Defining parameters
| Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1008.df (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(384\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1008, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 408 | 100 | 308 |
| Cusp forms | 360 | 92 | 268 |
| Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1008, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1008.2.df.a | $2$ | $8.049$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(-6\) | \(5\) | \(q+(2-\zeta_{6})q^{3}-3q^{5}+(3-\zeta_{6})q^{7}+(3+\cdots)q^{9}+\cdots\) |
| 1008.2.df.b | $10$ | $8.049$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(-3\) | \(q+(\beta _{1}-\beta _{2}+\beta _{4}+\beta _{7}+\beta _{8}-\beta _{9})q^{3}+\cdots\) |
| 1008.2.df.c | $16$ | $8.049$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\beta _{3}q^{3}-\beta _{11}q^{5}+(1-\beta _{1}+\beta _{2}+\beta _{4}+\cdots)q^{7}+\cdots\) |
| 1008.2.df.d | $16$ | $8.049$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(1\) | \(q+(-\beta _{3}-\beta _{12})q^{3}+(-\beta _{7}+\beta _{9})q^{5}+\cdots\) |
| 1008.2.df.e | $48$ | $8.049$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(1008, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1008, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)