Properties

Label 504.2.bs.a.353.8
Level $504$
Weight $2$
Character 504.353
Analytic conductor $4.024$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(257,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 353.8
Character \(\chi\) \(=\) 504.353
Dual form 504.2.bs.a.257.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09564 - 1.34148i) q^{3} +(-0.271038 + 0.469451i) q^{5} +(1.60655 + 2.10214i) q^{7} +(-0.599164 + 2.93956i) q^{9} +(-0.666300 + 0.384688i) q^{11} +(-2.96386 + 1.71119i) q^{13} +(0.926720 - 0.150754i) q^{15} +(-3.23477 + 5.60278i) q^{17} +(5.60413 - 3.23554i) q^{19} +(1.05981 - 4.45834i) q^{21} +(0.100353 + 0.0579388i) q^{23} +(2.35308 + 4.07565i) q^{25} +(4.59984 - 2.41692i) q^{27} +(4.40174 + 2.54135i) q^{29} +4.63530i q^{31} +(1.24608 + 0.472353i) q^{33} +(-1.42229 + 0.184434i) q^{35} +(5.47518 + 9.48329i) q^{37} +(5.54284 + 2.10114i) q^{39} +(-4.04575 - 7.00745i) q^{41} +(3.32569 - 5.76026i) q^{43} +(-1.21758 - 1.07801i) q^{45} +1.54617 q^{47} +(-1.83802 + 6.75438i) q^{49} +(11.0602 - 1.79922i) q^{51} +(-0.221011 - 0.127601i) q^{53} -0.417060i q^{55} +(-10.4805 - 3.97287i) q^{57} -10.2411 q^{59} -5.57913i q^{61} +(-7.14196 + 3.46301i) q^{63} -1.85518i q^{65} -3.28349 q^{67} +(-0.0322262 - 0.198102i) q^{69} +5.67917i q^{71} +(-5.35354 - 3.09087i) q^{73} +(2.88931 - 7.62205i) q^{75} +(-1.87911 - 0.782639i) q^{77} +4.02459 q^{79} +(-8.28201 - 3.52255i) q^{81} +(-5.80057 + 10.0469i) q^{83} +(-1.75349 - 3.03713i) q^{85} +(-1.41353 - 8.68926i) q^{87} +(-2.00832 - 3.47851i) q^{89} +(-8.35874 - 3.48136i) q^{91} +(6.21818 - 5.07860i) q^{93} +3.50781i q^{95} +(15.0653 + 8.69795i) q^{97} +(-0.731591 - 2.18912i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} + 8 q^{15} + 8 q^{21} - 12 q^{23} - 24 q^{25} - 18 q^{27} + 18 q^{29} - 10 q^{39} + 6 q^{41} - 6 q^{43} + 6 q^{45} + 36 q^{47} + 6 q^{49} - 12 q^{51} + 12 q^{53} + 4 q^{57} + 46 q^{63} - 54 q^{75}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.09564 1.34148i −0.632566 0.774507i
\(4\) 0 0
\(5\) −0.271038 + 0.469451i −0.121212 + 0.209945i −0.920246 0.391341i \(-0.872011\pi\)
0.799034 + 0.601286i \(0.205345\pi\)
\(6\) 0 0
\(7\) 1.60655 + 2.10214i 0.607217 + 0.794536i
\(8\) 0 0
\(9\) −0.599164 + 2.93956i −0.199721 + 0.979853i
\(10\) 0 0
\(11\) −0.666300 + 0.384688i −0.200897 + 0.115988i −0.597074 0.802186i \(-0.703670\pi\)
0.396177 + 0.918174i \(0.370337\pi\)
\(12\) 0 0
\(13\) −2.96386 + 1.71119i −0.822027 + 0.474598i −0.851115 0.524979i \(-0.824073\pi\)
0.0290877 + 0.999577i \(0.490740\pi\)
\(14\) 0 0
\(15\) 0.926720 0.150754i 0.239278 0.0389246i
\(16\) 0 0
\(17\) −3.23477 + 5.60278i −0.784547 + 1.35887i 0.144723 + 0.989472i \(0.453771\pi\)
−0.929269 + 0.369403i \(0.879562\pi\)
\(18\) 0 0
\(19\) 5.60413 3.23554i 1.28567 0.742285i 0.307795 0.951453i \(-0.400409\pi\)
0.977880 + 0.209168i \(0.0670756\pi\)
\(20\) 0 0
\(21\) 1.05981 4.45834i 0.231268 0.972890i
\(22\) 0 0
\(23\) 0.100353 + 0.0579388i 0.0209250 + 0.0120811i 0.510426 0.859922i \(-0.329488\pi\)
−0.489501 + 0.872003i \(0.662821\pi\)
\(24\) 0 0
\(25\) 2.35308 + 4.07565i 0.470615 + 0.815130i
\(26\) 0 0
\(27\) 4.59984 2.41692i 0.885239 0.465136i
\(28\) 0 0
\(29\) 4.40174 + 2.54135i 0.817383 + 0.471916i 0.849513 0.527568i \(-0.176896\pi\)
−0.0321304 + 0.999484i \(0.510229\pi\)
\(30\) 0 0
\(31\) 4.63530i 0.832524i 0.909245 + 0.416262i \(0.136660\pi\)
−0.909245 + 0.416262i \(0.863340\pi\)
\(32\) 0 0
\(33\) 1.24608 + 0.472353i 0.216914 + 0.0822261i
\(34\) 0 0
\(35\) −1.42229 + 0.184434i −0.240410 + 0.0311751i
\(36\) 0 0
\(37\) 5.47518 + 9.48329i 0.900114 + 1.55904i 0.827345 + 0.561694i \(0.189850\pi\)
0.0727692 + 0.997349i \(0.476816\pi\)
\(38\) 0 0
\(39\) 5.54284 + 2.10114i 0.887565 + 0.336451i
\(40\) 0 0
\(41\) −4.04575 7.00745i −0.631841 1.09438i −0.987175 0.159641i \(-0.948966\pi\)
0.355334 0.934739i \(-0.384367\pi\)
\(42\) 0 0
\(43\) 3.32569 5.76026i 0.507162 0.878431i −0.492803 0.870141i \(-0.664028\pi\)
0.999966 0.00829006i \(-0.00263884\pi\)
\(44\) 0 0
\(45\) −1.21758 1.07801i −0.181506 0.160700i
\(46\) 0 0
\(47\) 1.54617 0.225532 0.112766 0.993622i \(-0.464029\pi\)
0.112766 + 0.993622i \(0.464029\pi\)
\(48\) 0 0
\(49\) −1.83802 + 6.75438i −0.262574 + 0.964912i
\(50\) 0 0
\(51\) 11.0602 1.79922i 1.54873 0.251941i
\(52\) 0 0
\(53\) −0.221011 0.127601i −0.0303582 0.0175273i 0.484744 0.874656i \(-0.338913\pi\)
−0.515102 + 0.857129i \(0.672246\pi\)
\(54\) 0 0
\(55\) 0.417060i 0.0562364i
\(56\) 0 0
\(57\) −10.4805 3.97287i −1.38818 0.526220i
\(58\) 0 0
\(59\) −10.2411 −1.33328 −0.666640 0.745380i \(-0.732268\pi\)
−0.666640 + 0.745380i \(0.732268\pi\)
\(60\) 0 0
\(61\) 5.57913i 0.714335i −0.934040 0.357167i \(-0.883743\pi\)
0.934040 0.357167i \(-0.116257\pi\)
\(62\) 0 0
\(63\) −7.14196 + 3.46301i −0.899802 + 0.436298i
\(64\) 0 0
\(65\) 1.85518i 0.230107i
\(66\) 0 0
\(67\) −3.28349 −0.401143 −0.200571 0.979679i \(-0.564280\pi\)
−0.200571 + 0.979679i \(0.564280\pi\)
\(68\) 0 0
\(69\) −0.0322262 0.198102i −0.00387958 0.0238486i
\(70\) 0 0
\(71\) 5.67917i 0.673994i 0.941506 + 0.336997i \(0.109411\pi\)
−0.941506 + 0.336997i \(0.890589\pi\)
\(72\) 0 0
\(73\) −5.35354 3.09087i −0.626585 0.361759i 0.152844 0.988250i \(-0.451157\pi\)
−0.779428 + 0.626492i \(0.784490\pi\)
\(74\) 0 0
\(75\) 2.88931 7.62205i 0.333628 0.880118i
\(76\) 0 0
\(77\) −1.87911 0.782639i −0.214145 0.0891900i
\(78\) 0 0
\(79\) 4.02459 0.452802 0.226401 0.974034i \(-0.427304\pi\)
0.226401 + 0.974034i \(0.427304\pi\)
\(80\) 0 0
\(81\) −8.28201 3.52255i −0.920223 0.391395i
\(82\) 0 0
\(83\) −5.80057 + 10.0469i −0.636695 + 1.10279i 0.349458 + 0.936952i \(0.386366\pi\)
−0.986153 + 0.165836i \(0.946968\pi\)
\(84\) 0 0
\(85\) −1.75349 3.03713i −0.190192 0.329423i
\(86\) 0 0
\(87\) −1.41353 8.68926i −0.151546 0.931586i
\(88\) 0 0
\(89\) −2.00832 3.47851i −0.212881 0.368721i 0.739734 0.672900i \(-0.234951\pi\)
−0.952615 + 0.304178i \(0.901618\pi\)
\(90\) 0 0
\(91\) −8.35874 3.48136i −0.876234 0.364946i
\(92\) 0 0
\(93\) 6.21818 5.07860i 0.644795 0.526626i
\(94\) 0 0
\(95\) 3.50781i 0.359894i
\(96\) 0 0
\(97\) 15.0653 + 8.69795i 1.52965 + 0.883143i 0.999376 + 0.0353150i \(0.0112435\pi\)
0.530272 + 0.847828i \(0.322090\pi\)
\(98\) 0 0
\(99\) −0.731591 2.18912i −0.0735277 0.220015i
\(100\) 0 0
\(101\) −8.25113 14.2914i −0.821019 1.42205i −0.904925 0.425572i \(-0.860073\pi\)
0.0839060 0.996474i \(-0.473260\pi\)
\(102\) 0 0
\(103\) 0.254604 + 0.146996i 0.0250869 + 0.0144839i 0.512491 0.858693i \(-0.328723\pi\)
−0.487404 + 0.873177i \(0.662056\pi\)
\(104\) 0 0
\(105\) 1.80572 + 1.70590i 0.176221 + 0.166479i
\(106\) 0 0
\(107\) −3.17327 + 1.83209i −0.306772 + 0.177115i −0.645481 0.763776i \(-0.723343\pi\)
0.338709 + 0.940891i \(0.390010\pi\)
\(108\) 0 0
\(109\) 1.26497 2.19099i 0.121162 0.209858i −0.799064 0.601246i \(-0.794671\pi\)
0.920226 + 0.391387i \(0.128005\pi\)
\(110\) 0 0
\(111\) 6.72289 17.7351i 0.638108 1.68334i
\(112\) 0 0
\(113\) −11.9275 + 6.88637i −1.12205 + 0.647815i −0.941923 0.335828i \(-0.890984\pi\)
−0.180126 + 0.983644i \(0.557650\pi\)
\(114\) 0 0
\(115\) −0.0543988 + 0.0314072i −0.00507271 + 0.00292873i
\(116\) 0 0
\(117\) −3.25429 9.73773i −0.300860 0.900253i
\(118\) 0 0
\(119\) −16.9747 + 2.20118i −1.55607 + 0.201782i
\(120\) 0 0
\(121\) −5.20403 + 9.01364i −0.473094 + 0.819422i
\(122\) 0 0
\(123\) −4.96772 + 13.1049i −0.447924 + 1.18163i
\(124\) 0 0
\(125\) −5.26146 −0.470600
\(126\) 0 0
\(127\) 9.44974 0.838529 0.419265 0.907864i \(-0.362288\pi\)
0.419265 + 0.907864i \(0.362288\pi\)
\(128\) 0 0
\(129\) −11.3710 + 1.84979i −1.00116 + 0.162865i
\(130\) 0 0
\(131\) 6.25067 10.8265i 0.546123 0.945913i −0.452412 0.891809i \(-0.649436\pi\)
0.998535 0.0541043i \(-0.0172303\pi\)
\(132\) 0 0
\(133\) 15.8049 + 6.58263i 1.37046 + 0.570786i
\(134\) 0 0
\(135\) −0.112106 + 2.81447i −0.00964852 + 0.242231i
\(136\) 0 0
\(137\) 16.7171 9.65163i 1.42824 0.824594i 0.431257 0.902229i \(-0.358070\pi\)
0.996982 + 0.0776349i \(0.0247368\pi\)
\(138\) 0 0
\(139\) −0.863952 + 0.498803i −0.0732794 + 0.0423079i −0.536192 0.844096i \(-0.680138\pi\)
0.462913 + 0.886404i \(0.346804\pi\)
\(140\) 0 0
\(141\) −1.69404 2.07417i −0.142664 0.174676i
\(142\) 0 0
\(143\) 1.31655 2.28033i 0.110095 0.190690i
\(144\) 0 0
\(145\) −2.38607 + 1.37760i −0.198153 + 0.114403i
\(146\) 0 0
\(147\) 11.0747 4.93467i 0.913426 0.407005i
\(148\) 0 0
\(149\) 17.0179 + 9.82530i 1.39416 + 0.804920i 0.993773 0.111425i \(-0.0355415\pi\)
0.400390 + 0.916345i \(0.368875\pi\)
\(150\) 0 0
\(151\) −8.51708 14.7520i −0.693111 1.20050i −0.970813 0.239836i \(-0.922906\pi\)
0.277703 0.960667i \(-0.410427\pi\)
\(152\) 0 0
\(153\) −14.5316 12.8658i −1.17481 1.04014i
\(154\) 0 0
\(155\) −2.17604 1.25634i −0.174784 0.100912i
\(156\) 0 0
\(157\) 1.12908i 0.0901107i −0.998984 0.0450553i \(-0.985654\pi\)
0.998984 0.0450553i \(-0.0143464\pi\)
\(158\) 0 0
\(159\) 0.0709731 + 0.436287i 0.00562854 + 0.0345998i
\(160\) 0 0
\(161\) 0.0394259 + 0.304037i 0.00310720 + 0.0239615i
\(162\) 0 0
\(163\) −8.60142 14.8981i −0.673715 1.16691i −0.976843 0.213959i \(-0.931364\pi\)
0.303127 0.952950i \(-0.401969\pi\)
\(164\) 0 0
\(165\) −0.559480 + 0.456946i −0.0435554 + 0.0355732i
\(166\) 0 0
\(167\) −2.22256 3.84959i −0.171987 0.297890i 0.767128 0.641495i \(-0.221685\pi\)
−0.939114 + 0.343605i \(0.888352\pi\)
\(168\) 0 0
\(169\) −0.643682 + 1.11489i −0.0495140 + 0.0857607i
\(170\) 0 0
\(171\) 6.15328 + 18.4123i 0.470553 + 1.40802i
\(172\) 0 0
\(173\) 19.8858 1.51189 0.755946 0.654634i \(-0.227177\pi\)
0.755946 + 0.654634i \(0.227177\pi\)
\(174\) 0 0
\(175\) −4.78728 + 11.4942i −0.361884 + 0.868882i
\(176\) 0 0
\(177\) 11.2205 + 13.7383i 0.843387 + 1.03263i
\(178\) 0 0
\(179\) 1.71472 + 0.989994i 0.128164 + 0.0739956i 0.562711 0.826653i \(-0.309758\pi\)
−0.434547 + 0.900649i \(0.643092\pi\)
\(180\) 0 0
\(181\) 5.68137i 0.422293i −0.977454 0.211146i \(-0.932280\pi\)
0.977454 0.211146i \(-0.0677197\pi\)
\(182\) 0 0
\(183\) −7.48432 + 6.11270i −0.553257 + 0.451864i
\(184\) 0 0
\(185\) −5.93592 −0.436417
\(186\) 0 0
\(187\) 4.97751i 0.363992i
\(188\) 0 0
\(189\) 12.4706 + 5.78664i 0.907100 + 0.420916i
\(190\) 0 0
\(191\) 4.15021i 0.300299i −0.988663 0.150149i \(-0.952025\pi\)
0.988663 0.150149i \(-0.0479755\pi\)
\(192\) 0 0
\(193\) 5.87065 0.422579 0.211289 0.977424i \(-0.432234\pi\)
0.211289 + 0.977424i \(0.432234\pi\)
\(194\) 0 0
\(195\) −2.48870 + 2.03260i −0.178219 + 0.145558i
\(196\) 0 0
\(197\) 3.37912i 0.240753i 0.992728 + 0.120376i \(0.0384101\pi\)
−0.992728 + 0.120376i \(0.961590\pi\)
\(198\) 0 0
\(199\) −4.03812 2.33141i −0.286255 0.165269i 0.349997 0.936751i \(-0.386183\pi\)
−0.636252 + 0.771482i \(0.719516\pi\)
\(200\) 0 0
\(201\) 3.59751 + 4.40476i 0.253749 + 0.310688i
\(202\) 0 0
\(203\) 1.72932 + 13.3359i 0.121375 + 0.935995i
\(204\) 0 0
\(205\) 4.38620 0.306346
\(206\) 0 0
\(207\) −0.230442 + 0.260278i −0.0160168 + 0.0180906i
\(208\) 0 0
\(209\) −2.48935 + 4.31168i −0.172192 + 0.298245i
\(210\) 0 0
\(211\) −3.09622 5.36281i −0.213153 0.369191i 0.739547 0.673105i \(-0.235040\pi\)
−0.952699 + 0.303914i \(0.901706\pi\)
\(212\) 0 0
\(213\) 7.61852 6.22230i 0.522013 0.426345i
\(214\) 0 0
\(215\) 1.80277 + 3.12249i 0.122948 + 0.212952i
\(216\) 0 0
\(217\) −9.74406 + 7.44682i −0.661470 + 0.505523i
\(218\) 0 0
\(219\) 1.71918 + 10.5682i 0.116171 + 0.714130i
\(220\) 0 0
\(221\) 22.1412i 1.48938i
\(222\) 0 0
\(223\) 8.84510 + 5.10672i 0.592312 + 0.341971i 0.766011 0.642827i \(-0.222239\pi\)
−0.173699 + 0.984799i \(0.555572\pi\)
\(224\) 0 0
\(225\) −13.3905 + 4.47503i −0.892699 + 0.298335i
\(226\) 0 0
\(227\) 8.12394 + 14.0711i 0.539205 + 0.933930i 0.998947 + 0.0458777i \(0.0146084\pi\)
−0.459742 + 0.888052i \(0.652058\pi\)
\(228\) 0 0
\(229\) −7.51527 4.33894i −0.496623 0.286726i 0.230695 0.973026i \(-0.425900\pi\)
−0.727318 + 0.686301i \(0.759233\pi\)
\(230\) 0 0
\(231\) 1.00892 + 3.37829i 0.0663824 + 0.222275i
\(232\) 0 0
\(233\) 19.0308 10.9874i 1.24675 0.719811i 0.276290 0.961074i \(-0.410895\pi\)
0.970460 + 0.241263i \(0.0775617\pi\)
\(234\) 0 0
\(235\) −0.419070 + 0.725851i −0.0273371 + 0.0473493i
\(236\) 0 0
\(237\) −4.40948 5.39893i −0.286427 0.350698i
\(238\) 0 0
\(239\) 14.3752 8.29955i 0.929857 0.536853i 0.0430908 0.999071i \(-0.486280\pi\)
0.886766 + 0.462218i \(0.152946\pi\)
\(240\) 0 0
\(241\) −9.52821 + 5.50112i −0.613766 + 0.354358i −0.774438 0.632650i \(-0.781967\pi\)
0.160672 + 0.987008i \(0.448634\pi\)
\(242\) 0 0
\(243\) 4.34861 + 14.9696i 0.278963 + 0.960302i
\(244\) 0 0
\(245\) −2.67268 2.69355i −0.170751 0.172085i
\(246\) 0 0
\(247\) −11.0732 + 19.1794i −0.704573 + 1.22036i
\(248\) 0 0
\(249\) 19.8330 3.22635i 1.25687 0.204461i
\(250\) 0 0
\(251\) −18.0406 −1.13871 −0.569356 0.822091i \(-0.692808\pi\)
−0.569356 + 0.822091i \(0.692808\pi\)
\(252\) 0 0
\(253\) −0.0891535 −0.00560503
\(254\) 0 0
\(255\) −2.15308 + 5.67986i −0.134831 + 0.355687i
\(256\) 0 0
\(257\) −7.20321 + 12.4763i −0.449324 + 0.778252i −0.998342 0.0575585i \(-0.981668\pi\)
0.549018 + 0.835810i \(0.315002\pi\)
\(258\) 0 0
\(259\) −11.1391 + 26.7450i −0.692151 + 1.66185i
\(260\) 0 0
\(261\) −10.1078 + 11.4165i −0.625657 + 0.706663i
\(262\) 0 0
\(263\) −21.6064 + 12.4745i −1.33231 + 0.769209i −0.985653 0.168783i \(-0.946016\pi\)
−0.346656 + 0.937992i \(0.612683\pi\)
\(264\) 0 0
\(265\) 0.119805 0.0691692i 0.00735954 0.00424903i
\(266\) 0 0
\(267\) −2.46598 + 6.50531i −0.150916 + 0.398118i
\(268\) 0 0
\(269\) 11.0059 19.0627i 0.671040 1.16228i −0.306569 0.951848i \(-0.599181\pi\)
0.977609 0.210428i \(-0.0674856\pi\)
\(270\) 0 0
\(271\) 22.7444 13.1315i 1.38162 0.797680i 0.389271 0.921123i \(-0.372727\pi\)
0.992352 + 0.123443i \(0.0393935\pi\)
\(272\) 0 0
\(273\) 4.48794 + 15.0274i 0.271622 + 0.909502i
\(274\) 0 0
\(275\) −3.13571 1.81040i −0.189090 0.109171i
\(276\) 0 0
\(277\) −2.38206 4.12584i −0.143124 0.247898i 0.785548 0.618801i \(-0.212381\pi\)
−0.928671 + 0.370903i \(0.879048\pi\)
\(278\) 0 0
\(279\) −13.6257 2.77730i −0.815751 0.166273i
\(280\) 0 0
\(281\) 19.1963 + 11.0830i 1.14515 + 0.661155i 0.947702 0.319158i \(-0.103400\pi\)
0.197452 + 0.980312i \(0.436733\pi\)
\(282\) 0 0
\(283\) 2.90557i 0.172718i −0.996264 0.0863590i \(-0.972477\pi\)
0.996264 0.0863590i \(-0.0275232\pi\)
\(284\) 0 0
\(285\) 4.70568 3.84329i 0.278740 0.227657i
\(286\) 0 0
\(287\) 8.23098 19.7626i 0.485860 1.16655i
\(288\) 0 0
\(289\) −12.4275 21.5250i −0.731027 1.26618i
\(290\) 0 0
\(291\) −4.83790 29.7396i −0.283603 1.74337i
\(292\) 0 0
\(293\) 13.9866 + 24.2255i 0.817104 + 1.41527i 0.907807 + 0.419388i \(0.137755\pi\)
−0.0907025 + 0.995878i \(0.528911\pi\)
\(294\) 0 0
\(295\) 2.77573 4.80770i 0.161609 0.279915i
\(296\) 0 0
\(297\) −2.13511 + 3.37990i −0.123892 + 0.196121i
\(298\) 0 0
\(299\) −0.396576 −0.0229346
\(300\) 0 0
\(301\) 17.4518 2.26305i 1.00590 0.130440i
\(302\) 0 0
\(303\) −10.1314 + 26.7269i −0.582036 + 1.53542i
\(304\) 0 0
\(305\) 2.61913 + 1.51215i 0.149971 + 0.0865857i
\(306\) 0 0
\(307\) 30.3968i 1.73484i −0.497579 0.867419i \(-0.665777\pi\)
0.497579 0.867419i \(-0.334223\pi\)
\(308\) 0 0
\(309\) −0.0817608 0.502601i −0.00465121 0.0285920i
\(310\) 0 0
\(311\) 27.8260 1.57787 0.788934 0.614477i \(-0.210633\pi\)
0.788934 + 0.614477i \(0.210633\pi\)
\(312\) 0 0
\(313\) 0.0465719i 0.00263240i −0.999999 0.00131620i \(-0.999581\pi\)
0.999999 0.00131620i \(-0.000418959\pi\)
\(314\) 0 0
\(315\) 0.310028 4.29140i 0.0174681 0.241793i
\(316\) 0 0
\(317\) 8.49402i 0.477072i −0.971134 0.238536i \(-0.923333\pi\)
0.971134 0.238536i \(-0.0766675\pi\)
\(318\) 0 0
\(319\) −3.91051 −0.218946
\(320\) 0 0
\(321\) 5.93448 + 2.24960i 0.331230 + 0.125560i
\(322\) 0 0
\(323\) 41.8649i 2.32943i
\(324\) 0 0
\(325\) −13.9484 8.05311i −0.773718 0.446706i
\(326\) 0 0
\(327\) −4.32512 + 0.703590i −0.239180 + 0.0389086i
\(328\) 0 0
\(329\) 2.48399 + 3.25027i 0.136947 + 0.179193i
\(330\) 0 0
\(331\) 7.25461 0.398749 0.199375 0.979923i \(-0.436109\pi\)
0.199375 + 0.979923i \(0.436109\pi\)
\(332\) 0 0
\(333\) −31.1572 + 10.4126i −1.70740 + 0.570605i
\(334\) 0 0
\(335\) 0.889950 1.54144i 0.0486232 0.0842178i
\(336\) 0 0
\(337\) −4.82349 8.35454i −0.262752 0.455101i 0.704220 0.709982i \(-0.251297\pi\)
−0.966972 + 0.254881i \(0.917964\pi\)
\(338\) 0 0
\(339\) 22.3062 + 8.45567i 1.21151 + 0.459249i
\(340\) 0 0
\(341\) −1.78315 3.08850i −0.0965627 0.167252i
\(342\) 0 0
\(343\) −17.1515 + 6.98745i −0.926097 + 0.377287i
\(344\) 0 0
\(345\) 0.101733 + 0.0385643i 0.00547715 + 0.00207623i
\(346\) 0 0
\(347\) 13.0603i 0.701113i 0.936542 + 0.350556i \(0.114008\pi\)
−0.936542 + 0.350556i \(0.885992\pi\)
\(348\) 0 0
\(349\) 17.4929 + 10.0995i 0.936372 + 0.540614i 0.888821 0.458254i \(-0.151525\pi\)
0.0475506 + 0.998869i \(0.484858\pi\)
\(350\) 0 0
\(351\) −9.49749 + 15.0346i −0.506939 + 0.802487i
\(352\) 0 0
\(353\) 2.05422 + 3.55801i 0.109335 + 0.189374i 0.915501 0.402316i \(-0.131795\pi\)
−0.806166 + 0.591689i \(0.798461\pi\)
\(354\) 0 0
\(355\) −2.66609 1.53927i −0.141501 0.0816959i
\(356\) 0 0
\(357\) 21.5509 + 20.3596i 1.14059 + 1.07754i
\(358\) 0 0
\(359\) 28.7322 16.5885i 1.51643 0.875510i 0.516613 0.856219i \(-0.327192\pi\)
0.999814 0.0192910i \(-0.00614090\pi\)
\(360\) 0 0
\(361\) 11.4375 19.8103i 0.601973 1.04265i
\(362\) 0 0
\(363\) 17.7934 2.89454i 0.933911 0.151924i
\(364\) 0 0
\(365\) 2.90202 1.67548i 0.151899 0.0876988i
\(366\) 0 0
\(367\) −2.75059 + 1.58806i −0.143580 + 0.0828958i −0.570069 0.821597i \(-0.693084\pi\)
0.426489 + 0.904493i \(0.359750\pi\)
\(368\) 0 0
\(369\) 23.0229 7.69412i 1.19852 0.400540i
\(370\) 0 0
\(371\) −0.0868292 0.669594i −0.00450795 0.0347636i
\(372\) 0 0
\(373\) −10.4803 + 18.1524i −0.542649 + 0.939895i 0.456102 + 0.889927i \(0.349245\pi\)
−0.998751 + 0.0499677i \(0.984088\pi\)
\(374\) 0 0
\(375\) 5.76465 + 7.05817i 0.297685 + 0.364483i
\(376\) 0 0
\(377\) −17.3949 −0.895881
\(378\) 0 0
\(379\) −20.1198 −1.03348 −0.516742 0.856141i \(-0.672855\pi\)
−0.516742 + 0.856141i \(0.672855\pi\)
\(380\) 0 0
\(381\) −10.3535 12.6767i −0.530425 0.649447i
\(382\) 0 0
\(383\) 12.5838 21.7958i 0.643003 1.11371i −0.341756 0.939789i \(-0.611022\pi\)
0.984759 0.173925i \(-0.0556451\pi\)
\(384\) 0 0
\(385\) 0.876720 0.670026i 0.0446818 0.0341477i
\(386\) 0 0
\(387\) 14.9400 + 13.2274i 0.759442 + 0.672386i
\(388\) 0 0
\(389\) 17.4054 10.0490i 0.882488 0.509505i 0.0110101 0.999939i \(-0.496495\pi\)
0.871478 + 0.490435i \(0.163162\pi\)
\(390\) 0 0
\(391\) −0.649237 + 0.374837i −0.0328333 + 0.0189563i
\(392\) 0 0
\(393\) −21.3720 + 3.47670i −1.07808 + 0.175376i
\(394\) 0 0
\(395\) −1.09081 + 1.88935i −0.0548848 + 0.0950633i
\(396\) 0 0
\(397\) 6.64273 3.83518i 0.333389 0.192482i −0.323956 0.946072i \(-0.605013\pi\)
0.657345 + 0.753590i \(0.271680\pi\)
\(398\) 0 0
\(399\) −8.48588 28.4142i −0.424825 1.42249i
\(400\) 0 0
\(401\) 3.07360 + 1.77454i 0.153488 + 0.0886165i 0.574777 0.818310i \(-0.305089\pi\)
−0.421289 + 0.906927i \(0.638422\pi\)
\(402\) 0 0
\(403\) −7.93186 13.7384i −0.395114 0.684357i
\(404\) 0 0
\(405\) 3.89840 2.93325i 0.193713 0.145754i
\(406\) 0 0
\(407\) −7.29622 4.21248i −0.361660 0.208805i
\(408\) 0 0
\(409\) 3.45157i 0.170669i −0.996352 0.0853345i \(-0.972804\pi\)
0.996352 0.0853345i \(-0.0271959\pi\)
\(410\) 0 0
\(411\) −31.2634 11.8511i −1.54211 0.584571i
\(412\) 0 0
\(413\) −16.4528 21.5283i −0.809590 1.05934i
\(414\) 0 0
\(415\) −3.14434 5.44616i −0.154350 0.267342i
\(416\) 0 0
\(417\) 1.61571 + 0.612472i 0.0791218 + 0.0299929i
\(418\) 0 0
\(419\) −8.49112 14.7071i −0.414818 0.718487i 0.580591 0.814195i \(-0.302822\pi\)
−0.995409 + 0.0957088i \(0.969488\pi\)
\(420\) 0 0
\(421\) 10.3437 17.9158i 0.504120 0.873162i −0.495869 0.868398i \(-0.665150\pi\)
0.999989 0.00476397i \(-0.00151642\pi\)
\(422\) 0 0
\(423\) −0.926410 + 4.54506i −0.0450436 + 0.220988i
\(424\) 0 0
\(425\) −30.4466 −1.47688
\(426\) 0 0
\(427\) 11.7281 8.96313i 0.567564 0.433756i
\(428\) 0 0
\(429\) −4.50148 + 0.732279i −0.217334 + 0.0353548i
\(430\) 0 0
\(431\) 32.0588 + 18.5091i 1.54422 + 0.891554i 0.998566 + 0.0535418i \(0.0170511\pi\)
0.545651 + 0.838012i \(0.316282\pi\)
\(432\) 0 0
\(433\) 15.2206i 0.731453i 0.930722 + 0.365727i \(0.119179\pi\)
−0.930722 + 0.365727i \(0.880821\pi\)
\(434\) 0 0
\(435\) 4.46230 + 1.69153i 0.213951 + 0.0811028i
\(436\) 0 0
\(437\) 0.749853 0.0358704
\(438\) 0 0
\(439\) 32.8075i 1.56582i 0.622136 + 0.782909i \(0.286265\pi\)
−0.622136 + 0.782909i \(0.713735\pi\)
\(440\) 0 0
\(441\) −18.7536 9.44995i −0.893030 0.449997i
\(442\) 0 0
\(443\) 23.7626i 1.12900i −0.825434 0.564499i \(-0.809070\pi\)
0.825434 0.564499i \(-0.190930\pi\)
\(444\) 0 0
\(445\) 2.17732 0.103215
\(446\) 0 0
\(447\) −5.46495 33.5942i −0.258483 1.58895i
\(448\) 0 0
\(449\) 21.8105i 1.02930i −0.857400 0.514651i \(-0.827921\pi\)
0.857400 0.514651i \(-0.172079\pi\)
\(450\) 0 0
\(451\) 5.39137 + 3.11271i 0.253870 + 0.146572i
\(452\) 0 0
\(453\) −10.4580 + 27.5884i −0.491359 + 1.29622i
\(454\) 0 0
\(455\) 3.89986 2.98044i 0.182828 0.139725i
\(456\) 0 0
\(457\) −39.7064 −1.85739 −0.928693 0.370849i \(-0.879067\pi\)
−0.928693 + 0.370849i \(0.879067\pi\)
\(458\) 0 0
\(459\) −1.33795 + 33.5901i −0.0624504 + 1.56785i
\(460\) 0 0
\(461\) −7.37073 + 12.7665i −0.343289 + 0.594594i −0.985041 0.172318i \(-0.944874\pi\)
0.641752 + 0.766912i \(0.278208\pi\)
\(462\) 0 0
\(463\) −12.4381 21.5434i −0.578046 1.00120i −0.995703 0.0926000i \(-0.970482\pi\)
0.417658 0.908604i \(-0.362851\pi\)
\(464\) 0 0
\(465\) 0.698791 + 4.29562i 0.0324057 + 0.199205i
\(466\) 0 0
\(467\) −6.70092 11.6063i −0.310081 0.537077i 0.668298 0.743893i \(-0.267023\pi\)
−0.978380 + 0.206817i \(0.933690\pi\)
\(468\) 0 0
\(469\) −5.27509 6.90238i −0.243581 0.318722i
\(470\) 0 0
\(471\) −1.51465 + 1.23706i −0.0697913 + 0.0570009i
\(472\) 0 0
\(473\) 5.11741i 0.235299i
\(474\) 0 0
\(475\) 26.3739 + 15.2270i 1.21012 + 0.698661i
\(476\) 0 0
\(477\) 0.507512 0.573221i 0.0232374 0.0262460i
\(478\) 0 0
\(479\) −20.5731 35.6336i −0.940007 1.62814i −0.765452 0.643493i \(-0.777485\pi\)
−0.174555 0.984647i \(-0.555849\pi\)
\(480\) 0 0
\(481\) −32.4554 18.7381i −1.47984 0.854384i
\(482\) 0 0
\(483\) 0.364665 0.386004i 0.0165928 0.0175638i
\(484\) 0 0
\(485\) −8.16651 + 4.71494i −0.370822 + 0.214094i
\(486\) 0 0
\(487\) −14.7695 + 25.5814i −0.669268 + 1.15921i 0.308841 + 0.951114i \(0.400059\pi\)
−0.978109 + 0.208092i \(0.933275\pi\)
\(488\) 0 0
\(489\) −10.5615 + 27.8616i −0.477610 + 1.25994i
\(490\) 0 0
\(491\) 8.53341 4.92676i 0.385107 0.222342i −0.294931 0.955519i \(-0.595297\pi\)
0.680038 + 0.733177i \(0.261963\pi\)
\(492\) 0 0
\(493\) −28.4772 + 16.4413i −1.28255 + 0.740480i
\(494\) 0 0
\(495\) 1.22597 + 0.249887i 0.0551033 + 0.0112316i
\(496\) 0 0
\(497\) −11.9384 + 9.12385i −0.535512 + 0.409261i
\(498\) 0 0
\(499\) 20.3875 35.3122i 0.912671 1.58079i 0.102396 0.994744i \(-0.467349\pi\)
0.810275 0.586050i \(-0.199318\pi\)
\(500\) 0 0
\(501\) −2.72905 + 7.19928i −0.121925 + 0.321640i
\(502\) 0 0
\(503\) 23.6750 1.05561 0.527807 0.849364i \(-0.323014\pi\)
0.527807 + 0.849364i \(0.323014\pi\)
\(504\) 0 0
\(505\) 8.94547 0.398068
\(506\) 0 0
\(507\) 2.20085 0.358024i 0.0977431 0.0159004i
\(508\) 0 0
\(509\) −14.3838 + 24.9135i −0.637551 + 1.10427i 0.348418 + 0.937339i \(0.386719\pi\)
−0.985969 + 0.166931i \(0.946614\pi\)
\(510\) 0 0
\(511\) −2.10326 16.2195i −0.0930427 0.717510i
\(512\) 0 0
\(513\) 17.9580 28.4277i 0.792867 1.25511i
\(514\) 0 0
\(515\) −0.138015 + 0.0796827i −0.00608165 + 0.00351124i
\(516\) 0 0
\(517\) −1.03021 + 0.594794i −0.0453087 + 0.0261590i
\(518\) 0 0
\(519\) −21.7876 26.6765i −0.956371 1.17097i
\(520\) 0 0
\(521\) 3.64967 6.32142i 0.159895 0.276947i −0.774936 0.632040i \(-0.782218\pi\)
0.934831 + 0.355094i \(0.115551\pi\)
\(522\) 0 0
\(523\) −21.2167 + 12.2495i −0.927742 + 0.535632i −0.886097 0.463501i \(-0.846593\pi\)
−0.0416450 + 0.999132i \(0.513260\pi\)
\(524\) 0 0
\(525\) 20.6644 6.17143i 0.901870 0.269343i
\(526\) 0 0
\(527\) −25.9706 14.9941i −1.13130 0.653154i
\(528\) 0 0
\(529\) −11.4933 19.9070i −0.499708 0.865520i
\(530\) 0 0
\(531\) 6.13610 30.1043i 0.266284 1.30642i
\(532\) 0 0
\(533\) 23.9821 + 13.8461i 1.03878 + 0.599740i
\(534\) 0 0
\(535\) 1.98626i 0.0858736i
\(536\) 0 0
\(537\) −0.550647 3.38494i −0.0237622 0.146071i
\(538\) 0 0
\(539\) −1.37366 5.20751i −0.0591678 0.224303i
\(540\) 0 0
\(541\) −12.1854 21.1057i −0.523891 0.907406i −0.999613 0.0278106i \(-0.991146\pi\)
0.475722 0.879596i \(-0.342187\pi\)
\(542\) 0 0
\(543\) −7.62147 + 6.22471i −0.327069 + 0.267128i
\(544\) 0 0
\(545\) 0.685707 + 1.18768i 0.0293724 + 0.0508746i
\(546\) 0 0
\(547\) 19.3409 33.4994i 0.826957 1.43233i −0.0734566 0.997298i \(-0.523403\pi\)
0.900414 0.435034i \(-0.143264\pi\)
\(548\) 0 0
\(549\) 16.4002 + 3.34281i 0.699943 + 0.142668i
\(550\) 0 0
\(551\) 32.8905 1.40118
\(552\) 0 0
\(553\) 6.46569 + 8.46027i 0.274949 + 0.359767i
\(554\) 0 0
\(555\) 6.50360 + 7.96294i 0.276063 + 0.338008i
\(556\) 0 0
\(557\) −5.55184 3.20536i −0.235239 0.135815i 0.377748 0.925909i \(-0.376699\pi\)
−0.612987 + 0.790093i \(0.710032\pi\)
\(558\) 0 0
\(559\) 22.7635i 0.962792i
\(560\) 0 0
\(561\) −6.67726 + 5.45354i −0.281914 + 0.230249i
\(562\) 0 0
\(563\) −16.9507 −0.714388 −0.357194 0.934030i \(-0.616267\pi\)
−0.357194 + 0.934030i \(0.616267\pi\)
\(564\) 0 0
\(565\) 7.46586i 0.314091i
\(566\) 0 0
\(567\) −5.90051 23.0691i −0.247798 0.968812i
\(568\) 0 0
\(569\) 12.5694i 0.526938i 0.964668 + 0.263469i \(0.0848666\pi\)
−0.964668 + 0.263469i \(0.915133\pi\)
\(570\) 0 0
\(571\) −9.64161 −0.403489 −0.201744 0.979438i \(-0.564661\pi\)
−0.201744 + 0.979438i \(0.564661\pi\)
\(572\) 0 0
\(573\) −5.56745 + 4.54712i −0.232584 + 0.189959i
\(574\) 0 0
\(575\) 0.545337i 0.0227421i
\(576\) 0 0
\(577\) 20.9563 + 12.0991i 0.872421 + 0.503692i 0.868152 0.496299i \(-0.165308\pi\)
0.00426870 + 0.999991i \(0.498641\pi\)
\(578\) 0 0
\(579\) −6.43210 7.87539i −0.267309 0.327290i
\(580\) 0 0
\(581\) −30.4389 + 3.94714i −1.26282 + 0.163755i
\(582\) 0 0
\(583\) 0.196346 0.00813183
\(584\) 0 0
\(585\) 5.45342 + 1.11156i 0.225471 + 0.0459573i
\(586\) 0 0
\(587\) −12.5498 + 21.7368i −0.517984 + 0.897175i 0.481798 + 0.876283i \(0.339984\pi\)
−0.999782 + 0.0208923i \(0.993349\pi\)
\(588\) 0 0
\(589\) 14.9977 + 25.9768i 0.617970 + 1.07035i
\(590\) 0 0
\(591\) 4.53304 3.70229i 0.186464 0.152292i
\(592\) 0 0
\(593\) 19.1605 + 33.1869i 0.786826 + 1.36282i 0.927902 + 0.372824i \(0.121610\pi\)
−0.141076 + 0.989999i \(0.545056\pi\)
\(594\) 0 0
\(595\) 3.56743 8.56537i 0.146250 0.351146i
\(596\) 0 0
\(597\) 1.29676 + 7.97145i 0.0530728 + 0.326250i
\(598\) 0 0
\(599\) 1.27897i 0.0522572i −0.999659 0.0261286i \(-0.991682\pi\)
0.999659 0.0261286i \(-0.00831794\pi\)
\(600\) 0 0
\(601\) 31.2150 + 18.0220i 1.27329 + 0.735133i 0.975605 0.219532i \(-0.0704531\pi\)
0.297682 + 0.954665i \(0.403786\pi\)
\(602\) 0 0
\(603\) 1.96735 9.65202i 0.0801167 0.393061i
\(604\) 0 0
\(605\) −2.82097 4.88607i −0.114689 0.198647i
\(606\) 0 0
\(607\) 39.1131 + 22.5820i 1.58755 + 0.916573i 0.993709 + 0.111992i \(0.0357231\pi\)
0.593843 + 0.804581i \(0.297610\pi\)
\(608\) 0 0
\(609\) 15.9952 16.9311i 0.648157 0.686084i
\(610\) 0 0
\(611\) −4.58264 + 2.64579i −0.185394 + 0.107037i
\(612\) 0 0
\(613\) −9.50638 + 16.4655i −0.383959 + 0.665037i −0.991624 0.129157i \(-0.958773\pi\)
0.607665 + 0.794193i \(0.292106\pi\)
\(614\) 0 0
\(615\) −4.80568 5.88403i −0.193784 0.237267i
\(616\) 0 0
\(617\) 17.2379 9.95232i 0.693973 0.400665i −0.111126 0.993806i \(-0.535446\pi\)
0.805099 + 0.593141i \(0.202112\pi\)
\(618\) 0 0
\(619\) −22.0428 + 12.7264i −0.885977 + 0.511519i −0.872624 0.488392i \(-0.837584\pi\)
−0.0133522 + 0.999911i \(0.504250\pi\)
\(620\) 0 0
\(621\) 0.601640 + 0.0239644i 0.0241430 + 0.000961660i
\(622\) 0 0
\(623\) 4.08587 9.81016i 0.163697 0.393036i
\(624\) 0 0
\(625\) −10.3393 + 17.9082i −0.413573 + 0.716330i
\(626\) 0 0
\(627\) 8.51148 1.38461i 0.339916 0.0552959i
\(628\) 0 0
\(629\) −70.8438 −2.82473
\(630\) 0 0
\(631\) 40.8171 1.62490 0.812452 0.583028i \(-0.198132\pi\)
0.812452 + 0.583028i \(0.198132\pi\)
\(632\) 0 0
\(633\) −3.80180 + 10.0292i −0.151108 + 0.398626i
\(634\) 0 0
\(635\) −2.56124 + 4.43619i −0.101640 + 0.176045i
\(636\) 0 0
\(637\) −6.11037 23.1643i −0.242102 0.917801i
\(638\) 0 0
\(639\) −16.6943 3.40275i −0.660415 0.134611i
\(640\) 0 0
\(641\) −8.64806 + 4.99296i −0.341578 + 0.197210i −0.660970 0.750413i \(-0.729855\pi\)
0.319392 + 0.947623i \(0.396521\pi\)
\(642\) 0 0
\(643\) 4.32793 2.49873i 0.170677 0.0985403i −0.412228 0.911081i \(-0.635249\pi\)
0.582905 + 0.812540i \(0.301916\pi\)
\(644\) 0 0
\(645\) 2.21359 5.83950i 0.0871602 0.229930i
\(646\) 0 0
\(647\) 5.04602 8.73996i 0.198379 0.343603i −0.749624 0.661864i \(-0.769766\pi\)
0.948003 + 0.318261i \(0.103099\pi\)
\(648\) 0 0
\(649\) 6.82365 3.93964i 0.267852 0.154644i
\(650\) 0 0
\(651\) 20.6657 + 4.91251i 0.809954 + 0.192537i
\(652\) 0 0
\(653\) 14.8236 + 8.55844i 0.580094 + 0.334918i 0.761171 0.648551i \(-0.224625\pi\)
−0.181077 + 0.983469i \(0.557958\pi\)
\(654\) 0 0
\(655\) 3.38833 + 5.86876i 0.132393 + 0.229311i
\(656\) 0 0
\(657\) 12.2934 13.8851i 0.479613 0.541710i
\(658\) 0 0
\(659\) 12.7790 + 7.37798i 0.497800 + 0.287405i 0.727805 0.685784i \(-0.240541\pi\)
−0.230004 + 0.973190i \(0.573874\pi\)
\(660\) 0 0
\(661\) 30.0316i 1.16810i −0.811719 0.584048i \(-0.801468\pi\)
0.811719 0.584048i \(-0.198532\pi\)
\(662\) 0 0
\(663\) −29.7020 + 24.2587i −1.15353 + 0.942128i
\(664\) 0 0
\(665\) −7.37393 + 5.63547i −0.285949 + 0.218534i
\(666\) 0 0
\(667\) 0.294485 + 0.510063i 0.0114025 + 0.0197497i
\(668\) 0 0
\(669\) −2.84042 17.4607i −0.109817 0.675069i
\(670\) 0 0
\(671\) 2.14623 + 3.71737i 0.0828542 + 0.143508i
\(672\) 0 0
\(673\) 18.1953 31.5152i 0.701378 1.21482i −0.266605 0.963806i \(-0.585902\pi\)
0.967983 0.251016i \(-0.0807648\pi\)
\(674\) 0 0
\(675\) 20.6743 + 13.0601i 0.795753 + 0.502685i
\(676\) 0 0
\(677\) −18.3219 −0.704168 −0.352084 0.935968i \(-0.614527\pi\)
−0.352084 + 0.935968i \(0.614527\pi\)
\(678\) 0 0
\(679\) 5.91874 + 45.6431i 0.227140 + 1.75162i
\(680\) 0 0
\(681\) 9.97526 26.3149i 0.382253 1.00839i
\(682\) 0 0
\(683\) 6.46067 + 3.73007i 0.247210 + 0.142727i 0.618486 0.785796i \(-0.287746\pi\)
−0.371276 + 0.928523i \(0.621080\pi\)
\(684\) 0 0
\(685\) 10.4638i 0.399802i
\(686\) 0 0
\(687\) 2.41337 + 14.8355i 0.0920759 + 0.566011i
\(688\) 0 0
\(689\) 0.873395 0.0332737
\(690\) 0 0
\(691\) 17.5167i 0.666365i 0.942862 + 0.333182i \(0.108122\pi\)
−0.942862 + 0.333182i \(0.891878\pi\)
\(692\) 0 0
\(693\) 3.42651 5.05483i 0.130162 0.192017i
\(694\) 0 0
\(695\) 0.540777i 0.0205128i
\(696\) 0 0
\(697\) 52.3483 1.98283
\(698\) 0 0
\(699\) −35.5903 13.4913i −1.34615 0.510288i
\(700\) 0 0
\(701\) 37.8622i 1.43004i 0.699106 + 0.715018i \(0.253582\pi\)
−0.699106 + 0.715018i \(0.746418\pi\)
\(702\) 0 0
\(703\) 61.3672 + 35.4304i 2.31451 + 1.33628i
\(704\) 0 0
\(705\) 1.43287 0.233092i 0.0539649 0.00877875i
\(706\) 0 0
\(707\) 16.7867 40.3048i 0.631330 1.51582i
\(708\) 0 0
\(709\) −37.1014 −1.39337 −0.696686 0.717376i \(-0.745343\pi\)
−0.696686 + 0.717376i \(0.745343\pi\)
\(710\) 0 0
\(711\) −2.41139 + 11.8305i −0.0904341 + 0.443679i
\(712\) 0 0
\(713\) −0.268563 + 0.465165i −0.0100578 + 0.0174206i
\(714\) 0 0
\(715\) 0.713667 + 1.23611i 0.0266896 + 0.0462278i
\(716\) 0 0
\(717\) −26.8838 10.1909i −1.00399 0.380586i
\(718\) 0 0
\(719\) 5.73941 + 9.94096i 0.214044 + 0.370735i 0.952976 0.303044i \(-0.0980031\pi\)
−0.738932 + 0.673780i \(0.764670\pi\)
\(720\) 0 0
\(721\) 0.100027 + 0.771370i 0.00372520 + 0.0287273i
\(722\) 0 0
\(723\) 17.8191 + 6.75473i 0.662700 + 0.251211i
\(724\) 0 0
\(725\) 23.9199i 0.888364i
\(726\) 0 0
\(727\) 13.1105 + 7.56936i 0.486242 + 0.280732i 0.723014 0.690833i \(-0.242756\pi\)
−0.236772 + 0.971565i \(0.576089\pi\)
\(728\) 0 0
\(729\) 15.3170 22.2349i 0.567297 0.823513i
\(730\) 0 0
\(731\) 21.5156 + 37.2662i 0.795785 + 1.37834i
\(732\) 0 0
\(733\) −7.96753 4.60005i −0.294287 0.169907i 0.345586 0.938387i \(-0.387680\pi\)
−0.639874 + 0.768480i \(0.721013\pi\)
\(734\) 0 0
\(735\) −0.685076 + 6.53651i −0.0252694 + 0.241103i
\(736\) 0 0
\(737\) 2.18779 1.26312i 0.0805884 0.0465277i
\(738\) 0 0
\(739\) −14.6669 + 25.4038i −0.539529 + 0.934492i 0.459400 + 0.888230i \(0.348065\pi\)
−0.998929 + 0.0462628i \(0.985269\pi\)
\(740\) 0 0
\(741\) 37.8611 6.15907i 1.39086 0.226259i
\(742\) 0 0
\(743\) −33.9829 + 19.6200i −1.24671 + 0.719789i −0.970452 0.241294i \(-0.922428\pi\)
−0.276259 + 0.961083i \(0.589095\pi\)
\(744\) 0 0
\(745\) −9.22499 + 5.32605i −0.337977 + 0.195131i
\(746\) 0 0
\(747\) −26.0579 23.0708i −0.953409 0.844118i
\(748\) 0 0
\(749\) −8.94933 3.72734i −0.327001 0.136194i
\(750\) 0 0
\(751\) −10.5034 + 18.1924i −0.383274 + 0.663851i −0.991528 0.129892i \(-0.958537\pi\)
0.608254 + 0.793743i \(0.291870\pi\)
\(752\) 0 0
\(753\) 19.7659 + 24.2012i 0.720311 + 0.881941i
\(754\) 0 0
\(755\) 9.23380 0.336052
\(756\) 0 0
\(757\) 12.1528 0.441703 0.220851 0.975307i \(-0.429116\pi\)
0.220851 + 0.975307i \(0.429116\pi\)
\(758\) 0 0
\(759\) 0.0976797 + 0.119598i 0.00354555 + 0.00434113i
\(760\) 0 0
\(761\) 7.24026 12.5405i 0.262459 0.454593i −0.704436 0.709768i \(-0.748800\pi\)
0.966895 + 0.255175i \(0.0821331\pi\)
\(762\) 0 0
\(763\) 6.63799 0.860778i 0.240312 0.0311623i
\(764\) 0 0
\(765\) 9.97844 3.33474i 0.360771 0.120568i
\(766\) 0 0
\(767\) 30.3532 17.5245i 1.09599 0.632771i
\(768\) 0 0
\(769\) 6.13371 3.54130i 0.221187 0.127702i −0.385313 0.922786i \(-0.625906\pi\)
0.606500 + 0.795084i \(0.292573\pi\)
\(770\) 0 0
\(771\) 24.6289 4.00651i 0.886988 0.144291i
\(772\) 0 0
\(773\) −19.1640 + 33.1930i −0.689280 + 1.19387i 0.282791 + 0.959182i \(0.408740\pi\)
−0.972071 + 0.234687i \(0.924593\pi\)
\(774\) 0 0
\(775\) −18.8918 + 10.9072i −0.678615 + 0.391799i
\(776\) 0 0
\(777\) 48.0824 14.3598i 1.72495 0.515154i
\(778\) 0 0
\(779\) −45.3458 26.1804i −1.62468 0.938011i
\(780\) 0 0
\(781\) −2.18471 3.78403i −0.0781751 0.135403i
\(782\) 0 0
\(783\) 26.3895 + 1.05114i 0.943084 + 0.0375648i
\(784\) 0 0
\(785\) 0.530049 + 0.306024i 0.0189183 + 0.0109225i
\(786\) 0 0
\(787\) 15.6191i 0.556760i −0.960471 0.278380i \(-0.910203\pi\)
0.960471 0.278380i \(-0.0897974\pi\)
\(788\) 0 0
\(789\) 40.4071 + 15.3172i 1.43853 + 0.545307i
\(790\) 0 0
\(791\) −33.6383 14.0101i −1.19604 0.498143i
\(792\) 0 0
\(793\) 9.54693 + 16.5358i 0.339022 + 0.587203i
\(794\) 0 0
\(795\) −0.224052 0.0849318i −0.00794630 0.00301222i
\(796\) 0 0
\(797\) 12.0230 + 20.8244i 0.425875 + 0.737637i 0.996502 0.0835726i \(-0.0266330\pi\)
−0.570627 + 0.821210i \(0.693300\pi\)
\(798\) 0 0
\(799\) −5.00151 + 8.66286i −0.176941 + 0.306470i
\(800\) 0 0
\(801\) 11.4286 3.81937i 0.403809 0.134951i
\(802\) 0 0
\(803\) 4.75608 0.167839
\(804\) 0 0
\(805\) −0.153417 0.0638970i −0.00540722 0.00225207i
\(806\) 0 0
\(807\) −37.6308 + 6.12160i −1.32467 + 0.215491i
\(808\) 0 0
\(809\) −25.2846 14.5980i −0.888958 0.513240i −0.0153562 0.999882i \(-0.504888\pi\)
−0.873601 + 0.486642i \(0.838222\pi\)
\(810\) 0 0
\(811\) 26.0991i 0.916464i 0.888833 + 0.458232i \(0.151517\pi\)
−0.888833 + 0.458232i \(0.848483\pi\)
\(812\) 0 0
\(813\) −42.5352 16.1239i −1.49178 0.565491i
\(814\) 0 0
\(815\) 9.32523 0.326649
\(816\) 0 0
\(817\) 43.0416i 1.50583i
\(818\) 0 0
\(819\) 15.2419 22.4851i 0.532596 0.785693i
\(820\) 0 0
\(821\) 54.9905i 1.91918i −0.281402 0.959590i \(-0.590799\pi\)
0.281402 0.959590i \(-0.409201\pi\)
\(822\) 0 0
\(823\) −18.1157 −0.631474 −0.315737 0.948847i \(-0.602252\pi\)
−0.315737 + 0.948847i \(0.602252\pi\)
\(824\) 0 0
\(825\) 1.00697 + 6.19005i 0.0350581 + 0.215510i
\(826\) 0 0
\(827\) 38.1934i 1.32812i 0.747681 + 0.664058i \(0.231167\pi\)
−0.747681 + 0.664058i \(0.768833\pi\)
\(828\) 0 0
\(829\) 47.0722 + 27.1771i 1.63488 + 0.943901i 0.982557 + 0.185963i \(0.0595404\pi\)
0.652327 + 0.757938i \(0.273793\pi\)
\(830\) 0 0
\(831\) −2.92489 + 7.71592i −0.101463 + 0.267662i
\(832\) 0 0
\(833\) −31.8978 32.1469i −1.10519 1.11382i
\(834\) 0 0
\(835\) 2.40959 0.0833873
\(836\) 0 0
\(837\) 11.2031 + 21.3216i 0.387237 + 0.736983i
\(838\) 0 0
\(839\) −13.3919 + 23.1955i −0.462341 + 0.800798i −0.999077 0.0429523i \(-0.986324\pi\)
0.536736 + 0.843750i \(0.319657\pi\)
\(840\) 0 0
\(841\) −1.58312 2.74205i −0.0545904 0.0945534i
\(842\) 0 0
\(843\) −6.16449 37.8944i −0.212316 1.30515i
\(844\) 0 0
\(845\) −0.348924 0.604354i −0.0120033 0.0207904i
\(846\) 0 0
\(847\) −27.3085 + 3.54121i −0.938331 + 0.121678i
\(848\) 0 0
\(849\) −3.89777 + 3.18344i −0.133771 + 0.109255i
\(850\) 0 0
\(851\) 1.26890i 0.0434973i
\(852\) 0 0
\(853\) −15.6735 9.04908i −0.536649 0.309835i 0.207071 0.978326i \(-0.433607\pi\)
−0.743720 + 0.668491i \(0.766940\pi\)
\(854\) 0 0
\(855\) −10.3114 2.10176i −0.352643 0.0718785i
\(856\) 0 0
\(857\) 17.6561 + 30.5812i 0.603120 + 1.04464i 0.992346 + 0.123492i \(0.0394095\pi\)
−0.389225 + 0.921143i \(0.627257\pi\)
\(858\) 0 0
\(859\) −20.1598 11.6393i −0.687844 0.397127i 0.114960 0.993370i \(-0.463326\pi\)
−0.802804 + 0.596243i \(0.796659\pi\)
\(860\) 0 0
\(861\) −35.5293 + 10.6108i −1.21084 + 0.361616i
\(862\) 0 0
\(863\) −28.3933 + 16.3929i −0.966520 + 0.558020i −0.898173 0.439641i \(-0.855106\pi\)
−0.0683462 + 0.997662i \(0.521772\pi\)
\(864\) 0 0
\(865\) −5.38980 + 9.33541i −0.183259 + 0.317414i
\(866\) 0 0
\(867\) −15.2595 + 40.2548i −0.518239 + 1.36712i
\(868\) 0 0
\(869\) −2.68158 + 1.54821i −0.0909665 + 0.0525195i
\(870\) 0 0
\(871\) 9.73182 5.61867i 0.329750 0.190381i
\(872\) 0 0
\(873\) −34.5947 + 39.0738i −1.17085 + 1.32245i
\(874\) 0 0
\(875\) −8.45278 11.0604i −0.285756 0.373908i
\(876\) 0 0
\(877\) −10.7688 + 18.6521i −0.363636 + 0.629837i −0.988556 0.150852i \(-0.951798\pi\)
0.624920 + 0.780689i \(0.285132\pi\)
\(878\) 0 0
\(879\) 17.1739 45.3051i 0.579261 1.52810i
\(880\) 0 0
\(881\) 22.9322 0.772606 0.386303 0.922372i \(-0.373752\pi\)
0.386303 + 0.922372i \(0.373752\pi\)
\(882\) 0 0
\(883\) 31.8225 1.07091 0.535455 0.844564i \(-0.320140\pi\)
0.535455 + 0.844564i \(0.320140\pi\)
\(884\) 0 0
\(885\) −9.49064 + 1.54389i −0.319024 + 0.0518974i
\(886\) 0 0
\(887\) −11.1135 + 19.2492i −0.373156 + 0.646325i −0.990049 0.140722i \(-0.955058\pi\)
0.616893 + 0.787047i \(0.288391\pi\)
\(888\) 0 0
\(889\) 15.1814 + 19.8647i 0.509169 + 0.666241i
\(890\) 0 0
\(891\) 6.87338 0.838914i 0.230267 0.0281047i
\(892\) 0 0
\(893\) 8.66494 5.00270i 0.289961 0.167409i
\(894\) 0 0
\(895\) −0.929507 + 0.536651i −0.0310700 + 0.0179383i
\(896\) 0 0
\(897\) 0.434503 + 0.532001i 0.0145076 + 0.0177630i
\(898\) 0 0
\(899\) −11.7799 + 20.4034i −0.392881 + 0.680491i
\(900\) 0 0
\(901\) 1.42984 0.825518i 0.0476349 0.0275020i
\(902\) 0 0
\(903\) −22.1566 20.9318i −0.737326 0.696566i
\(904\) 0 0
\(905\) 2.66712 + 1.53986i 0.0886581 + 0.0511868i
\(906\) 0 0
\(907\) −19.9099 34.4849i −0.661097 1.14505i −0.980328 0.197376i \(-0.936758\pi\)
0.319231 0.947677i \(-0.396575\pi\)
\(908\) 0 0
\(909\) 46.9541 15.6918i 1.55737 0.520464i
\(910\) 0 0
\(911\) 5.87819 + 3.39378i 0.194753 + 0.112441i 0.594206 0.804313i \(-0.297466\pi\)
−0.399453 + 0.916754i \(0.630800\pi\)
\(912\) 0 0
\(913\) 8.92565i 0.295396i
\(914\) 0 0
\(915\) −0.841078 5.17029i −0.0278052 0.170925i
\(916\) 0 0
\(917\) 32.8008 4.25342i 1.08318 0.140460i
\(918\) 0 0
\(919\) 14.0173 + 24.2787i 0.462389 + 0.800882i 0.999079 0.0428977i \(-0.0136590\pi\)
−0.536690 + 0.843779i \(0.680326\pi\)
\(920\) 0 0
\(921\) −40.7769 + 33.3038i −1.34364 + 1.09740i
\(922\) 0 0
\(923\) −9.71812 16.8323i −0.319876 0.554041i
\(924\) 0 0
\(925\) −25.7670 + 44.6298i −0.847215 + 1.46742i
\(926\) 0 0
\(927\) −0.584652 + 0.660349i −0.0192025 + 0.0216887i
\(928\) 0 0
\(929\) −17.7408 −0.582057 −0.291028 0.956714i \(-0.593997\pi\)
−0.291028 + 0.956714i \(0.593997\pi\)
\(930\) 0 0
\(931\) 11.5536 + 43.7994i 0.378654 + 1.43547i
\(932\) 0 0
\(933\) −30.4872 37.3282i −0.998106 1.22207i
\(934\) 0 0
\(935\) 2.33670 + 1.34909i 0.0764182 + 0.0441200i
\(936\) 0 0
\(937\) 10.2459i 0.334719i −0.985896 0.167360i \(-0.946476\pi\)
0.985896 0.167360i \(-0.0535241\pi\)
\(938\) 0 0
\(939\) −0.0624755 + 0.0510258i −0.00203881 + 0.00166517i
\(940\) 0 0
\(941\) 9.99655 0.325878 0.162939 0.986636i \(-0.447903\pi\)
0.162939 + 0.986636i \(0.447903\pi\)
\(942\) 0 0
\(943\) 0.937624i 0.0305332i
\(944\) 0 0
\(945\) −6.09653 + 4.28592i −0.198320 + 0.139421i
\(946\) 0 0
\(947\) 48.2494i 1.56790i −0.620827 0.783948i \(-0.713203\pi\)
0.620827 0.783948i \(-0.286797\pi\)
\(948\) 0 0
\(949\) 21.1562 0.686760
\(950\) 0 0
\(951\) −11.3946 + 9.30636i −0.369495 + 0.301779i
\(952\) 0 0
\(953\) 40.4708i 1.31098i −0.755205 0.655489i \(-0.772463\pi\)
0.755205 0.655489i \(-0.227537\pi\)
\(954\) 0 0
\(955\) 1.94832 + 1.12486i 0.0630462 + 0.0363997i
\(956\) 0 0
\(957\) 4.28449 + 5.24588i 0.138498 + 0.169575i
\(958\) 0 0
\(959\) 47.1459 + 19.6360i 1.52242 + 0.634079i
\(960\) 0 0
\(961\) 9.51402 0.306904
\(962\) 0 0
\(963\) −3.48423 10.4257i −0.112278 0.335965i
\(964\) 0 0
\(965\) −1.59117 + 2.75598i −0.0512215 + 0.0887182i
\(966\) 0 0
\(967\) −14.6566 25.3860i −0.471325 0.816359i 0.528137 0.849159i \(-0.322891\pi\)
−0.999462 + 0.0328000i \(0.989558\pi\)
\(968\) 0 0
\(969\) 56.1612 45.8687i 1.80416 1.47352i
\(970\) 0 0
\(971\) −9.02830 15.6375i −0.289732 0.501831i 0.684014 0.729469i \(-0.260233\pi\)
−0.973746 + 0.227639i \(0.926900\pi\)
\(972\) 0 0
\(973\) −2.43653 1.01480i −0.0781117 0.0325330i
\(974\) 0 0
\(975\) 4.47924 + 27.5348i 0.143450 + 0.881820i
\(976\) 0 0
\(977\) 39.2466i 1.25561i −0.778371 0.627805i \(-0.783953\pi\)
0.778371 0.627805i \(-0.216047\pi\)
\(978\) 0 0
\(979\) 2.67628 + 1.54515i 0.0855344 + 0.0493833i
\(980\) 0 0
\(981\) 5.68261 + 5.03120i 0.181432 + 0.160634i
\(982\) 0 0
\(983\) −13.2334 22.9209i −0.422079 0.731063i 0.574063 0.818811i \(-0.305366\pi\)
−0.996143 + 0.0877479i \(0.972033\pi\)
\(984\) 0 0
\(985\) −1.58633 0.915869i −0.0505447 0.0291820i
\(986\) 0 0
\(987\) 1.63864 6.89336i 0.0521585 0.219418i
\(988\) 0 0
\(989\) 0.667484 0.385372i 0.0212248 0.0122541i
\(990\) 0 0
\(991\) 7.32864 12.6936i 0.232802 0.403225i −0.725830 0.687875i \(-0.758544\pi\)
0.958632 + 0.284650i \(0.0918773\pi\)
\(992\) 0 0
\(993\) −7.94841 9.73195i −0.252235 0.308834i
\(994\) 0 0
\(995\) 2.18896 1.26380i 0.0693948 0.0400651i
\(996\) 0 0
\(997\) 3.41103 1.96936i 0.108028 0.0623703i −0.445012 0.895524i \(-0.646801\pi\)
0.553041 + 0.833154i \(0.313467\pi\)
\(998\) 0 0
\(999\) 48.1053 + 30.3886i 1.52198 + 0.961451i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bs.a.353.8 yes 48
3.2 odd 2 1512.2.bs.a.521.13 48
4.3 odd 2 1008.2.ca.e.353.17 48
7.5 odd 6 504.2.cx.a.425.1 yes 48
9.4 even 3 1512.2.cx.a.17.13 48
9.5 odd 6 504.2.cx.a.185.1 yes 48
12.11 even 2 3024.2.ca.e.2033.13 48
21.5 even 6 1512.2.cx.a.89.13 48
28.19 even 6 1008.2.df.e.929.24 48
36.23 even 6 1008.2.df.e.689.24 48
36.31 odd 6 3024.2.df.e.17.13 48
63.5 even 6 inner 504.2.bs.a.257.8 48
63.40 odd 6 1512.2.bs.a.1097.13 48
84.47 odd 6 3024.2.df.e.1601.13 48
252.103 even 6 3024.2.ca.e.2609.13 48
252.131 odd 6 1008.2.ca.e.257.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.8 48 63.5 even 6 inner
504.2.bs.a.353.8 yes 48 1.1 even 1 trivial
504.2.cx.a.185.1 yes 48 9.5 odd 6
504.2.cx.a.425.1 yes 48 7.5 odd 6
1008.2.ca.e.257.17 48 252.131 odd 6
1008.2.ca.e.353.17 48 4.3 odd 2
1008.2.df.e.689.24 48 36.23 even 6
1008.2.df.e.929.24 48 28.19 even 6
1512.2.bs.a.521.13 48 3.2 odd 2
1512.2.bs.a.1097.13 48 63.40 odd 6
1512.2.cx.a.17.13 48 9.4 even 3
1512.2.cx.a.89.13 48 21.5 even 6
3024.2.ca.e.2033.13 48 12.11 even 2
3024.2.ca.e.2609.13 48 252.103 even 6
3024.2.df.e.17.13 48 36.31 odd 6
3024.2.df.e.1601.13 48 84.47 odd 6