Properties

Label 1008.2.df.e
Level $1008$
Weight $2$
Character orbit 1008.df
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48 q + 2 q^{9} - 8 q^{15} - 10 q^{21} + 48 q^{25} - 18 q^{27} + 18 q^{29} - 18 q^{31} + 12 q^{33} + 4 q^{39} - 6 q^{41} + 6 q^{43} - 18 q^{45} - 18 q^{47} - 12 q^{49} - 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
689.1 0 −1.73204 + 0.00732041i 0 2.59337 0 2.61256 0.417759i 0 2.99989 0.0253584i 0
689.2 0 −1.72872 0.107304i 0 −3.60777 0 −0.415579 2.61291i 0 2.97697 + 0.370999i 0
689.3 0 −1.70521 + 0.303722i 0 2.22830 0 −2.51733 0.814280i 0 2.81551 1.03582i 0
689.4 0 −1.64232 0.550252i 0 −1.28783 0 −1.10056 + 2.40599i 0 2.39445 + 1.80738i 0
689.5 0 −1.51239 + 0.844203i 0 −2.84763 0 2.64481 0.0704652i 0 1.57464 2.55353i 0
689.6 0 −1.24547 + 1.20367i 0 2.04899 0 −1.41312 + 2.23676i 0 0.102371 2.99825i 0
689.7 0 −0.994080 1.41838i 0 −1.58600 0 1.06431 2.42224i 0 −1.02361 + 2.81997i 0
689.8 0 −0.958980 1.44234i 0 4.11484 0 2.54819 0.711830i 0 −1.16071 + 2.76636i 0
689.9 0 −0.930597 1.46082i 0 1.36828 0 −2.64451 0.0810554i 0 −1.26798 + 2.71887i 0
689.10 0 −0.549450 + 1.64259i 0 −1.05582 0 −1.79851 1.94045i 0 −2.39621 1.80504i 0
689.11 0 −0.310783 + 1.70394i 0 2.76937 0 1.21939 + 2.34800i 0 −2.80683 1.05911i 0
689.12 0 −0.149059 + 1.72562i 0 −2.22094 0 2.45091 + 0.996507i 0 −2.95556 0.514438i 0
689.13 0 0.210634 1.71920i 0 −1.07485 0 1.26701 + 2.32265i 0 −2.91127 0.724244i 0
689.14 0 0.498607 + 1.65873i 0 −0.623597 0 0.996837 2.45078i 0 −2.50278 + 1.65411i 0
689.15 0 0.601162 1.62438i 0 −0.207028 0 1.37075 2.26297i 0 −2.27721 1.95303i 0
689.16 0 0.859090 1.50398i 0 −4.19811 0 −1.67151 + 2.05087i 0 −1.52393 2.58411i 0
689.17 0 1.03050 1.39215i 0 2.20884 0 −2.16520 1.52049i 0 −0.876153 2.86921i 0
689.18 0 1.11231 + 1.32769i 0 3.53401 0 −1.30083 2.30388i 0 −0.525517 + 2.95361i 0
689.19 0 1.14647 + 1.29831i 0 −0.0525740 0 −2.44149 + 1.01937i 0 −0.371197 + 2.97695i 0
689.20 0 1.45594 + 0.938214i 0 −1.81173 0 −1.69266 + 2.03345i 0 1.23951 + 2.73196i 0
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 689.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.2.df.e 48
3.b odd 2 1 3024.2.df.e 48
4.b odd 2 1 504.2.cx.a yes 48
7.d odd 6 1 1008.2.ca.e 48
9.c even 3 1 3024.2.ca.e 48
9.d odd 6 1 1008.2.ca.e 48
12.b even 2 1 1512.2.cx.a 48
21.g even 6 1 3024.2.ca.e 48
28.f even 6 1 504.2.bs.a 48
36.f odd 6 1 1512.2.bs.a 48
36.h even 6 1 504.2.bs.a 48
63.k odd 6 1 3024.2.df.e 48
63.s even 6 1 inner 1008.2.df.e 48
84.j odd 6 1 1512.2.bs.a 48
252.n even 6 1 1512.2.cx.a 48
252.bn odd 6 1 504.2.cx.a yes 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.bs.a 48 28.f even 6 1
504.2.bs.a 48 36.h even 6 1
504.2.cx.a yes 48 4.b odd 2 1
504.2.cx.a yes 48 252.bn odd 6 1
1008.2.ca.e 48 7.d odd 6 1
1008.2.ca.e 48 9.d odd 6 1
1008.2.df.e 48 1.a even 1 1 trivial
1008.2.df.e 48 63.s even 6 1 inner
1512.2.bs.a 48 36.f odd 6 1
1512.2.bs.a 48 84.j odd 6 1
1512.2.cx.a 48 12.b even 2 1
1512.2.cx.a 48 252.n even 6 1
3024.2.ca.e 48 9.c even 3 1
3024.2.ca.e 48 21.g even 6 1
3024.2.df.e 48 3.b odd 2 1
3024.2.df.e 48 63.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{24} - 72 T_{5}^{22} - 12 T_{5}^{21} + 2175 T_{5}^{20} + 768 T_{5}^{19} - 36005 T_{5}^{18} + \cdots - 6476 \) acting on \(S_{2}^{\mathrm{new}}(1008, [\chi])\). Copy content Toggle raw display