Properties

Label 1008.2.df
Level $1008$
Weight $2$
Character orbit 1008.df
Rep. character $\chi_{1008}(689,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $92$
Newform subspaces $5$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1008, [\chi])\).

Total New Old
Modular forms 408 100 308
Cusp forms 360 92 268
Eisenstein series 48 8 40

Trace form

\( 92 q + 3 q^{3} - 6 q^{5} + q^{7} - q^{9} + 7 q^{15} + 6 q^{19} - 4 q^{21} + 74 q^{25} + 6 q^{29} - 15 q^{31} - 3 q^{33} + 15 q^{35} - 2 q^{37} + 19 q^{39} + 8 q^{43} - 15 q^{45} + 3 q^{47} - q^{49} + 3 q^{51}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1008, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1008.2.df.a 1008.df 63.s $2$ $8.049$ \(\Q(\sqrt{-3}) \) None 63.2.i.a \(0\) \(3\) \(-6\) \(5\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2-\zeta_{6})q^{3}-3q^{5}+(3-\zeta_{6})q^{7}+(3+\cdots)q^{9}+\cdots\)
1008.2.df.b 1008.df 63.s $10$ $8.049$ 10.0.\(\cdots\).1 None 63.2.i.b \(0\) \(0\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{1}-\beta _{2}+\beta _{4}+\beta _{7}+\beta _{8}-\beta _{9})q^{3}+\cdots\)
1008.2.df.c 1008.df 63.s $16$ $8.049$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 126.2.l.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{3}q^{3}-\beta _{11}q^{5}+(1-\beta _{1}+\beta _{2}+\beta _{4}+\cdots)q^{7}+\cdots\)
1008.2.df.d 1008.df 63.s $16$ $8.049$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 252.2.w.a \(0\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{3}-\beta _{12})q^{3}+(-\beta _{7}+\beta _{9})q^{5}+\cdots\)
1008.2.df.e 1008.df 63.s $48$ $8.049$ None 504.2.bs.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1008, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1008, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)