\pi\)
−0.805099 + 0.593141i \(0.797888\pi\)
\(618\) 0 0
\(619\) −22.0428 12.7264i −0.885977 0.511519i −0.0133522 0.999911i \(-0.504250\pi\)
−0.872624 + 0.488392i \(0.837584\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.08587 9.81016i −0.163697 0.393036i
\(624\) 0 0
\(625\) −10.3393 17.9082i −0.413573 0.716330i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 70.8438 2.82473
\(630\) 0 0
\(631\) 40.8171 1.62490 0.812452 0.583028i \(-0.198132\pi\)
0.812452 + 0.583028i \(0.198132\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.56124 + 4.43619i 0.101640 + 0.176045i
\(636\) 0 0
\(637\) −6.11037 + 23.1643i −0.242102 + 0.917801i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.64806 + 4.99296i 0.341578 + 0.197210i 0.660970 0.750413i \(-0.270145\pi\)
−0.319392 + 0.947623i \(0.603479\pi\)
\(642\) 0 0
\(643\) 4.32793 + 2.49873i 0.170677 + 0.0985403i 0.582905 0.812540i \(-0.301916\pi\)
−0.412228 + 0.911081i \(0.635249\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.04602 8.73996i −0.198379 0.343603i 0.749624 0.661864i \(-0.230234\pi\)
−0.948003 + 0.318261i \(0.896901\pi\)
\(648\) 0 0
\(649\) 6.82365 + 3.93964i 0.267852 + 0.154644i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.8236 + 8.55844i −0.580094 + 0.334918i −0.761171 0.648551i \(-0.775375\pi\)
0.181077 + 0.983469i \(0.442042\pi\)
\(654\) 0 0
\(655\) 3.38833 5.86876i 0.132393 0.229311i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.7790 + 7.37798i −0.497800 + 0.287405i −0.727805 0.685784i \(-0.759459\pi\)
0.230004 + 0.973190i \(0.426126\pi\)
\(660\) 0 0
\(661\) 30.0316i 1.16810i 0.811719 + 0.584048i \(0.198532\pi\)
−0.811719 + 0.584048i \(0.801468\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.37393 + 5.63547i 0.285949 + 0.218534i
\(666\) 0 0
\(667\) 0.294485 0.510063i 0.0114025 0.0197497i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.14623 + 3.71737i −0.0828542 + 0.143508i
\(672\) 0 0
\(673\) 18.1953 + 31.5152i 0.701378 + 1.21482i 0.967983 + 0.251016i \(0.0807648\pi\)
−0.266605 + 0.963806i \(0.585902\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.3219 0.704168 0.352084 0.935968i \(-0.385473\pi\)
0.352084 + 0.935968i \(0.385473\pi\)
\(678\) 0 0
\(679\) 5.91874 45.6431i 0.227140 1.75162i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.46067 + 3.73007i −0.247210 + 0.142727i −0.618486 0.785796i \(-0.712254\pi\)
0.371276 + 0.928523i \(0.378920\pi\)
\(684\) 0 0
\(685\) 10.4638i 0.399802i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.873395 −0.0332737
\(690\) 0 0
\(691\) 17.5167i 0.666365i −0.942862 0.333182i \(-0.891878\pi\)
0.942862 0.333182i \(-0.108122\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.540777i 0.0205128i
\(696\) 0 0
\(697\) 52.3483 1.98283
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 37.8622i 1.43004i 0.699106 + 0.715018i \(0.253582\pi\)
−0.699106 + 0.715018i \(0.746418\pi\)
\(702\) 0 0
\(703\) 61.3672 35.4304i 2.31451 1.33628i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −16.7867 40.3048i −0.631330 1.51582i
\(708\) 0 0
\(709\) −37.1014 −1.39337 −0.696686 0.717376i \(-0.745343\pi\)
−0.696686 + 0.717376i \(0.745343\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.268563 + 0.465165i 0.0100578 + 0.0174206i
\(714\) 0 0
\(715\) 0.713667 1.23611i 0.0266896 0.0462278i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5.73941 + 9.94096i −0.214044 + 0.370735i −0.952976 0.303044i \(-0.901997\pi\)
0.738932 + 0.673780i \(0.235330\pi\)
\(720\) 0 0
\(721\) 0.100027 0.771370i 0.00372520 0.0287273i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 23.9199i 0.888364i
\(726\) 0 0
\(727\) 13.1105 7.56936i 0.486242 0.280732i −0.236772 0.971565i \(-0.576089\pi\)
0.723014 + 0.690833i \(0.242756\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −21.5156 + 37.2662i −0.795785 + 1.37834i
\(732\) 0 0
\(733\) −7.96753 + 4.60005i −0.294287 + 0.169907i −0.639874 0.768480i \(-0.721013\pi\)
0.345586 + 0.938387i \(0.387680\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.18779 1.26312i −0.0805884 0.0465277i
\(738\) 0 0
\(739\) −14.6669 25.4038i −0.539529 0.934492i −0.998929 0.0462628i \(-0.985269\pi\)
0.459400 0.888230i \(-0.348065\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.9829 + 19.6200i 1.24671 + 0.719789i 0.970452 0.241294i \(-0.0775719\pi\)
0.276259 + 0.961083i \(0.410905\pi\)
\(744\) 0 0
\(745\) −9.22499 5.32605i −0.337977 0.195131i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.94933 3.72734i 0.327001 0.136194i
\(750\) 0 0
\(751\) −10.5034 18.1924i −0.383274 0.663851i 0.608254 0.793743i \(-0.291870\pi\)
−0.991528 + 0.129892i \(0.958537\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.23380 −0.336052
\(756\) 0 0
\(757\) 12.1528 0.441703 0.220851 0.975307i \(-0.429116\pi\)
0.220851 + 0.975307i \(0.429116\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.24026 12.5405i −0.262459 0.454593i 0.704436 0.709768i \(-0.251200\pi\)
−0.966895 + 0.255175i \(0.917867\pi\)
\(762\) 0 0
\(763\) 6.63799 + 0.860778i 0.240312 + 0.0311623i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −30.3532 17.5245i −1.09599 0.632771i
\(768\) 0 0
\(769\) 6.13371 + 3.54130i 0.221187 + 0.127702i 0.606500 0.795084i \(-0.292573\pi\)
−0.385313 + 0.922786i \(0.625906\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.1640 + 33.1930i 0.689280 + 1.19387i 0.972071 + 0.234687i \(0.0754065\pi\)
−0.282791 + 0.959182i \(0.591260\pi\)
\(774\) 0 0
\(775\) −18.8918 10.9072i −0.678615 0.391799i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 45.3458 26.1804i 1.62468 0.938011i
\(780\) 0 0
\(781\) −2.18471 + 3.78403i −0.0781751 + 0.135403i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.530049 + 0.306024i −0.0189183 + 0.0109225i
\(786\) 0 0
\(787\) 15.6191i 0.556760i 0.960471 + 0.278380i \(0.0897974\pi\)
−0.960471 + 0.278380i \(0.910203\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 33.6383 14.0101i 1.19604 0.498143i
\(792\) 0 0
\(793\) 9.54693 16.5358i 0.339022 0.587203i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.0230 + 20.8244i −0.425875 + 0.737637i −0.996502 0.0835726i \(-0.973367\pi\)
0.570627 + 0.821210i \(0.306700\pi\)
\(798\) 0 0
\(799\) −5.00151 8.66286i −0.176941 0.306470i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.75608 −0.167839
\(804\) 0 0
\(805\) −0.153417 + 0.0638970i −0.00540722 + 0.00225207i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 25.2846 14.5980i 0.888958 0.513240i 0.0153562 0.999882i \(-0.495112\pi\)
0.873601 + 0.486642i \(0.161778\pi\)
\(810\) 0 0
\(811\) 26.0991i 0.916464i −0.888833 0.458232i \(-0.848483\pi\)
0.888833 0.458232i \(-0.151517\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.32523 −0.326649
\(816\) 0 0
\(817\) 43.0416i 1.50583i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 54.9905i 1.91918i −0.281402 0.959590i \(-0.590799\pi\)
0.281402 0.959590i \(-0.409201\pi\)
\(822\) 0 0
\(823\) −18.1157 −0.631474 −0.315737 0.948847i \(-0.602252\pi\)
−0.315737 + 0.948847i \(0.602252\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38.1934i 1.32812i 0.747681 + 0.664058i \(0.231167\pi\)
−0.747681 + 0.664058i \(0.768833\pi\)
\(828\) 0 0
\(829\) 47.0722 27.1771i 1.63488 0.943901i 0.652327 0.757938i \(-0.273793\pi\)
0.982557 0.185963i \(-0.0595404\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 31.8978 32.1469i 1.10519 1.11382i
\(834\) 0 0
\(835\) 2.40959 0.0833873
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.3919 + 23.1955i 0.462341 + 0.800798i 0.999077 0.0429523i \(-0.0136764\pi\)
−0.536736 + 0.843750i \(0.680343\pi\)
\(840\) 0 0
\(841\) −1.58312 + 2.74205i −0.0545904 + 0.0945534i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.348924 0.604354i 0.0120033 0.0207904i
\(846\) 0 0
\(847\) −27.3085 3.54121i −0.938331 0.121678i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.26890i 0.0434973i
\(852\) 0 0
\(853\) −15.6735 + 9.04908i −0.536649 + 0.309835i −0.743720 0.668491i \(-0.766940\pi\)
0.207071 + 0.978326i \(0.433607\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −17.6561 + 30.5812i −0.603120 + 1.04464i 0.389225 + 0.921143i \(0.372743\pi\)
−0.992346 + 0.123492i \(0.960591\pi\)
\(858\) 0 0
\(859\) −20.1598 + 11.6393i −0.687844 + 0.397127i −0.802804 0.596243i \(-0.796659\pi\)
0.114960 + 0.993370i \(0.463326\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.3933 + 16.3929i 0.966520 + 0.558020i 0.898173 0.439641i \(-0.144894\pi\)
0.0683462 + 0.997662i \(0.478228\pi\)
\(864\) 0 0
\(865\) −5.38980 9.33541i −0.183259 0.317414i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.68158 + 1.54821i 0.0909665 + 0.0525195i
\(870\) 0 0
\(871\) 9.73182 + 5.61867i 0.329750 + 0.190381i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.45278 11.0604i 0.285756 0.373908i
\(876\) 0 0
\(877\) −10.7688 18.6521i −0.363636 0.629837i 0.624920 0.780689i \(-0.285132\pi\)
−0.988556 + 0.150852i \(0.951798\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −22.9322 −0.772606 −0.386303 0.922372i \(-0.626248\pi\)
−0.386303 + 0.922372i \(0.626248\pi\)
\(882\) 0 0
\(883\) 31.8225 1.07091 0.535455 0.844564i \(-0.320140\pi\)
0.535455 + 0.844564i \(0.320140\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.1135 + 19.2492i 0.373156 + 0.646325i 0.990049 0.140722i \(-0.0449423\pi\)
−0.616893 + 0.787047i \(0.711609\pi\)
\(888\) 0 0
\(889\) 15.1814 19.8647i 0.509169 0.666241i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.66494 5.00270i −0.289961 0.167409i
\(894\) 0 0
\(895\) −0.929507 0.536651i −0.0310700 0.0179383i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.7799 + 20.4034i 0.392881 + 0.680491i
\(900\) 0 0
\(901\) 1.42984 + 0.825518i 0.0476349 + 0.0275020i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.66712 + 1.53986i −0.0886581 + 0.0511868i
\(906\) 0 0
\(907\) −19.9099 + 34.4849i −0.661097 + 1.14505i 0.319231 + 0.947677i \(0.396575\pi\)
−0.980328 + 0.197376i \(0.936758\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.87819 + 3.39378i −0.194753 + 0.112441i −0.594206 0.804313i \(-0.702534\pi\)
0.399453 + 0.916754i \(0.369200\pi\)
\(912\) 0 0
\(913\) 8.92565i 0.295396i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −32.8008 4.25342i −1.08318 0.140460i
\(918\) 0 0
\(919\) 14.0173 24.2787i 0.462389 0.800882i −0.536690 0.843779i \(-0.680326\pi\)
0.999079 + 0.0428977i \(0.0136590\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.71812 16.8323i 0.319876 0.554041i
\(924\) 0 0
\(925\) −25.7670 44.6298i −0.847215 1.46742i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.7408 0.582057 0.291028 0.956714i \(-0.406003\pi\)
0.291028 + 0.956714i \(0.406003\pi\)
\(930\) 0 0
\(931\) 11.5536 43.7994i 0.378654 1.43547i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.33670 + 1.34909i −0.0764182 + 0.0441200i
\(936\) 0 0
\(937\) 10.2459i 0.334719i 0.985896 + 0.167360i \(0.0535241\pi\)
−0.985896 + 0.167360i \(0.946476\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9.99655 −0.325878 −0.162939 0.986636i \(-0.552097\pi\)
−0.162939 + 0.986636i \(0.552097\pi\)
\(942\) 0 0
\(943\) 0.937624i 0.0305332i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48.2494i 1.56790i −0.620827 0.783948i \(-0.713203\pi\)
0.620827 0.783948i \(-0.286797\pi\)
\(948\) 0 0
\(949\) 21.1562 0.686760
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 40.4708i 1.31098i −0.755205 0.655489i \(-0.772463\pi\)
0.755205 0.655489i \(-0.227537\pi\)
\(954\) 0 0
\(955\) 1.94832 1.12486i 0.0630462 0.0363997i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −47.1459 + 19.6360i −1.52242 + 0.634079i
\(960\) 0 0
\(961\) 9.51402 0.306904
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.59117 + 2.75598i 0.0512215 + 0.0887182i
\(966\) 0 0
\(967\) −14.6566 + 25.3860i −0.471325 + 0.816359i −0.999462 0.0328000i \(-0.989558\pi\)
0.528137 + 0.849159i \(0.322891\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 9.02830 15.6375i 0.289732 0.501831i −0.684014 0.729469i \(-0.739767\pi\)
0.973746 + 0.227639i \(0.0731005\pi\)
\(972\) 0 0
\(973\) −2.43653 + 1.01480i −0.0781117 + 0.0325330i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 39.2466i 1.25561i −0.778371 0.627805i \(-0.783953\pi\)
0.778371 0.627805i \(-0.216047\pi\)
\(978\) 0 0
\(979\) 2.67628 1.54515i 0.0855344 0.0493833i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13.2334 22.9209i 0.422079 0.731063i −0.574063 0.818811i \(-0.694634\pi\)
0.996143 + 0.0877479i \(0.0279670\pi\)
\(984\) 0 0
\(985\) −1.58633 + 0.915869i −0.0505447 + 0.0291820i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.667484 0.385372i −0.0212248 0.0122541i
\(990\) 0 0
\(991\) 7.32864 + 12.6936i 0.232802 + 0.403225i 0.958632 0.284650i \(-0.0918773\pi\)
−0.725830 + 0.687875i \(0.758544\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.18896 1.26380i −0.0693948 0.0400651i
\(996\) 0 0
\(997\) 3.41103 + 1.96936i 0.108028 + 0.0623703i 0.553041 0.833154i \(-0.313467\pi\)
−0.445012 + 0.895524i \(0.646801\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bs.a.1097.13 48
3.2 odd 2 504.2.bs.a.257.8 48
4.3 odd 2 3024.2.ca.e.2609.13 48
7.3 odd 6 1512.2.cx.a.17.13 48
9.2 odd 6 1512.2.cx.a.89.13 48
9.7 even 3 504.2.cx.a.425.1 yes 48
12.11 even 2 1008.2.ca.e.257.17 48
21.17 even 6 504.2.cx.a.185.1 yes 48
28.3 even 6 3024.2.df.e.17.13 48
36.7 odd 6 1008.2.df.e.929.24 48
36.11 even 6 3024.2.df.e.1601.13 48
63.38 even 6 inner 1512.2.bs.a.521.13 48
63.52 odd 6 504.2.bs.a.353.8 yes 48
84.59 odd 6 1008.2.df.e.689.24 48
252.115 even 6 1008.2.ca.e.353.17 48
252.227 odd 6 3024.2.ca.e.2033.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.8 48 3.2 odd 2
504.2.bs.a.353.8 yes 48 63.52 odd 6
504.2.cx.a.185.1 yes 48 21.17 even 6
504.2.cx.a.425.1 yes 48 9.7 even 3
1008.2.ca.e.257.17 48 12.11 even 2
1008.2.ca.e.353.17 48 252.115 even 6
1008.2.df.e.689.24 48 84.59 odd 6
1008.2.df.e.929.24 48 36.7 odd 6
1512.2.bs.a.521.13 48 63.38 even 6 inner
1512.2.bs.a.1097.13 48 1.1 even 1 trivial
1512.2.cx.a.17.13 48 7.3 odd 6
1512.2.cx.a.89.13 48 9.2 odd 6
3024.2.ca.e.2033.13 48 252.227 odd 6
3024.2.ca.e.2609.13 48 4.3 odd 2
3024.2.df.e.17.13 48 28.3 even 6
3024.2.df.e.1601.13 48 36.11 even 6