Properties

Label 1008.2.df.e.689.14
Level $1008$
Weight $2$
Character 1008.689
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 689.14
Character \(\chi\) \(=\) 1008.689
Dual form 1008.2.df.e.929.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.498607 + 1.65873i) q^{3} -0.623597 q^{5} +(0.996837 - 2.45078i) q^{7} +(-2.50278 + 1.65411i) q^{9} -5.19907i q^{11} +(-2.74023 - 1.58207i) q^{13} +(-0.310929 - 1.03438i) q^{15} +(0.437594 - 0.757935i) q^{17} +(1.41874 - 0.819107i) q^{19} +(4.56221 + 0.431510i) q^{21} -8.25480i q^{23} -4.61113 q^{25} +(-3.99163 - 3.32670i) q^{27} +(4.96435 - 2.86617i) q^{29} +(-4.02256 + 2.32243i) q^{31} +(8.62387 - 2.59229i) q^{33} +(-0.621624 + 1.52830i) q^{35} +(1.24291 + 2.15278i) q^{37} +(1.25794 - 5.33415i) q^{39} +(-3.52382 + 6.10344i) q^{41} +(1.56398 + 2.70890i) q^{43} +(1.56073 - 1.03150i) q^{45} +(4.73384 - 8.19925i) q^{47} +(-5.01263 - 4.88605i) q^{49} +(1.47540 + 0.347940i) q^{51} +(-1.15189 - 0.665044i) q^{53} +3.24212i q^{55} +(2.06607 + 1.94489i) q^{57} +(3.18334 + 5.51370i) q^{59} +(9.65975 + 5.57706i) q^{61} +(1.55899 + 7.78264i) q^{63} +(1.70880 + 0.986576i) q^{65} +(6.04951 + 10.4781i) q^{67} +(13.6925 - 4.11590i) q^{69} -10.5861i q^{71} +(-11.6719 - 6.73878i) q^{73} +(-2.29914 - 7.64862i) q^{75} +(-12.7418 - 5.18263i) q^{77} +(4.84840 - 8.39767i) q^{79} +(3.52785 - 8.27975i) q^{81} +(0.192030 + 0.332606i) q^{83} +(-0.272882 + 0.472646i) q^{85} +(7.22946 + 6.80543i) q^{87} +(0.0198983 + 0.0344648i) q^{89} +(-6.60888 + 5.13864i) q^{91} +(-5.85796 - 5.51438i) q^{93} +(-0.884719 + 0.510793i) q^{95} +(5.94681 - 3.43339i) q^{97} +(8.59984 + 13.0122i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{9} - 8 q^{15} - 10 q^{21} + 48 q^{25} - 18 q^{27} + 18 q^{29} - 18 q^{31} + 12 q^{33} + 4 q^{39} - 6 q^{41} + 6 q^{43} - 18 q^{45} - 18 q^{47} - 12 q^{49} - 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.498607 + 1.65873i 0.287871 + 0.957669i
\(4\) 0 0
\(5\) −0.623597 −0.278881 −0.139440 0.990230i \(-0.544530\pi\)
−0.139440 + 0.990230i \(0.544530\pi\)
\(6\) 0 0
\(7\) 0.996837 2.45078i 0.376769 0.926307i
\(8\) 0 0
\(9\) −2.50278 + 1.65411i −0.834261 + 0.551370i
\(10\) 0 0
\(11\) 5.19907i 1.56758i −0.621026 0.783790i \(-0.713284\pi\)
0.621026 0.783790i \(-0.286716\pi\)
\(12\) 0 0
\(13\) −2.74023 1.58207i −0.760004 0.438788i 0.0692932 0.997596i \(-0.477926\pi\)
−0.829297 + 0.558808i \(0.811259\pi\)
\(14\) 0 0
\(15\) −0.310929 1.03438i −0.0802816 0.267076i
\(16\) 0 0
\(17\) 0.437594 0.757935i 0.106132 0.183826i −0.808068 0.589089i \(-0.799487\pi\)
0.914200 + 0.405263i \(0.132820\pi\)
\(18\) 0 0
\(19\) 1.41874 0.819107i 0.325480 0.187916i −0.328352 0.944555i \(-0.606493\pi\)
0.653833 + 0.756639i \(0.273160\pi\)
\(20\) 0 0
\(21\) 4.56221 + 0.431510i 0.995557 + 0.0941633i
\(22\) 0 0
\(23\) 8.25480i 1.72124i −0.509245 0.860622i \(-0.670075\pi\)
0.509245 0.860622i \(-0.329925\pi\)
\(24\) 0 0
\(25\) −4.61113 −0.922225
\(26\) 0 0
\(27\) −3.99163 3.32670i −0.768189 0.640223i
\(28\) 0 0
\(29\) 4.96435 2.86617i 0.921856 0.532234i 0.0376295 0.999292i \(-0.488019\pi\)
0.884227 + 0.467058i \(0.154686\pi\)
\(30\) 0 0
\(31\) −4.02256 + 2.32243i −0.722474 + 0.417120i −0.815662 0.578528i \(-0.803627\pi\)
0.0931888 + 0.995648i \(0.470294\pi\)
\(32\) 0 0
\(33\) 8.62387 2.59229i 1.50122 0.451260i
\(34\) 0 0
\(35\) −0.621624 + 1.52830i −0.105074 + 0.258329i
\(36\) 0 0
\(37\) 1.24291 + 2.15278i 0.204333 + 0.353916i 0.949920 0.312493i \(-0.101164\pi\)
−0.745587 + 0.666408i \(0.767831\pi\)
\(38\) 0 0
\(39\) 1.25794 5.33415i 0.201431 0.854147i
\(40\) 0 0
\(41\) −3.52382 + 6.10344i −0.550329 + 0.953198i 0.447922 + 0.894073i \(0.352164\pi\)
−0.998251 + 0.0591249i \(0.981169\pi\)
\(42\) 0 0
\(43\) 1.56398 + 2.70890i 0.238505 + 0.413103i 0.960286 0.279019i \(-0.0900093\pi\)
−0.721780 + 0.692122i \(0.756676\pi\)
\(44\) 0 0
\(45\) 1.56073 1.03150i 0.232659 0.153766i
\(46\) 0 0
\(47\) 4.73384 8.19925i 0.690502 1.19598i −0.281172 0.959657i \(-0.590723\pi\)
0.971674 0.236327i \(-0.0759435\pi\)
\(48\) 0 0
\(49\) −5.01263 4.88605i −0.716090 0.698007i
\(50\) 0 0
\(51\) 1.47540 + 0.347940i 0.206597 + 0.0487213i
\(52\) 0 0
\(53\) −1.15189 0.665044i −0.158224 0.0913508i 0.418797 0.908080i \(-0.362452\pi\)
−0.577021 + 0.816729i \(0.695785\pi\)
\(54\) 0 0
\(55\) 3.24212i 0.437168i
\(56\) 0 0
\(57\) 2.06607 + 1.94489i 0.273658 + 0.257607i
\(58\) 0 0
\(59\) 3.18334 + 5.51370i 0.414435 + 0.717823i 0.995369 0.0961281i \(-0.0306459\pi\)
−0.580934 + 0.813951i \(0.697313\pi\)
\(60\) 0 0
\(61\) 9.65975 + 5.57706i 1.23680 + 0.714069i 0.968440 0.249248i \(-0.0801835\pi\)
0.268365 + 0.963317i \(0.413517\pi\)
\(62\) 0 0
\(63\) 1.55899 + 7.78264i 0.196414 + 0.980521i
\(64\) 0 0
\(65\) 1.70880 + 0.986576i 0.211951 + 0.122370i
\(66\) 0 0
\(67\) 6.04951 + 10.4781i 0.739065 + 1.28010i 0.952917 + 0.303232i \(0.0980659\pi\)
−0.213851 + 0.976866i \(0.568601\pi\)
\(68\) 0 0
\(69\) 13.6925 4.11590i 1.64838 0.495496i
\(70\) 0 0
\(71\) 10.5861i 1.25634i −0.778076 0.628171i \(-0.783804\pi\)
0.778076 0.628171i \(-0.216196\pi\)
\(72\) 0 0
\(73\) −11.6719 6.73878i −1.36609 0.788714i −0.375666 0.926755i \(-0.622586\pi\)
−0.990427 + 0.138041i \(0.955920\pi\)
\(74\) 0 0
\(75\) −2.29914 7.64862i −0.265482 0.883187i
\(76\) 0 0
\(77\) −12.7418 5.18263i −1.45206 0.590615i
\(78\) 0 0
\(79\) 4.84840 8.39767i 0.545487 0.944811i −0.453089 0.891465i \(-0.649678\pi\)
0.998576 0.0533461i \(-0.0169886\pi\)
\(80\) 0 0
\(81\) 3.52785 8.27975i 0.391983 0.919973i
\(82\) 0 0
\(83\) 0.192030 + 0.332606i 0.0210781 + 0.0365083i 0.876372 0.481635i \(-0.159957\pi\)
−0.855294 + 0.518143i \(0.826623\pi\)
\(84\) 0 0
\(85\) −0.272882 + 0.472646i −0.0295982 + 0.0512656i
\(86\) 0 0
\(87\) 7.22946 + 6.80543i 0.775079 + 0.729619i
\(88\) 0 0
\(89\) 0.0198983 + 0.0344648i 0.00210921 + 0.00365326i 0.867078 0.498172i \(-0.165995\pi\)
−0.864969 + 0.501826i \(0.832662\pi\)
\(90\) 0 0
\(91\) −6.60888 + 5.13864i −0.692799 + 0.538675i
\(92\) 0 0
\(93\) −5.85796 5.51438i −0.607442 0.571814i
\(94\) 0 0
\(95\) −0.884719 + 0.510793i −0.0907702 + 0.0524062i
\(96\) 0 0
\(97\) 5.94681 3.43339i 0.603807 0.348608i −0.166731 0.986002i \(-0.553321\pi\)
0.770538 + 0.637394i \(0.219988\pi\)
\(98\) 0 0
\(99\) 8.59984 + 13.0122i 0.864316 + 1.30777i
\(100\) 0 0
\(101\) 8.92598 0.888168 0.444084 0.895985i \(-0.353529\pi\)
0.444084 + 0.895985i \(0.353529\pi\)
\(102\) 0 0
\(103\) 8.86879i 0.873868i 0.899494 + 0.436934i \(0.143936\pi\)
−0.899494 + 0.436934i \(0.856064\pi\)
\(104\) 0 0
\(105\) −2.84498 0.269088i −0.277642 0.0262603i
\(106\) 0 0
\(107\) 2.64326 1.52609i 0.255534 0.147532i −0.366762 0.930315i \(-0.619534\pi\)
0.622295 + 0.782782i \(0.286200\pi\)
\(108\) 0 0
\(109\) −5.55069 + 9.61408i −0.531660 + 0.920862i 0.467657 + 0.883910i \(0.345098\pi\)
−0.999317 + 0.0369519i \(0.988235\pi\)
\(110\) 0 0
\(111\) −2.95117 + 3.13505i −0.280113 + 0.297566i
\(112\) 0 0
\(113\) −3.13836 1.81193i −0.295232 0.170452i 0.345067 0.938578i \(-0.387856\pi\)
−0.640299 + 0.768126i \(0.721190\pi\)
\(114\) 0 0
\(115\) 5.14766i 0.480022i
\(116\) 0 0
\(117\) 9.47513 0.573056i 0.875976 0.0529791i
\(118\) 0 0
\(119\) −1.42132 1.82798i −0.130292 0.167571i
\(120\) 0 0
\(121\) −16.0304 −1.45731
\(122\) 0 0
\(123\) −11.8810 2.80186i −1.07127 0.252636i
\(124\) 0 0
\(125\) 5.99347 0.536072
\(126\) 0 0
\(127\) 10.1408 0.899852 0.449926 0.893066i \(-0.351450\pi\)
0.449926 + 0.893066i \(0.351450\pi\)
\(128\) 0 0
\(129\) −3.71352 + 3.94490i −0.326957 + 0.347329i
\(130\) 0 0
\(131\) −21.7576 −1.90097 −0.950484 0.310774i \(-0.899412\pi\)
−0.950484 + 0.310774i \(0.899412\pi\)
\(132\) 0 0
\(133\) −0.593203 4.29352i −0.0514372 0.372296i
\(134\) 0 0
\(135\) 2.48917 + 2.07452i 0.214233 + 0.178546i
\(136\) 0 0
\(137\) 0.393118i 0.0335863i 0.999859 + 0.0167932i \(0.00534568\pi\)
−0.999859 + 0.0167932i \(0.994654\pi\)
\(138\) 0 0
\(139\) 15.6647 + 9.04400i 1.32866 + 0.767102i 0.985092 0.172026i \(-0.0550312\pi\)
0.343568 + 0.939128i \(0.388365\pi\)
\(140\) 0 0
\(141\) 15.9607 + 3.76397i 1.34413 + 0.316984i
\(142\) 0 0
\(143\) −8.22532 + 14.2467i −0.687836 + 1.19137i
\(144\) 0 0
\(145\) −3.09575 + 1.78733i −0.257088 + 0.148430i
\(146\) 0 0
\(147\) 5.60532 10.7508i 0.462319 0.886714i
\(148\) 0 0
\(149\) 10.2508i 0.839781i −0.907575 0.419891i \(-0.862068\pi\)
0.907575 0.419891i \(-0.137932\pi\)
\(150\) 0 0
\(151\) −23.8012 −1.93691 −0.968457 0.249181i \(-0.919839\pi\)
−0.968457 + 0.249181i \(0.919839\pi\)
\(152\) 0 0
\(153\) 0.158505 + 2.62078i 0.0128143 + 0.211877i
\(154\) 0 0
\(155\) 2.50846 1.44826i 0.201484 0.116327i
\(156\) 0 0
\(157\) 9.96626 5.75402i 0.795394 0.459221i −0.0464641 0.998920i \(-0.514795\pi\)
0.841858 + 0.539699i \(0.181462\pi\)
\(158\) 0 0
\(159\) 0.528789 2.24227i 0.0419357 0.177824i
\(160\) 0 0
\(161\) −20.2307 8.22868i −1.59440 0.648511i
\(162\) 0 0
\(163\) −10.4614 18.1197i −0.819399 1.41924i −0.906125 0.423009i \(-0.860974\pi\)
0.0867261 0.996232i \(-0.472360\pi\)
\(164\) 0 0
\(165\) −5.37782 + 1.61654i −0.418662 + 0.125848i
\(166\) 0 0
\(167\) 6.69358 11.5936i 0.517965 0.897141i −0.481817 0.876272i \(-0.660023\pi\)
0.999782 0.0208697i \(-0.00664350\pi\)
\(168\) 0 0
\(169\) −1.49408 2.58782i −0.114929 0.199063i
\(170\) 0 0
\(171\) −2.19589 + 4.39679i −0.167924 + 0.336231i
\(172\) 0 0
\(173\) −2.94433 + 5.09972i −0.223853 + 0.387725i −0.955975 0.293449i \(-0.905197\pi\)
0.732122 + 0.681174i \(0.238530\pi\)
\(174\) 0 0
\(175\) −4.59654 + 11.3009i −0.347466 + 0.854264i
\(176\) 0 0
\(177\) −7.55852 + 8.02947i −0.568133 + 0.603532i
\(178\) 0 0
\(179\) −14.4333 8.33310i −1.07880 0.622845i −0.148227 0.988953i \(-0.547357\pi\)
−0.930572 + 0.366109i \(0.880690\pi\)
\(180\) 0 0
\(181\) 0.462705i 0.0343926i 0.999852 + 0.0171963i \(0.00547402\pi\)
−0.999852 + 0.0171963i \(0.994526\pi\)
\(182\) 0 0
\(183\) −4.43443 + 18.8037i −0.327803 + 1.39001i
\(184\) 0 0
\(185\) −0.775075 1.34247i −0.0569846 0.0987003i
\(186\) 0 0
\(187\) −3.94056 2.27508i −0.288162 0.166371i
\(188\) 0 0
\(189\) −12.1320 + 6.46642i −0.882473 + 0.470363i
\(190\) 0 0
\(191\) 11.8113 + 6.81927i 0.854637 + 0.493425i 0.862213 0.506546i \(-0.169078\pi\)
−0.00757544 + 0.999971i \(0.502411\pi\)
\(192\) 0 0
\(193\) 5.73933 + 9.94080i 0.413126 + 0.715555i 0.995230 0.0975597i \(-0.0311037\pi\)
−0.582104 + 0.813114i \(0.697770\pi\)
\(194\) 0 0
\(195\) −0.784447 + 3.32636i −0.0561754 + 0.238205i
\(196\) 0 0
\(197\) 4.78184i 0.340692i 0.985384 + 0.170346i \(0.0544885\pi\)
−0.985384 + 0.170346i \(0.945511\pi\)
\(198\) 0 0
\(199\) −7.87833 4.54856i −0.558480 0.322439i 0.194055 0.980991i \(-0.437836\pi\)
−0.752535 + 0.658552i \(0.771169\pi\)
\(200\) 0 0
\(201\) −14.3640 + 15.2589i −1.01316 + 1.07628i
\(202\) 0 0
\(203\) −2.07570 15.0236i −0.145685 1.05445i
\(204\) 0 0
\(205\) 2.19745 3.80609i 0.153476 0.265829i
\(206\) 0 0
\(207\) 13.6543 + 20.6600i 0.949042 + 1.43597i
\(208\) 0 0
\(209\) −4.25860 7.37611i −0.294573 0.510216i
\(210\) 0 0
\(211\) −1.47477 + 2.55437i −0.101527 + 0.175850i −0.912314 0.409491i \(-0.865706\pi\)
0.810787 + 0.585341i \(0.199040\pi\)
\(212\) 0 0
\(213\) 17.5595 5.27831i 1.20316 0.361664i
\(214\) 0 0
\(215\) −0.975294 1.68926i −0.0665145 0.115207i
\(216\) 0 0
\(217\) 1.68192 + 12.1735i 0.114176 + 0.826391i
\(218\) 0 0
\(219\) 5.35814 22.7206i 0.362069 1.53531i
\(220\) 0 0
\(221\) −2.39822 + 1.38461i −0.161322 + 0.0931391i
\(222\) 0 0
\(223\) −20.4564 + 11.8105i −1.36986 + 0.790891i −0.990910 0.134524i \(-0.957049\pi\)
−0.378954 + 0.925416i \(0.623716\pi\)
\(224\) 0 0
\(225\) 11.5407 7.62731i 0.769377 0.508487i
\(226\) 0 0
\(227\) 18.0507 1.19807 0.599033 0.800725i \(-0.295552\pi\)
0.599033 + 0.800725i \(0.295552\pi\)
\(228\) 0 0
\(229\) 12.1488i 0.802815i 0.915900 + 0.401407i \(0.131479\pi\)
−0.915900 + 0.401407i \(0.868521\pi\)
\(230\) 0 0
\(231\) 2.24345 23.7193i 0.147608 1.56061i
\(232\) 0 0
\(233\) 3.39111 1.95786i 0.222159 0.128264i −0.384791 0.923004i \(-0.625726\pi\)
0.606950 + 0.794740i \(0.292393\pi\)
\(234\) 0 0
\(235\) −2.95201 + 5.11303i −0.192568 + 0.333537i
\(236\) 0 0
\(237\) 16.3469 + 3.85506i 1.06185 + 0.250413i
\(238\) 0 0
\(239\) −10.3996 6.00423i −0.672696 0.388381i 0.124401 0.992232i \(-0.460299\pi\)
−0.797097 + 0.603851i \(0.793632\pi\)
\(240\) 0 0
\(241\) 28.2853i 1.82202i 0.412385 + 0.911010i \(0.364696\pi\)
−0.412385 + 0.911010i \(0.635304\pi\)
\(242\) 0 0
\(243\) 15.4929 + 1.72341i 0.993870 + 0.110557i
\(244\) 0 0
\(245\) 3.12586 + 3.04693i 0.199704 + 0.194661i
\(246\) 0 0
\(247\) −5.18355 −0.329822
\(248\) 0 0
\(249\) −0.455957 + 0.484367i −0.0288951 + 0.0306955i
\(250\) 0 0
\(251\) 12.0425 0.760117 0.380059 0.924962i \(-0.375904\pi\)
0.380059 + 0.924962i \(0.375904\pi\)
\(252\) 0 0
\(253\) −42.9173 −2.69819
\(254\) 0 0
\(255\) −0.920054 0.216974i −0.0576160 0.0135874i
\(256\) 0 0
\(257\) 14.6504 0.913868 0.456934 0.889501i \(-0.348948\pi\)
0.456934 + 0.889501i \(0.348948\pi\)
\(258\) 0 0
\(259\) 6.51498 0.900125i 0.404821 0.0559310i
\(260\) 0 0
\(261\) −7.68373 + 15.3850i −0.475611 + 0.952306i
\(262\) 0 0
\(263\) 5.73134i 0.353410i 0.984264 + 0.176705i \(0.0565438\pi\)
−0.984264 + 0.176705i \(0.943456\pi\)
\(264\) 0 0
\(265\) 0.718314 + 0.414719i 0.0441257 + 0.0254760i
\(266\) 0 0
\(267\) −0.0472464 + 0.0501902i −0.00289144 + 0.00307159i
\(268\) 0 0
\(269\) 1.61724 2.80114i 0.0986047 0.170788i −0.812503 0.582957i \(-0.801895\pi\)
0.911107 + 0.412169i \(0.135229\pi\)
\(270\) 0 0
\(271\) 20.6677 11.9325i 1.25548 0.724849i 0.283284 0.959036i \(-0.408576\pi\)
0.972192 + 0.234187i \(0.0752428\pi\)
\(272\) 0 0
\(273\) −11.8188 8.40020i −0.715309 0.508403i
\(274\) 0 0
\(275\) 23.9736i 1.44566i
\(276\) 0 0
\(277\) −7.66845 −0.460753 −0.230376 0.973102i \(-0.573996\pi\)
−0.230376 + 0.973102i \(0.573996\pi\)
\(278\) 0 0
\(279\) 6.22605 12.4663i 0.372744 0.746337i
\(280\) 0 0
\(281\) 8.78880 5.07422i 0.524296 0.302702i −0.214395 0.976747i \(-0.568778\pi\)
0.738690 + 0.674045i \(0.235445\pi\)
\(282\) 0 0
\(283\) −11.8373 + 6.83427i −0.703654 + 0.406255i −0.808707 0.588212i \(-0.799832\pi\)
0.105053 + 0.994467i \(0.466499\pi\)
\(284\) 0 0
\(285\) −1.28839 1.21283i −0.0763179 0.0718417i
\(286\) 0 0
\(287\) 11.4455 + 14.7203i 0.675607 + 0.868909i
\(288\) 0 0
\(289\) 8.11702 + 14.0591i 0.477472 + 0.827006i
\(290\) 0 0
\(291\) 8.66019 + 8.15225i 0.507669 + 0.477893i
\(292\) 0 0
\(293\) −2.70903 + 4.69218i −0.158263 + 0.274120i −0.934242 0.356639i \(-0.883923\pi\)
0.775979 + 0.630758i \(0.217256\pi\)
\(294\) 0 0
\(295\) −1.98512 3.43833i −0.115578 0.200187i
\(296\) 0 0
\(297\) −17.2957 + 20.7528i −1.00360 + 1.20420i
\(298\) 0 0
\(299\) −13.0597 + 22.6201i −0.755262 + 1.30815i
\(300\) 0 0
\(301\) 8.19794 1.13265i 0.472522 0.0652847i
\(302\) 0 0
\(303\) 4.45055 + 14.8058i 0.255677 + 0.850571i
\(304\) 0 0
\(305\) −6.02379 3.47784i −0.344921 0.199140i
\(306\) 0 0
\(307\) 3.56336i 0.203372i −0.994817 0.101686i \(-0.967576\pi\)
0.994817 0.101686i \(-0.0324236\pi\)
\(308\) 0 0
\(309\) −14.7109 + 4.42204i −0.836876 + 0.251561i
\(310\) 0 0
\(311\) −5.63234 9.75550i −0.319381 0.553184i 0.660978 0.750405i \(-0.270142\pi\)
−0.980359 + 0.197221i \(0.936808\pi\)
\(312\) 0 0
\(313\) 9.89696 + 5.71401i 0.559409 + 0.322975i 0.752908 0.658125i \(-0.228650\pi\)
−0.193499 + 0.981100i \(0.561984\pi\)
\(314\) 0 0
\(315\) −0.972181 4.85323i −0.0547762 0.273449i
\(316\) 0 0
\(317\) 16.8604 + 9.73436i 0.946975 + 0.546736i 0.892140 0.451759i \(-0.149203\pi\)
0.0548352 + 0.998495i \(0.482537\pi\)
\(318\) 0 0
\(319\) −14.9014 25.8100i −0.834319 1.44508i
\(320\) 0 0
\(321\) 3.84932 + 3.62354i 0.214848 + 0.202247i
\(322\) 0 0
\(323\) 1.43375i 0.0797758i
\(324\) 0 0
\(325\) 12.6356 + 7.29515i 0.700895 + 0.404662i
\(326\) 0 0
\(327\) −18.7148 4.41347i −1.03493 0.244065i
\(328\) 0 0
\(329\) −15.3757 19.7749i −0.847689 1.09023i
\(330\) 0 0
\(331\) 13.4838 23.3546i 0.741135 1.28368i −0.210844 0.977520i \(-0.567621\pi\)
0.951979 0.306164i \(-0.0990454\pi\)
\(332\) 0 0
\(333\) −6.67168 3.33204i −0.365606 0.182595i
\(334\) 0 0
\(335\) −3.77245 6.53408i −0.206111 0.356995i
\(336\) 0 0
\(337\) 0.993296 1.72044i 0.0541083 0.0937183i −0.837703 0.546127i \(-0.816102\pi\)
0.891811 + 0.452408i \(0.149435\pi\)
\(338\) 0 0
\(339\) 1.44070 6.10914i 0.0782483 0.331803i
\(340\) 0 0
\(341\) 12.0745 + 20.9136i 0.653869 + 1.13254i
\(342\) 0 0
\(343\) −16.9714 + 7.41426i −0.916370 + 0.400332i
\(344\) 0 0
\(345\) −8.53859 + 2.56666i −0.459702 + 0.138184i
\(346\) 0 0
\(347\) −29.7673 + 17.1862i −1.59799 + 0.922603i −0.606122 + 0.795372i \(0.707276\pi\)
−0.991873 + 0.127231i \(0.959391\pi\)
\(348\) 0 0
\(349\) 25.3935 14.6609i 1.35928 0.784781i 0.369754 0.929130i \(-0.379442\pi\)
0.989527 + 0.144348i \(0.0461085\pi\)
\(350\) 0 0
\(351\) 5.67491 + 15.4310i 0.302904 + 0.823645i
\(352\) 0 0
\(353\) 1.17305 0.0624353 0.0312177 0.999513i \(-0.490061\pi\)
0.0312177 + 0.999513i \(0.490061\pi\)
\(354\) 0 0
\(355\) 6.60147i 0.350370i
\(356\) 0 0
\(357\) 2.32345 3.26904i 0.122970 0.173016i
\(358\) 0 0
\(359\) −5.69591 + 3.28854i −0.300619 + 0.173562i −0.642721 0.766101i \(-0.722194\pi\)
0.342102 + 0.939663i \(0.388861\pi\)
\(360\) 0 0
\(361\) −8.15813 + 14.1303i −0.429375 + 0.743699i
\(362\) 0 0
\(363\) −7.99285 26.5901i −0.419516 1.39562i
\(364\) 0 0
\(365\) 7.27856 + 4.20228i 0.380977 + 0.219957i
\(366\) 0 0
\(367\) 9.51617i 0.496740i 0.968665 + 0.248370i \(0.0798948\pi\)
−0.968665 + 0.248370i \(0.920105\pi\)
\(368\) 0 0
\(369\) −1.27639 21.1044i −0.0664464 1.09865i
\(370\) 0 0
\(371\) −2.77812 + 2.16009i −0.144233 + 0.112146i
\(372\) 0 0
\(373\) 20.6303 1.06820 0.534098 0.845422i \(-0.320651\pi\)
0.534098 + 0.845422i \(0.320651\pi\)
\(374\) 0 0
\(375\) 2.98838 + 9.94155i 0.154319 + 0.513380i
\(376\) 0 0
\(377\) −18.1380 −0.934153
\(378\) 0 0
\(379\) 7.98265 0.410041 0.205020 0.978758i \(-0.434274\pi\)
0.205020 + 0.978758i \(0.434274\pi\)
\(380\) 0 0
\(381\) 5.05628 + 16.8209i 0.259041 + 0.861761i
\(382\) 0 0
\(383\) 28.0968 1.43568 0.717840 0.696208i \(-0.245131\pi\)
0.717840 + 0.696208i \(0.245131\pi\)
\(384\) 0 0
\(385\) 7.94573 + 3.23187i 0.404952 + 0.164711i
\(386\) 0 0
\(387\) −8.39512 4.19278i −0.426748 0.213131i
\(388\) 0 0
\(389\) 32.8397i 1.66504i −0.553997 0.832519i \(-0.686898\pi\)
0.553997 0.832519i \(-0.313102\pi\)
\(390\) 0 0
\(391\) −6.25660 3.61225i −0.316410 0.182679i
\(392\) 0 0
\(393\) −10.8485 36.0900i −0.547233 1.82050i
\(394\) 0 0
\(395\) −3.02344 + 5.23676i −0.152126 + 0.263490i
\(396\) 0 0
\(397\) 9.24672 5.33859i 0.464079 0.267936i −0.249679 0.968329i \(-0.580325\pi\)
0.713758 + 0.700392i \(0.246992\pi\)
\(398\) 0 0
\(399\) 6.82603 3.12474i 0.341729 0.156433i
\(400\) 0 0
\(401\) 14.2789i 0.713052i −0.934285 0.356526i \(-0.883961\pi\)
0.934285 0.356526i \(-0.116039\pi\)
\(402\) 0 0
\(403\) 14.6970 0.732111
\(404\) 0 0
\(405\) −2.19995 + 5.16323i −0.109317 + 0.256563i
\(406\) 0 0
\(407\) 11.1925 6.46198i 0.554791 0.320309i
\(408\) 0 0
\(409\) 7.04206 4.06574i 0.348208 0.201038i −0.315688 0.948863i \(-0.602235\pi\)
0.663896 + 0.747825i \(0.268902\pi\)
\(410\) 0 0
\(411\) −0.652077 + 0.196011i −0.0321646 + 0.00966852i
\(412\) 0 0
\(413\) 16.6861 2.30539i 0.821071 0.113441i
\(414\) 0 0
\(415\) −0.119750 0.207412i −0.00587827 0.0101815i
\(416\) 0 0
\(417\) −7.19107 + 30.4929i −0.352148 + 1.49324i
\(418\) 0 0
\(419\) −1.53415 + 2.65723i −0.0749481 + 0.129814i −0.901064 0.433687i \(-0.857212\pi\)
0.826116 + 0.563501i \(0.190546\pi\)
\(420\) 0 0
\(421\) 4.25752 + 7.37424i 0.207499 + 0.359398i 0.950926 0.309418i \(-0.100134\pi\)
−0.743427 + 0.668817i \(0.766801\pi\)
\(422\) 0 0
\(423\) 1.71468 + 28.3512i 0.0833708 + 1.37848i
\(424\) 0 0
\(425\) −2.01780 + 3.49494i −0.0978778 + 0.169529i
\(426\) 0 0
\(427\) 23.2973 18.1145i 1.12744 0.876622i
\(428\) 0 0
\(429\) −27.7326 6.54012i −1.33894 0.315760i
\(430\) 0 0
\(431\) −19.8414 11.4554i −0.955727 0.551789i −0.0608716 0.998146i \(-0.519388\pi\)
−0.894855 + 0.446356i \(0.852721\pi\)
\(432\) 0 0
\(433\) 32.7273i 1.57278i −0.617733 0.786388i \(-0.711949\pi\)
0.617733 0.786388i \(-0.288051\pi\)
\(434\) 0 0
\(435\) −4.50827 4.24384i −0.216155 0.203477i
\(436\) 0 0
\(437\) −6.76156 11.7114i −0.323449 0.560231i
\(438\) 0 0
\(439\) −5.57285 3.21749i −0.265978 0.153562i 0.361081 0.932535i \(-0.382408\pi\)
−0.627058 + 0.778972i \(0.715741\pi\)
\(440\) 0 0
\(441\) 20.6276 + 3.93729i 0.982267 + 0.187490i
\(442\) 0 0
\(443\) 22.1159 + 12.7686i 1.05076 + 0.606656i 0.922862 0.385131i \(-0.125844\pi\)
0.127898 + 0.991787i \(0.459177\pi\)
\(444\) 0 0
\(445\) −0.0124085 0.0214921i −0.000588219 0.00101882i
\(446\) 0 0
\(447\) 17.0034 5.11113i 0.804233 0.241748i
\(448\) 0 0
\(449\) 40.1008i 1.89247i 0.323474 + 0.946237i \(0.395149\pi\)
−0.323474 + 0.946237i \(0.604851\pi\)
\(450\) 0 0
\(451\) 31.7322 + 18.3206i 1.49421 + 0.862684i
\(452\) 0 0
\(453\) −11.8674 39.4798i −0.557581 1.85492i
\(454\) 0 0
\(455\) 4.12128 3.20444i 0.193208 0.150226i
\(456\) 0 0
\(457\) 19.2357 33.3173i 0.899810 1.55852i 0.0720726 0.997399i \(-0.477039\pi\)
0.827737 0.561116i \(-0.189628\pi\)
\(458\) 0 0
\(459\) −4.26813 + 1.56965i −0.199219 + 0.0732651i
\(460\) 0 0
\(461\) −12.0830 20.9283i −0.562759 0.974728i −0.997254 0.0740533i \(-0.976407\pi\)
0.434495 0.900674i \(-0.356927\pi\)
\(462\) 0 0
\(463\) 8.65455 14.9901i 0.402211 0.696650i −0.591781 0.806098i \(-0.701575\pi\)
0.993992 + 0.109449i \(0.0349085\pi\)
\(464\) 0 0
\(465\) 3.65301 + 3.43875i 0.169404 + 0.159468i
\(466\) 0 0
\(467\) 5.46858 + 9.47185i 0.253056 + 0.438305i 0.964366 0.264573i \(-0.0852311\pi\)
−0.711310 + 0.702878i \(0.751898\pi\)
\(468\) 0 0
\(469\) 31.7098 4.38110i 1.46422 0.202300i
\(470\) 0 0
\(471\) 14.5136 + 13.6624i 0.668752 + 0.629528i
\(472\) 0 0
\(473\) 14.0838 8.13126i 0.647572 0.373876i
\(474\) 0 0
\(475\) −6.54197 + 3.77701i −0.300166 + 0.173301i
\(476\) 0 0
\(477\) 3.98298 0.240891i 0.182368 0.0110296i
\(478\) 0 0
\(479\) −1.51349 −0.0691531 −0.0345765 0.999402i \(-0.511008\pi\)
−0.0345765 + 0.999402i \(0.511008\pi\)
\(480\) 0 0
\(481\) 7.86551i 0.358636i
\(482\) 0 0
\(483\) 3.56203 37.6601i 0.162078 1.71360i
\(484\) 0 0
\(485\) −3.70841 + 2.14105i −0.168390 + 0.0972201i
\(486\) 0 0
\(487\) 0.0853077 0.147757i 0.00386566 0.00669552i −0.864086 0.503344i \(-0.832103\pi\)
0.867952 + 0.496649i \(0.165436\pi\)
\(488\) 0 0
\(489\) 24.8395 26.3872i 1.12328 1.19327i
\(490\) 0 0
\(491\) −23.5139 13.5757i −1.06117 0.612665i −0.135412 0.990789i \(-0.543236\pi\)
−0.925755 + 0.378125i \(0.876569\pi\)
\(492\) 0 0
\(493\) 5.01687i 0.225949i
\(494\) 0 0
\(495\) −5.36283 8.11434i −0.241041 0.364712i
\(496\) 0 0
\(497\) −25.9442 10.5526i −1.16376 0.473350i
\(498\) 0 0
\(499\) −22.2654 −0.996738 −0.498369 0.866965i \(-0.666067\pi\)
−0.498369 + 0.866965i \(0.666067\pi\)
\(500\) 0 0
\(501\) 22.5682 + 5.32220i 1.00827 + 0.237778i
\(502\) 0 0
\(503\) 32.2005 1.43575 0.717876 0.696171i \(-0.245115\pi\)
0.717876 + 0.696171i \(0.245115\pi\)
\(504\) 0 0
\(505\) −5.56621 −0.247693
\(506\) 0 0
\(507\) 3.54755 3.76859i 0.157552 0.167369i
\(508\) 0 0
\(509\) −9.21817 −0.408588 −0.204294 0.978910i \(-0.565490\pi\)
−0.204294 + 0.978910i \(0.565490\pi\)
\(510\) 0 0
\(511\) −28.1502 + 21.8878i −1.24529 + 0.968259i
\(512\) 0 0
\(513\) −8.38799 1.45013i −0.370339 0.0640248i
\(514\) 0 0
\(515\) 5.53055i 0.243705i
\(516\) 0 0
\(517\) −42.6285 24.6116i −1.87480 1.08242i
\(518\) 0 0
\(519\) −9.92714 2.34109i −0.435753 0.102763i
\(520\) 0 0
\(521\) −7.44581 + 12.8965i −0.326207 + 0.565007i −0.981756 0.190146i \(-0.939104\pi\)
0.655549 + 0.755153i \(0.272437\pi\)
\(522\) 0 0
\(523\) 29.3725 16.9582i 1.28437 0.741532i 0.306727 0.951798i \(-0.400766\pi\)
0.977644 + 0.210266i \(0.0674329\pi\)
\(524\) 0 0
\(525\) −21.0370 1.98975i −0.918128 0.0868398i
\(526\) 0 0
\(527\) 4.06512i 0.177080i
\(528\) 0 0
\(529\) −45.1416 −1.96268
\(530\) 0 0
\(531\) −17.0875 8.53401i −0.741533 0.370344i
\(532\) 0 0
\(533\) 19.3122 11.1499i 0.836504 0.482956i
\(534\) 0 0
\(535\) −1.64833 + 0.951663i −0.0712635 + 0.0411440i
\(536\) 0 0
\(537\) 6.62581 28.0960i 0.285925 1.21243i
\(538\) 0 0
\(539\) −25.4029 + 26.0610i −1.09418 + 1.12253i
\(540\) 0 0
\(541\) −2.65164 4.59278i −0.114003 0.197459i 0.803378 0.595470i \(-0.203034\pi\)
−0.917381 + 0.398011i \(0.869701\pi\)
\(542\) 0 0
\(543\) −0.767504 + 0.230708i −0.0329368 + 0.00990062i
\(544\) 0 0
\(545\) 3.46139 5.99531i 0.148270 0.256811i
\(546\) 0 0
\(547\) 4.13892 + 7.16882i 0.176967 + 0.306517i 0.940840 0.338850i \(-0.110038\pi\)
−0.763873 + 0.645367i \(0.776705\pi\)
\(548\) 0 0
\(549\) −33.4013 + 2.02011i −1.42553 + 0.0862163i
\(550\) 0 0
\(551\) 4.69540 8.13267i 0.200031 0.346463i
\(552\) 0 0
\(553\) −15.7478 20.2534i −0.669663 0.861264i
\(554\) 0 0
\(555\) 1.84034 1.95501i 0.0781180 0.0829854i
\(556\) 0 0
\(557\) −6.96801 4.02299i −0.295244 0.170459i 0.345060 0.938581i \(-0.387858\pi\)
−0.640304 + 0.768121i \(0.721192\pi\)
\(558\) 0 0
\(559\) 9.89735i 0.418613i
\(560\) 0 0
\(561\) 1.80896 7.67070i 0.0763745 0.323857i
\(562\) 0 0
\(563\) 14.9578 + 25.9077i 0.630396 + 1.09188i 0.987471 + 0.157802i \(0.0504409\pi\)
−0.357074 + 0.934076i \(0.616226\pi\)
\(564\) 0 0
\(565\) 1.95707 + 1.12992i 0.0823346 + 0.0475359i
\(566\) 0 0
\(567\) −16.7752 16.8995i −0.704490 0.709714i
\(568\) 0 0
\(569\) 26.6942 + 15.4119i 1.11908 + 0.646101i 0.941166 0.337946i \(-0.109732\pi\)
0.177913 + 0.984046i \(0.443065\pi\)
\(570\) 0 0
\(571\) −2.67347 4.63058i −0.111881 0.193784i 0.804648 0.593753i \(-0.202354\pi\)
−0.916529 + 0.399969i \(0.869021\pi\)
\(572\) 0 0
\(573\) −5.42214 + 22.9920i −0.226513 + 0.960503i
\(574\) 0 0
\(575\) 38.0639i 1.58737i
\(576\) 0 0
\(577\) 16.3235 + 9.42437i 0.679556 + 0.392342i 0.799688 0.600416i \(-0.204998\pi\)
−0.120132 + 0.992758i \(0.538332\pi\)
\(578\) 0 0
\(579\) −13.6275 + 14.4766i −0.566338 + 0.601625i
\(580\) 0 0
\(581\) 1.00657 0.139070i 0.0417595 0.00576959i
\(582\) 0 0
\(583\) −3.45761 + 5.98876i −0.143200 + 0.248029i
\(584\) 0 0
\(585\) −5.90866 + 0.357356i −0.244293 + 0.0147749i
\(586\) 0 0
\(587\) −12.3955 21.4697i −0.511619 0.886150i −0.999909 0.0134687i \(-0.995713\pi\)
0.488290 0.872681i \(-0.337621\pi\)
\(588\) 0 0
\(589\) −3.80464 + 6.58982i −0.156767 + 0.271529i
\(590\) 0 0
\(591\) −7.93179 + 2.38426i −0.326270 + 0.0980752i
\(592\) 0 0
\(593\) 1.87451 + 3.24675i 0.0769770 + 0.133328i 0.901944 0.431852i \(-0.142140\pi\)
−0.824967 + 0.565180i \(0.808807\pi\)
\(594\) 0 0
\(595\) 0.886331 + 1.13992i 0.0363360 + 0.0467323i
\(596\) 0 0
\(597\) 3.61665 15.3360i 0.148020 0.627660i
\(598\) 0 0
\(599\) 27.7711 16.0337i 1.13470 0.655118i 0.189586 0.981864i \(-0.439286\pi\)
0.945112 + 0.326746i \(0.105952\pi\)
\(600\) 0 0
\(601\) −5.98069 + 3.45296i −0.243958 + 0.140849i −0.616994 0.786968i \(-0.711650\pi\)
0.373037 + 0.927817i \(0.378317\pi\)
\(602\) 0 0
\(603\) −32.4725 16.2178i −1.32238 0.660438i
\(604\) 0 0
\(605\) 9.99648 0.406415
\(606\) 0 0
\(607\) 21.6959i 0.880608i −0.897849 0.440304i \(-0.854871\pi\)
0.897849 0.440304i \(-0.145129\pi\)
\(608\) 0 0
\(609\) 23.8852 10.9339i 0.967877 0.443064i
\(610\) 0 0
\(611\) −25.9437 + 14.9786i −1.04957 + 0.605968i
\(612\) 0 0
\(613\) 8.96928 15.5352i 0.362266 0.627463i −0.626068 0.779769i \(-0.715337\pi\)
0.988333 + 0.152306i \(0.0486699\pi\)
\(614\) 0 0
\(615\) 7.40894 + 1.74723i 0.298757 + 0.0704552i
\(616\) 0 0
\(617\) 32.9146 + 19.0033i 1.32509 + 0.765043i 0.984536 0.175181i \(-0.0560509\pi\)
0.340557 + 0.940224i \(0.389384\pi\)
\(618\) 0 0
\(619\) 43.3774i 1.74349i −0.489964 0.871743i \(-0.662990\pi\)
0.489964 0.871743i \(-0.337010\pi\)
\(620\) 0 0
\(621\) −27.4612 + 32.9501i −1.10198 + 1.32224i
\(622\) 0 0
\(623\) 0.104301 0.0144105i 0.00417873 0.000577343i
\(624\) 0 0
\(625\) 19.3181 0.772725
\(626\) 0 0
\(627\) 10.1116 10.7417i 0.403819 0.428980i
\(628\) 0 0
\(629\) 2.17556 0.0867453
\(630\) 0 0
\(631\) −11.2735 −0.448793 −0.224396 0.974498i \(-0.572041\pi\)
−0.224396 + 0.974498i \(0.572041\pi\)
\(632\) 0 0
\(633\) −4.97234 1.17262i −0.197633 0.0466073i
\(634\) 0 0
\(635\) −6.32378 −0.250952
\(636\) 0 0
\(637\) 6.00569 + 21.3193i 0.237954 + 0.844701i
\(638\) 0 0
\(639\) 17.5106 + 26.4948i 0.692709 + 1.04812i
\(640\) 0 0
\(641\) 29.7553i 1.17526i 0.809129 + 0.587631i \(0.199939\pi\)
−0.809129 + 0.587631i \(0.800061\pi\)
\(642\) 0 0
\(643\) 37.4271 + 21.6085i 1.47598 + 0.852158i 0.999633 0.0270991i \(-0.00862696\pi\)
0.476348 + 0.879257i \(0.341960\pi\)
\(644\) 0 0
\(645\) 2.31574 2.46003i 0.0911822 0.0968635i
\(646\) 0 0
\(647\) 9.42940 16.3322i 0.370708 0.642085i −0.618967 0.785417i \(-0.712448\pi\)
0.989675 + 0.143332i \(0.0457817\pi\)
\(648\) 0 0
\(649\) 28.6661 16.5504i 1.12524 0.649660i
\(650\) 0 0
\(651\) −19.3539 + 8.85964i −0.758541 + 0.347237i
\(652\) 0 0
\(653\) 9.71777i 0.380286i 0.981756 + 0.190143i \(0.0608951\pi\)
−0.981756 + 0.190143i \(0.939105\pi\)
\(654\) 0 0
\(655\) 13.5679 0.530144
\(656\) 0 0
\(657\) 40.3589 2.44091i 1.57455 0.0952289i
\(658\) 0 0
\(659\) 28.5327 16.4734i 1.11148 0.641712i 0.172266 0.985050i \(-0.444891\pi\)
0.939212 + 0.343338i \(0.111558\pi\)
\(660\) 0 0
\(661\) −1.08957 + 0.629061i −0.0423792 + 0.0244677i −0.521040 0.853532i \(-0.674456\pi\)
0.478661 + 0.878000i \(0.341122\pi\)
\(662\) 0 0
\(663\) −3.49247 3.28763i −0.135636 0.127681i
\(664\) 0 0
\(665\) 0.369920 + 2.67743i 0.0143449 + 0.103826i
\(666\) 0 0
\(667\) −23.6596 40.9797i −0.916104 1.58674i
\(668\) 0 0
\(669\) −29.7902 28.0429i −1.15176 1.08420i
\(670\) 0 0
\(671\) 28.9955 50.2217i 1.11936 1.93879i
\(672\) 0 0
\(673\) −12.2655 21.2445i −0.472800 0.818914i 0.526715 0.850042i \(-0.323423\pi\)
−0.999515 + 0.0311279i \(0.990090\pi\)
\(674\) 0 0
\(675\) 18.4059 + 15.3398i 0.708444 + 0.590430i
\(676\) 0 0
\(677\) −11.5616 + 20.0253i −0.444350 + 0.769636i −0.998007 0.0631088i \(-0.979899\pi\)
0.553657 + 0.832745i \(0.313232\pi\)
\(678\) 0 0
\(679\) −2.48649 17.9968i −0.0954226 0.690655i
\(680\) 0 0
\(681\) 9.00018 + 29.9412i 0.344888 + 1.14735i
\(682\) 0 0
\(683\) 12.4945 + 7.21370i 0.478089 + 0.276025i 0.719620 0.694368i \(-0.244316\pi\)
−0.241531 + 0.970393i \(0.577650\pi\)
\(684\) 0 0
\(685\) 0.245147i 0.00936659i
\(686\) 0 0
\(687\) −20.1516 + 6.05747i −0.768831 + 0.231107i
\(688\) 0 0
\(689\) 2.10430 + 3.64475i 0.0801673 + 0.138854i
\(690\) 0 0
\(691\) 32.3993 + 18.7057i 1.23253 + 0.711599i 0.967556 0.252657i \(-0.0813045\pi\)
0.264970 + 0.964257i \(0.414638\pi\)
\(692\) 0 0
\(693\) 40.4625 8.10530i 1.53704 0.307895i
\(694\) 0 0
\(695\) −9.76844 5.63981i −0.370538 0.213930i
\(696\) 0 0
\(697\) 3.08401 + 5.34166i 0.116815 + 0.202330i
\(698\) 0 0
\(699\) 4.93839 + 4.64874i 0.186787 + 0.175832i
\(700\) 0 0
\(701\) 41.0429i 1.55017i 0.631859 + 0.775084i \(0.282292\pi\)
−0.631859 + 0.775084i \(0.717708\pi\)
\(702\) 0 0
\(703\) 3.52672 + 2.03615i 0.133013 + 0.0767950i
\(704\) 0 0
\(705\) −9.95303 2.34720i −0.374853 0.0884007i
\(706\) 0 0
\(707\) 8.89774 21.8756i 0.334634 0.822716i
\(708\) 0 0
\(709\) −11.6623 + 20.1997i −0.437987 + 0.758616i −0.997534 0.0701829i \(-0.977642\pi\)
0.559547 + 0.828798i \(0.310975\pi\)
\(710\) 0 0
\(711\) 1.75618 + 29.0373i 0.0658618 + 1.08898i
\(712\) 0 0
\(713\) 19.1712 + 33.2054i 0.717966 + 1.24355i
\(714\) 0 0
\(715\) 5.12928 8.88418i 0.191824 0.332249i
\(716\) 0 0
\(717\) 4.77408 20.2439i 0.178291 0.756024i
\(718\) 0 0
\(719\) 21.7489 + 37.6701i 0.811096 + 1.40486i 0.912098 + 0.409973i \(0.134462\pi\)
−0.101002 + 0.994886i \(0.532205\pi\)
\(720\) 0 0
\(721\) 21.7354 + 8.84073i 0.809470 + 0.329246i
\(722\) 0 0
\(723\) −46.9178 + 14.1033i −1.74489 + 0.524506i
\(724\) 0 0
\(725\) −22.8912 + 13.2163i −0.850159 + 0.490840i
\(726\) 0 0
\(727\) 11.3715 6.56536i 0.421747 0.243496i −0.274078 0.961708i \(-0.588373\pi\)
0.695824 + 0.718212i \(0.255039\pi\)
\(728\) 0 0
\(729\) 4.86618 + 26.5579i 0.180229 + 0.983625i
\(730\) 0 0
\(731\) 2.73756 0.101252
\(732\) 0 0
\(733\) 40.1795i 1.48406i −0.670364 0.742032i \(-0.733862\pi\)
0.670364 0.742032i \(-0.266138\pi\)
\(734\) 0 0
\(735\) −3.49546 + 6.70418i −0.128932 + 0.247288i
\(736\) 0 0
\(737\) 54.4762 31.4518i 2.00666 1.15854i
\(738\) 0 0
\(739\) −18.7073 + 32.4020i −0.688158 + 1.19193i 0.284275 + 0.958743i \(0.408247\pi\)
−0.972433 + 0.233182i \(0.925086\pi\)
\(740\) 0 0
\(741\) −2.58455 8.59813i −0.0949460 0.315860i
\(742\) 0 0
\(743\) −30.0501 17.3494i −1.10243 0.636488i −0.165572 0.986198i \(-0.552947\pi\)
−0.936858 + 0.349709i \(0.886280\pi\)
\(744\) 0 0
\(745\) 6.39239i 0.234199i
\(746\) 0 0
\(747\) −1.03078 0.514802i −0.0377142 0.0188356i
\(748\) 0 0
\(749\) −1.10520 7.99931i −0.0403833 0.292288i
\(750\) 0 0
\(751\) 29.0140 1.05873 0.529367 0.848393i \(-0.322429\pi\)
0.529367 + 0.848393i \(0.322429\pi\)
\(752\) 0 0
\(753\) 6.00448 + 19.9753i 0.218815 + 0.727941i
\(754\) 0 0
\(755\) 14.8423 0.540168
\(756\) 0 0
\(757\) −8.62406 −0.313447 −0.156723 0.987643i \(-0.550093\pi\)
−0.156723 + 0.987643i \(0.550093\pi\)
\(758\) 0 0
\(759\) −21.3988 71.1883i −0.776729 2.58397i
\(760\) 0 0
\(761\) −22.8213 −0.827272 −0.413636 0.910442i \(-0.635741\pi\)
−0.413636 + 0.910442i \(0.635741\pi\)
\(762\) 0 0
\(763\) 18.0288 + 23.1872i 0.652688 + 0.839432i
\(764\) 0 0
\(765\) −0.0988429 1.63431i −0.00357367 0.0590885i
\(766\) 0 0
\(767\) 20.1451i 0.727397i
\(768\) 0 0
\(769\) 27.6397 + 15.9578i 0.996714 + 0.575453i 0.907275 0.420539i \(-0.138159\pi\)
0.0894399 + 0.995992i \(0.471492\pi\)
\(770\) 0 0
\(771\) 7.30479 + 24.3011i 0.263076 + 0.875183i
\(772\) 0 0
\(773\) −17.8503 + 30.9176i −0.642030 + 1.11203i 0.342949 + 0.939354i \(0.388574\pi\)
−0.984979 + 0.172675i \(0.944759\pi\)
\(774\) 0 0
\(775\) 18.5486 10.7090i 0.666284 0.384679i
\(776\) 0 0
\(777\) 4.74148 + 10.3578i 0.170099 + 0.371584i
\(778\) 0 0
\(779\) 11.5456i 0.413663i
\(780\) 0 0
\(781\) −55.0380 −1.96942
\(782\) 0 0
\(783\) −29.3507 5.07420i −1.04891 0.181337i
\(784\) 0 0
\(785\) −6.21492 + 3.58819i −0.221820 + 0.128068i
\(786\) 0 0
\(787\) 12.0233 6.94168i 0.428586 0.247444i −0.270158 0.962816i \(-0.587076\pi\)
0.698744 + 0.715372i \(0.253743\pi\)
\(788\) 0 0
\(789\) −9.50676 + 2.85768i −0.338449 + 0.101736i
\(790\) 0 0
\(791\) −7.56908 + 5.88522i −0.269125 + 0.209254i
\(792\) 0 0
\(793\) −17.6466 30.5649i −0.626651 1.08539i
\(794\) 0 0
\(795\) −0.329751 + 1.39827i −0.0116951 + 0.0495916i
\(796\) 0 0
\(797\) −14.2145 + 24.6203i −0.503504 + 0.872094i 0.496488 + 0.868044i \(0.334623\pi\)
−0.999992 + 0.00405063i \(0.998711\pi\)
\(798\) 0 0
\(799\) −4.14300 7.17589i −0.146569 0.253865i
\(800\) 0 0
\(801\) −0.106810 0.0533440i −0.00377393 0.00188482i
\(802\) 0 0
\(803\) −35.0354 + 60.6831i −1.23637 + 2.14146i
\(804\) 0 0
\(805\) 12.6158 + 5.13138i 0.444648 + 0.180857i
\(806\) 0 0
\(807\) 5.45270 + 1.28590i 0.191944 + 0.0452657i
\(808\) 0 0
\(809\) 21.1074 + 12.1864i 0.742096 + 0.428449i 0.822831 0.568286i \(-0.192393\pi\)
−0.0807348 + 0.996736i \(0.525727\pi\)
\(810\) 0 0
\(811\) 35.2739i 1.23863i 0.785141 + 0.619317i \(0.212591\pi\)
−0.785141 + 0.619317i \(0.787409\pi\)
\(812\) 0 0
\(813\) 30.0979 + 28.3326i 1.05558 + 0.993668i
\(814\) 0 0
\(815\) 6.52369 + 11.2994i 0.228515 + 0.395799i
\(816\) 0 0
\(817\) 4.43776 + 2.56214i 0.155257 + 0.0896379i
\(818\) 0 0
\(819\) 8.04073 23.7927i 0.280966 0.831384i
\(820\) 0 0
\(821\) −16.8999 9.75719i −0.589812 0.340528i 0.175211 0.984531i \(-0.443939\pi\)
−0.765023 + 0.644003i \(0.777273\pi\)
\(822\) 0 0
\(823\) −15.8285 27.4158i −0.551747 0.955653i −0.998149 0.0608208i \(-0.980628\pi\)
0.446402 0.894833i \(-0.352705\pi\)
\(824\) 0 0
\(825\) −39.7658 + 11.9534i −1.38447 + 0.416164i
\(826\) 0 0
\(827\) 24.4749i 0.851075i −0.904941 0.425537i \(-0.860085\pi\)
0.904941 0.425537i \(-0.139915\pi\)
\(828\) 0 0
\(829\) 0.846010 + 0.488444i 0.0293831 + 0.0169644i 0.514620 0.857419i \(-0.327933\pi\)
−0.485236 + 0.874383i \(0.661266\pi\)
\(830\) 0 0
\(831\) −3.82354 12.7199i −0.132637 0.441249i
\(832\) 0 0
\(833\) −5.89681 + 1.66114i −0.204312 + 0.0575552i
\(834\) 0 0
\(835\) −4.17409 + 7.22974i −0.144450 + 0.250196i
\(836\) 0 0
\(837\) 23.7826 + 4.11158i 0.822047 + 0.142117i
\(838\) 0 0
\(839\) −19.6920 34.1075i −0.679843 1.17752i −0.975028 0.222083i \(-0.928714\pi\)
0.295184 0.955440i \(-0.404619\pi\)
\(840\) 0 0
\(841\) 1.92983 3.34257i 0.0665459 0.115261i
\(842\) 0 0
\(843\) 12.7989 + 12.0482i 0.440818 + 0.414963i
\(844\) 0 0
\(845\) 0.931704 + 1.61376i 0.0320516 + 0.0555150i
\(846\) 0 0
\(847\) −15.9797 + 39.2869i −0.549067 + 1.34991i
\(848\) 0 0
\(849\) −17.2384 16.2273i −0.591620 0.556919i
\(850\) 0 0
\(851\) 17.7708 10.2600i 0.609175 0.351707i
\(852\) 0 0
\(853\) −21.3507 + 12.3268i −0.731033 + 0.422062i −0.818800 0.574079i \(-0.805360\pi\)
0.0877672 + 0.996141i \(0.472027\pi\)
\(854\) 0 0
\(855\) 1.36935 2.74182i 0.0468309 0.0937684i
\(856\) 0 0
\(857\) 22.8290 0.779823 0.389911 0.920852i \(-0.372506\pi\)
0.389911 + 0.920852i \(0.372506\pi\)
\(858\) 0 0
\(859\) 47.7150i 1.62801i 0.580855 + 0.814007i \(0.302718\pi\)
−0.580855 + 0.814007i \(0.697282\pi\)
\(860\) 0 0
\(861\) −18.7101 + 26.3246i −0.637640 + 0.897142i
\(862\) 0 0
\(863\) 18.0645 10.4296i 0.614923 0.355026i −0.159967 0.987122i \(-0.551139\pi\)
0.774890 + 0.632096i \(0.217805\pi\)
\(864\) 0 0
\(865\) 1.83607 3.18017i 0.0624283 0.108129i
\(866\) 0 0
\(867\) −19.2731 + 20.4739i −0.654548 + 0.695331i
\(868\) 0 0
\(869\) −43.6601 25.2072i −1.48107 0.855094i
\(870\) 0 0
\(871\) 38.2831i 1.29717i
\(872\) 0 0
\(873\) −9.20437 + 18.4297i −0.311521 + 0.623751i
\(874\) 0 0
\(875\) 5.97451 14.6887i 0.201975 0.496567i
\(876\) 0 0
\(877\) −23.5436 −0.795011 −0.397506 0.917600i \(-0.630124\pi\)
−0.397506 + 0.917600i \(0.630124\pi\)
\(878\) 0 0
\(879\) −9.13380 2.15400i −0.308075 0.0726527i
\(880\) 0 0
\(881\) −52.5975 −1.77205 −0.886027 0.463633i \(-0.846546\pi\)
−0.886027 + 0.463633i \(0.846546\pi\)
\(882\) 0 0
\(883\) 33.6815 1.13347 0.566737 0.823899i \(-0.308206\pi\)
0.566737 + 0.823899i \(0.308206\pi\)
\(884\) 0 0
\(885\) 4.71347 5.00715i 0.158441 0.168314i
\(886\) 0 0
\(887\) −15.0228 −0.504415 −0.252208 0.967673i \(-0.581157\pi\)
−0.252208 + 0.967673i \(0.581157\pi\)
\(888\) 0 0
\(889\) 10.1087 24.8529i 0.339036 0.833540i
\(890\) 0 0
\(891\) −43.0470 18.3415i −1.44213 0.614464i
\(892\) 0 0
\(893\) 15.5101i 0.519026i
\(894\) 0 0
\(895\) 9.00059 + 5.19649i 0.300856 + 0.173700i
\(896\) 0 0
\(897\) −44.0323 10.3840i −1.47019 0.346713i
\(898\) 0 0
\(899\) −13.3129 + 23.0587i −0.444011 + 0.769050i
\(900\) 0 0
\(901\) −1.00812 + 0.582038i −0.0335853 + 0.0193905i
\(902\) 0 0
\(903\) 5.96631 + 13.0334i 0.198546 + 0.433726i
\(904\) 0 0
\(905\) 0.288542i 0.00959144i
\(906\) 0 0
\(907\) 11.6949 0.388324 0.194162 0.980969i \(-0.437801\pi\)
0.194162 + 0.980969i \(0.437801\pi\)
\(908\) 0 0
\(909\) −22.3398 + 14.7645i −0.740964 + 0.489709i
\(910\) 0 0
\(911\) 13.9026 8.02666i 0.460613 0.265935i −0.251689 0.967808i \(-0.580986\pi\)
0.712302 + 0.701873i \(0.247653\pi\)
\(912\) 0 0
\(913\) 1.72925 0.998380i 0.0572297 0.0330416i
\(914\) 0 0
\(915\) 2.76530 11.7259i 0.0914179 0.387647i
\(916\) 0 0
\(917\) −21.6887 + 53.3230i −0.716225 + 1.76088i
\(918\) 0 0
\(919\) −9.26860 16.0537i −0.305743 0.529562i 0.671683 0.740838i \(-0.265572\pi\)
−0.977426 + 0.211276i \(0.932238\pi\)
\(920\) 0 0
\(921\) 5.91066 1.77671i 0.194763 0.0585447i
\(922\) 0 0
\(923\) −16.7480 + 29.0084i −0.551268 + 0.954824i
\(924\) 0 0
\(925\) −5.73122 9.92676i −0.188441 0.326390i
\(926\) 0 0
\(927\) −14.6699 22.1967i −0.481824 0.729034i
\(928\) 0 0
\(929\) −26.8357 + 46.4808i −0.880451 + 1.52499i −0.0296102 + 0.999562i \(0.509427\pi\)
−0.850841 + 0.525424i \(0.823907\pi\)
\(930\) 0 0
\(931\) −11.1138 2.82613i −0.364240 0.0926227i
\(932\) 0 0
\(933\) 13.3734 14.2067i 0.437827 0.465107i
\(934\) 0 0
\(935\) 2.45732 + 1.41873i 0.0803630 + 0.0463976i
\(936\) 0 0
\(937\) 16.7752i 0.548023i 0.961726 + 0.274012i \(0.0883506\pi\)
−0.961726 + 0.274012i \(0.911649\pi\)
\(938\) 0 0
\(939\) −4.54333 + 19.2655i −0.148266 + 0.628704i
\(940\) 0 0
\(941\) 18.5343 + 32.1023i 0.604200 + 1.04651i 0.992177 + 0.124837i \(0.0398406\pi\)
−0.387977 + 0.921669i \(0.626826\pi\)
\(942\) 0 0
\(943\) 50.3827 + 29.0885i 1.64069 + 0.947250i
\(944\) 0 0
\(945\) 7.56547 4.03244i 0.246105 0.131175i
\(946\) 0 0
\(947\) −2.73735 1.58041i −0.0889520 0.0513565i 0.454864 0.890561i \(-0.349688\pi\)
−0.543816 + 0.839204i \(0.683021\pi\)
\(948\) 0 0
\(949\) 21.3225 + 36.9316i 0.692157 + 1.19885i
\(950\) 0 0
\(951\) −7.73999 + 32.8205i −0.250986 + 1.06428i
\(952\) 0 0
\(953\) 38.9680i 1.26230i −0.775662 0.631149i \(-0.782584\pi\)
0.775662 0.631149i \(-0.217416\pi\)
\(954\) 0 0
\(955\) −7.36550 4.25247i −0.238342 0.137607i
\(956\) 0 0
\(957\) 35.3819 37.5865i 1.14374 1.21500i
\(958\) 0 0
\(959\) 0.963445 + 0.391874i 0.0311113 + 0.0126543i
\(960\) 0 0
\(961\) −4.71266 + 8.16256i −0.152021 + 0.263308i
\(962\) 0 0
\(963\) −4.09119 + 8.19171i −0.131837 + 0.263974i
\(964\) 0 0
\(965\) −3.57902 6.19905i −0.115213 0.199555i
\(966\) 0 0
\(967\) 7.29560 12.6363i 0.234611 0.406357i −0.724549 0.689223i \(-0.757952\pi\)
0.959159 + 0.282866i \(0.0912852\pi\)
\(968\) 0 0
\(969\) 2.37820 0.714875i 0.0763988 0.0229651i
\(970\) 0 0
\(971\) −11.3537 19.6652i −0.364358 0.631086i 0.624315 0.781172i \(-0.285378\pi\)
−0.988673 + 0.150087i \(0.952045\pi\)
\(972\) 0 0
\(973\) 37.7800 29.3752i 1.21117 0.941727i
\(974\) 0 0
\(975\) −5.80052 + 24.5964i −0.185765 + 0.787716i
\(976\) 0 0
\(977\) 35.5426 20.5206i 1.13711 0.656511i 0.191397 0.981513i \(-0.438698\pi\)
0.945713 + 0.325002i \(0.105365\pi\)
\(978\) 0 0
\(979\) 0.179185 0.103453i 0.00572678 0.00330636i
\(980\) 0 0
\(981\) −2.01056 33.2434i −0.0641923 1.06138i
\(982\) 0 0
\(983\) −20.9305 −0.667579 −0.333790 0.942648i \(-0.608328\pi\)
−0.333790 + 0.942648i \(0.608328\pi\)
\(984\) 0 0
\(985\) 2.98194i 0.0950125i
\(986\) 0 0
\(987\) 25.1349 35.3640i 0.800051 1.12565i
\(988\) 0 0
\(989\) 22.3614 12.9104i 0.711051 0.410525i
\(990\) 0 0
\(991\) −26.9709 + 46.7149i −0.856758 + 1.48395i 0.0182456 + 0.999834i \(0.494192\pi\)
−0.875004 + 0.484116i \(0.839141\pi\)
\(992\) 0 0
\(993\) 45.4621 + 10.7212i 1.44269 + 0.340227i
\(994\) 0 0
\(995\) 4.91290 + 2.83647i 0.155749 + 0.0899220i
\(996\) 0 0
\(997\) 3.21654i 0.101869i 0.998702 + 0.0509345i \(0.0162200\pi\)
−0.998702 + 0.0509345i \(0.983780\pi\)
\(998\) 0 0
\(999\) 2.20042 12.7279i 0.0696183 0.402693i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.e.689.14 48
3.2 odd 2 3024.2.df.e.17.14 48
4.3 odd 2 504.2.cx.a.185.11 yes 48
7.5 odd 6 1008.2.ca.e.257.22 48
9.2 odd 6 1008.2.ca.e.353.22 48
9.7 even 3 3024.2.ca.e.2033.14 48
12.11 even 2 1512.2.cx.a.17.14 48
21.5 even 6 3024.2.ca.e.2609.14 48
28.19 even 6 504.2.bs.a.257.3 48
36.7 odd 6 1512.2.bs.a.521.14 48
36.11 even 6 504.2.bs.a.353.3 yes 48
63.47 even 6 inner 1008.2.df.e.929.14 48
63.61 odd 6 3024.2.df.e.1601.14 48
84.47 odd 6 1512.2.bs.a.1097.14 48
252.47 odd 6 504.2.cx.a.425.11 yes 48
252.187 even 6 1512.2.cx.a.89.14 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.3 48 28.19 even 6
504.2.bs.a.353.3 yes 48 36.11 even 6
504.2.cx.a.185.11 yes 48 4.3 odd 2
504.2.cx.a.425.11 yes 48 252.47 odd 6
1008.2.ca.e.257.22 48 7.5 odd 6
1008.2.ca.e.353.22 48 9.2 odd 6
1008.2.df.e.689.14 48 1.1 even 1 trivial
1008.2.df.e.929.14 48 63.47 even 6 inner
1512.2.bs.a.521.14 48 36.7 odd 6
1512.2.bs.a.1097.14 48 84.47 odd 6
1512.2.cx.a.17.14 48 12.11 even 2
1512.2.cx.a.89.14 48 252.187 even 6
3024.2.ca.e.2033.14 48 9.7 even 3
3024.2.ca.e.2609.14 48 21.5 even 6
3024.2.df.e.17.14 48 3.2 odd 2
3024.2.df.e.1601.14 48 63.61 odd 6