Properties

Label 1008.2.ca.e.257.22
Level $1008$
Weight $2$
Character 1008.257
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(257,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.22
Character \(\chi\) \(=\) 1008.257
Dual form 1008.2.ca.e.353.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.68581 + 0.397560i) q^{3} +(-0.311798 - 0.540051i) q^{5} +(-2.62086 - 0.362103i) q^{7} +(2.68389 + 1.34042i) q^{9} +(4.50253 + 2.59954i) q^{11} +(2.74023 + 1.58207i) q^{13} +(-0.310929 - 1.03438i) q^{15} +(-0.437594 - 0.757935i) q^{17} +(1.41874 + 0.819107i) q^{19} +(-4.27430 - 1.65238i) q^{21} +(-7.14886 + 4.12740i) q^{23} +(2.30556 - 3.99335i) q^{25} +(3.99163 + 3.32670i) q^{27} +(4.96435 - 2.86617i) q^{29} +4.64486i q^{31} +(6.55693 + 6.17234i) q^{33} +(0.621624 + 1.52830i) q^{35} +(1.24291 - 2.15278i) q^{37} +(3.99054 + 3.75648i) q^{39} +(3.52382 - 6.10344i) q^{41} +(1.56398 + 2.70890i) q^{43} +(-0.112939 - 1.86738i) q^{45} +9.46768 q^{47} +(6.73776 + 1.89804i) q^{49} +(-0.436375 - 1.45170i) q^{51} +(1.15189 - 0.665044i) q^{53} -3.24212i q^{55} +(2.06607 + 1.94489i) q^{57} +6.36667 q^{59} +11.1541i q^{61} +(-6.54872 - 4.48489i) q^{63} -1.97315i q^{65} -12.0990 q^{67} +(-13.6925 + 4.11590i) q^{69} -10.5861i q^{71} +(-11.6719 + 6.73878i) q^{73} +(5.47433 - 5.81542i) q^{75} +(-10.8592 - 8.44339i) q^{77} -9.69679 q^{79} +(5.40655 + 7.19508i) q^{81} +(-0.192030 - 0.332606i) q^{83} +(-0.272882 + 0.472646i) q^{85} +(9.50841 - 2.85818i) q^{87} +(-0.0198983 + 0.0344648i) q^{89} +(-6.60888 - 5.13864i) q^{91} +(-1.84661 + 7.83033i) q^{93} -1.02159i q^{95} +(-5.94681 + 3.43339i) q^{97} +(8.59984 + 13.0122i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} - 8 q^{15} + 8 q^{21} + 12 q^{23} - 24 q^{25} + 18 q^{27} + 18 q^{29} + 10 q^{39} + 6 q^{41} + 6 q^{43} + 6 q^{45} - 36 q^{47} + 6 q^{49} + 12 q^{51} + 12 q^{53} + 4 q^{57} - 46 q^{63} + 54 q^{75}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.68581 + 0.397560i 0.973301 + 0.229531i
\(4\) 0 0
\(5\) −0.311798 0.540051i −0.139440 0.241518i 0.787845 0.615874i \(-0.211197\pi\)
−0.927285 + 0.374356i \(0.877864\pi\)
\(6\) 0 0
\(7\) −2.62086 0.362103i −0.990590 0.136862i
\(8\) 0 0
\(9\) 2.68389 + 1.34042i 0.894631 + 0.446806i
\(10\) 0 0
\(11\) 4.50253 + 2.59954i 1.35756 + 0.783790i 0.989295 0.145930i \(-0.0466173\pi\)
0.368269 + 0.929719i \(0.379951\pi\)
\(12\) 0 0
\(13\) 2.74023 + 1.58207i 0.760004 + 0.438788i 0.829297 0.558808i \(-0.188741\pi\)
−0.0692932 + 0.997596i \(0.522074\pi\)
\(14\) 0 0
\(15\) −0.310929 1.03438i −0.0802816 0.267076i
\(16\) 0 0
\(17\) −0.437594 0.757935i −0.106132 0.183826i 0.808068 0.589089i \(-0.200513\pi\)
−0.914200 + 0.405263i \(0.867180\pi\)
\(18\) 0 0
\(19\) 1.41874 + 0.819107i 0.325480 + 0.187916i 0.653833 0.756639i \(-0.273160\pi\)
−0.328352 + 0.944555i \(0.606493\pi\)
\(20\) 0 0
\(21\) −4.27430 1.65238i −0.932728 0.360580i
\(22\) 0 0
\(23\) −7.14886 + 4.12740i −1.49064 + 0.860622i −0.999943 0.0107077i \(-0.996592\pi\)
−0.490698 + 0.871330i \(0.663258\pi\)
\(24\) 0 0
\(25\) 2.30556 3.99335i 0.461113 0.798671i
\(26\) 0 0
\(27\) 3.99163 + 3.32670i 0.768189 + 0.640223i
\(28\) 0 0
\(29\) 4.96435 2.86617i 0.921856 0.532234i 0.0376295 0.999292i \(-0.488019\pi\)
0.884227 + 0.467058i \(0.154686\pi\)
\(30\) 0 0
\(31\) 4.64486i 0.834241i 0.908851 + 0.417120i \(0.136961\pi\)
−0.908851 + 0.417120i \(0.863039\pi\)
\(32\) 0 0
\(33\) 6.55693 + 6.17234i 1.14141 + 1.07447i
\(34\) 0 0
\(35\) 0.621624 + 1.52830i 0.105074 + 0.258329i
\(36\) 0 0
\(37\) 1.24291 2.15278i 0.204333 0.353916i −0.745587 0.666408i \(-0.767831\pi\)
0.949920 + 0.312493i \(0.101164\pi\)
\(38\) 0 0
\(39\) 3.99054 + 3.75648i 0.638997 + 0.601518i
\(40\) 0 0
\(41\) 3.52382 6.10344i 0.550329 0.953198i −0.447922 0.894073i \(-0.647836\pi\)
0.998251 0.0591249i \(-0.0188310\pi\)
\(42\) 0 0
\(43\) 1.56398 + 2.70890i 0.238505 + 0.413103i 0.960286 0.279019i \(-0.0900093\pi\)
−0.721780 + 0.692122i \(0.756676\pi\)
\(44\) 0 0
\(45\) −0.112939 1.86738i −0.0168360 0.278372i
\(46\) 0 0
\(47\) 9.46768 1.38100 0.690502 0.723331i \(-0.257390\pi\)
0.690502 + 0.723331i \(0.257390\pi\)
\(48\) 0 0
\(49\) 6.73776 + 1.89804i 0.962537 + 0.271149i
\(50\) 0 0
\(51\) −0.436375 1.45170i −0.0611047 0.203279i
\(52\) 0 0
\(53\) 1.15189 0.665044i 0.158224 0.0913508i −0.418797 0.908080i \(-0.637548\pi\)
0.577021 + 0.816729i \(0.304215\pi\)
\(54\) 0 0
\(55\) 3.24212i 0.437168i
\(56\) 0 0
\(57\) 2.06607 + 1.94489i 0.273658 + 0.257607i
\(58\) 0 0
\(59\) 6.36667 0.828870 0.414435 0.910079i \(-0.363979\pi\)
0.414435 + 0.910079i \(0.363979\pi\)
\(60\) 0 0
\(61\) 11.1541i 1.42814i 0.700075 + 0.714069i \(0.253150\pi\)
−0.700075 + 0.714069i \(0.746850\pi\)
\(62\) 0 0
\(63\) −6.54872 4.48489i −0.825061 0.565043i
\(64\) 0 0
\(65\) 1.97315i 0.244739i
\(66\) 0 0
\(67\) −12.0990 −1.47813 −0.739065 0.673634i \(-0.764733\pi\)
−0.739065 + 0.673634i \(0.764733\pi\)
\(68\) 0 0
\(69\) −13.6925 + 4.11590i −1.64838 + 0.495496i
\(70\) 0 0
\(71\) 10.5861i 1.25634i −0.778076 0.628171i \(-0.783804\pi\)
0.778076 0.628171i \(-0.216196\pi\)
\(72\) 0 0
\(73\) −11.6719 + 6.73878i −1.36609 + 0.788714i −0.990427 0.138041i \(-0.955920\pi\)
−0.375666 + 0.926755i \(0.622586\pi\)
\(74\) 0 0
\(75\) 5.47433 5.81542i 0.632122 0.671507i
\(76\) 0 0
\(77\) −10.8592 8.44339i −1.23752 0.962214i
\(78\) 0 0
\(79\) −9.69679 −1.09097 −0.545487 0.838119i \(-0.683655\pi\)
−0.545487 + 0.838119i \(0.683655\pi\)
\(80\) 0 0
\(81\) 5.40655 + 7.19508i 0.600728 + 0.799453i
\(82\) 0 0
\(83\) −0.192030 0.332606i −0.0210781 0.0365083i 0.855294 0.518143i \(-0.173377\pi\)
−0.876372 + 0.481635i \(0.840043\pi\)
\(84\) 0 0
\(85\) −0.272882 + 0.472646i −0.0295982 + 0.0512656i
\(86\) 0 0
\(87\) 9.50841 2.85818i 1.01941 0.306429i
\(88\) 0 0
\(89\) −0.0198983 + 0.0344648i −0.00210921 + 0.00365326i −0.867078 0.498172i \(-0.834005\pi\)
0.864969 + 0.501826i \(0.167338\pi\)
\(90\) 0 0
\(91\) −6.60888 5.13864i −0.692799 0.538675i
\(92\) 0 0
\(93\) −1.84661 + 7.83033i −0.191484 + 0.811968i
\(94\) 0 0
\(95\) 1.02159i 0.104812i
\(96\) 0 0
\(97\) −5.94681 + 3.43339i −0.603807 + 0.348608i −0.770538 0.637394i \(-0.780012\pi\)
0.166731 + 0.986002i \(0.446679\pi\)
\(98\) 0 0
\(99\) 8.59984 + 13.0122i 0.864316 + 1.30777i
\(100\) 0 0
\(101\) 4.46299 7.73012i 0.444084 0.769176i −0.553904 0.832581i \(-0.686863\pi\)
0.997988 + 0.0634046i \(0.0201959\pi\)
\(102\) 0 0
\(103\) −7.68060 + 4.43439i −0.756792 + 0.436934i −0.828143 0.560517i \(-0.810602\pi\)
0.0713510 + 0.997451i \(0.477269\pi\)
\(104\) 0 0
\(105\) 0.440348 + 2.82355i 0.0429736 + 0.275550i
\(106\) 0 0
\(107\) −2.64326 1.52609i −0.255534 0.147532i 0.366762 0.930315i \(-0.380466\pi\)
−0.622295 + 0.782782i \(0.713800\pi\)
\(108\) 0 0
\(109\) −5.55069 9.61408i −0.531660 0.920862i −0.999317 0.0369519i \(-0.988235\pi\)
0.467657 0.883910i \(-0.345098\pi\)
\(110\) 0 0
\(111\) 2.95117 3.13505i 0.280113 0.297566i
\(112\) 0 0
\(113\) −3.13836 1.81193i −0.295232 0.170452i 0.345067 0.938578i \(-0.387856\pi\)
−0.640299 + 0.768126i \(0.721190\pi\)
\(114\) 0 0
\(115\) 4.45801 + 2.57383i 0.415711 + 0.240011i
\(116\) 0 0
\(117\) 5.23385 + 7.91918i 0.483869 + 0.732128i
\(118\) 0 0
\(119\) 0.872420 + 2.14489i 0.0799746 + 0.196622i
\(120\) 0 0
\(121\) 8.01518 + 13.8827i 0.728653 + 1.26206i
\(122\) 0 0
\(123\) 8.36697 8.88830i 0.754425 0.801431i
\(124\) 0 0
\(125\) −5.99347 −0.536072
\(126\) 0 0
\(127\) 10.1408 0.899852 0.449926 0.893066i \(-0.351450\pi\)
0.449926 + 0.893066i \(0.351450\pi\)
\(128\) 0 0
\(129\) 1.55962 + 5.18846i 0.137317 + 0.456818i
\(130\) 0 0
\(131\) −10.8788 18.8426i −0.950484 1.64629i −0.744380 0.667756i \(-0.767255\pi\)
−0.206103 0.978530i \(-0.566078\pi\)
\(132\) 0 0
\(133\) −3.42170 2.66049i −0.296699 0.230694i
\(134\) 0 0
\(135\) 0.552001 3.19294i 0.0475087 0.274804i
\(136\) 0 0
\(137\) −0.340450 0.196559i −0.0290866 0.0167932i 0.485386 0.874300i \(-0.338679\pi\)
−0.514473 + 0.857507i \(0.672012\pi\)
\(138\) 0 0
\(139\) −15.6647 9.04400i −1.32866 0.767102i −0.343568 0.939128i \(-0.611635\pi\)
−0.985092 + 0.172026i \(0.944969\pi\)
\(140\) 0 0
\(141\) 15.9607 + 3.76397i 1.34413 + 0.316984i
\(142\) 0 0
\(143\) 8.22532 + 14.2467i 0.687836 + 1.19137i
\(144\) 0 0
\(145\) −3.09575 1.78733i −0.257088 0.148430i
\(146\) 0 0
\(147\) 10.6040 + 5.87840i 0.874602 + 0.484842i
\(148\) 0 0
\(149\) −8.87748 + 5.12542i −0.727272 + 0.419891i −0.817423 0.576038i \(-0.804598\pi\)
0.0901515 + 0.995928i \(0.471265\pi\)
\(150\) 0 0
\(151\) 11.9006 20.6124i 0.968457 1.67742i 0.268432 0.963299i \(-0.413495\pi\)
0.700025 0.714118i \(-0.253172\pi\)
\(152\) 0 0
\(153\) −0.158505 2.62078i −0.0128143 0.211877i
\(154\) 0 0
\(155\) 2.50846 1.44826i 0.201484 0.116327i
\(156\) 0 0
\(157\) 11.5080i 0.918442i −0.888322 0.459221i \(-0.848129\pi\)
0.888322 0.459221i \(-0.151871\pi\)
\(158\) 0 0
\(159\) 2.20626 0.663190i 0.174968 0.0525944i
\(160\) 0 0
\(161\) 20.2307 8.22868i 1.59440 0.648511i
\(162\) 0 0
\(163\) −10.4614 + 18.1197i −0.819399 + 1.41924i 0.0867261 + 0.996232i \(0.472360\pi\)
−0.906125 + 0.423009i \(0.860974\pi\)
\(164\) 0 0
\(165\) 1.28894 5.46560i 0.100344 0.425496i
\(166\) 0 0
\(167\) −6.69358 + 11.5936i −0.517965 + 0.897141i 0.481817 + 0.876272i \(0.339977\pi\)
−0.999782 + 0.0208697i \(0.993357\pi\)
\(168\) 0 0
\(169\) −1.49408 2.58782i −0.114929 0.199063i
\(170\) 0 0
\(171\) 2.70979 + 4.10010i 0.207223 + 0.313542i
\(172\) 0 0
\(173\) −5.88865 −0.447706 −0.223853 0.974623i \(-0.571864\pi\)
−0.223853 + 0.974623i \(0.571864\pi\)
\(174\) 0 0
\(175\) −7.48856 + 9.63115i −0.566082 + 0.728046i
\(176\) 0 0
\(177\) 10.7330 + 2.53113i 0.806740 + 0.190252i
\(178\) 0 0
\(179\) 14.4333 8.33310i 1.07880 0.622845i 0.148227 0.988953i \(-0.452643\pi\)
0.930572 + 0.366109i \(0.119310\pi\)
\(180\) 0 0
\(181\) 0.462705i 0.0343926i −0.999852 0.0171963i \(-0.994526\pi\)
0.999852 0.0171963i \(-0.00547402\pi\)
\(182\) 0 0
\(183\) −4.43443 + 18.8037i −0.327803 + 1.39001i
\(184\) 0 0
\(185\) −1.55015 −0.113969
\(186\) 0 0
\(187\) 4.55017i 0.332741i
\(188\) 0 0
\(189\) −9.25687 10.1642i −0.673338 0.739335i
\(190\) 0 0
\(191\) 13.6385i 0.986850i −0.869788 0.493425i \(-0.835745\pi\)
0.869788 0.493425i \(-0.164255\pi\)
\(192\) 0 0
\(193\) −11.4787 −0.826251 −0.413126 0.910674i \(-0.635563\pi\)
−0.413126 + 0.910674i \(0.635563\pi\)
\(194\) 0 0
\(195\) 0.784447 3.32636i 0.0561754 0.238205i
\(196\) 0 0
\(197\) 4.78184i 0.340692i 0.985384 + 0.170346i \(0.0544885\pi\)
−0.985384 + 0.170346i \(0.945511\pi\)
\(198\) 0 0
\(199\) −7.87833 + 4.54856i −0.558480 + 0.322439i −0.752535 0.658552i \(-0.771169\pi\)
0.194055 + 0.980991i \(0.437836\pi\)
\(200\) 0 0
\(201\) −20.3966 4.81009i −1.43867 0.339277i
\(202\) 0 0
\(203\) −14.0487 + 5.71420i −0.986024 + 0.401058i
\(204\) 0 0
\(205\) −4.39489 −0.306952
\(206\) 0 0
\(207\) −24.7192 + 1.49502i −1.71810 + 0.103911i
\(208\) 0 0
\(209\) 4.25860 + 7.37611i 0.294573 + 0.510216i
\(210\) 0 0
\(211\) −1.47477 + 2.55437i −0.101527 + 0.175850i −0.912314 0.409491i \(-0.865706\pi\)
0.810787 + 0.585341i \(0.199040\pi\)
\(212\) 0 0
\(213\) 4.20862 17.8462i 0.288370 1.22280i
\(214\) 0 0
\(215\) 0.975294 1.68926i 0.0665145 0.115207i
\(216\) 0 0
\(217\) 1.68192 12.1735i 0.114176 0.826391i
\(218\) 0 0
\(219\) −22.3556 + 6.72000i −1.51065 + 0.454095i
\(220\) 0 0
\(221\) 2.76923i 0.186278i
\(222\) 0 0
\(223\) 20.4564 11.8105i 1.36986 0.790891i 0.378954 0.925416i \(-0.376284\pi\)
0.990910 + 0.134524i \(0.0429506\pi\)
\(224\) 0 0
\(225\) 11.5407 7.62731i 0.769377 0.508487i
\(226\) 0 0
\(227\) 9.02534 15.6323i 0.599033 1.03755i −0.393932 0.919140i \(-0.628885\pi\)
0.992964 0.118415i \(-0.0377814\pi\)
\(228\) 0 0
\(229\) −10.5212 + 6.07439i −0.695258 + 0.401407i −0.805579 0.592489i \(-0.798145\pi\)
0.110321 + 0.993896i \(0.464812\pi\)
\(230\) 0 0
\(231\) −14.9497 18.5511i −0.983620 1.22057i
\(232\) 0 0
\(233\) −3.39111 1.95786i −0.222159 0.128264i 0.384791 0.923004i \(-0.374274\pi\)
−0.606950 + 0.794740i \(0.707607\pi\)
\(234\) 0 0
\(235\) −2.95201 5.11303i −0.192568 0.333537i
\(236\) 0 0
\(237\) −16.3469 3.85506i −1.06185 0.250413i
\(238\) 0 0
\(239\) −10.3996 6.00423i −0.672696 0.388381i 0.124401 0.992232i \(-0.460299\pi\)
−0.797097 + 0.603851i \(0.793632\pi\)
\(240\) 0 0
\(241\) 24.4958 + 14.1427i 1.57792 + 0.911010i 0.995150 + 0.0983690i \(0.0313626\pi\)
0.582765 + 0.812641i \(0.301971\pi\)
\(242\) 0 0
\(243\) 6.25393 + 14.2789i 0.401190 + 0.915995i
\(244\) 0 0
\(245\) −1.07578 4.23054i −0.0687294 0.270279i
\(246\) 0 0
\(247\) 2.59178 + 4.48909i 0.164911 + 0.285634i
\(248\) 0 0
\(249\) −0.191495 0.637054i −0.0121355 0.0403716i
\(250\) 0 0
\(251\) −12.0425 −0.760117 −0.380059 0.924962i \(-0.624096\pi\)
−0.380059 + 0.924962i \(0.624096\pi\)
\(252\) 0 0
\(253\) −42.9173 −2.69819
\(254\) 0 0
\(255\) −0.647932 + 0.688303i −0.0405751 + 0.0431032i
\(256\) 0 0
\(257\) 7.32521 + 12.6876i 0.456934 + 0.791433i 0.998797 0.0490340i \(-0.0156143\pi\)
−0.541863 + 0.840467i \(0.682281\pi\)
\(258\) 0 0
\(259\) −4.03702 + 5.19207i −0.250848 + 0.322620i
\(260\) 0 0
\(261\) 17.1656 1.03818i 1.06253 0.0642616i
\(262\) 0 0
\(263\) −4.96349 2.86567i −0.306062 0.176705i 0.339101 0.940750i \(-0.389877\pi\)
−0.645163 + 0.764045i \(0.723210\pi\)
\(264\) 0 0
\(265\) −0.718314 0.414719i −0.0441257 0.0254760i
\(266\) 0 0
\(267\) −0.0472464 + 0.0501902i −0.00289144 + 0.00307159i
\(268\) 0 0
\(269\) −1.61724 2.80114i −0.0986047 0.170788i 0.812503 0.582957i \(-0.198105\pi\)
−0.911107 + 0.412169i \(0.864771\pi\)
\(270\) 0 0
\(271\) 20.6677 + 11.9325i 1.25548 + 0.724849i 0.972192 0.234187i \(-0.0752428\pi\)
0.283284 + 0.959036i \(0.408576\pi\)
\(272\) 0 0
\(273\) −9.09838 11.2902i −0.550659 0.683312i
\(274\) 0 0
\(275\) 20.7617 11.9868i 1.25198 0.722831i
\(276\) 0 0
\(277\) 3.83423 6.64107i 0.230376 0.399023i −0.727543 0.686063i \(-0.759338\pi\)
0.957919 + 0.287039i \(0.0926710\pi\)
\(278\) 0 0
\(279\) −6.22605 + 12.4663i −0.372744 + 0.746337i
\(280\) 0 0
\(281\) 8.78880 5.07422i 0.524296 0.302702i −0.214395 0.976747i \(-0.568778\pi\)
0.738690 + 0.674045i \(0.235445\pi\)
\(282\) 0 0
\(283\) 13.6685i 0.812510i 0.913760 + 0.406255i \(0.133166\pi\)
−0.913760 + 0.406255i \(0.866834\pi\)
\(284\) 0 0
\(285\) 0.406141 1.72220i 0.0240577 0.102014i
\(286\) 0 0
\(287\) −11.4455 + 14.7203i −0.675607 + 0.868909i
\(288\) 0 0
\(289\) 8.11702 14.0591i 0.477472 0.827006i
\(290\) 0 0
\(291\) −11.3902 + 3.42382i −0.667702 + 0.200708i
\(292\) 0 0
\(293\) 2.70903 4.69218i 0.158263 0.274120i −0.775979 0.630758i \(-0.782744\pi\)
0.934242 + 0.356639i \(0.116077\pi\)
\(294\) 0 0
\(295\) −1.98512 3.43833i −0.115578 0.200187i
\(296\) 0 0
\(297\) 9.32455 + 25.3549i 0.541065 + 1.47124i
\(298\) 0 0
\(299\) −26.1194 −1.51052
\(300\) 0 0
\(301\) −3.11807 7.66595i −0.179723 0.441858i
\(302\) 0 0
\(303\) 10.5969 11.2572i 0.608777 0.646709i
\(304\) 0 0
\(305\) 6.02379 3.47784i 0.344921 0.199140i
\(306\) 0 0
\(307\) 3.56336i 0.203372i 0.994817 + 0.101686i \(0.0324236\pi\)
−0.994817 + 0.101686i \(0.967576\pi\)
\(308\) 0 0
\(309\) −14.7109 + 4.42204i −0.836876 + 0.251561i
\(310\) 0 0
\(311\) −11.2647 −0.638762 −0.319381 0.947626i \(-0.603475\pi\)
−0.319381 + 0.947626i \(0.603475\pi\)
\(312\) 0 0
\(313\) 11.4280i 0.645950i 0.946407 + 0.322975i \(0.104683\pi\)
−0.946407 + 0.322975i \(0.895317\pi\)
\(314\) 0 0
\(315\) −0.380187 + 4.93502i −0.0214211 + 0.278057i
\(316\) 0 0
\(317\) 19.4687i 1.09347i −0.837305 0.546736i \(-0.815870\pi\)
0.837305 0.546736i \(-0.184130\pi\)
\(318\) 0 0
\(319\) 29.8028 1.66864
\(320\) 0 0
\(321\) −3.84932 3.62354i −0.214848 0.202247i
\(322\) 0 0
\(323\) 1.43375i 0.0797758i
\(324\) 0 0
\(325\) 12.6356 7.29515i 0.700895 0.404662i
\(326\) 0 0
\(327\) −5.53522 18.4142i −0.306098 1.01831i
\(328\) 0 0
\(329\) −24.8134 3.42828i −1.36801 0.189007i
\(330\) 0 0
\(331\) −26.9675 −1.48227 −0.741135 0.671356i \(-0.765712\pi\)
−0.741135 + 0.671356i \(0.765712\pi\)
\(332\) 0 0
\(333\) 6.22147 4.11182i 0.340935 0.225326i
\(334\) 0 0
\(335\) 3.77245 + 6.53408i 0.206111 + 0.356995i
\(336\) 0 0
\(337\) 0.993296 1.72044i 0.0541083 0.0937183i −0.837703 0.546127i \(-0.816102\pi\)
0.891811 + 0.452408i \(0.149435\pi\)
\(338\) 0 0
\(339\) −4.57032 4.30226i −0.248226 0.233666i
\(340\) 0 0
\(341\) −12.0745 + 20.9136i −0.653869 + 1.13254i
\(342\) 0 0
\(343\) −16.9714 7.41426i −0.916370 0.400332i
\(344\) 0 0
\(345\) 6.49209 + 6.11131i 0.349522 + 0.329022i
\(346\) 0 0
\(347\) 34.3724i 1.84521i −0.385752 0.922603i \(-0.626058\pi\)
0.385752 0.922603i \(-0.373942\pi\)
\(348\) 0 0
\(349\) −25.3935 + 14.6609i −1.35928 + 0.784781i −0.989527 0.144348i \(-0.953891\pi\)
−0.369754 + 0.929130i \(0.620558\pi\)
\(350\) 0 0
\(351\) 5.67491 + 15.4310i 0.302904 + 0.823645i
\(352\) 0 0
\(353\) 0.586526 1.01589i 0.0312177 0.0540706i −0.849994 0.526792i \(-0.823395\pi\)
0.881212 + 0.472721i \(0.156728\pi\)
\(354\) 0 0
\(355\) −5.71704 + 3.30074i −0.303429 + 0.175185i
\(356\) 0 0
\(357\) 0.618008 + 3.96271i 0.0327084 + 0.209729i
\(358\) 0 0
\(359\) 5.69591 + 3.28854i 0.300619 + 0.173562i 0.642721 0.766101i \(-0.277806\pi\)
−0.342102 + 0.939663i \(0.611139\pi\)
\(360\) 0 0
\(361\) −8.15813 14.1303i −0.429375 0.743699i
\(362\) 0 0
\(363\) 7.99285 + 26.5901i 0.419516 + 1.39562i
\(364\) 0 0
\(365\) 7.27856 + 4.20228i 0.380977 + 0.219957i
\(366\) 0 0
\(367\) 8.24124 + 4.75808i 0.430189 + 0.248370i 0.699427 0.714704i \(-0.253438\pi\)
−0.269238 + 0.963074i \(0.586772\pi\)
\(368\) 0 0
\(369\) 17.6387 11.6576i 0.918236 0.606869i
\(370\) 0 0
\(371\) −3.25975 + 1.32588i −0.169238 + 0.0688362i
\(372\) 0 0
\(373\) −10.3152 17.8664i −0.534098 0.925085i −0.999206 0.0398315i \(-0.987318\pi\)
0.465108 0.885254i \(-0.346015\pi\)
\(374\) 0 0
\(375\) −10.1038 2.38276i −0.521760 0.123045i
\(376\) 0 0
\(377\) 18.1380 0.934153
\(378\) 0 0
\(379\) 7.98265 0.410041 0.205020 0.978758i \(-0.434274\pi\)
0.205020 + 0.978758i \(0.434274\pi\)
\(380\) 0 0
\(381\) 17.0955 + 4.03158i 0.875827 + 0.206544i
\(382\) 0 0
\(383\) 14.0484 + 24.3326i 0.717840 + 1.24334i 0.961854 + 0.273564i \(0.0882026\pi\)
−0.244013 + 0.969772i \(0.578464\pi\)
\(384\) 0 0
\(385\) −1.17398 + 8.49714i −0.0598318 + 0.433054i
\(386\) 0 0
\(387\) 0.566503 + 9.36678i 0.0287970 + 0.476140i
\(388\) 0 0
\(389\) 28.4400 + 16.4198i 1.44196 + 0.832519i 0.997981 0.0635162i \(-0.0202314\pi\)
0.443984 + 0.896035i \(0.353565\pi\)
\(390\) 0 0
\(391\) 6.25660 + 3.61225i 0.316410 + 0.182679i
\(392\) 0 0
\(393\) −10.8485 36.0900i −0.547233 1.82050i
\(394\) 0 0
\(395\) 3.02344 + 5.23676i 0.152126 + 0.263490i
\(396\) 0 0
\(397\) 9.24672 + 5.33859i 0.464079 + 0.267936i 0.713758 0.700392i \(-0.246992\pi\)
−0.249679 + 0.968329i \(0.580325\pi\)
\(398\) 0 0
\(399\) −4.71062 5.84540i −0.235826 0.292636i
\(400\) 0 0
\(401\) −12.3658 + 7.13943i −0.617521 + 0.356526i −0.775903 0.630852i \(-0.782706\pi\)
0.158382 + 0.987378i \(0.449372\pi\)
\(402\) 0 0
\(403\) −7.34851 + 12.7280i −0.366055 + 0.634026i
\(404\) 0 0
\(405\) 2.19995 5.16323i 0.109317 0.256563i
\(406\) 0 0
\(407\) 11.1925 6.46198i 0.554791 0.320309i
\(408\) 0 0
\(409\) 8.13148i 0.402076i −0.979583 0.201038i \(-0.935569\pi\)
0.979583 0.201038i \(-0.0644314\pi\)
\(410\) 0 0
\(411\) −0.495789 0.466710i −0.0244555 0.0230211i
\(412\) 0 0
\(413\) −16.6861 2.30539i −0.821071 0.113441i
\(414\) 0 0
\(415\) −0.119750 + 0.207412i −0.00587827 + 0.0101815i
\(416\) 0 0
\(417\) −22.8121 21.4741i −1.11711 1.05159i
\(418\) 0 0
\(419\) 1.53415 2.65723i 0.0749481 0.129814i −0.826116 0.563501i \(-0.809454\pi\)
0.901064 + 0.433687i \(0.142788\pi\)
\(420\) 0 0
\(421\) 4.25752 + 7.37424i 0.207499 + 0.359398i 0.950926 0.309418i \(-0.100134\pi\)
−0.743427 + 0.668817i \(0.766801\pi\)
\(422\) 0 0
\(423\) 25.4102 + 12.6907i 1.23549 + 0.617041i
\(424\) 0 0
\(425\) −4.03560 −0.195756
\(426\) 0 0
\(427\) 4.03894 29.2333i 0.195458 1.41470i
\(428\) 0 0
\(429\) 8.20240 + 27.2872i 0.396016 + 1.31744i
\(430\) 0 0
\(431\) 19.8414 11.4554i 0.955727 0.551789i 0.0608716 0.998146i \(-0.480612\pi\)
0.894855 + 0.446356i \(0.147279\pi\)
\(432\) 0 0
\(433\) 32.7273i 1.57278i 0.617733 + 0.786388i \(0.288051\pi\)
−0.617733 + 0.786388i \(0.711949\pi\)
\(434\) 0 0
\(435\) −4.50827 4.24384i −0.216155 0.203477i
\(436\) 0 0
\(437\) −13.5231 −0.646899
\(438\) 0 0
\(439\) 6.43498i 0.307125i −0.988139 0.153562i \(-0.950925\pi\)
0.988139 0.153562i \(-0.0490746\pi\)
\(440\) 0 0
\(441\) 15.5393 + 14.1256i 0.739965 + 0.672646i
\(442\) 0 0
\(443\) 25.5373i 1.21331i −0.794964 0.606656i \(-0.792510\pi\)
0.794964 0.606656i \(-0.207490\pi\)
\(444\) 0 0
\(445\) 0.0248170 0.00117644
\(446\) 0 0
\(447\) −17.0034 + 5.11113i −0.804233 + 0.241748i
\(448\) 0 0
\(449\) 40.1008i 1.89247i 0.323474 + 0.946237i \(0.395149\pi\)
−0.323474 + 0.946237i \(0.604851\pi\)
\(450\) 0 0
\(451\) 31.7322 18.3206i 1.49421 0.862684i
\(452\) 0 0
\(453\) 28.2568 30.0174i 1.32762 1.41034i
\(454\) 0 0
\(455\) −0.714485 + 5.17135i −0.0334956 + 0.242436i
\(456\) 0 0
\(457\) −38.4715 −1.79962 −0.899810 0.436283i \(-0.856295\pi\)
−0.899810 + 0.436283i \(0.856295\pi\)
\(458\) 0 0
\(459\) 0.774707 4.48114i 0.0361602 0.209162i
\(460\) 0 0
\(461\) 12.0830 + 20.9283i 0.562759 + 0.974728i 0.997254 + 0.0740533i \(0.0235935\pi\)
−0.434495 + 0.900674i \(0.643073\pi\)
\(462\) 0 0
\(463\) 8.65455 14.9901i 0.402211 0.696650i −0.591781 0.806098i \(-0.701575\pi\)
0.993992 + 0.109449i \(0.0349085\pi\)
\(464\) 0 0
\(465\) 4.80454 1.44422i 0.222805 0.0669742i
\(466\) 0 0
\(467\) −5.46858 + 9.47185i −0.253056 + 0.438305i −0.964366 0.264573i \(-0.914769\pi\)
0.711310 + 0.702878i \(0.248102\pi\)
\(468\) 0 0
\(469\) 31.7098 + 4.38110i 1.46422 + 0.202300i
\(470\) 0 0
\(471\) 4.57514 19.4003i 0.210811 0.893920i
\(472\) 0 0
\(473\) 16.2625i 0.747751i
\(474\) 0 0
\(475\) 6.54197 3.77701i 0.300166 0.173301i
\(476\) 0 0
\(477\) 3.98298 0.240891i 0.182368 0.0110296i
\(478\) 0 0
\(479\) −0.756744 + 1.31072i −0.0345765 + 0.0598883i −0.882796 0.469757i \(-0.844342\pi\)
0.848219 + 0.529645i \(0.177675\pi\)
\(480\) 0 0
\(481\) 6.81173 3.93275i 0.310588 0.179318i
\(482\) 0 0
\(483\) 37.3764 5.82907i 1.70069 0.265232i
\(484\) 0 0
\(485\) 3.70841 + 2.14105i 0.168390 + 0.0972201i
\(486\) 0 0
\(487\) 0.0853077 + 0.147757i 0.00386566 + 0.00669552i 0.867952 0.496649i \(-0.165436\pi\)
−0.864086 + 0.503344i \(0.832103\pi\)
\(488\) 0 0
\(489\) −24.8395 + 26.3872i −1.12328 + 1.19327i
\(490\) 0 0
\(491\) −23.5139 13.5757i −1.06117 0.612665i −0.135412 0.990789i \(-0.543236\pi\)
−0.925755 + 0.378125i \(0.876569\pi\)
\(492\) 0 0
\(493\) −4.34474 2.50844i −0.195677 0.112974i
\(494\) 0 0
\(495\) 4.34581 8.70151i 0.195329 0.391104i
\(496\) 0 0
\(497\) −3.83327 + 27.7447i −0.171946 + 1.24452i
\(498\) 0 0
\(499\) 11.1327 + 19.2824i 0.498369 + 0.863200i 0.999998 0.00188245i \(-0.000599204\pi\)
−0.501629 + 0.865083i \(0.667266\pi\)
\(500\) 0 0
\(501\) −15.8932 + 16.8835i −0.710058 + 0.754300i
\(502\) 0 0
\(503\) −32.2005 −1.43575 −0.717876 0.696171i \(-0.754885\pi\)
−0.717876 + 0.696171i \(0.754885\pi\)
\(504\) 0 0
\(505\) −5.56621 −0.247693
\(506\) 0 0
\(507\) −1.48992 4.95656i −0.0661696 0.220129i
\(508\) 0 0
\(509\) −4.60909 7.98317i −0.204294 0.353848i 0.745613 0.666379i \(-0.232157\pi\)
−0.949908 + 0.312531i \(0.898823\pi\)
\(510\) 0 0
\(511\) 33.0305 13.4349i 1.46118 0.594326i
\(512\) 0 0
\(513\) 2.93814 + 7.98927i 0.129722 + 0.352735i
\(514\) 0 0
\(515\) 4.78959 + 2.76527i 0.211055 + 0.121853i
\(516\) 0 0
\(517\) 42.6285 + 24.6116i 1.87480 + 1.08242i
\(518\) 0 0
\(519\) −9.92714 2.34109i −0.435753 0.102763i
\(520\) 0 0
\(521\) 7.44581 + 12.8965i 0.326207 + 0.565007i 0.981756 0.190146i \(-0.0608961\pi\)
−0.655549 + 0.755153i \(0.727563\pi\)
\(522\) 0 0
\(523\) 29.3725 + 16.9582i 1.28437 + 0.741532i 0.977644 0.210266i \(-0.0674329\pi\)
0.306727 + 0.951798i \(0.400766\pi\)
\(524\) 0 0
\(525\) −16.4532 + 13.2591i −0.718077 + 0.578675i
\(526\) 0 0
\(527\) 3.52050 2.03256i 0.153355 0.0885398i
\(528\) 0 0
\(529\) 22.5708 39.0938i 0.981340 1.69973i
\(530\) 0 0
\(531\) 17.0875 + 8.53401i 0.741533 + 0.370344i
\(532\) 0 0
\(533\) 19.3122 11.1499i 0.836504 0.482956i
\(534\) 0 0
\(535\) 1.90333i 0.0822880i
\(536\) 0 0
\(537\) 27.6447 8.30987i 1.19296 0.358597i
\(538\) 0 0
\(539\) 25.4029 + 26.0610i 1.09418 + 1.12253i
\(540\) 0 0
\(541\) −2.65164 + 4.59278i −0.114003 + 0.197459i −0.917381 0.398011i \(-0.869701\pi\)
0.803378 + 0.595470i \(0.203034\pi\)
\(542\) 0 0
\(543\) 0.183953 0.780032i 0.00789418 0.0334744i
\(544\) 0 0
\(545\) −3.46139 + 5.99531i −0.148270 + 0.256811i
\(546\) 0 0
\(547\) 4.13892 + 7.16882i 0.176967 + 0.306517i 0.940840 0.338850i \(-0.110038\pi\)
−0.763873 + 0.645367i \(0.776705\pi\)
\(548\) 0 0
\(549\) −14.9512 + 29.9364i −0.638101 + 1.27766i
\(550\) 0 0
\(551\) 9.39080 0.400061
\(552\) 0 0
\(553\) 25.4139 + 3.51124i 1.08071 + 0.149313i
\(554\) 0 0
\(555\) −2.61325 0.616278i −0.110926 0.0261595i
\(556\) 0 0
\(557\) 6.96801 4.02299i 0.295244 0.170459i −0.345060 0.938581i \(-0.612142\pi\)
0.640304 + 0.768121i \(0.278808\pi\)
\(558\) 0 0
\(559\) 9.89735i 0.418613i
\(560\) 0 0
\(561\) 1.80896 7.67070i 0.0763745 0.323857i
\(562\) 0 0
\(563\) 29.9156 1.26079 0.630396 0.776274i \(-0.282892\pi\)
0.630396 + 0.776274i \(0.282892\pi\)
\(564\) 0 0
\(565\) 2.25983i 0.0950718i
\(566\) 0 0
\(567\) −11.5644 20.8150i −0.485660 0.874148i
\(568\) 0 0
\(569\) 30.8238i 1.29220i −0.763252 0.646101i \(-0.776399\pi\)
0.763252 0.646101i \(-0.223601\pi\)
\(570\) 0 0
\(571\) 5.34693 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(572\) 0 0
\(573\) 5.42214 22.9920i 0.226513 0.960503i
\(574\) 0 0
\(575\) 38.0639i 1.58737i
\(576\) 0 0
\(577\) 16.3235 9.42437i 0.679556 0.392342i −0.120132 0.992758i \(-0.538332\pi\)
0.799688 + 0.600416i \(0.204998\pi\)
\(578\) 0 0
\(579\) −19.3508 4.56345i −0.804192 0.189651i
\(580\) 0 0
\(581\) 0.382846 + 0.941248i 0.0158831 + 0.0390495i
\(582\) 0 0
\(583\) 6.91522 0.286399
\(584\) 0 0
\(585\) 2.64485 5.29573i 0.109351 0.218951i
\(586\) 0 0
\(587\) 12.3955 + 21.4697i 0.511619 + 0.886150i 0.999909 + 0.0134687i \(0.00428734\pi\)
−0.488290 + 0.872681i \(0.662379\pi\)
\(588\) 0 0
\(589\) −3.80464 + 6.58982i −0.156767 + 0.271529i
\(590\) 0 0
\(591\) −1.90107 + 8.06126i −0.0781995 + 0.331596i
\(592\) 0 0
\(593\) −1.87451 + 3.24675i −0.0769770 + 0.133328i −0.901944 0.431852i \(-0.857860\pi\)
0.824967 + 0.565180i \(0.191193\pi\)
\(594\) 0 0
\(595\) 0.886331 1.13992i 0.0363360 0.0467323i
\(596\) 0 0
\(597\) −15.0897 + 4.53588i −0.617579 + 0.185641i
\(598\) 0 0
\(599\) 32.0673i 1.31024i 0.755527 + 0.655118i \(0.227381\pi\)
−0.755527 + 0.655118i \(0.772619\pi\)
\(600\) 0 0
\(601\) 5.98069 3.45296i 0.243958 0.140849i −0.373037 0.927817i \(-0.621683\pi\)
0.616994 + 0.786968i \(0.288350\pi\)
\(602\) 0 0
\(603\) −32.4725 16.2178i −1.32238 0.660438i
\(604\) 0 0
\(605\) 4.99824 8.65721i 0.203207 0.351966i
\(606\) 0 0
\(607\) 18.7892 10.8479i 0.762629 0.440304i −0.0676102 0.997712i \(-0.521537\pi\)
0.830239 + 0.557408i \(0.188204\pi\)
\(608\) 0 0
\(609\) −25.9551 + 4.04785i −1.05175 + 0.164027i
\(610\) 0 0
\(611\) 25.9437 + 14.9786i 1.04957 + 0.605968i
\(612\) 0 0
\(613\) 8.96928 + 15.5352i 0.362266 + 0.627463i 0.988333 0.152306i \(-0.0486699\pi\)
−0.626068 + 0.779769i \(0.715337\pi\)
\(614\) 0 0
\(615\) −7.40894 1.74723i −0.298757 0.0704552i
\(616\) 0 0
\(617\) 32.9146 + 19.0033i 1.32509 + 0.765043i 0.984536 0.175181i \(-0.0560509\pi\)
0.340557 + 0.940224i \(0.389384\pi\)
\(618\) 0 0
\(619\) −37.5659 21.6887i −1.50990 0.871743i −0.999933 0.0115498i \(-0.996323\pi\)
−0.509969 0.860193i \(-0.670343\pi\)
\(620\) 0 0
\(621\) −42.2662 7.30706i −1.69608 0.293222i
\(622\) 0 0
\(623\) 0.0646303 0.0831220i 0.00258936 0.00333021i
\(624\) 0 0
\(625\) −9.65906 16.7300i −0.386363 0.669200i
\(626\) 0 0
\(627\) 4.24673 + 14.1277i 0.169598 + 0.564208i
\(628\) 0 0
\(629\) −2.17556 −0.0867453
\(630\) 0 0
\(631\) −11.2735 −0.448793 −0.224396 0.974498i \(-0.572041\pi\)
−0.224396 + 0.974498i \(0.572041\pi\)
\(632\) 0 0
\(633\) −3.50169 + 3.71987i −0.139179 + 0.147851i
\(634\) 0 0
\(635\) −3.16189 5.47655i −0.125476 0.217330i
\(636\) 0 0
\(637\) 15.4602 + 15.8607i 0.612555 + 0.628425i
\(638\) 0 0
\(639\) 14.1898 28.4120i 0.561341 1.12396i
\(640\) 0 0
\(641\) −25.7688 14.8776i −1.01781 0.587631i −0.104339 0.994542i \(-0.533273\pi\)
−0.913468 + 0.406911i \(0.866606\pi\)
\(642\) 0 0
\(643\) −37.4271 21.6085i −1.47598 0.852158i −0.476348 0.879257i \(-0.658040\pi\)
−0.999633 + 0.0270991i \(0.991373\pi\)
\(644\) 0 0
\(645\) 2.31574 2.46003i 0.0911822 0.0968635i
\(646\) 0 0
\(647\) −9.42940 16.3322i −0.370708 0.642085i 0.618967 0.785417i \(-0.287552\pi\)
−0.989675 + 0.143332i \(0.954218\pi\)
\(648\) 0 0
\(649\) 28.6661 + 16.5504i 1.12524 + 0.649660i
\(650\) 0 0
\(651\) 7.67508 19.8535i 0.300810 0.778120i
\(652\) 0 0
\(653\) 8.41584 4.85889i 0.329337 0.190143i −0.326210 0.945297i \(-0.605772\pi\)
0.655547 + 0.755155i \(0.272438\pi\)
\(654\) 0 0
\(655\) −6.78397 + 11.7502i −0.265072 + 0.459118i
\(656\) 0 0
\(657\) −40.3589 + 2.44091i −1.57455 + 0.0952289i
\(658\) 0 0
\(659\) 28.5327 16.4734i 1.11148 0.641712i 0.172266 0.985050i \(-0.444891\pi\)
0.939212 + 0.343338i \(0.111558\pi\)
\(660\) 0 0
\(661\) 1.25812i 0.0489353i 0.999701 + 0.0244677i \(0.00778907\pi\)
−0.999701 + 0.0244677i \(0.992211\pi\)
\(662\) 0 0
\(663\) 1.10093 4.66838i 0.0427567 0.181305i
\(664\) 0 0
\(665\) −0.369920 + 2.67743i −0.0143449 + 0.103826i
\(666\) 0 0
\(667\) −23.6596 + 40.9797i −0.916104 + 1.58674i
\(668\) 0 0
\(669\) 39.1810 11.7776i 1.51482 0.455349i
\(670\) 0 0
\(671\) −28.9955 + 50.2217i −1.11936 + 1.93879i
\(672\) 0 0
\(673\) −12.2655 21.2445i −0.472800 0.818914i 0.526715 0.850042i \(-0.323423\pi\)
−0.999515 + 0.0311279i \(0.990090\pi\)
\(674\) 0 0
\(675\) 22.4876 8.27007i 0.865549 0.318315i
\(676\) 0 0
\(677\) −23.1233 −0.888699 −0.444350 0.895853i \(-0.646565\pi\)
−0.444350 + 0.895853i \(0.646565\pi\)
\(678\) 0 0
\(679\) 16.8290 6.84506i 0.645836 0.262689i
\(680\) 0 0
\(681\) 21.4298 22.7650i 0.821191 0.872357i
\(682\) 0 0
\(683\) −12.4945 + 7.21370i −0.478089 + 0.276025i −0.719620 0.694368i \(-0.755684\pi\)
0.241531 + 0.970393i \(0.422350\pi\)
\(684\) 0 0
\(685\) 0.245147i 0.00936659i
\(686\) 0 0
\(687\) −20.1516 + 6.05747i −0.768831 + 0.231107i
\(688\) 0 0
\(689\) 4.20859 0.160335
\(690\) 0 0
\(691\) 37.4114i 1.42320i 0.702586 + 0.711599i \(0.252029\pi\)
−0.702586 + 0.711599i \(0.747971\pi\)
\(692\) 0 0
\(693\) −17.8272 37.2170i −0.677198 1.41376i
\(694\) 0 0
\(695\) 11.2796i 0.427860i
\(696\) 0 0
\(697\) −6.16802 −0.233630
\(698\) 0 0
\(699\) −4.93839 4.64874i −0.186787 0.175832i
\(700\) 0 0
\(701\) 41.0429i 1.55017i 0.631859 + 0.775084i \(0.282292\pi\)
−0.631859 + 0.775084i \(0.717708\pi\)
\(702\) 0 0
\(703\) 3.52672 2.03615i 0.133013 0.0767950i
\(704\) 0 0
\(705\) −2.94378 9.79318i −0.110869 0.368832i
\(706\) 0 0
\(707\) −14.4959 + 18.6435i −0.545176 + 0.701160i
\(708\) 0 0
\(709\) 23.3246 0.875974 0.437987 0.898981i \(-0.355692\pi\)
0.437987 + 0.898981i \(0.355692\pi\)
\(710\) 0 0
\(711\) −26.0251 12.9978i −0.976019 0.487454i
\(712\) 0 0
\(713\) −19.1712 33.2054i −0.717966 1.24355i
\(714\) 0 0
\(715\) 5.12928 8.88418i 0.191824 0.332249i
\(716\) 0 0
\(717\) −15.1447 14.2565i −0.565590 0.532417i
\(718\) 0 0
\(719\) −21.7489 + 37.6701i −0.811096 + 1.40486i 0.101002 + 0.994886i \(0.467795\pi\)
−0.912098 + 0.409973i \(0.865538\pi\)
\(720\) 0 0
\(721\) 21.7354 8.84073i 0.809470 0.329246i
\(722\) 0 0
\(723\) 35.6727 + 33.5804i 1.32668 + 1.24887i
\(724\) 0 0
\(725\) 26.4325i 0.981679i
\(726\) 0 0
\(727\) −11.3715 + 6.56536i −0.421747 + 0.243496i −0.695824 0.718212i \(-0.744961\pi\)
0.274078 + 0.961708i \(0.411627\pi\)
\(728\) 0 0
\(729\) 4.86618 + 26.5579i 0.180229 + 0.983625i
\(730\) 0 0
\(731\) 1.36878 2.37079i 0.0506261 0.0876870i
\(732\) 0 0
\(733\) 34.7965 20.0898i 1.28524 0.742032i 0.307436 0.951569i \(-0.400529\pi\)
0.977801 + 0.209537i \(0.0671955\pi\)
\(734\) 0 0
\(735\) −0.131673 7.55956i −0.00485683 0.278839i
\(736\) 0 0
\(737\) −54.4762 31.4518i −2.00666 1.15854i
\(738\) 0 0
\(739\) −18.7073 32.4020i −0.688158 1.19193i −0.972433 0.233182i \(-0.925086\pi\)
0.284275 0.958743i \(-0.408247\pi\)
\(740\) 0 0
\(741\) 2.58455 + 8.59813i 0.0949460 + 0.315860i
\(742\) 0 0
\(743\) −30.0501 17.3494i −1.10243 0.636488i −0.165572 0.986198i \(-0.552947\pi\)
−0.936858 + 0.349709i \(0.886280\pi\)
\(744\) 0 0
\(745\) 5.53597 + 3.19619i 0.202822 + 0.117099i
\(746\) 0 0
\(747\) −0.0695569 1.15008i −0.00254495 0.0420793i
\(748\) 0 0
\(749\) 6.37500 + 4.95679i 0.232938 + 0.181117i
\(750\) 0 0
\(751\) −14.5070 25.1268i −0.529367 0.916891i −0.999413 0.0342492i \(-0.989096\pi\)
0.470046 0.882642i \(-0.344237\pi\)
\(752\) 0 0
\(753\) −20.3014 4.78762i −0.739823 0.174471i
\(754\) 0 0
\(755\) −14.8423 −0.540168
\(756\) 0 0
\(757\) −8.62406 −0.313447 −0.156723 0.987643i \(-0.550093\pi\)
−0.156723 + 0.987643i \(0.550093\pi\)
\(758\) 0 0
\(759\) −72.3503 17.0622i −2.62615 0.619318i
\(760\) 0 0
\(761\) −11.4107 19.7638i −0.413636 0.716439i 0.581648 0.813440i \(-0.302408\pi\)
−0.995284 + 0.0970019i \(0.969075\pi\)
\(762\) 0 0
\(763\) 11.0663 + 27.2070i 0.400626 + 0.984961i
\(764\) 0 0
\(765\) −1.36593 + 0.902754i −0.0493853 + 0.0326391i
\(766\) 0 0
\(767\) 17.4462 + 10.0725i 0.629945 + 0.363699i
\(768\) 0 0
\(769\) −27.6397 15.9578i −0.996714 0.575453i −0.0894399 0.995992i \(-0.528508\pi\)
−0.907275 + 0.420539i \(0.861841\pi\)
\(770\) 0 0
\(771\) 7.30479 + 24.3011i 0.263076 + 0.875183i
\(772\) 0 0
\(773\) 17.8503 + 30.9176i 0.642030 + 1.11203i 0.984979 + 0.172675i \(0.0552410\pi\)
−0.342949 + 0.939354i \(0.611426\pi\)
\(774\) 0 0
\(775\) 18.5486 + 10.7090i 0.666284 + 0.384679i
\(776\) 0 0
\(777\) −8.86980 + 7.14788i −0.318202 + 0.256429i
\(778\) 0 0
\(779\) 9.99875 5.77278i 0.358242 0.206831i
\(780\) 0 0
\(781\) 27.5190 47.6643i 0.984708 1.70556i
\(782\) 0 0
\(783\) 29.3507 + 5.07420i 1.04891 + 0.181337i
\(784\) 0 0
\(785\) −6.21492 + 3.58819i −0.221820 + 0.128068i
\(786\) 0 0
\(787\) 13.8834i 0.494888i −0.968902 0.247444i \(-0.920409\pi\)
0.968902 0.247444i \(-0.0795907\pi\)
\(788\) 0 0
\(789\) −7.22820 6.80425i −0.257331 0.242238i
\(790\) 0 0
\(791\) 7.56908 + 5.88522i 0.269125 + 0.209254i
\(792\) 0 0
\(793\) −17.6466 + 30.5649i −0.626651 + 1.08539i
\(794\) 0 0
\(795\) −1.04606 0.984709i −0.0371001 0.0349240i
\(796\) 0 0
\(797\) 14.2145 24.6203i 0.503504 0.872094i −0.496488 0.868044i \(-0.665377\pi\)
0.999992 0.00405063i \(-0.00128936\pi\)
\(798\) 0 0
\(799\) −4.14300 7.17589i −0.146569 0.253865i
\(800\) 0 0
\(801\) −0.0996020 + 0.0658278i −0.00351927 + 0.00232591i
\(802\) 0 0
\(803\) −70.0708 −2.47274
\(804\) 0 0
\(805\) −10.7518 8.35990i −0.378951 0.294648i
\(806\) 0 0
\(807\) −1.61273 5.36512i −0.0567708 0.188861i
\(808\) 0 0
\(809\) −21.1074 + 12.1864i −0.742096 + 0.428449i −0.822831 0.568286i \(-0.807607\pi\)
0.0807348 + 0.996736i \(0.474273\pi\)
\(810\) 0 0
\(811\) 35.2739i 1.23863i −0.785141 0.619317i \(-0.787409\pi\)
0.785141 0.619317i \(-0.212591\pi\)
\(812\) 0 0
\(813\) 30.0979 + 28.3326i 1.05558 + 0.993668i
\(814\) 0 0
\(815\) 13.0474 0.457030
\(816\) 0 0
\(817\) 5.12428i 0.179276i
\(818\) 0 0
\(819\) −10.8496 22.6502i −0.379116 0.791462i
\(820\) 0 0
\(821\) 19.5144i 0.681056i 0.940234 + 0.340528i \(0.110606\pi\)
−0.940234 + 0.340528i \(0.889394\pi\)
\(822\) 0 0
\(823\) 31.6570 1.10349 0.551747 0.834012i \(-0.313962\pi\)
0.551747 + 0.834012i \(0.313962\pi\)
\(824\) 0 0
\(825\) 39.7658 11.9534i 1.38447 0.416164i
\(826\) 0 0
\(827\) 24.4749i 0.851075i −0.904941 0.425537i \(-0.860085\pi\)
0.904941 0.425537i \(-0.139915\pi\)
\(828\) 0 0
\(829\) 0.846010 0.488444i 0.0293831 0.0169644i −0.485236 0.874383i \(-0.661266\pi\)
0.514620 + 0.857419i \(0.327933\pi\)
\(830\) 0 0
\(831\) 9.10399 9.67123i 0.315814 0.335491i
\(832\) 0 0
\(833\) −1.50981 5.93736i −0.0523119 0.205717i
\(834\) 0 0
\(835\) 8.34819 0.288901
\(836\) 0 0
\(837\) −15.4520 + 18.5405i −0.534100 + 0.640855i
\(838\) 0 0
\(839\) 19.6920 + 34.1075i 0.679843 + 1.17752i 0.975028 + 0.222083i \(0.0712856\pi\)
−0.295184 + 0.955440i \(0.595381\pi\)
\(840\) 0 0
\(841\) 1.92983 3.34257i 0.0665459 0.115261i
\(842\) 0 0
\(843\) 16.8335 5.06007i 0.579777 0.174278i
\(844\) 0 0
\(845\) −0.931704 + 1.61376i −0.0320516 + 0.0555150i
\(846\) 0 0
\(847\) −15.9797 39.2869i −0.549067 1.34991i
\(848\) 0 0
\(849\) −5.43406 + 23.0425i −0.186497 + 0.790817i
\(850\) 0 0
\(851\) 20.5199i 0.703415i
\(852\) 0 0
\(853\) 21.3507 12.3268i 0.731033 0.422062i −0.0877672 0.996141i \(-0.527973\pi\)
0.818800 + 0.574079i \(0.194640\pi\)
\(854\) 0 0
\(855\) 1.36935 2.74182i 0.0468309 0.0937684i
\(856\) 0 0
\(857\) 11.4145 19.7705i 0.389911 0.675346i −0.602526 0.798099i \(-0.705839\pi\)
0.992437 + 0.122753i \(0.0391723\pi\)
\(858\) 0 0
\(859\) −41.3224 + 23.8575i −1.40990 + 0.814007i −0.995378 0.0960315i \(-0.969385\pi\)
−0.414523 + 0.910039i \(0.636052\pi\)
\(860\) 0 0
\(861\) −25.1471 + 20.2652i −0.857011 + 0.690637i
\(862\) 0 0
\(863\) −18.0645 10.4296i −0.614923 0.355026i 0.159967 0.987122i \(-0.448861\pi\)
−0.774890 + 0.632096i \(0.782195\pi\)
\(864\) 0 0
\(865\) 1.83607 + 3.18017i 0.0624283 + 0.108129i
\(866\) 0 0
\(867\) 19.2731 20.4739i 0.654548 0.695331i
\(868\) 0 0
\(869\) −43.6601 25.2072i −1.48107 0.855094i
\(870\) 0 0
\(871\) −33.1541 19.1416i −1.12339 0.648587i
\(872\) 0 0
\(873\) −20.5628 + 1.24364i −0.695944 + 0.0420907i
\(874\) 0 0
\(875\) 15.7080 + 2.17026i 0.531028 + 0.0733680i
\(876\) 0 0
\(877\) 11.7718 + 20.3894i 0.397506 + 0.688500i 0.993417 0.114550i \(-0.0365426\pi\)
−0.595912 + 0.803050i \(0.703209\pi\)
\(878\) 0 0
\(879\) 6.43232 6.83310i 0.216957 0.230475i
\(880\) 0 0
\(881\) 52.5975 1.77205 0.886027 0.463633i \(-0.153454\pi\)
0.886027 + 0.463633i \(0.153454\pi\)
\(882\) 0 0
\(883\) 33.6815 1.13347 0.566737 0.823899i \(-0.308206\pi\)
0.566737 + 0.823899i \(0.308206\pi\)
\(884\) 0 0
\(885\) −1.97959 6.58556i −0.0665430 0.221371i
\(886\) 0 0
\(887\) −7.51139 13.0101i −0.252208 0.436837i 0.711926 0.702255i \(-0.247823\pi\)
−0.964133 + 0.265418i \(0.914490\pi\)
\(888\) 0 0
\(889\) −26.5776 3.67203i −0.891385 0.123156i
\(890\) 0 0
\(891\) 5.63929 + 46.4506i 0.188923 + 1.55615i
\(892\) 0 0
\(893\) 13.4321 + 7.75505i 0.449489 + 0.259513i
\(894\) 0 0
\(895\) −9.00059 5.19649i −0.300856 0.173700i
\(896\) 0 0
\(897\) −44.0323 10.3840i −1.47019 0.346713i
\(898\) 0 0
\(899\) 13.3129 + 23.0587i 0.444011 + 0.769050i
\(900\) 0 0
\(901\) −1.00812 0.582038i −0.0335853 0.0193905i
\(902\) 0 0
\(903\) −2.20879 14.1629i −0.0735039 0.471313i
\(904\) 0 0
\(905\) −0.249884 + 0.144271i −0.00830643 + 0.00479572i
\(906\) 0 0
\(907\) −5.84747 + 10.1281i −0.194162 + 0.336299i −0.946626 0.322335i \(-0.895532\pi\)
0.752463 + 0.658634i \(0.228865\pi\)
\(908\) 0 0
\(909\) 22.3398 14.7645i 0.740964 0.489709i
\(910\) 0 0
\(911\) 13.9026 8.02666i 0.460613 0.265935i −0.251689 0.967808i \(-0.580986\pi\)
0.712302 + 0.701873i \(0.247653\pi\)
\(912\) 0 0
\(913\) 1.99676i 0.0660831i
\(914\) 0 0
\(915\) 11.5376 3.46814i 0.381421 0.114653i
\(916\) 0 0
\(917\) 21.6887 + 53.3230i 0.716225 + 1.76088i
\(918\) 0 0
\(919\) −9.26860 + 16.0537i −0.305743 + 0.529562i −0.977426 0.211276i \(-0.932238\pi\)
0.671683 + 0.740838i \(0.265572\pi\)
\(920\) 0 0
\(921\) −1.41665 + 6.00714i −0.0466802 + 0.197942i
\(922\) 0 0
\(923\) 16.7480 29.0084i 0.551268 0.954824i
\(924\) 0 0
\(925\) −5.73122 9.92676i −0.188441 0.326390i
\(926\) 0 0
\(927\) −26.5578 + 1.60622i −0.872274 + 0.0527551i
\(928\) 0 0
\(929\) −53.6714 −1.76090 −0.880451 0.474138i \(-0.842760\pi\)
−0.880451 + 0.474138i \(0.842760\pi\)
\(930\) 0 0
\(931\) 8.00440 + 8.21177i 0.262334 + 0.269130i
\(932\) 0 0
\(933\) −18.9901 4.47839i −0.621707 0.146616i
\(934\) 0 0
\(935\) −2.45732 + 1.41873i −0.0803630 + 0.0463976i
\(936\) 0 0
\(937\) 16.7752i 0.548023i −0.961726 0.274012i \(-0.911649\pi\)
0.961726 0.274012i \(-0.0883506\pi\)
\(938\) 0 0
\(939\) −4.54333 + 19.2655i −0.148266 + 0.628704i
\(940\) 0 0
\(941\) 37.0686 1.20840 0.604200 0.796833i \(-0.293493\pi\)
0.604200 + 0.796833i \(0.293493\pi\)
\(942\) 0 0
\(943\) 58.1769i 1.89450i
\(944\) 0 0
\(945\) −2.60289 + 8.16835i −0.0846720 + 0.265716i
\(946\) 0 0
\(947\) 3.16082i 0.102713i 0.998680 + 0.0513565i \(0.0163545\pi\)
−0.998680 + 0.0513565i \(0.983646\pi\)
\(948\) 0 0
\(949\) −42.6450 −1.38431
\(950\) 0 0
\(951\) 7.73999 32.8205i 0.250986 1.06428i
\(952\) 0 0
\(953\) 38.9680i 1.26230i −0.775662 0.631149i \(-0.782584\pi\)
0.775662 0.631149i \(-0.217416\pi\)
\(954\) 0 0
\(955\) −7.36550 + 4.25247i −0.238342 + 0.137607i
\(956\) 0 0
\(957\) 50.2418 + 11.8484i 1.62409 + 0.383005i
\(958\) 0 0
\(959\) 0.821096 + 0.638431i 0.0265146 + 0.0206160i
\(960\) 0 0
\(961\) 9.42531 0.304042
\(962\) 0 0
\(963\) −5.04863 7.63893i −0.162690 0.246161i
\(964\) 0 0
\(965\) 3.57902 + 6.19905i 0.115213 + 0.199555i
\(966\) 0 0
\(967\) 7.29560 12.6363i 0.234611 0.406357i −0.724549 0.689223i \(-0.757952\pi\)
0.959159 + 0.282866i \(0.0912852\pi\)
\(968\) 0 0
\(969\) 0.570000 2.41702i 0.0183110 0.0776458i
\(970\) 0 0
\(971\) 11.3537 19.6652i 0.364358 0.631086i −0.624315 0.781172i \(-0.714622\pi\)
0.988673 + 0.150087i \(0.0479553\pi\)
\(972\) 0 0
\(973\) 37.7800 + 29.3752i 1.21117 + 0.941727i
\(974\) 0 0
\(975\) 24.2014 7.27482i 0.775065 0.232981i
\(976\) 0 0
\(977\) 41.0411i 1.31302i 0.754317 + 0.656511i \(0.227968\pi\)
−0.754317 + 0.656511i \(0.772032\pi\)
\(978\) 0 0
\(979\) −0.179185 + 0.103453i −0.00572678 + 0.00330636i
\(980\) 0 0
\(981\) −2.01056 33.2434i −0.0641923 1.06138i
\(982\) 0 0
\(983\) −10.4653 + 18.1263i −0.333790 + 0.578141i −0.983252 0.182253i \(-0.941661\pi\)
0.649462 + 0.760394i \(0.274994\pi\)
\(984\) 0 0
\(985\) 2.58243 1.49097i 0.0822832 0.0475062i
\(986\) 0 0
\(987\) −40.4677 15.6442i −1.28810 0.497962i
\(988\) 0 0
\(989\) −22.3614 12.9104i −0.711051 0.410525i
\(990\) 0 0
\(991\) −26.9709 46.7149i −0.856758 1.48395i −0.875004 0.484116i \(-0.839141\pi\)
0.0182456 0.999834i \(-0.494192\pi\)
\(992\) 0 0
\(993\) −45.4621 10.7212i −1.44269 0.340227i
\(994\) 0 0
\(995\) 4.91290 + 2.83647i 0.155749 + 0.0899220i
\(996\) 0 0
\(997\) 2.78561 + 1.60827i 0.0882211 + 0.0509345i 0.543462 0.839434i \(-0.317113\pi\)
−0.455240 + 0.890369i \(0.650447\pi\)
\(998\) 0 0
\(999\) 12.1229 4.45833i 0.383551 0.141055i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.ca.e.257.22 48
3.2 odd 2 3024.2.ca.e.2609.14 48
4.3 odd 2 504.2.bs.a.257.3 48
7.3 odd 6 1008.2.df.e.689.14 48
9.2 odd 6 1008.2.df.e.929.14 48
9.7 even 3 3024.2.df.e.1601.14 48
12.11 even 2 1512.2.bs.a.1097.14 48
21.17 even 6 3024.2.df.e.17.14 48
28.3 even 6 504.2.cx.a.185.11 yes 48
36.7 odd 6 1512.2.cx.a.89.14 48
36.11 even 6 504.2.cx.a.425.11 yes 48
63.38 even 6 inner 1008.2.ca.e.353.22 48
63.52 odd 6 3024.2.ca.e.2033.14 48
84.59 odd 6 1512.2.cx.a.17.14 48
252.115 even 6 1512.2.bs.a.521.14 48
252.227 odd 6 504.2.bs.a.353.3 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.3 48 4.3 odd 2
504.2.bs.a.353.3 yes 48 252.227 odd 6
504.2.cx.a.185.11 yes 48 28.3 even 6
504.2.cx.a.425.11 yes 48 36.11 even 6
1008.2.ca.e.257.22 48 1.1 even 1 trivial
1008.2.ca.e.353.22 48 63.38 even 6 inner
1008.2.df.e.689.14 48 7.3 odd 6
1008.2.df.e.929.14 48 9.2 odd 6
1512.2.bs.a.521.14 48 252.115 even 6
1512.2.bs.a.1097.14 48 12.11 even 2
1512.2.cx.a.17.14 48 84.59 odd 6
1512.2.cx.a.89.14 48 36.7 odd 6
3024.2.ca.e.2033.14 48 63.52 odd 6
3024.2.ca.e.2609.14 48 3.2 odd 2
3024.2.df.e.17.14 48 21.17 even 6
3024.2.df.e.1601.14 48 9.7 even 3